Comparing Parallel Functional Languages:
Programming and Performance *

H-W. Loidl', F. Rubio?, N. Scaife?, K. Hammond*, S. Horiguchi?, U.
Klusik®, R. Loogen®, G.J. Michaelson!, R. Pefia?, S. Priebe®, A.J.
Reb6n? and P.W. Trinder!

1 School of Mathematical and Computer Sciences
Heriot- Watt University, Edinburgh EH14 4AS, Scotland
({hwloidl,greg,trinder}Omacs.hw.ac.uk)

2 Dpto. Sistemas Informdticos y Programacion,
Unwversidad Complutense de Madrid, 28040 Madrid, Spain
({fernando,ricardo}@sip.ucm.es)

8 Japan Advanced Institute for Science and Technology,
1/8 Asahidai, Tatsunokuchi, Nomigun, Ishikawa, 923-1211
({norman,hori}@jaist.ac. jp)

4School of Computer Science,
University of St Andrews, KY16 9SS, Scotland
({kh,alvaro}@dcs.st-and.ac.uk)

5 Fachbereich Mathematik und Informatik
Philipps- Universitat Marburg, D-35032 Marburg, Germany
({klusik,loogen,priebe}@mathematik.uni-marburg.de)

Abstract. This paper presents a practical evaluation and comparison of three state-
of-the-art parallel functional languages. The evaluation is based on implementations
of three typical symbolic computation programs, with performance measured on a
Beowulf-class parallel architecture.

We assess three mature parallel functional languages: PMLS, a system for implic-
itly parallel execution of ML programs; GPH, a mainly implicit parallel extension
of Haskell; and Eden, a more explicit parallel extension of Haskell designed for both
distributed and parallel execution. While all three languages employ a completely
implicit approach to communication, each language takes a different approach to
specifying and controlling parallelism, ranging from explicit identification of pro-
cesses as language constructs (Eden) through annotation of potential parallelism
(GPH) to automatic detection of parallel skeletons in sequential code (PMLS).

We present detailed performance measurements of all three systems on a widely
available parallel architecture: a Beowulf cluster of low-cost commodity worksta-
tions. We use three representative symbolic applications: a matrix multiplication
algorithm, an exact linear system solver, and a simple ray-tracer. Our results show
how moderate speedups can be achieved with little or no changes to the sequential

';ﬁ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

2 Loidl et al.

code, and that parallel performance can be significantly improved even within our
high-level model of parallel functional programming by controlling key aspects of
the program such as load distribution and thread granularity.

Keywords: Parallel Computation, Functional Programming, Skeletons, Implicit
Parallelism, Automatic Task Decomposition, Load Balancing, Haskell, ML.

ACM Computing Classification System: D.1.1 (Functional Programming),
D.1.3 (Parallel Programming), D.3.2 (Functional Languages).

1. Introduction

The potential advantages of purely functional programming languages
for prototyping and developing parallel programs have long been
recognised (Burge, 1975). The high level of programming abstraction
simplifies the task of programming, fosters code reuse and facilitates
the development of substantially architecture-independent programs.
The absence of side-effects avoids the unnecessary serialisation which
is a feature of most conventional programs. A comprehensive discussion
of these issues is given by Hammond and Michaelson (1999).

Realising this potential in an effective manner has proved an elu-
sive goal, however. Reducing or eliminating programmer control places
considerable emphasis on sophisticated automatic systems for detecting
and controlling parallelism, making such systems fairly rare and often
only available on a few parallel architectures. A comparison of different
implementations of such automatic resource management mechanisms,
as presented in this paper, is even rarer — to our knowledge this is the
first head-to-head performance comparison of several parallel functional
languages on the same parallel architecture.

For this paper, five research groups have cooperated to produce the
comparisons. We assess three parallel functional languages: Eden and
GPH, both extensions of the standard non-strict functional language
Haskell (Peyton Jones et al., 1999), and PMLS, a parallel implemen-
tation of the strict functional language ML (Milner et al., 1997). The
languages all have high-level coordination, represent a range of lan-
guage and implementation alternatives and are three of the relatively
few robust parallel functional language implementations available. As-
sessment is made on both language and performance levels. We compare
the language features available to express parallel coordination, in par-

* This work is primarily supported by the Austrian Academy of Sciences (APART
fellowship 624), the Japan Society for the Promotion of Science (Postdoctoral fellow-
ship P00778), and UK’s Engineering and Physical Sciences Research Council (grant
nos. GR/L 93379, GR/M 32351 and GR/L 42889).

Comparing Parallel Functional Languages: Programming and Performance 3

ticular we focus on how parallel tasks are identified and created. In the
case of Eden (Breitinger et al., 1997b), task identification and creation
are explicit. In the case of GPH (Trinder et al., 1996), potential paral-
lelism is identified through new language primitives, with tasks created
automatically during program execution on the basis of load. In the
case of PMLS (Michaelson et al., 2001), parallel tasks are identified by
automatically detecting instantiations of certain higher-order function
templates, skeletons. On the performance level we use three repre-
sentative symbolic applications that have also been widely studied in
the general parallel programming community: a matrix multiplication
algorithm, an exact linear system solver, and a simple ray-tracer.

The remainder of this paper is structured as follows: Section 2
discusses general concepts of parallel programming and their impor-
tance in the context of a functional language. Section 3 compares the
three languages, separating the user-visible language constructs that
are needed for expressing parallelism from the implementation of these
constructs. Section 4 presents measurements of all three systems for
the three example programs mentioned above. We discuss the ease of
implementing these programs, the support for performance tuning, and
the overall performance achieved on a 32-node Beowulf cluster. Sec-
tion 5 relates our languages to other parallel functional programming
languages. Finally, Section 6 concludes.

2. Parallel Functional Programming

2.1. WHY PARALLEL FUNCTIONAL PROGRAMMING?

Parallel programming is inherently harder than sequential program-
ming. Traditionally the programmer must not only describe what to
compute, i.e. a correct algorithm, but also how to organise the subcom-
putations on the target architecture, i.e. effective parallel coordination.
Contemporary functional languages have three key properties that
make them attractive for parallel programming: they have powerful
mechanisms for abstracting over both computation and coordination;
they eliminate unnecessary dependencies; and their high-level coordi-
nation achieves a largely architecture-independent style of parallelism.

2.1.1. Abstraction.

Functional languages have excellent abstraction mechanisms that can
be applied to both computation and coordination (Hughes, 1989).
Two important abstraction mechanisms are function composition and
higher-order functions. Function composition allows complex problems

4 Loidl et al.

to be decomposed into simpler sub-functions. Higher-order functions,
ones that manipulate other functions, allow new control constructs
to be defined as required. Through use of powerful mechanisms such
as these, functional programs are typically much shorter than their
imperative or object-oriented equivalents.

The principle of abstraction can be carried through to parallel pro-
gramming, where higher-order functions may be used to form the basis
of new parallel programming constructs. Typically, parallel functional
programs will abstract over details such as process placement, the tim-
ing and volume of communication, and synchronisation issues. More
effort can thus be devoted to improving parallel algorithms. High level
abstraction of parallel constructs encourages experimentation with al-
ternative parallelisations, which often leads to improved solutions for
novel parallel problems.

2.1.2. Elimination of unnecessary dependencies.

The absence of side-effects makes it relatively straightforward to
identify potential parallelism. Since the natural method of program
construction is by composing functions to the depth required rather
than by sequential composition, accidental sequential dependencies are
not introduced into the source program. The only source of sequential
dependency is that the arguments to a function must be evaluated
before they can be used. That is, dependencies are identified solely
on the basis of use. Since values do not change once they have been
computed, dataflow analysis is not needed to determine usage patterns,
even at an inter-procedural level.

2.1.3. Architecture-independence.

Good parallel abstractions encourage high-level portability by abstract-
ing over lower level issues. In extreme cases, this abstraction may
hide all details of the parallel implementation yielding a model of
implicit parallelism. As the low level issues often depend on proper-
ties of a specific architecture, a high-level approach is significantly less
architecture-dependent than lower-level approaches. The architecture-
independence is bought at the price of elaborate language processors:
either the compiler or the runtime system or a combination of both
must adapt the high-level parallelism for the underlying architecture.
By using, at the runtime-system level, standards like PVM (1993)
or MPI (1997), languages can abstract over architecture characteristics.
Unlike imperative languages, functional languages enable a high degree
of abstraction over such standards through higher order functions and
polymorphism.

Comparing Parallel Functional Languages: Programming and Performance)
2.2. TASkKS, PROCESSES AND THREADS.

Parallel programming involves the identification and creation of sub-
tasks that collectively perform the overall task of the program. These
sub-tasks must be allocated to (placed on) processors that will execute
them in some order. Depending on the system, load balancing may
occur by migrating sub-tasks between processors at execution time.

In this paper, we will distinguish two levels of parallel tasks: pro-
cesses, relatively heavyweight tasks whose behaviour is often revealed
to the programmer; and threads, which are implicit, and which form
part of a process.

Task Identification and Granularity. Tasks may be identified either
explicitly by the programmer using some language construct, or implic-
itly by the system identifying potentially parallel parts of the program.
In some cases, the identification may be assisted by the use of anno-
tations: programmer instructions that may or may not be exploited
by the language implementation. The granularity, i.e. the size of the
computation, of tasks may thus be determined by the programmer, the
compiler, the runtime system or a combination of these.

Tusk Creation. Tasks may be created either statically at initialisation
or dynamically during execution of the program. In the latter case,
they may be created either immediately they are identified (eager task
creation) or delayed until they are deemed to be required by the runtime
system (lazy task creation). When a task is created, it is allocated
resources that allow it to execute independently on some parallel pro-
cessor. In some cases a task may return resources to the system while
being suspended, i.e. while it waits for the availability of required data.

Task Placement. When a task is created, it is placed on a processor
that will execute it. This placement may either be on the basis of
static information determined before execution by the compiler, or
dynamically, perhaps in response to load information. Static placement
usually gives a good balance for regular task structures, in cases where
the communication pattern can be determined in advance. Dynamic
placement is more appropriate in situations where the task structure
is irregular, cannot be pre-determined, or where the structure changes
during program execution.

Scheduling and Load Management. Scheduling is needed to manage
the execution of multiple tasks on a single processor. Such scheduling
may be required to be fair, i.e. guaranteed to execute every available

6 Loidl et al.

thread eventually. Dynamic rebalancing of workload may also be re-
quired, especially for irregular task structures on high-latency systems.
Rebalancing is usually achieved by migrating tasks, but alternatives
are to employ task subsumption, in which smaller tasks are merged into
larger ones, or to maintain a work-pool of potential tasks, which can be
communicated between processors at lower cost than tasks which are
already executing. Rebalancing may occur as a result of creating excess
work on a single processor, or as a consequence of starvation on some
processors, in which case a task stealing mechanism may be used.

2.3. COMMUNICATION

Communication is fundamental to executing parallel tasks. In tradi-
tional parallel programming, communication is explicit: the program-
mer uses explicit message-passing primitives, or communicates through
explicitly shared variables, which must normally be protected against
concurrent modifications. In the more implicit approaches advocated
here, communication occurs as a consequence of shared data depen-
dencies between tasks. The systems use either message passing or
shared-memory, as appropriate, and automatically protect the data
against concurrent modifications, as required.

Code or Data. 'Traditional parallel systems usually only support data
transmission. In a functional setting, it is natural for functions to be
transmitted between parallel tasks, and in a non-strict setting, this
may extend to partially evaluated or completely unevaluated forms.
Although this is no conceptual limitation, the parallel systems discussed
here do not perform code migration. Only code pointers are transmit-
ted, as the whole code is usually supposed to reside in all processors.
This is sometimes characterised as an SPMD, single program multiple
data, approach.

Push or Pull. Data may be transmitted either on demand (a pull
mechanism) or when produced (a push mechanism). Pulling has the
advantage of transmitting only the data that is required, but pushing
will require fewer packets to be communicated if most of the data that
is transmitted is required, and will reduce the amount of synchroni-
sation that is needed. In some cases, however, large data structures
may be transmitted unnecessarily. This leads to speculative work, since
not all of the data structure may be needed to compute the result
value. The optimal approach is application-dependent, but in general
a combination of push and pull appears to be ideal.

Comparing Parallel Functional Languages: Programming and Performance 7

Communication Topology. In the more implicit approaches the topol-
ogy of processes changes dynamically in response to load balancing
demands. In this case, the topology is transparent to the program-
mer, and it might differ between identical program executions. In
more explicit approaches, the programmer can control the topology
by connecting processes in the desired way. Topologies such as rings
or tori can be explicitly programmed. In contrast to such dynamic
approaches some systems use a static topology with the exact number
of processes fixed at compile time. Such a static approach is common
with libraries for parallel programming or skeletons (see Section 5.1).
Note that we make no attempt at matching the topology of the archi-
tecture to the topology of the processes, since this would introduce an
architecture-dependent aspect to program development.

Data Marshalling. Sophisticated data marshalling techniques are em-
ployed to automatically pack complex data structures. In some cases,
this marshalling extends to graphs as well as hierarchical data struc-
tures, and may involve the packing of unevaluated as well as fully
evaluated forms (see Section 4.2.4).

Synchronisation. Most systems also employ implicit task synchroni-
sation, when values produced by one task are required by another.
A task that requires an uncomputed value may suspend execution
awaiting delivery of that value. The task is resumed when the value
becomes available. Unlike conventional language approaches, such syn-
chronisation is entirely transparent to the functional programmer, and
is handled internally by the runtime system. That is, no explicit
communication is required, and no other action is required from the
programmer.

3. Language Comparison

This section compares the three parallel functional languages PMLS,
GPH, and Eden. A comparison of a wider range of functional languages
can be found at Loogen (1999). The three languages have been chosen
for the following reasons. Firstly to be consistent with a high-level
computation language we select languages with high-level coordination
and exclude languages with imperative or low-level coordination. Sec-
ondly the languages represent a range of language designs, e.g. both
eager and lazy languages, and with coordination ranging from almost
entirely implicit (PMLS) to a language (Eden) in which processes can
be manipulated by the programmer. Thirdly, the languages represent

8 Loidl et al.

a range of implementation designs, e.g. both those with predominantly
static coordination (PMLS) and those with predominantly dynamic
coordination (GPH). Finally we have selected three of the relatively
few robust parallel functional languages available.

In this section we introduce the underlying notions of skeleton-
thread- and process-based approaches to parallelism, classify our lan-
guages, discuss the user-visible language counstructs and the implemen-
tations of these languages.

3.1. LANGUAGE

In this section we introduce the parallelism constructs in each language
and compare them in terms of expressiveness and paradigm.

3.1.1. PMLS

Parallel ML with Skeletons (PMLS) is a parallelising compiler for the
full purely functional subset of Standard ML, that realises parallelism
in higher order functions (HOFs) as algorithmic skeletons. The PMLS
system is based on a purist interpretation of the skeletons “credo”, seek-
ing to minimise programmer involvement in identifying and exploiting
parallelism.

Skeleton-based approaches define a set of parallel templates or skele-
tons (Cole, 1989). The programmer writes the program using these
skeletons as appropriate. A parallelising compiler can then exploit the
rules provided for each skeleton in order to produce an efficient parallel
implementation of the program on the target architecture.

From the functional programmer’s perspective, a skeleton is simply
a normal higher-order function (HOF). Each HOF is mapped to a
different abstract parallel process topology, with parameters specifying
details of the tasks that are to be performed.

Since the only parallel constructions that are available to the pro-
grammer are the HOFs that have been provided by the language,
programmers must design parallel algorithms by adapting the sequen-
tial source to these HOF's. The compiler and runtime system are jointly
responsible for setting up the corresponding process topologies, and for
mapping processes to processors in the best possible way.

HOF's may be given different behavioural interpretations when com-
piling for different target architectures. This allows a single HOF to
abstract over a range of possible parallel behaviours, which are se-
lected on the basis of concrete details such as communication latency,
or the granularity of the tasks to which the HOF is applied. In essence,
skeletons modify behaviours but not values.

Comparing Parallel Functional Languages: Programming and Performance 9

fun map £ [1 = []1 |
map £ (h::t) = £ h::map £ t
val map = fn : (‘a -> 'b) -> ’'a list -> ‘b list

Figure 1. Parallel map in PMLS

As an example Figure 1 shows an implementation of the common
higher order function map in PMLS. It applies the function £ to all
the elements of the list (h::t). If £ converts something of type ’a to
type ’b then map f converts an ’a list to a ’b list. If we unfold
map f across a list [el,e2...eN], the effect is the evaluation of [f
el,f e2,...,f eN]. There is no interaction between the evaluation of
each element, so in principle these evaluations may be carried out in
arbitrary order, in particular in parallel.

A common approach to parallelising map is to construct a task farm
skeleton consisting of a farmer processor controlling worker processors
pre-loaded with f£. Given an initial list, the farmer:

— records all workers as free;
— repeatedly:

e sends an unprocessed list element to a free worker and records
it as busy;

e receives a processed list element from a busy worker and
records it as free;

— until all list elements have been processed;
— assembles the processed list in the appropriate order.

This approach is self-balancing: no workers sit idle so long as there
are more list elements to be processed, and variations in the times to
process different elements have minimal impact.

There are various topologies for task farms, for example the linear
chain where each processor has a bi-directional connection to its pre-
decessor and successor. The farmer passes unprocessed data down the
chain of busy workers to the first free worker, and processed data is
passed back up the chain to the farmer. Here, the farmer need not
keep track of free and busy workers, and may assemble the final list as
processed elements become available.

Constructs. The PMLS compiler generates parallel code solely from
calls to map and fold. No other SML constructs are provided or ex-
ploited for parallelism. However, the system enables the introduction

10 Loidl et al.

of new HOFs with new skeletons. In some cases, like fold, a proof
obligation is put on the programmer to ensure correctness of the parallel
code: in the case of fold the binary operation must be associative.
While the compiler will support the judicious local use of imper-
ative SML constructs, assignments to free variables in arguments to
parallelised higher order functions no longer have global effects and
defunctionalisation may not preserve evaluation order.

Methodology. The programmer need have no conception of parallelism.
The compiler will exploit parallelism in explicit uses of map and fold.

(* original function *)
fun inc [] = [1 |
inc (h::t) = h+l::inc t

(* first synthesised function, using map *)
val incl = map (fn h => h+1)

(* second synthesised function, using foldr ¥)
val inc2 = foldr (fn h => fn t => h+l::t) []

Figure 2. Program Synthesis in PMLS

A pre-processor may also be used to synthesise higher-order func-
tions in programs that lack them, using proof planning driven by middle
out reasoning (Cook, 2002). For example Figure 2 shows how, given the
function inc, this pre-processor can synthesise both inc1, defining inc
in terms of map, and inc2, defining inc in terms of fold.

3.1.2. GPH

GpH (Trinder et al., 1998) is a modest conservative extension of
Haskell98 (Peyton Jones et al., 1999) realising a thread-based approach
to parallelism. Thread-based approaches to parallelism allow parallel
threads to be created, but do not provide mechanisms to control those
threads. Threads are thus managed entirely under runtime-system
control. By combining simple thread primitives with higher-order func-
tions, high-level abstractions can be constructed, such as the evaluation
strategy approach (Trinder et al., 1998).

Constructs. GPH provides parallel (par) and sequential (seq) compo-
sition as coordination primitives (see Figure 3). Denotationally, both
compositions are projections onto the second argument. Operationally
seq causes the first argument to be evaluated before the second and par
indicates that the first argument may be executed in parallel. The latter
operation is called the “sparking” of parallelism and is used in different
variants in many parallel languages. The runtime-system, however, is

Comparing Parallel Functional Languages: Programming and Performance 11

free to ignore any available parallelism. In this model the programmer
only has to expose expressions in the program that can usefully be
evaluated in parallel. The runtime-system manages the details of the
parallel execution such as thread creation, communication etc.

-- basic constructs

par :: a ->b ->b -- parallel composition

seq :: a ->b ->b -- sequential composition

type Strategy a = a -> () -- type of evaluation strategy

using :: a -> Strategy a -> a -- Strategy application

using x s = s X ‘seqg' x

rwhnf :: Strategy a -- reduction to weak head normal form

rwhnf x = x ‘seqg' ()

class NFData a where -- class of reducible types
rnf :: Strategy a -- reduction to normal form

Figure 3. Basic Coordination Constructs in GpH

Experience of implementing non-trivial programs in GPH shows that
the unstructured use of par and seq can lead to rather obscure pro-
grams. This problem can be overcome with evaluation strategies: lazy,
polymorphic, higher-order functions controlling the evaluation degree
and the parallelism of a Haskell expression. Evaluation strategies pro-
vide a clean separation between coordination and computation. The
driving philosophy is that it should be possible to understand the com-
putation specified by a function without considering its coordination.
Figure 3 shows the basic operations over strategies. A strategy on a
value of type a is a function from a to the nullary value () executed
purely for effect, and the null value is returned to indicate completion.
The using construct applies a strategy to a Haskell expression. The
basic strategy rwhnf reduces an expression to weak head normal form
(WHNF), the default in Haskell. The overloaded strategy rnf reduces
an expression to normal form (NF), i.e. containing no reductions. As
there are types that are not reduced to normal form in Haskell, e.g.
function types, rnf is restricted to types that are reduced to normal
form by the NFData class which is instantiated for all major types.
Because strategies are simply functions they can be combined, or passed
as parameters using standard language capabilities.

For example the parList strategy in Figure 4 is higher-order, apply-
ing the argument strategy strat to every element of a list in parallel.
This strategy is then used in the GPH implementation of parallel map
(parMap). Note how the algorithmic code is cleanly separated from
the strategy, using the sequential code of map f xs unmodified when
introducing parallelism.

12 Loidl et al.

parList :: Strategy a -> Strategy [a]
parList strat [] = ()

parList strat (x:xs) = strat x ‘par' (parList strat xs)
parMap :: Strategy b -> (a -> b) -> [a] -> [b]

parMap strat f xs = map f xs ‘using' parList strat

Figure 4. Parallel map in GpPH

Methodology. GPH programs are developed with an integrated suite
of sequential and parallel software tools, based on the Glasgow Haskell
Compiler (GHC) (Peyton Jones et al., 1993). The tools for sequential
software development include: the Hugs interpreter, for fast develop-
ment, the GHC compiler and sequential runtime system for optimising
compilation to sequential code; and sequential time and space profilers
integrated into GHC (Sansom and Peyton Jones, 1995). The tools for
parallel software development include: the GRANSIM parameterisable
parallel simulator (Hammond et al., 1995) for flexible and accurate
simulation of the parallel behaviour on a range of parallel machines; the
GHC compiler and GUM parallel runtime system for parallel execution
on multiprocessors; a set of visualisation tools for both GRANSIM and
GUM, visualising the activity of a parallel machine in several levels of
detail; prototypes of more detailed parallel profilers (King et al., 1998).

3.1.3. Eden

Eden (Breitinger et al., 1997b) extends the lazy functional language
Haskell by syntactic constructs to explicitly define and instantiate pro-
cesses. In contrast to the previous techniques, process-based approaches
like Eden expose parallel tasks at the language level. The programmer
must then manage the tasks using the control mechanisms provided
in the language. Eden is explicit about process creation and about the
communication topology, but implicit about other control issues such as
sending and receiving messages, and process placement. Granularity is
under the programmer’s control because he/she decides which expres-
sions must be evaluated as parallel processes, and also some control of
the load balancing is possible at the programmer’s level.

Constructs. Eden provides process abstractions and process instan-
tiations for coordination as shown in Figure 5. The new expression
process x —-> e of a predefined polymorphic type Process a b de-
fines a process abstraction having formal parameter x: :a as input and
expression e::b as output. Process abstractions of type Process a
b can be compared to functions of type a -> b, the main difference
being that the former, when instantiated, are executed in parallel.

Comparing Parallel Functional Languages: Programming and Performance 13

Additionally, when the output or input expression is a tuple, a separate
concurrent thread is created for the evaluation of each tuple element.
We will refer to each of them as a channel.

newtype Process a b = ...

-- process abstraction (language construct)
process x -> e :: Process a b

-- process instantiation
(#) :: (Transmissible a, Transmissible b) => Process a b ->a -> b

-- non-deterministic merge process
merge :: Process [[a]] [a]

Figure 5. Basic Coordination Constructs in Eden

A process instantiation is achieved by using the predefined infix op-
erator (#). The context Transmissible is needed to guarantee that the
elements can be sent through the channels. Each time an expression el
e2 is evaluated, a new process is created to evaluate the application
of el to e2. We will refer to the latter as the child process, and to
the owner of the instantiation expression as the parent process. The
instantiation semantics specifies in which processes these expressions
shall be evaluated: (1) Expression el together with its whole environ-
ment is copied in the current evaluation state to a new processor, and
the child process is created there to evaluate the application of el to
e2, where e2 must be remotely received. (2) Expression e2 is eagerly
evaluated in the parent process. The resulting full normal form data is
communicated to the child process as its input argument.

Once processes are running, only fully evaluated data objects are
communicated. The only exception are lists: they are transmitted in a
stream-like fashion, i.e. element by element. Each list element is first
evaluated to full normal form and then transmitted. Processes trying
to access input not yet available are temporarily suspended. This is the
only synchronising mechanism in Eden.

Figure 6 presents a simple parallel map skeleton in Eden, in which a
different process is created for every element of the input list. Strategies
are used in Eden to influence the evaluation order. In this example, the
spine strategy is used to eagerly evaluate the spine of the process in-
stantiation list. In this way all processes are immediately created. More
sophisticated parallel implementations of map have been developed in
Eden (Klusik et al., 2002; Klusik et al., 2000) and some will be discussed
in Section 4.

14 Loidl et al.

map_par :: (Transmissible a, Transmissible b) =>
(a -> b) -> [a] -> [b]
map par £ xs = [pf # x | x <- xs] ‘'using' spine

where pf = process x -> f x

spine :: Strategy [b]
spine [] = ()
spine (_:xs) = spine xs

Figure 6. Parallel map in Eden

Methodology. Like GPH, Eden is based on the Glasgow Haskell Com-
piler, and can use the same sequential profiling utilities. For parallel
profiling Eden provides a simulator called Paradise (Herndndez et al.,
2000) which is based on GRANSIM, so that tuning the performance of
an Eden program is a similar process to that in GPH.

Parallel programming in Eden can be done by explicitly defining and
instantiating a process topology. This would be equivalent to sequen-
tial functional programming with explicit recursion. Sometimes this is
appropriate, but an experienced functional programmer will try to use
higher-order functions, i.e. skeletons, as much as possible in order to
reduce the amount of work and the possibility of making mistakes. In a
complex application both methods may be simultaneously needed. The
main difference between Eden and more traditional skeleton-based lan-
guages, such as PMLS, is the fact that skeletons can be specified within
Eden itself. Thus, Eden serves both as a computation and coordination
language, yielding a high degree of flexibility for the programmer.

3.2. IMPLEMENTATION

In this section we compare the implementations of the languages on
arbitrary parallel architectures.

3.2.1. PMLS
The PMLS approach is based on:

— maximising compile-time activity to minimise run-time overheads;

— configuring the virtual topology of the target system to reflect
closely the HOF hierarchy in the source program.

While this is relatively inflexible, for example making exploitation of
parallelism across condition branches difficult, it often results in very
efficient code.

Compile Time. The PMLS compiler front end parses, elaborates and
type checks SML to produce an abstract syntax tree (AST). The ML

Comparing Parallel Functional Languages: Programming and Performance 15

Kit is used as the front end. The AST is traversed to extract an abstract
network showing the nesting hierarchy of HOFs. Free variable lifting,
or defunctionalisation, is performed to simplify passing free variable
bindings to skeletons, and to avoid runtime transmission of closures.
The AST and abstract network are traversed to identify HOF's to be
realised as skeletons and to generate skeleton network code and MPI
registration in C. The resulting AST is finally translated into Objec-
tive Caml for linkage by the OCaml and GNU C compilers with the
appropriate skeletons, and skeleton network and MPI registration code.

PMLS skeletons are written in C with MPIL. The map function is
implemented as a task farm and fold as a divide-and-conquer network.
The skeletons are hybrid and may be run either in parallel or sequen-
tially. Skeletons are coordinated at runtime by generic “Pskel” nodes
which can switch their hybrid modes. Otherwise, skeletons are linked
statically with no runtime change of topology. Adopting an SPMD
approach, all processors are pre-loaded with all skeletons and functions.

The use of Objective Caml and GNU C to generate native code
enables a high degree of portability. PMLS has been ported to a
Fujitsu AP3000, IBM SP/2, Cray T3E, networks of UltraSparc work-
stations, SUN Enterprise and Beowulf clusters, displaying consistent
performance across all platforms. For further details see Scaife et al.
(2001).

Run Time. PMLS generates code to link static skeletons through Pskel
nodes. The Objective Caml run-time environment provides garbage
collection and appropriate libraries. At run-time, the Pskel nodes at
each level determine their behaviour from the skeleton network. In par-
ticular, intermediate Pskel nodes in the hierarchy will switch between
parent and child operation if initiated in parallel mode. There is no
movement of code or closures at runtime. For further details of the
compiler design and implementation see Michaelson et al. (2001).

The single processor efficiency of PMLS has been measured for
the raytracer as 86% on our Beowulf cluster. The main sources of
overhead are slight inefficiencies introduced in program transformation
stages, such as extra function calls, and the need to propagate addi-
tional information that is used as arguments to the skeletons used for
exploiting the parallelism. In a multi-processor setup the worker nodes
of the skeleton used in 1inSolv exhibit an efficiency of 84%. In this case
the main source of overhead is some idle time introduced by blocking
communications between nodes in this skeleton. An implementation of
a more efficient version, using non-blocking communication wherever
possible, is currently in development.

16 Loidl et al.

Early versions of PMLS were hampered by inefficiencies in the
translation process from SML to Objective Caml. More recent versions
employ a set of optimising transformations allowing fairly similar per-
formance between the output from PMLS and hand-coded Objective
Caml. For example, the ray tracer has also been implemented in Objec-
tive Caml and gives a sequential runtime of 195 seconds on similar data
to that used in this paper. The output of the PMLS compiler takes 241
seconds on the same data. A slowdown of around 20% is acceptable and
is attributable to the remaining inefficiencies in the translation process.

3.2.2. GpH

Compile Time. The two additional language constructs of GPH, par
and seq, are treated as built-in functions by the compiler. They are
implemented as system-calls in the GUM runtime-system. GPH pro-
grams are compiled using almost all of the sequential optimisations in
GHC, although care must be taken to preserve par and seq.

Run Time. The GUM runtime-system for GPH realises a parallel
graph-reduction machine built on top of GHC’s sequential STG-
machine. To synchronise multiple threads, a thread locks the node of
the graph when starting its evaluation, and other threads requesting
that data will be added to a blocking queue attached to the locked
closure. Access to remote closures is managed by new FetchMe nodes,
representing global indirection. On requesting the contents of such a
node a message will be sent to the target processor and the requesting
thread will be added to a blocking queue. The details of these syn-
chronistation and communication mechanisms are discussed in Loidl
(1998)[Chapter 2].

Being integrated into GHC, GUM makes use of existing analyses
and optimisations for efficient sequential execution. A discussion of the
design and implementation of GUM is given in Trinder et al. (1996).
In summary, the additional features to enable parallel execution are:

— sparking of threads, i.e. identified program expressions may be
evaluated as independent threads or they may be inlined by other
threads, achieving dynamic granularity control as in the lazy task
creation mechanism (Mohr et al., 1991);

— multi-threading, i.e. independent threads of control are executed in
an interleaved fashion thereby enabling an overlap of computation
and communication on each processor;

— virtual shared heap, i.e. the physically distributed heap is treated
as a shared heap with global pointers to remote processors, with
transparent communication on access of non-local data;

Comparing Parallel Functional Languages: Programming and Performance 17

— automatic marshalling of data and work, i.e. when data or work
is needed on another processor, a graph structure is automatically
serialised, sent to another processor, and again unpacked into a
graph structure;

— distributed garbage collection, i.e. weighted reference counting is
used to garbage collect global pointers that are not used any more.

In order to assess the overheads of the different systems we have mea-
sured key parameters of the runtime-system. One important parameter
is the single-processor efficiency, i.e. the sequential runtime divided
by 1 PE runtime in percent. For GUM we have previously measured
80%-93% on simple programs (Trinder et al., 1996), and now 77% on
linSolv as used in Section 4.3. In a multi-processor execution it turns
out that maintaining a virtual shared heap on a distributed memory
machine is most expensive. In particular the management of a hash
table mapping local heap addresses to global heap address accounts for
up to 3.8% of the total execution time, in an earlier version, pre-dating
recent improvements in GUM even up to 8%. In comparison, the costs
for packing graph structures and communication play only a minor
role in the total runtime: less than 1% for this program. The costs for
creating parallelism are, by design, very small: creating a spark requires
only adding a pointer to an array, and threads are very light (14 bytes
for the thread descriptor) with initially small, tunable stacks (1kB).

A detailed discussion of these overheads in GPH is presented in Loidl
(2002). This paper separates the overhead into that induced by the
thread management, memory management and communication subsys-
tems of GUM. It then focuses on virtual shared memory management,
which turns out to be the most expensive part, and uses both 1inSolv
and raytracer as example programs. Several improvements of the ba-
sic load balancing mechanism, that we exploit in these measurements,
are presented in Loidl (2001).

3.2.3. Eden

Compile Time. Eden extends the optimising Glasgow Haskell Com-
piler with a few modifications. In Eden, lazy evaluation is changed to
eager evaluation in two cases. Firstly, processes are eagerly instantiated
when the expression under evaluation demands the creation of a clo-
sure of the form o = el # e2. Secondly, instantiated processes eagerly
produce their output expressions and communicate them on channels.
These modifications of the standard Haskell semantics are aimed at
increasing the degree of parallelism and at speeding up the distribu-
tion of the computation, and they are implemented by compile-time
automatic transformations. The new expressions provided by Eden,

18 Loidl et al.

i.e. process abstractions, process instantiations, dynamic channels and
merge instantiations, are translated into runtime-system calls.

Run Time. The design of DREAM (Breitinger et al., 1997a), the par-
allel abstract graph-reduction machine implementing Eden, is largely
similar to GUM. We focus on the differences to GUM:

— In DREAM, the concept of a virtual shared heap does not exist.
Each process evaluates its outputs autonomously with respect to
other processes. The entire graph needed by a newly instantiated
process is copied into its heap before it starts running. In some
cases, this can even lead to some duplication of work, but it re-
duces the communication overhead of DREAM. Moreover, global
garbage collection reduces to the sending of terminate messages to
processes whose output has been detected to be garbage during a
local garbage collection.

— In contrast to GPH, Eden threads are mandatory. Processes in
DREAM and threads in GUM are related as follows: A process
in DREAM is implemented by several threads, which directly cor-
respond to threads in GUM. These threads run concurrently on
the same processor, so that different output values can be inde-
pendently produced. Threads synchronize on shared graph nodes
as in GPH. In addition, special queue-me closures represent input
from remote processes which is not available yet. On requesting
the contents of such a closure a thread will be blocked until the
input arrives.

— Process placement in Eden is controlled by the runtime-system in
two different modes that can be set-up at the beginning of the ex-
ecution: (1) round-robin mode, in which processes are instantiated
in consecutively numbered processors, or (2) random mode, where
processes are instantiated in randomly chosen processors.

As Eden shares parts of GUM’s thread management and communi-
cation subsystem, the runtime-system overheads are similar. However,
Eden overheads are smaller, as it is not necessary to maintain a virtual
shared graph. The single processor performance for 1inSolv as used in
Section 4.3 has been 89%. In general, the main bottlenecks in Eden
are due to the packing and unpacking routines, which are not yet
optimized. For instance, packing a 600 x 600 matrix of integers takes
1% of the time required for multipying it. Moreover, as Eden does
not provide multicasting, it is not possible to send the same packet to
several processors and pay the packing overhead only once. See Rubio
(2001) for a more detailed description of Eden overheads.

Comparing Parallel Functional Languages: Programming and Performance 19

Table I. Language Comparison

Eden GpH PMLS
Language
Approach process-based thread-based skeleton-based
Constructs proc. abstraction par/seq HOFs
proc. instantiation
Programming skeletons eval. strats —
Abstraction
Methodology define topology simulate, —
and/or skeletons, execute,
simulation visualise
Implementation
Compile-time force strict — synthesise HOF's,
support evaluation of process network,
channel data link skeletons
Run-time graph-red. over graph-red. over skeleton library over
support distributed heap shared heap distributed heap

3.3. SUMMARY

Table I summarises the language and implementation features of
PMLS, GPH, and Eden. On the language level it shows the higher level
of abstraction for PMLS, using a skeleton-based approach, which does
not require language extensions for parallelism at all, whereas GPH
adds combinators to expose parallelism and Eden adds a construct for
explicit process creation. On the implementation level PMLS performs
sophisticated static analysis and program synthesis in order to generate
a sufficient amount of parallelism. Both GPH and Eden rely mostly on
a sophisticated runtime-system with dynamic resource management.
To achieve good single processor performance all systems use state-
of-the-art sequential compilers for functional languages: GPH and Eden
use GHC, and PMLS uses OCaml. Using 1inSolv (Section 4.3) as
benchmark we achieve single processor efficiencies of 77% for GpPH,
mainly due to using a two-space garbage collector in the current imple-
mentation, 89% for Eden (using a better garbage collector), and 84%

20 Loidl et al.

for PMLS which uses a two-generation garbage collector. In measuring
the overheads in multi-processor executions we identified in GPH the
maintenance of hash tables in the virtual shared memory management,
and in PMLS the usage of blocking communication at certain stages and
the single-master, multiple-worker parallel model to be the most costly
components. The details of these runtime-system measurements for
GPH and PMLS, including data obtained from Beowulf and SunSMP
machines, will be published in a separate paper (Loidl et al., 2003).

4. Experimental Results

This section describes the results we have obtained using three pro-
grams: matMult, a matrix multiplication algorithm, 1inSolv, an exact
linear system solver, and raytracer, a simple ray tracer. The parallel
algorithms themselves have been explained in more detail in previous
papers. In this section we focus on a comparison of the implementations
in and the performances achieved with PMLS, GpPH, and Eden.

Although rather simple in nature, these programs represent a range
of applications we are interested in. In previous studies on developing
parallel applications in GPH (Loidl et al., 1999) we have identified
the class of symbolic applications, with complex data structures and
irregular parallelism, as the most interesting application domain. For
pragmatic reasons we had to keep the program size down: ensuring
that all three versions implement the same algorithm and produce
comparable dynamic structures was the main engineering constraint.
Of the three programs in this section the linear system solver, with its
multiple homomorphic images approach, fits these characteristics best,
with the other programs focussing on different aspects of the execution.

More specifically, matrix multiplication is a well-studied parallel pro-
gram and serves to relate our approach to that of imperative languages
(with concrete language and performance comparisons in Section 6).
The linear equation solver exhibits a structure typical for a class
of symbolic applications, which is quite different from conventional
iteration-based techniques. Since it performs a high amount of heap
consumption and creates irregular parallelism, it is closest to typical
symbolic applications. The ray tracer is an example of a data-parallel
application, and issues of task and computation granularity become
important in this context.

Comparing Parallel Functional Languages: Programming and Performance 21
4.1. EXPERIMENTAL FRAMEWORK

All measurements have been performed on a 32-node Beowulf clus-
ter (Ridge et al., 1997) at Heriot-Watt University, consisting of Linux
RedHat 6.2 workstations with a 533MHz Celeron processor, 128kB
cache, 128MB of DRAM and a 5.7GB local IDE disk. The workstations
are connected through a 100Mb/s fast Ethernet switch with a latency
of 142us, measured under PVM 3.4.2.

4.2. MATRIX MULTIPLICATION

4.2.1. Problem Description

Given two square matrices of arbitrary precision integers A, B €
Z™"*™ n € N find their product, i.e. a matrix C € Z™*" such that
Cij = Xk=1 Aik * Bp,j.

4.2.2. Parallel Algorithms

We start with a sequential algorithm directly implementing the above
specification of matrix multiplication, shown in Figure 7. By using an
algebraic datatype Matrix a to represent matrices as lists of lists we
can overload standard arithmetic operations such as multiplication.
The main function is multMatT, which takes A and B’ i.e. the trans-
posed matrix B as input. It computes A * B in a double nested list
comprehension, computing the rows of the result matrix in the outer
comprehension and the elements of a row in the inner comprehension.
The function multVec computes the sum in the specification above for
two vectors of length n.

data (Num a) => Matrix a = M [[a]]

multMat :: (Num a) => Matrix a -> Matrix a -> Matrix a
multMat (M ml) (M m2) = M (multMatT ml (transpose m2))

multMatT :: (Num a) => [[a]] -> [[a]] -> [[a]]
multMatT ml m2T = [[multVec row col | col <- m2T] | row <- ml]

multVec :: (Num a) => [a] -> [a] -> a
multVec vl v2 = sum (zipWith (*) vl v2)

Figure 7. Sequential matMult (Haskell version)

4.2.2.1. Naive data parallelism: Since each element of the result ma-
trix can be computed independently, we can exploit data parallelism
by generating one parallel task for each element in the result matrix.
However, the excessive number of small computations leads to a very
poor performance in general. For example, the GPH implementation of

22 Loidl et al.

this naive data parallel version yields no speedup on up to 16 processors.
We do not consider this version any further.

4.2.2.2. Row clustering: The granularity of the naive parallel algo-
rithm can be increased by computing an entire row of the result matrix
by one task. Assuming square matrices of size n x n with integers of
average size [in its internal representation, and assuming that inte-
gers are multiplied by using the algorithm of Karatsuba and Ofman
(1962), the computational complexity for each task is O(n? * [!0923),
while the total communication complexity, i.e. the amount of data (in
machine words) to be sent, is O(n? #1). The latter complexity is due to
the fact that each task requires the whole second matrix to compute
one final row, and n tasks are created. In order to effectively improve
parallel performance, the granularity of the tasks has to be increased
by computing as many elements as possible inside each task and the
communication has to be minimised.

We can improve the granularity further by computing many rows
of the resulting matrix by each task. With perfect load distribution,
if p processors are available, p tasks should be created, each one
evaluating n/p rows of the resulting matrix. Using such a row clus-
tering approach the communication complexity of the main process is
O(n? * p x 1) whereas the computational complexity of each process is
O(n? * ll"923/p). For large values of n better speedups can be expected,
since the computation-communication ratio increases.

1111
RRRE
OO0

0oo0),

i
MO0
OO0

CmC0)

O
ERRE
OO0

0oo0),

Figure 8. Structure of block-clustering matMult

4.2.2.3. Block clustering: An alternative form of clustering the data is
to partition the input matrices into blocks, performing block-clustering,
and to perform the basic arithmetic over these blocks rather than over
integer values. Figure 8 depicts this partitioning, and indicates that for
the computation of one block in the result matrix, only one row of the
partitioned matrix A and one column of the partitioned matrix B is

Comparing Parallel Functional Languages: Programming and Performance 23

%

10
haha

Lo

Y
=

SiararaN
T

LQf//
L&(k

Figure 9. Process topology generated using a torus

needed. In this version the computational complexity of each process is
still O(n3 * 19923 /p) but its communication complexity is only O(n? *

1/\/P) as the processors do not require the whole second matrix.

4.2.2.4. Torus topology: All parallel versions so far rely on a broadcast
of all data at the beginning of the computation with a communication
complexity of O(n? [* v/P). Therefore, the main process tends to
become a bottleneck especially for large numbers of processors. To avoid
such a bottleneck we can use a torus topology as depicted in Figure 9.
Initially each process in the torus receives only its own blocks from
matrices A and B. In each step the processor computes the product of
both blocks, adds the product to the intermediate result computed so
far, and then obtains the next blocks from its neighbours. As shown
in Figure 9 the blocks of the first matrix are transmitted from left to
right in the torus, while those of the second matrix are transmitted top
down. This algorithm is well-known in the literature as Gentleman’s
algorithm (Quinn, 1994). In this version the communication complexity
of the main process is O(n? 1), i.e. it does not depend on the number
of processors, and the communication between the processors is spread
over the entire execution of the program. The main drawback of this
approach is that it requires a perfect square number of processes to
form a torus topology.

24 Loidl et al.

4.2.3. Implementations

multMatTParRow :: (Num a,Transmissible a) =>
Matrix a -> Matrix a -> Matrix a
multMatTParRow (M ml) (M m2) = M (concat result)

where result = map par multMatT (zip (splitIntoN noPe ml) (repeat m2))

Figure 10. Row-clustering matMult (Eden Version)

4.2.3.1. Eden: The row-clustering version in Eden creates as many
processes as processors available with each of them computing 2 rows
of the product matrix. This version, as shown in Figure 10, uses the
built-in variable noPe, representing the number of available processors.
The function splitIntoN n xs splits the list xs into n nearly equal size
sublists (see Appendix A for the definition of splitIntoN and other
auxiliary functions used in this section).

multMatTParBlock :: (Num a, Transmissible a) =>
Int -> Matrix a -> Matrix a -> Matrix a
multMatTParBlock size ml m2 = decluster size result
where result = map par multMatT (zip (clusterLeft size ml)
(clusterRight size m2))

Figure 11. Block-clustering matMult (Eden Version)

The block-clustering version creates sizexsize processes, each of
them computing a block of the product matrix. In order to reduce
the total amount of communication, the typical value of size will be
| vnoPe|. The main difference to the row-clustering version is the way
in which the matrices are split, which is encoded in the clusterLeft
and clusterRight functions. The first function splits matrix A into a
list of rows, the second function splits matrix B into a list of columns.

The torus version of the algorithm can be expressed in Eden in
terms of its general torus skeleton (Pena and Rubio, 2001). The main
argument of the torus skeleton is the function to be performed by each
node in the torus topology (see Figure 9). Each node has three input
parameters: one from the parent; one from the left neighbour; and one
from the top neighbour. It produces three values: one to the parent;
one to the right neighbour; and one to the neighbour below.

With this torus skeleton, the matrix multiplication algorithm
multMatPar shown in Figure 12 takes the size of the torus, torusSize,
splits the matrices m1 and m2 into blocks m1ss and m2ss, respectively,
thereby pairing them appropriately, and calls the torus skeleton torus
with the function multMatPar’ to be applied by the node processes
of the torus. The per-node function performs a list of matrix multipli-
cations sms — one for each pair of blocks it receives — and sums all

Comparing Parallel Functional Languages: Programming and Performance 25

torus :: (Transmissible a,Transmissible b,Transmissible c¢,Transmissible d)
((c,a,b)->(d,a,b)) -- Main function in each process
[[c]] -> -- Inputs from parent to children
[[d]] -- Outputs from children to parent

torus f m =

multMatPar :: (Num a, Transmissible a) =>
Int -> Matrix a -> Matrix a -> Matrix a
multMatPar torusSize ml m2 = combine results
where results = torus (multMatPar’ torusSize) (zipWith zip mlss m2ss)
mlss = splitMatrixl torusSize ml
m2ss = splitMatrix2 torusSize m2

-- Function performed by each worker

multMatPar’ :: (Num a, Transmissible a) => Int ->
((Matrix a, Matrix a), [Matrix a], [Matrix a]) ->
(Matrix a, [Matrix al, [Matrix al)
multMatPar’ size ((sml,sm2),smls,sm2s) = (result,toRight, toBottom)
where toRight = take (size-1) (sml:smls)
toBottom = take (size-1) (sm2’:sm2s)
sm2’ = transpose sm2
sms = zipWith (curry multMat2) (sml:smls) (sm2’:sm2s)
result = foldll’ addMatrices sms

Figure 12. Torus version of matMult in Eden

products to obtain the result which is returned to the parent. Note
that the first pair, (sml,sm2), is received directly from the parent,
whereas the other pairs are received from the left and right neighbours
as part of smls and sm2s, respectively.

4.2.3.2. GpH: Figure 13 shows a row-clustering version of
multMatPar in GPH. This version uses the sequential matrix
multiplication, multMat, as shown in Figure 7 without change. All
parallelism is defined by a strategy attached to multMat. The strategy
part of the code first evaluates both input matrices, in order to avoid
competition for unevaluated data during the evaluation, and then
uses the predefined strategy parListChunk z rnf m to fully evaluate
chunks of z elements in the matrix m in parallel.

multMatPar :: (Num a, NFData a) => Int -> Matrix a -> Matrix a -> Matrix a

multMatPar z ml m2 = multMat ml m2
‘using' \ (M m) -> rnf ml ‘seq'
rnf m2 ‘seg'
parListChunk z rnf m

Figure 13. Row-clustering matMult (GPH version)

The block-clustering GPH version in Figure 14 implements the
algorithm sketched in Figure 8. In contrast to the purely strategic
row-clustering version, it uses explicit functions for clustering and
declustering the input and result matrices. Note that the code used

=>

26 Loidl et al.

to multiply the clustered matrices, multMatT, is the sequential matrix
multiplication overloaded to work on matrices of matrices. The strategy
attached to the clustered result matrix guarantees that every block in
the clustered result matrix is evaluated in parallel. Such separation of
data-layout from computation and reuse of sequential code greatly im-
proves the productivity in our languages, and is in contrast to low-level
C-based block-clusterings, where extensive code restructuring is needed
to obtain very efficient parallel programs (Frens and Wise, 1997).

Based on experiences with different cluster functions, we have de-
veloped a generic mechanism for clustering arbitrary user-defined data
structures, using formal program transformation to derive data parallel
code such as this from the sequential code (Loidl et al., 2001).

multMatPar :: (Num a, NFData a) => Int -> Matrix a -> Matrix a -> Matrix a
multMatPar z ml m2 =
decluster (multMatT (cluster z ml) (cluster z (transposeMat m2))
‘using' \ (M m) -> rnf ml ‘seq’
rnf m2 ‘seg’
parList (parList rnf) m)

Figure 14. Block-clustering matMult (GPH version)

4.2.3.3. PMLS: The PMLS implementation uses nested lists for rep-
resenting matrices, and Objective Caml’s arbitrary-precision integer
arithmetic library for the operations over the matrix elements. There
is no general overloading of the basic arithmetic functions for matrices
as in Haskell.

(* vector product call *)
fun inner row col = multVec row col

(* inner map - parallel *)
fun outer BT row = map (inner row) BT

(* outer map - parallel *)
fun multMat A B = map (outer (transpose B)) A

Figure 15. Row-clustering matMult (PMLS version)

A straightforward sequential SML algorithm, that uses map instances
instead of Haskell’s list comprehensions, is shown in Figure 15. Since
this code uses one of the HOFs that is implemented as a parallel skele-
ton, it can be directly parallelised by the PMLS compiler resulting in a
pair of nested map skeletons. The outermost map in multMap computes a
list of matrix-vector products by mapping the matrix-vector operation,
called outer, over the rows of matrix A. The outer function computes a

Comparing Parallel Functional Languages: Programming and Performance 27

list of dot products by mapping the multVec function over the columns
of matrix B. Note that the entire matrix B is free in multMat. The
compiler’s free-value analysis phase detects this property and generates
code to transmit B to the workers prior to running the outer farm.

The parallel map skeleton has clustering of data built into it. The
clustering size is global to the whole program and set manually, at
present. With a clustering parameter of one this algorithm corresponds
to the naive data parallel version mentioned above. In non-nested mode,
with clustering set to a suitable value, the behaviour is identical to the
row-clustering version. In nested mode, with both map skeletons imple-
mented in parallel, the matrix B is only transmitted to the intermediate
processors.

(* Block map over outer product *)
fun BMmult (A,B) =
let
val rows = length A
val outerAB = outer product (A,transpose B)
val AB = map Mdotprod outerAB
in
split rows AB
end

Figure 16. Block-clustering matMult (PMLS version)

Figure 16 shows an approximation of a block-clustering version. The
blocks are generated by the map’s implicit clustering mechanism. Since
PMLS does not provide a user-level mechanism for enforcing absolute
placement of data, the quality of the code depends on the ratio of
processors to blocks. The best results are achieved if the number of
blocks is a multiple of the number of processors. This method is slightly
less communications-bound than the row-clustering method since the
entire matrix B is not transmitted to all the processors.

4.2.4. Performance Results
The measurements presented in this section are based on two 200 x 200
matrices of arbitrary precision integers, none of which is larger than
216 _ 1, ie. one machine word. For the row- and block-clustering
versions Eden uses as many blocks as processors, whereas GPH uses a
chunk size of 40. For the row-clustered version PMLS uses blocks of 3
rows, while for the block-clustered version it uses blocks of size 40 x 40.
The results presented here will be related to the performance of
parallel versions implemented in C with PVM and GMP in Section 4.2.5
and in the conclusions (Section 6.2).
Figure 17 summarises the runtimes and Figure 18 the speedups
of all versions on our Beowulf cluster. The sequential performance of

28 Loidl et al.

Matrix Multiplication: Runtimes

40 ‘

Eden row-clustering ——

35 Eden block-clustering |

o Eden torus-clustering ------

GPH row-clustering ——

GPH block-clustering --------
PMLS row-clustering =

g PMLS block-clustering -~
E N f‘;, 777777777777777777]
> e aeaammnameen
D: : T - -
10 N ,
5¢F R s B -] 4
0 ‘ ‘ ‘
4 8 12 16
Processors

Figure 17. Runtimes of matMult on the Beowulf (in seconds)

the strict language, PMLS, is noticeably better than that of the lazy
languages, Eden and GPH, with variations of about 26% between the
versions of the latter languages.

For all versions the performance tails off fairly early with an increas-
ing number of processors. In general, this is due to the high ratio of
communication to computation as elaborated in Section 4.2.2. In Eden
the torus topology behaves better than the block clustering version,
which in turn is better than row clustering. The torus version shows a
small increase in performance even for large numbers of PEs. This is
in contrast to e.g. the block-clustering GPH version, which shows good
speedups up to 4 PEs but tails off after that. In PMLS the difference in
performance between the simple row-clustered and the refined block-
clustered version, due to reduced communication, is most pronounced.
The amount of communication can be directly linked to the free oc-
currence of B in the row- (Figure 15) but not in the block-clustered
version (Figure 16). Furthermore, PMLS uses a task farm skeleton, as
presented in Section 3.1.1, for implementing map in parallel. This model
achieves a good load balance but limits the scalability of the system
because the master process becomes a communication bottleneck for
large numbers of processors.

One important difference between the implementations of the three
languages is the way that data items are packed in order to send them
to other processors. In PMLS a generic serialisation routine is used,

Comparing Parallel Functional Languages: Programming and Performance 29

Matrix Multiplication: Speedups

10 : ‘
Eden row-—clustering ——
Eden block-clustering
8 Eden torus-clustering -—----
I GPH row-clustering ——]
GPH block-clustering ——»-—-
PMLS row-clustering =
2 6 [|_PMLS block-clustering ---=-- |
-8 S
()
Q.
n
O : L L
4 8 12 16
Processors

Figure 18. Speedups of matMult on the Beowulf

whereas GPH implements its own graph packing algorithm. As a result,
the PMLS version is more portable, but the GPH and Eden versions
are in general more efficient. Graph packing could be improved even
further by developing specialised packing routines for commonly used
data structures, such as lists, thereby reducing packet size and pack-
ing time. On a high-latency architecture such as the Beowulf and for
communications-bound algorithms such as matMult this should yield
significant performance improvements.

In summary this example shows how Eden’s richer coordination
constructs, compared to GPH and PMLS, can be used to improve
parallel performance, without having to resort to mechanisms of explicit
synchronisation. The higher level of abstraction in GPH and PMLS
reduces programming effort for the initial version, but also reduces the
amount of programmer control. Although we describe Eden as having
the most explicit coordination in this comparison, it is far more implicit
than most conventional parallel programming languages.

4.2.5. Comparison with C

The three parallel matrix multiplication algorithms have also been im-
plemented in C+PVM using the GMP (GNU Multi-Precision) library
to handle arbitrary sized integers. The program sizes differ substan-
tially from the parallel functional programs. The sequential C matrix
multiplication program using the GMP library consists of 156 lines of
code (excluding blank lines and comments), while the parallel programs

30 Loidl et al.

Table II. Performance Results for parallel C+PVM matrix
multiplication programs on the Beowulf (runtimes in seconds)

row-clustering | block-clustering torus
PEs | RT Spdup | RT Spdup | RT Spdup

1 5.75 11575 1]5.75 1

2.00 2.87 | 2.00 2.87 | 1.93 2.98
9 1.36 423 | 1.18 4.87 | 1.08 5.32
16 1.34 4.29 | 1.03 5.58 | 0.79 7.28
25 1.83 3.14 | 0.97 5.93 | 0.68 8.46

comprise 378 lines of code for the row-clustering algorithm, 436 lines for
the block-clustering version and 457 lines for the torus algorithm. The
parallel C+PVM programs are a factor of 4 to 5 longer than our parallel
functional programs. Table II shows some runtimes and speedups of the
different parallel C+PVM programs for 200 x 200 matrices of arbitrary
precision integers.

The most involved torus version of the program yields the best par-
allel runtimes and speedups. While the sequential runtime is a factor
of 4 to 6 better, the speedup values progress in a similar way as for the
functional programs.

4.3. LINSOLV

4.3.1. Problem Description

The 1inSolv algorithm discussed in this section finds an exact so-
lution of a linear system of equations of the form Az = b where
A e z™" b e Z"™n € N In contrast to more common numerical
algorithms, which usually produce an approximate solution over float-
ing point numbers for a given accuracy, the algorithm presented here
finds an exact solution and works over arbitrary precision integers.

4.3.2. Parallel Algorithm

To find an exact solution for a given system of equations, 1inSolv
uses a multiple homomorphic images approach (Lauer, 1982). This is a
common computer algebra approach and counsists of the following three
stages:

1. map the input data into several homomorphic images,
2. compute the solution in each of these images, and

3. combine the results of all images to a result in the original domain.

Comparing Parallel Functional Languages: Programming and Performance 31

(]]
AdM%‘

{ Zpy ZP‘J

LU-decomp and fwd/bwd subst l

g
:

<

\—"‘

~
Zyp

\Lifting /

| @w

Figure 19. Structure of the 1inSolv algorithm

Figure 19 depicts this structure for the implementation of 1inSolv.
This structure is particularly useful for operations on arbitrary pre-
cision integers. In this case the original domain is Z, the set of all
integer values, and the homomorphic images are Z modulo p, written
Zyp, with p being a prime number. If the input numbers are very big
and each prime number fits into one machine word the basic arithmetic
in the homomorphic images is cheap fixed precision arithmetic. Only in
the combination phase, when applying a fold-based Chinese Remainder
Algorithm (CRA) (see Lipson (1971)), expensive arbitrary precision
arithmetic has to be used to construct the result values. A detailed
discussion of several variants of this algorithm is given in Loidl (1997).

The basic parallel structure of the algorithm is one of performing
all computations in the homomorphic images in parallel. The Haskell
code for the top-level function, which is unchanged for the parallel
GPH version, is shown in Figure 20. It uses LU-decomposition followed
by forward and backsubstitution to compute the solution pmx in the
homomorphic image (Press et al., 1992). The main difficulties in the
parallel algorithm are two-fold. Firstly, we have to make sure that new
results are computed if primes turn out to be “unlucky”, i.e. if the
determinant of the input matrix A in the homomorphic image gen-
erated by this prime number is zero. This can be done either using

32 Loidl et al.

linSolv :: SgMatrix Integer -> -- nxn matrix A
Vector Integer -> -- n vector b
(Vector Integer, Integer, Integer) -- n vector x s.t. A*x=b

linSolv a b =
let
{- Stepl: forward mapping -}

{- Step2: Computation of solutions in Z/p -}

-- Infinite list of hom. solutions of a*x=b in Z p
xList = map get_homSol primes

get_homSol :: Integer -> [Integer]
get_homSol p =
let
b0 = toHom p b
a0 = toHom p a
modDet = toHom p (determinant aoO)

pmx = -- inlined version of: homsolv0 p a0 b0
let
lua = 1u p a0
(1,u) = split_lu p lua

y = fwd _subst p 1 b0
X = bwd_subst p u vy
in
x
in
p : modDet : pmx

{- Step3: lifting via list-based CRA -}

primeList = projection 0 xList -- primes (bases for the hom ims)

detList = projection 1 xList -- dets in all hom ims

det = snd (list_cra pBound primeList detList detList)

x i i = snd (list_cra pBound primeList x i List detList)
where x_i List = projection (i+2) xList

-- overall solution:

X = vector (map x i [0..n-1])
in
x ‘using' strat

Figure 20. Top level code of the sequential 1inSolv algorithm (Haskell version)

demand-driven evaluation (GPH) or adding explicit code to handle
that case (Eden, PMLS). Secondly, we have to avoid a sequential bot-
tleneck in the combination phase at the end. In earlier papers we have
experimented with a tree-based CRA routine to reduce this bottleneck.
However, an analysis of the CRA code (Loidl, 1997) reveals that a tree-
based CRA algorithm performs much more total computation than a
list-based one, due to the more expensive computations at each node
of the tree, and we use a list-based CRA in the parallel algorithm.

4.3.3. Implementations
4.3.3.1. GrPH: The parallel GPH version attaches the strategy shown
in Figure 21 to the top level expression of the sequential code in the last

Comparing Parallel Functional Languages: Programming and Performance 33

strat =
\ res ->
rnf noOfPrimes ‘seg’
parListN noOfPrimes par_ sol_strat xList ‘par’
parList rnf x
where par_sol_strat :: Strategy [Integer]
par sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seqg’
if modDet /= 0
then parList rnf pmx
else ()

Figure 21. Parallel strategy for 1inSolv (GPH version)

line of Figure 20. We use an infinite list xList representing the results
of all homomorphic images together with the prime number, as the basis
of the image, and the value of the determinant of A in that image.
The strategy guesses the number of primes needed to compute the
overall result (noOfPrimes) and uses a parListN strategy to generate
data parallelism over that segment of xList. Using parList inside
the par_sol_strat strategy, which is applied to the solution in every
image, causes each component of the result to be evaluated in parallel.
We need to check whether the determinant is zero to avoid redundant
computation. This check is done here, rather than when computing
noOfPrimes to minimise data dependencies in the algorithm. If some
prime numbers turn out to be unlucky the 1ist_cra will evaluate the
additional results by demanding as-yet-unevaluated list elements. The
final strategy application parList rnf x specifies that all elements of
the result should be combined in parallel.

xList_all = map_rw get_homSol primes

xList = filter lucky xList_all

Figure 22. Parallel 1inSolv (Eden speculative version)

4.3.3.2. Eden: Even though computation in Eden is lazy, commu-
nication is eager, except for stream-like lists. Thus, care has to be
taken not to send the whole list. To ensure a demand-driven eval-
uation of homomorphic solutions we use a task farm skeleton as
outlined in Section 3.1.1. More specifically, we use the replicated work-
ers paradigm (Lester, 1993). A manager and a set of worker processes
are created, and two tasks are initially released to each of the workers.
As soon as any worker finishes a task, it sends the result to the manager,
and a new task is delivered to the worker. The computation in the
manager is demand-driven and triggered by the availability of result
values. As soon as the manager has all the needed results it terminates

34 Loidl et al.

xList_all = map_rw get_homSol primes

xList = filter lucky xList_all
xList_unlucky = filter (not.lucky) xList_all

(p_needed, p_spec) = splitAt (1 + toInt noOfPrimes) primes
primes’ = p needed ++ (additional xList_unlucky p_spec)
additional :: [Integer] -> [Integer] -> [Integer]

additional xs ys = zipWith (\ x y -> y) xs ys

Figure 23. Parallel 1inSolv (Eden conservative version)

all the worker processes. Notice that in this speculative version the
workers may be working speculatively on useless tasks, but only when
the useful tasks have already been consumed and hence the degree of
speculation is tightly limited. More details about the replicated workers
skeleton can be found in Klusik et al. (2002). Figure 22 shows the Eden
code for the speculative version of 1linSolv. The only modification
to the sequential code is the use of a parallel replicated workers map
map_rw instead of a sequential map over the infinite list of primes.

To avoid the potential waste of resources due to speculation we
can implement a conservative version as shown in Figure 23. In this
version the prime numbers are divided into those known to be needed
(pneeded) and those which are only needed if some of the earlier
primes are unlucky (p_spec). The function additional adds for each
unlucky prime a new prime number to the task list primes’. Note in
the definition of additional that due to the demand-driven evaluation
the availability of unlucky primes in xs triggers the generation of one
result element in ys.

4.3.3.3. PMLS: The PMLS implementation has been developed from
the sequential Haskell implementation. Arbitrary length integers are
provided by Objective Caml’s num library, whereas GPH and Eden use
the GNU GMP library. Replacing the default arithmetic for SML with
these arbitrary precision routines exposes some limitations of SML’s
overloading scheme. In direct comparison this step was easier in Haskell.

The main problem in the PMLS implementation, shown in Figure 24,
is the handling of unlucky primes. Because SML is strict, new primes
cannot simply be demanded during the evaluation of the map skeleton.
There are two possible solutions to this problem. Either the homo-
morphic solution function could generate a new prime upon detecting
an unlucky one, as it is done in the conservative Eden version, or the
forward-mapping phase could be made iterative with the number of
valid solution vectors as a convergent. The second of these was imple-
mented since there are problems with generating unique primes within

Comparing Parallel Functional Languages: Programming and Performance 35

(* Solve ax = b modulo p *)
fun gen_xList a b p =

let
val (a0,b0) = (matHom p a,vecHom p b)
val modDet = modHom p (determinant ao)
val ((iLo,jLo), (iHi,jHi)) = matBounds a
val pmx =

fxlist jLo (jHi-jLo+L1)
(fn j => modHom p (determinant (replaceColumn j a0 b0)))
in
p: :modDet : : pmx
end

(* Iterative forward mapping phase *)

fun getSols xList [] = xList
| getSols xList primes =
let
val xList’ = map (gen_xList aN bN) primes
val noUnlucky = countUnlucky xList’
val xList’ = filter (not o isUnlucky) xList’
val primes’ = additionalprimes primes noUnlucky

in
getSols (xList@xList’) primes’
end
val xList = getSols [] (primesuptomaxprod pBound)

(* Combination via CRA *)
val detList = projection 1 xList
val det = list_cra pBound primes detList detList
fun x i i =
let
val x_i_List = projection (i+2) xList
in
list_cra pBound primes x_i_List detList
end
val x = segmap x i (fxlist 0 n (fn x => x))

Figure 24. Parallel 1inSolv (PMLS version)

the map instance function. Unfortunately this solution to the problem
of unlucky primes results in less efficient parallelism for two reasons.

Firstly, in the iterative solution we introduce sequential synchroni-
sation points at the end of each iteration to exchange data between the
processors. This is required to guarantee that all processors, computing
an element of the result vector, terminate on the same iteration. This
nesting of parallelism inside an iterative structure is a general problem
with our methodology. To overcome this problem it would be possible
to either broadcast the convergent, introducing additional communi-
cation, or to define a special iterative skeleton, as it is done in the
SKIPPER system (Serot, 2001). However, we choose a solution that is
more general albeit also more costly.

Secondly, the amount of parallelism is drastically reduced by the
map call during the first iteration of the getSols function. Usually, only

36 Loidl et al.

one or two unlucky primes are found for modest sizes of problems. If
the number of unlucky primes is a multiple of the number of processors
(including zero) then there is no parallel performance penalty, otherwise
there is a minimum of one homomorphic solution time as an overhead.
Additionally, the optimal granularity of the map call will be different
between the iterations, the first phase more efficient with coarser gran-
ularity (since there will be the total number of estimated primes to
decompose over), the latter with minimal granularity (since there will
only be a small number of unlucky primes). We can set the granularity
at runtime but this, currently, requires explicit programmer input. An
alternative would be to have dynamic behaviour in our skeletons.

4.3.4. Performance Results

As inputs for the performance measurements we use a dense 62 x 62
matrix of arbitrary precision integers. No element in the matrix is
larger than 2'6 — 1 and the density of the matrix is higher than 90%.
The sequential runtimes show PMLS to achieve best single processor
performance with 190.8s, followed by GPH with 307.9s, and Eden with
491.7s. We attribute this fairly large difference mainly to algorithmic
differences in the code: The PMLS version uses a more efficient for-
ward substitution after LU decomposition in the homomorphic solution
phase. This difference, in combination with the lazy evaluation mech-
anism used in GPH and Eden, leads to a higher heap consumption
resulting in higher overall runtime. Furthermore, due to implementation
limitations GPH currently has to use a two-space garbage collector,
which is known to be less efficient than the generational garbage col-
lector used by GHC for sequential execution (see below). Finally, the
difference between Eden and GPH is due to the fact that Eden uses an
older version of GHC.

Figure 25 shows the runtimes and Figure 26 shows the relative
speedups for the Eden, GPH, and PMLS implementations of 1inSolv
for up to 16 PEs on the Beowulf cluster. For the input data used in
these measurements a sufficient number of lucky primes are generated
to utilise all processors in the machine. Since these top-level threads
can compute their results independently, they perform relatively little
communication and the parallel overhead is relatively small giving good
parallel efficiency.

A direct comparison of the different languages shows that Eden
achieves the best overall speedup on 16 PEs: 14.0, compared to GPH
at 11.9 and PMLS at 11.5. However, since Eden has far higher sequen-
tial execution time, the PMLS version is the fastest one on 16 PEs.
An examination of the activitiy profiles reveals that PMLS’s skeleton

Comparing Parallel Functional Languages: Programming and Performance 37

LinSolv: Runtimes
500

450 | GpH —— |
400]
350 | ¢ .
300

250
200 §
150
100
50

Runtime

2 4 6 8 10 12 14 16
Processors

Figure 25. Runtimes of 1inSolv on the Beowulf

maintains more parallelism while collecting the data, whereas in GPH
this final stage is mostly sequential.

The Eden measurements use the speculative version with the repli-
cated workers skeleton that dynamically sends work to processes. This
approach achieves dynamic load distribution without relying on a po-
tentially expensive implementation of a virtual shared heap, as used in
GPH, and the measurements show good speedups even beyond 16 PEs.

In examining the dynamic memory management of all systems, we
observe that the total heap allocation on all PEs is highest for PMLS:
1052MB, whereas GPH allocates only 618MB. However, due to higher
maximal heap residency in GPH, processors spend on average 19.0% of
the total execution time on garbage collection, whereas in PMLS this
percentage is only 11.2%. Measuring the heap fragmentation of both
systems as the standard deviation of allocation on each processor we
obtain similar values for both systems, 147MB for PMLS and 157MB
for GpH. This indicates that in 1inSolv, GPH’s dynamic memory
management does not dramatically increase heap fragmentation.

As these numbers indicate, GPH’s garbage collector seems to gen-
erate higher overheads than that in PMLS. The main reason is the
current usage of a one-generation copying collector, rather than a real
generational collector as supported by GHC for sequential compila-
tion (Sansom and Peyton Jones, 1993). Furthermore, Objective Caml’s
two-generation collector, as used by PMLS, provides cheap incremental

38 Loidl et al.

LinSolv: Speedups

14 —
Eden ———
GpH ——
12 ripMLs o |
Linear
10 7
g g |
e}
(]
<
& 6 7
4 .
2 .
0 L . ‘ ‘ | | |
2 4 6 8 PSPPI
Processors

Figure 26. Speedups of 1inSolv on the Beowulf

collection for the young generation, which better exploits the addi-
tional heap space provided by multiple PEs. The implementation of
a mark-and-sweep collector for the older generations is known to be
very efficient, too (Doligez and Leroy, 1993). Another potential reason
for this overhead is the weighted reference counting on global pointers
in GPH, although this overhead allows PEs to collect local garbage
independently, avoiding global synchronisation.

In summary the 1inSolv example demonstrates that for some appli-
cations lazy evaluation can reduce the amount of coordination required.
Both the conservative Eden and the PMLS versions had to introduce
additional coordination to model GPH’s demand-driven generation of
parallelism and to handle unlucky prime numbers. In Eden the spec-
ulative version proved to be faster than the conservative version, but
in general such an approach bears the danger of wasting resources.
Although the static partitioning and mapping of PMLS is generally
less flexible than the approach taken in GPH, the re-use of well-tuned
parallel skeletons can compensate for the loss in flexibility in this case.
It also induces smaller runtime-overheads e.g. for garbage collection.
In terms of speedup the skeleton-based versions in Eden and PMLS
are more efficient in collecting the results and achieve the following
speedups on 16 PEs: 14.0 (Eden), 11.9 (GpH), 11.5 (PMLS), with
PMLS having both the fastest sequential and parallel execution.

Comparing Parallel Functional Languages: Programming and Performance 39
4.4. RAY TRACER

4.4.1. Problem Description

The raytracer program calculates a 2D image of a scene of 3D objects
by tracing all rays in a grid, or window. In tracing a ray, the intersec-
tions with the objects are computed. When an intersection is found,
the ray is reflected and the colour of the intersection point is computed
based on the strength of the ray and on the texture of the object’s
material. The code is based on the Id version that was published as a
part of the Impala suite (Impala, 2001) of parallel benchmark programs.

4.4.2. Parallel Algorithm

Figure 27 shows the top-level function of the sequential Haskell al-
gorithm. The function ray takes the size of the window in x and y
dimension and the world, represented as a list of spheres, as input.
The computation proceeds as two nested maps, with the outer map
operating over the lines of the grid and the inner map, do_line, apply-
ing the tracepixel function to every point in the grid, represented by
the coordinates (i, j), returning a vector representing the colour.

ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray x y world = map do_line sizes_y
where do line :: Int -> [((Int,Int), Vector)]

do line i = map (\ J -> ((i,3), £ 1 j)) sizes x
sizes x = [0..x-1]
sizes_ y = [0..y-1]
f i j = tracepixel world lights i j firstray scrnx scrny
(firstray, scrnx, scrny) = camparams X Yy

Figure 27. Sequential raytracer (Haskell version)

We counsider two parallel versions of this program. Both versions
exploit data parallelism but differ slightly in the way the data is initially
distributed.

4.4.2.1. Parallel map: Because the computation to be performed on
each pixel, tracepixel, is fairly cheap, we do not exploit parallelism
in the inner map but instead execute only the outer map in parallel.
To achieve good granularity in the outer loop, the computation over
several lines are collected into chunks and processed together.

4.4.2.2. Direct map: The direct map version exploits the same kind
of data parallelism but differs in its initial distribution of data. Each
process is given all necessary data and extracts its own portion of
the data by selecting lines in the grid. To improve the granularity of
the communication, sub-sequences of pixels are collected into packets.

40 Loidl et al.

Typically as many tasks as available processors (noPe) are generated.
To improve the load-balance, task 1 (0 < i < noPe-1) computes all
result lines i+j*noPe with j > 0. Note that in this version no dynamic
distribution of tasks is required after the startup phase. Compared to
the parallel map version this should achieve a faster startup of the
parallel processes and a better load distribution.

4.4.3. Implementations

4.4.3.1. PMLS. The PMLS implementation in Figure 28 uses a par-
allel map and has been developed from the sequential Haskell version
in Figure 27.

fun ray x y world =
let
val (firstray, scrnx, scrny) = camparams X Yy
fun do pixel ij =
let
val (i,j) = (ij div 1000,ij mod 1000)
in
((i,3),tracepixel world lights (real i) (real j) firstray scrnx
end
val ind = indxs 0 (x - 1) 0 (y - 1)
in
map (map do pixel) ind
end

Figure 28. Parallel raytracer (PMLS version)

The function do_pixel initiates ray tracing at pixel co-ordinate
(i,j) and is mapped over the index image ind. The same consid-
erations regarding granularity control apply to PMLS. However, the
choice whether to do the outer or inner map in parallel is determined by
the characteristics of the PMLS runtime-system. When two skeletons
are direct arguments to each other, as in the example here (map (map
do_pixel)), there is no advantage in nested implementation since gran-
ularity control is performed automatically inside the map skeleton. In
addition, the PMLS compiler requires all free variables in the function
position of a map, in this case do_pixel, to be sent to the individual
processors when initialising the skeleton instance. Since the inner map
has free values which could (potentially) change between successive
calls they have to be re-transmitted upon each call. This means that
the total amount of data transmitted is significantly less if the outer
map is implemented in parallel.

4.4.3.2. GprpH. The GPH implementation is based on the parallel map
version and uses an additional explicit parameter chunk to control the
size of the chunks. The code in Figure 29 shows the body of the function

scrny)

Comparing Parallel Functional Languages: Programming and Performance 41

ray :: Int -> Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray chunk x y world = map do_line sizes_ y
‘using' parListChunk chunk rnf

Figure 29. Parallel raytracer (GrH version)

ray (the local definitions are unchanged), with an evaluation strat-
egy implementing granularity control via clustering. We use the same
parListChunk strategy as in the row-clustered matrix multiplication.

ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray x y scene = shuffleN outps
where outps = [(process i -> £ dm i) # void | i <- [0..noPe-1]]
‘using' segList ro0
f dnn = map do_line (takeEach noPe (drop n sizes_y))

Figure 30. Parallel direct map version of raytracer (Eden version)

4.4.3.3. Eden. The Eden implementation uses the direct-map version
and is shown in Figure 30. The function f_dm represents the work to
be executed by one process. In the direct-map version this includes the
extraction of its own portion of the input data using the takeEach
function to combine every n-th line of the grid into one chunk.

The processes are created in a list of process instantiations (outps).
The sequential strategy seqList rO0 is used to drive an eager process
creation, creating the processes before the outport values are needed.

4.4.4. Performance Results

The measurements in Figures 31 and 32 use a 350 x 350 image with
a chunk size of 10 and a scene consisting of 640 spheres as input. The
sequential runtimes are: 177.4s for Eden, 163.3s for GPH, and 172.1s
for PMLS. For this application the sequential performance of all three
versions is fairly similar with a variation of less than 10%. This is mainly
due to the fact that raytracer does not make use of the laziness in the
language: all parts of the picture are indeed computed and since there
is no interaction they can be computed eagerly. This dynamic program
characteristic manifests itself in similar garbage collection overheads
for PMLS and GPH: 3.3% and 3.1% as mean over all processors.

For PMLS initial sequential results showed significantly poorer per-
formance than the GPH and Eden versions. This is due to a known
limitation of the PMLS compiler. The results reported here required
some minimal user interaction during the compilation process. The
PMLS group is currently adding an appropriate sequential optimisation
step to the compiler.

42 Loidl et al.

Raytracer: Runtimes
180

Eden direct map

160 GpH parallel map —— |-
L PMLS parallel map e

140
120 | |
100 |
80 |

Runtime

60
40

20

Processors

Figure 31. Runtimes for raytracer on the Beowulf (in seconds)

The rather simple and regular structure of the computation lends
itself to a static approach such as the static task farm in PMLS or the
direct-map in Eden. The partitioning of the program can be achieved
statically and the distribution of work is carried out only once at the
beginning of the program. Since the work is fairly evenly distributed,
no sophisticated dynamic load balancing is necessary. On the other
hand enforcing a fixed data distribution is easier in Eden than in GPH.
In general, the more dynamic facilities of GPH are not used in this
application. We have experimented with GPH versions that model the
Eden approach more closely, but they did not yield any significant
performance improvements.

Not surprisingly for an application with a fairly regular structure
of parallelism, PMLS performs best in terms of speedup as well as
absolute runtime. On 16 processors the runtime is 11.4s, corresponding
to a relative speedup of 15.1. The results for Eden, with its slightly
more dynamic resource management, are similar: parallel runtime of
13.4s with a speedup of 13.2. GPH pays a higher cost for its dynamic
resource management, resulting in a comparatively poor speedup of 6.8
on 16 processors and a parallel runtime of 24.1s.

Another problem we have observed in the GPH version is a po-
tentially poor load distribution where few processors monopolise the
entire available parallelism. This is due to a combination of factors:
In this program all parallelism is generated on the main processor at

Comparing Parallel Functional Languages: Programming and Performance 43

Raytracer: Speedups

16 : :
Eden direct map - -
14 | GpH parallel map —— S
PMLS parallel map 8 e .
12 b linear speedup Pt |

Speedup

Processors

Figure 32. Speedups for raytracer on the Beowulf

the beginning of the computation, and on the Beowulf start-up times
between PEs may vary significantly. Moreover this version of the GPH
runtime-system does not currently allow tasks to migrate from a loaded
PE to an idle PE. Hence the fastest processor(s) sometimes obtain all
available work before the slower processors have a chance to send their
first work requests. It is possible to crudely control the work distribu-
tion by imposing an upper limit on the number of threads that may be
alive on one PE, and that is what we used in these measurements. A
more recent prototype of a GPH runtime-system, extended with thread
migration, achieves similar performance without using such an upper
limit on the number of threads (Du Bois et al., 2002a).

In contrast, for PMLS load-balancing is assumed to be a property
of the skeleton implementation. The parallel map skeleton used by
all applications has a degree of implicit load-balancing as a result of
the processor farming model. This works well in cases like raytracer
but requires manual tuning for particular instances which can change
as execution proceeeds (for example in linSolv different balancing
strategies are used for the initial and the additional results). Eden’s
replicated worker skeleton map_rw as used in the 1inSolv example
provides implicit dynamic load balancing based on the master worker
paradigm. Surprisingly, this skeleton is outperformed for the raytracer
by a static work distribution where the work list is sent to all processors
and the work packages are selected locally within each process.

44 Loidl et al.

In summary, the results for raytracer underline a general trend
in these measurements for Eden and GPH, namely the impact of dy-
namic resource management overheads on scalability. Eden, which has
a lower overhead, performs almost as well as PMLS. However GPH
has to maintain a virtual shared heap, and this diminishes parallel
performance for larger numbers of processors. In some cases we have
observed an overhead of up to 16% of the total execution time, although
typical percentages are 3-8% (Loidl, 2002). We are also investigating
refined load balancing mechanisms, which show better performance.

5. Related Work

For comprehensive overviews on parallel functional programming we
refer to Hammond and Michaelson (1999) and Trinder et al. (2002).
In this section we focus on comparing our approaches with other im-
plemented systems. Only few implementations have overcome a purely
experimental status and concrete head-to-head comparisons of different
languages on the same architecture are even rarer. To our knowledge
this paper is the first such systematic comparison.

5.1. SKELETON-BASED APPROACHES

The prospect of implicit parallelism with the use of skeletons has
spurred the development of several skeletons-based systems. HDC (Her-
rmann, 2000) is a strictly-evaluated subset of Haskell with skeleton-
based coordination, in particular support for fold and map, and several
forms of divide-and-conquer. For the Karatsuba algorithm for polyno-
mial multiplication HDC achieves a relative speedup of 363 on 729
processors of a 1024-processor transputer-based Parsytec machine.

A system closely related to GPH is Caliban (Kelly, 1989; Taylor,
1996) in which moreover clauses, similar to GPH’s using, can be
attached to sequential program source in order to specify parallel be-
haviours. Expressions are annotated to indicate tasks to be created,
and the linkage between the tasks can be specified using normal func-
tions. In the current implementation, the process network is static,
with moreover clauses being resolved at compile-time and processes
being statically mapped to the target topology. A simple raytracer,
introduced by Kelly (1989), has been measured on a 128 processor
Fujitsu AP1000, achieving speedups of up to 24 on 35 processors.

Other prominent skeleton-based systems are SCL (Darlington et al.,
1996a) and P3L (Bacci et al., 1995). Both use separate coordination lan-
guages with small sets of basic skeletons that can be freely nested. The

Comparing Parallel Functional Languages: Programming and Performance 45

most mature implementation of SCL, SPF, uses Fortran as computation
language. Substantial applications such as a Barnes-Hut algorithm have
been implemented in SPF (Darlington et al., 1996b) and measured on a
Fujitsu AP1000. Pelagatti (2002) presents performance results for P3L
on four applications, including a parallel raytracer, obtained with the
SKIE prototype environment for P3L on a 24-node Meiko CS-2 and an
8-PC Linux cluster.

An active research area in the skeletons community is the nesting of
skeletons (Hamdan, 2000). In particular, with support for nesting it is
possible to construct complex parallel applications by composing and
transforming skeletons using given transformation rules and composi-
tional cost models for performance prediction as developed by Pepper
(1993) and Bacci et al. (1999).

5.2. THREAD- AND PROCESS-BASED APPROACHES

Para-functional programming, as introduced by Hudak (1986), is the
general approach of adding control directives to a functional program
in order to specify parallel execution. These control directives allow
the programmer to describe detailed schedules of the execution as well
as a particular mapping of threads to processors. First-class sched-
ules (Mirani and Hudak, 1995) extend para-functional programming to
Haskell, using monads to separate expressions and control directives.
These annotations usually describe potential parallelism, in the sense
of GPH’s par, and therefore represent a thread-based approach. Its
implementation builds on the concept of futures, as used in Multi-
Lisp (Halstead, 1985). First-class schedules have been implemented
by compiling Haskell to the MultiLisp-based operating system STING.
Preliminary performance results on a 16 processor Silicon Graphics
Challenge shared-memory machine show good speedups for a parallel
Barnes-Hut algorithm for solving the n-body problem (Mirani, 1996).

ALFL (Goldberg, 1988) is an LML-like, lazy, implicitly-parallel func-
tional language, implemented on a distributed-memory Intel Hypercube
as well as on a shared-memory Encore machine, with performance
comparisons between the two architectures.

Concurrent Clean (Plasmeijer et al., 1999; Nocker et al., 1991) is a
lazy language with parallelism annotations. In his PhD thesis Kesseler
(1996) quotes performance results for three systems: Concurrent Clean
on the ZAPP abstract machine; Concurrent Clean on the PABC ab-
stract machine; and a Miranda-like, implicitly-parallel, lazy language,
implemented on the abstract HDG machine (Kingdon et al., 1991).
All measurements have been performed on (different) transputer net-
works. In contrast to this paper, no detailed comparison of languages

46 Loidl et al.

or systems is given. Kesseler (1996) reports good speedups for small
programs such as nqueens (5.6 on 8 processors) but poorer results for
a raytracer (3.9 on 16 processors) in his implementation.

5.3. OTHER APPROACHES

One of the most successful data parallel functional languages is NESL
(Blelloch, 1996). NESL is a strict, strongly-typed, data-parallel lan-
guage with implicit parallelism and implicit thread interaction. It has
been implemented on a range of parallel architectures, including vec-
tor machines. A wide range of algorithms have been parallelised in
NESL, including a Delaunay algorithm for triangularisation (Blelloch
et al., 1996), several algorithms for the n-body problem (Blelloch and
Narlikar, 1997), and several graph algorithms. The focus in these pa-
pers, however, is on the comparison and improvement of algorithms
rather than speedup measurements or a comparison with other lan-
guages. Two data-parallel extensions of Haskell have been partially
implemented: Data Field Haskell (Holmerin and Lisper, 2000) and
Nepal (Chakravarty et al., 2001). No performance results are available.

SISAL (Cann, 1992) is a first-order, strict functional language with
implicit parallelism and implicit thread interaction. Its implementation
is based on a dataflow model and it has been ported to a range of
parallel architectures. Good absolute performance in comparison to
Fortran code is quoted in LANL (2001).

The pHluid system (Flanagan and Nikhil, 1996) is a parallel imple-
mentation of Id on networks of workstation, using a dataflow model of
computation in order to achieve implicit parallelism. Id is polymorphic,
higher-order and has a non-strict semantics, implemented via lenient or
parallel eager evaluation. A fusion of Id and Haskell, called pH, has been
proposed (Nikhil and Arvind, 2001) but no implementation is available,
yet. Flanagan and Nikhil (1996) report near-linear (relative) speedups
on a workstation cluster for simple programs such as nqueens. Hammes
et al. (1995) present a rare language and performance comparison of
implicitly parallel Id with sequential Haskell on a realistic benchmark
program.

6. Conclusions

We have compared three state-of-the-art parallel functional program-
ming systems (PMLS, GPH, and Eden) and evaluated their perfor-
mance on a Beowulf architecture using three symbolic applications:
several matrix multiplication algorithms using arbitrary precision arith-

Comparing Parallel Functional Languages: Programming and Performance 47

metic (matMult); an exact linear system solver (1inSolv); and a simple
ray-tracer (raytracer).

PMLS, GpPH and Eden all aim to support parallel symbolic compu-
tations at low programmer cost. While it is relatively straightforward
to achieve good (often linear) speedups for reqular, numerical parallel
computations, it can be much harder, or even impossible, to achieve
the same results for irregular, symbolic computations, especially those
with complex data structures or irregular task structures (Loidl et al.,
1999). Relatively small performance improvements may thus be of much
greater significance to users of such systems. At the same time, sym-
bolic application programmers are usually domain experts rather than
computer scientists, and are often unwilling or unable to invest major
effort in recoding for parallelism. In this section, we will evaluate the
three systems in terms of language features, performance, and produc-
tivity. We will consider them in order of anticipated programmer effort:
namely PMLS, GpH, and Eden.

6.1. SUMMARY LANGUAGE COMPARISON

All three functional languages aim to provide higher-level models of
parallelism, with the objective of reducing programmer overhead. All
three abstract over low-level details of communication timing, data
structure marshaling (including cyclic graph structures) and synchro-
nisation that must be specified in e.g. C+PVM. Moreover, in all three
languages, details of task/thread creation and program decomposition
are delegated to the compilation system.

PMLS provides a convenient model of implicit parallelism using
skeletons — a set of pre-defined higher-order functions with associ-
ated parallel behaviours. Since skeletons are partitioned into parallel
components and mapped to processing units statically, this approach
has the lowest runtime overhead of the three considered here, and where
the application structure fits the pre-defined skeletons perfectly, it will
also have the lowest programmer overhead. However, such an approach
is less flexible than the dynamic approaches taken by Eden and GprH.
This is apparent in less regular or longer-running applications, such as
linSolv, where a regular static structure cannot be determined from
the program source.

GPH has a similar philosophy to that of PMLS, aiming to require
minimal programmer input in order to achieve acceptable parallel
performance. However, it provides more control (if required) over
evaluation order, strictness and parallelism, allowing programmable
evaluation strategies to be developed. This approach accepts low pro-
grammer overhead to enable tuning of the parallel code and to be

48 Loidl et al.

applicable to a variety of programming styles, but may incur poten-
tially high dynamic overhead. This cost is most apparent in regular
applications, where a simple static process to processor mapping could
be determined either manually or automatically. In such a case, manual
tuning may be needed to extract good parallel performance for GPH,
where PMLS might automatically find such a mapping, or it might be
straightforward to program such a mapping in Eden. raytracer is an
example of such simple static mapping.

Finally, of the three languages studied here, Eden provides the great-
est control over parallelism, and thus requires the greatest programmer
effort. Control is provided over task decomposition, allocation to virtual
processors and communication channels. Given sufficient tuning effort,
it is possible to develop more sophisticated parallel algorithms, as with
the torus version of matMult (Section 4.2.2). As with GPH, all PMLS
skeletons can be easily replicated (Klusik et al., 2000; Pena and Rubio,
2001), with a similar mapping effect. Since all load management details
must be explicitly programmed, however, and there is limited support
for lazy communication there will be situations where GPH mechanisms
cannot be easily replicated, such as using a potentially infinite number
of homomorphic images in 1inSolv.

Recognising the value of the skeletons approach for suitable appli-
cations, all three languages provide support for such a style. PMLS
naturally provides the most direct support, with static process mapping
and cost modelling as part of the compilation process. GPH provides
a full set of standard skeletons written in Haskell, and using a dy-
namic cost model and mapping (Hammond and Rebén, 1999). Haskell’s
constructor classes are used to abstract over machine models and alter-
native data structures. Finally, a rich set of skeletons, including some
novel branch-and-bound skeletons, has been developed using Eden con-
structs and used on several parallel machines (Klusik et al., 2000; Pena
and Rubio, 2001; Du Bois et al., 2002b).

6.2. PERFORMANCE COMPARISON

It is received wisdom that eager evaluation (used for strict function
calls) will outperform lazy evaluation (used for non-strict function calls)
due to the overhead of recording partial results in the latter case. It fol-
lows that fully strict languages should outperform non-strict languages:
experimental results suggest that this can be over a factor of 10 in the
worst benchmark cases (Hartel et al., 1996).

Similarly, it is argued that full communication should outperform
lazy communication, since fewer messages are required in the former
case if an entire data structure is communicated. Given that PMLS is

Comparing Parallel Functional Languages: Programming and Performance 49

Table III. Comparative Performance (Seq RT: runtime on a 1 PE parallel machine;
Par RT: runtime on a 16 PE parallel machine; Spdup: Speedup on 16 PEs calculated

Seq RT
3 Far RT)
Eden GrH PMLS
Seq Par Spdup Seq Par Spdup Seq Par Spdup
RT RT RT RT RT RT
matMult 38.5s 13.2s 2.9 30.3s 8.9s 3.4 22.8s 4.3s 5.3
linSolv 491.7s 35.1s 14.0 | 307.9s 25.9s 11.9 | 190.8s 16.6s 11.5
raytracer 177.4s 13.4s 13.2 | 163.3s 24.1s 6.8 | 172.1s 11.4s 15.1

fully strict, with strict communication, Eden is non-strict, with strict
communication and GPH is non-strict with lazy communication, we
would consequently expect PMLS to outperform Eden which should
outperform GPH'. We would also expect the same ordering on the basis
of runtime overheads, but with the possibility of similar overheads for
Eden and PMLS. The performance results summarised in Table III are
therefore somewhat surprising.

For all three benchmarks PMLS achieves the smallest execution
times. In the case of 1inSolv, Eden’s speedup is higher but sequential
execution time is higher, too. GPH achieves similar speedup as PMLS
with sequential time between the other two versions. In the case of the
raytracer (the most regular of the three benchmarks we have consid-
ered) PMLS shows even better speedups than Eden or GPH. While
mirroring earlier results almost exactly (Hammond and Rebén, 1999),
the GPH performance for the raytracer is distinctly disappointing.
This has subsequently led us to improve the GPH load distribution
mechanism (Loidl, 2001).

For comparison, we have re-implemented the matMult benchmark in
C+PVM using the GNU Multi-Precision library for arbitrary precision
arithmetic (Table IV) and the GNU C compiler on the same parallel
machine. For the block-parallel version (the only one implemented in
all four systems), the speedup results using full C optimisation (-O2)
are comparable with those for PMLS: 5.6 on 16 processors. The base
sequential performance is, however, a factor of 4 to 6 faster than for
the functional languages. This factor between functional and imperative
code stems on the one hand from the general overhead of implementing
a high-level (lazy) language, and on the other hand the functional

! This does discount the maturity of the optimising Glasgow Haskell Compiler,
which forms the basis for the Eden and GPH implementations.

50 Loidl et al.

Table IV. Comparative Performance of Matrix Multiplication in C (Seq RT: runtime on

a 1 PE parallel machine; Par RT: runtime on a 16 PE parallel machine; Spdup: Speedup

Seq RT
on 16 PEs calculated as W)

C Eden GpH PMLS
Seq Par Spdup Seq Spdup Seq Spdup Seq Spdup
RT RT RT RT RT
matMult(rows) 5.75s 1.34s 4.3 34.3s 1.7 - - 19.5s 3.3
matMult(block) || 5.75s 1.03s 5.6 32.9s 2.1 30.3s 3.4 22.8s 5.3
matMult(torus) | 5.756s 0.79s 7.3 38.6s 2.9 - - - -

versions use list structures rather than in-place arrays. We anticipate
that the difference could be further reduced by using e.g. monadic tech-
niques to allow in-place array updates, but at some cost in source code
legibility /programmer time. Furthermore, sophisticated type systems,
enabling in-place update, are reaching maturity with first programming
language implementations becoming available (Hofmann, 2000).

6.3. ProbpucTIVITY COMPARISON

Measuring programmer productivity is notoriously difficult, due to
differences in individual ability, prototyping effects, etc. We have there-
fore chosen to use lines of code as a reasonable approximation?. It
is accepted that the number of lines of code produced by any given
trained programiner is roughly constant regardless of the programming
language used or the general ability of the programmer. Whilst not
wishing to overstate our findings and accepting that small variations
may not be significant, we therefore believe that this provides a fair
assessment of expected productivity for the applications studied.
Table V gives the number of lines of code for each of the three
programs that have been studied here, plus corresponding figures for
the arbitrary precision matrix multiplication program in C+PVM. The
counts exclude comments and white space. The parallel code size repre-

2 We were unable to satisfactorily separate application development time from
experimentation and system development, as we would have liked, so have omitted
these figures. Even with profiling and tuning (which, as we have shown, is essential
to achieving good performance), it is unlikely that these would exceed 1-2 days
effort for each of the functional programs. In comparison, the development time for
the (very simple) parallel C program was more than 1 week, without undertaking
performance tuning or optimisation, and with the benefit both of prototyping from
the functional code and of code reuse from other parallel applications.

Comparing Parallel Functional Languages: Programming and Performance 51

Table V. Productivity Comparison (in lines-of-code)

Eden GprH PMLS C
Seq Par | Seq Par | Seq Par | Seq Par
Size Size | Size Size | Size Size | Size Size

matMult 68 34 68 5 85 25 156 301
(10) 3)
linSolv 473 8 473 10 751 13 — —
raytracer 453 10 453 7 410 3 — —

sents the number of lines that were either changed in or newly written
for the parallel version. As expected, these changes are highly significant
for the C program (representing some 65% of the total code size), but
are generally insignificant for the functional programs (in the worst
case, representing 33% of the total code size, for a highly tuned ver-
sion of the matrix multiplication algorithm). The sequential functional
programs are a factor of 2 to 3 times shorter than the C equivalent,
with the parallel programs being 4 to 5 times shorter. Clearly, a certain
amount of the C code could be reused for other applications, but there
is equally clearly a very high entry price to parallel programming in
C, especially when complex data structures must be communicated.
The functional code describing such complex dynamic parallel program
structures is very concise. Although not a major difference, the se-
quential Haskell code is generally slightly shorter than the SML code.
This is mainly a consequence of better standard library support for
Haskell, though high-level language features such as overloading and
list comprehensions have also been exploited.

Since PMLS is the most implicit approach of the three languages
studied, and Eden the most explicit, we would anticipate that PMLS
should require least changes with Eden requiring the most changes.
While this is generally true, the figures are distorted to some extent
by the performance tuning that has been carried out. Although the
initial version of the matMult in PMLS required only 3 lines, the final
tuned version required 25. The corresponding Eden figures are 10 lines
and 34 lines, respectively. The GPH code was not tuned, however, and
therefore only 5 lines in total were changed. The 1inSolv application
showed a reversal of the general result, with Eden requiring fewest
changes. This may reflect the poor match between the irregular parallel
structure of this application and the standard skeletons/strategies used
by the other two systems. It is worth noting that the total number

52 Loidl et al.

of changed lines is generally small, and that our comparisons must
therefore be correspondingly tentative.

We conclude that while C may offer better performance than unop-
timised functional code, the difference is less than might be expected.
Moreover, the high-level features available in functional code mean that
programmer productivity is likely to be much greater than in C.

6.4. MATURITY AND USABILITY

All three functional language systems discussed here can be rated as
mature research systems, running a range of parallel benchmark appli-
cations on a variety of parallel architectures. Work on GPH began in
1994, and it since has been applied to numerous programs, including
the 47,000 line Lolita natural language engineering system (Loidl et al.,
1997). To assist program development, it offers a sophisticated set of
profiling tools (Hammond et al., 2000), including ideal and realistic
simulation. GPH is publicly available in OpenSource form as part of
the GHC compiler project and its most recent version, based on GHC
5.02.3, can be downloaded from (WWW-GPH, 2001).

The Eden system is a later development, sharing underlying paral-
lel scheduling and communication infrastructure with the earlier GPH
system. It has been tested on a variety of small and medium benchmark
applications, but has not yet been applied to large-scale applications,
such as Lolita. Both GPH and Eden provide low-level portability by
compiling through either C+PVM or C4+MPI.

In contrast to the two GHC-based systems, the PMLS system
has a more heterogeneous structure, exploiting state-of-the-art imple-
mentation technology from several sources. The core system uses the
Objective Caml compiler for sequential compilation and calls C+MPI
routines for implementing the parallel skeletons. Up-to-date versions of
Eden and PMLS are available from the developers on request.

7. Future Work

All three systems are under active development. For PMLS the cur-
rent objectives are to provide a more expressive set of algorithmic
skeletons, to optimise the performance of the existing skeletons and
to automatically identify skeleton structures in arbitrary code. This
work will exploit both dynamic profiling-based performance prediction
(which has been found to give good predictions within a narrow range
of program characteristics) and automatic program transformation
techniques.

Comparing Parallel Functional Languages: Programming and Performance 53

The main research direction for GPH is to improve architecture-
independence by refining the mechanisms for load balancing and data
distribution in order to deal with high-latency machines such as Be-
owulf clusters. Based on these refinements, research will focus on the
development of an adaptive runtime-system capable of automatically
tuning its behaviour to suit the characteristics of the parallel machine.

Finally, following the upgrade to conform to the latest sequential
GHC compiler, work in Eden will focus on optimisations to reduce
communication costs.

Acknowledgements

The authors would like to thank the following organisations for funding
the work presented here: the Austrian Academy of Sciences (APART
fellowship 624), the Japan Society for the Promotion of Science (Post-
doctoral fellowship P00778), the Spanish Project TIC2000-0738, and
UK’s Engineering and Physical Sciences Research Council (grants EP-
SRC GR/L 93379, EPSRC GR/M 32351 and EPSRC GR/L42889).
Furthermore, this research was supported by the MRG project (IST-
2001-33149) which is funded by the EC under the FET proactive
initiative on Global Computing. Our cooperative work would not have
been possible without the travel funding from the following organi-
sations: the British Council and the DAAD (grant 1097), and the
Spanish-British Accién Integrada HB 1999-0102.

References

Bacci, B., M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi: 1995, ‘P3L:
A Structured High Level Programming Language and its Structured Support’.
Concurrency — Practice and Ezperience 7(3), 225-255.

Bacci, B., S. Gorlatch, C. Lengauer, and S. Pelagatti: 1999, ‘Skeletons and Trans-
formations in an Integrated Parallel Programming Environment’. In: PACT’99
— Intl. Conf. on Parallel Architecture and Compilations Techniques, Vol. 1662
of LNCS. pp. 13-27, Springer.

Blelloch, G.: 1996, ‘Programming Parallel Algorithms’. Communications of the ACM
39(3), 85-97.

Blelloch, G., G. Miller, and D. Talmor: 1996, ‘Developing a Practical Projection-
Based Parallel Delaunay Algorithm’. In: Symp. on Computational Geometry.
Philadelphia, PA, May 24-26, pp. 186-195, ACM.

Blelloch, G. and G. Narlikar: 1997, ‘A Practical Comparison of N-Body Algorithms’.
In: Parallel Algorithms, Vol. 30 of Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society.

Breitinger, S., U. Klusik, R. Loogen, Y. Ortega, and R. Pefia: 1997a, ‘DREAM -
the DistRibuted Eden Abstract Machine’. In: IFL 97 — Intl. Workshop on the

54 Loidl et al.

Implementation of Functional Languages 1997, Vol. 1467 of LNCS. Univ of St
Andrews, Scotland, pp. 250-269, Springer.

Breitinger, S., R. Loogen, Y. Ortega, and R. Pena: 1997b, ‘The Eden Coordination
Model for Distributed Memory Systems’. In: HIPS’97 — Workshop on High-
level Parallel Programming Models. Geneva, Switzerland, pp. 120-124, IEEE
Computer Science Press.

Burge, W.: 1975, Recursive Programming Techniques. Addison-Wesley.

Canun, D.: 1992, ‘Retire Fortran? A Debate Rekindled’. Communications of the ACM
35(8), 81-89.

Chakravarty, M., G. Keller, R. Lechtchinsky, and W. Pfannenstiel: 2001, ‘Nepal
— Nested Data-Parallelism in Haskell’. In: EuroPar’01 — European Conf. on
Parallel Processing, Vol. 2150 of LNCS. August 28-31, Manchester, UK, pp.
524-534, Springer.

Cole, M. I.. 1989, Algorithmic Skeletons: Structured Management of Parallel
Computation, Research Monographs in Parallel and Distributed Computing.
Cambridge, MA: The MIT Press.

Cook, A.: 2002, ‘Transformation and Proof in a Parallelising Compiler’. Ph.D. thesis,
Dept. of Computing and Electrical Engineering, Heriot-Watt University.

Darlington, J., Y. Guo, and H. To: 1996a, ‘Structured Parallel Programming: The-
ory Meets Practice’. In: R. Milner and I. Wand (eds.): Research Directions in
Computer Science. Cambridge University Press.

Darlington, J., Y. Guo, H. To, and J. Yang: 1996b, ‘SPF: Structured Parallel
Fortran’. In: PCW’96 — Intl. Parallel Computing Workshop. Kawasaki, Japan.

Doligez, D. and X. Leroy: 1993, ‘A Concurrent, Generational Garbage Collector for
a Multithreaded Implementation of ML’. In: POPL’93 — Symp. on Principles
of Programming Languages. pp. 113-123, ACM Press.

Du Bois, A., H-W. Loidl, and P. Trinder: 2002a, ‘Thread Migration in a Paral-
lel Graph Reducer’. In: IFL’02 — Intl. Workshop on the Implementation of
Functional Languages. Madrid, Spain, Springer.

Du Bois, A., R. Pointon, H.-W. Loidl, and P. Trinder: 2002b, ‘A Declarative Par-
allel Bottom-Avoiding Choice’. In: SBAC-PAD 2002 — Symp. on Computer
Architecture and High Performance Computing. Vitoria, Brazil.

Flanagan, C. and R. Nikhil: 1996, ‘pHluid: The Design of a Parallel Functional
Language Implementation on Workstations’. In: ICFP’96 — Intl. Conf. on
Functional Programming. Philadelphia, PA, pp. 169-179, ACM Press.

Frens, J. and D. Wise: 1997, ‘Auto-blocking Matrix Multiplication, or Tracking
BLAS3 Performance from Source Code’. PPoPP’97 — Symp. on Principles and
Practice of Parallel Programming 32(7), 206-216.

Goldberg, B.: 1988, ‘Multiprocessor Execution of Functional Programs’. Intl. J. of
Parallel Programming 17(5), 425-473.

Halstead, R.: 1985, ‘Multilisp: A Language for Concurrent Symbolic Computation’.
ACM Transactions on Programming Languages and Systems 7(4), 106-117.
Hamdan, M.: 2000, ‘A Combinational Framework for Parallel Programming Us-
ing Algorithmic Skeletons’. Ph.D. thesis, Dept. of Computing and Electrical

Engineering, Heriot-Watt University.

Hammes, J., O. Lubeck, and W. Béhm: 1995, ‘Comparing Id and Haskell in a Monte
Carlo Photon Transport Code’. J. of Functional Programming 5(3), 283-316.
Hammond, K., D. King, H-W. Loidl, A. Reb6n, and P. Trinder: 2000, ‘The Has-
Par Performance Evaluation Suite for GPH: a Parallel Non-Strict Functional

Language’. Technical report.

Comparing Parallel Functional Languages: Programming and Performance 59

Hammond, K., H-W. Loidl, and A. Partridge: 1995, ‘Visualising Granularity in
Parallel Programs: A Graphical Winnowing System for Haskell’. In: HPFC’95
— Conf. on High Performance Functional Computing. Denver, CO, pp. 208-221.

Hammond, K. and G. Michaelson (eds.): 1999, Research Directions in Parallel
Functional Programming. Springer.

Hammond, K. and A. Rebdn: 1999, ‘HaskSkel: Algorithmic Skeletons for Haskell’.
In: IFL’99 — Intl. Workshop on the Implementation of Functional Languages,
Vol. 1868 of LNCS. Lochem, The Netherlands, Springer.

Hartel, P., M. Feeley, M. Alt, L. Augustsson, P. Baumann, M. Beemster, E. Chail-
loux, C. Flood, W. Grieskamp, J. van Groningen, K. Hammond, B. Hausman,
M. Ivory, R. Jones, J. Kamperman, P. Lee, X. Leroy, R. Lins, S. Loosemore,
N. Rgjemo, M. Serrano, J.-P. Talpin, J. Thackray, S. Thomas, P. Walters, P.
Weis, and P. Wentworth: 1996, ‘Benchmarking Implementations of Functional
Languages with “Pseudoknot”, a Float-Intensive Benchmark’. J. of Functional
Programming 6(4).

Hernéndez, F., R. Pefia, and F. Rubio: 2000, ‘From GranSim to Paradise’. In:
SFP’00 — Scottish Functional Programming Workshop. pp. 11-19, Intellect.
Herrmann, C.: 2000, ‘The Skeleton-Based Parallelization of Divide-and-Conquer

Recursions’. Ph.D. thesis, University of Passau.

Hofmann, M.: 2000, ‘A Type System for Bounded Space and Functional In-place
Update’. Nordic Journal of Computing 7(4), 258-289.

Holmerin, J. and B. Lisper: 2000, ‘Development of Parallel Algorithms in Data Field
Haskell’. In: EuroPar’00 — European Conf. on Parallel Processing, Vol. 1900 of
LNCS. Munich, Germany, pp. 762-766, Springer.

Hudak, P.: 1986, ‘Para-Functional Programming’. IEEE Computer 19(8), 60-70.

Hughes, R.: 1989, ‘Why Functional Programming Matters’. The Computer Journal
32(2), 98-107.

Impala: 2001, ‘Impala — (IMplicitly PArallel LAnguage Application Suite)’.
<URL:http://www.csg.lcs.mit.edu/impala/>.

Karatsuba, A. and Y. Ofman: 1962, ‘Multiplication of Multi-digit Numbers on
Automata’. Soviet. Phys. Dokl. (7), 595-596.

Kelly, P.: 1989, Functional Programming for Loosely-Coupled Multiprocessors,
Research Monographs in Parallel and Distributed Computing. MIT Press.

Kesseler, M.: 1996, ‘The Implementation of Functional Languages on Parallel
Machines with Distributed Memory’. Ph.D. thesis, Univ. of Nijmegen.

King, D., J. Hall, and P. Trinder: 1998, ‘A Strategic Profiler for Glasgow Parallel
Haskell’. In: IFL’98 — Intl. Workshop on the Implementation of Functional
Languages, Vol. 1595 of LNCS. University College London, UK, pp. 88-102.

Kingdon, H., D. Lester, and G. Burn: 1991, ‘The HDG-machine: a Highly Distributed
Graph-Reducer for a Transputer Network’. Computer Journal 34(4), 290-301.

Klusik, U., R. Loogen, S. Priebe, and F. Rubio: 2000, ‘Implementation Skeletons in
Eden — Low-Effort Parallel Programming’. In: IFL’00 — Intl. Workshop on the
Implementation of Functional Languages, Vol. 2011 of LNCS. Aachen, Germany,
pp. 71-88, Springer.

Klusik, U., R. Pefia, and F. Rubio: 2002, ‘Replicated Workers in Eden’. In: CMPP’00
— Constructive Methods for Parallel Programming. Ponte di Lima, Portugal,
Nova Science Books.

LANL: 2001, ‘Sisal Performance Data’. WWW page.

Lauer, M.: 1982, ‘Computing by Homomorphic Images’. In: B. Buchberger, G. E.
Collins, R. Loos, and R. Albrecht (eds.): Computer Algebra — Symbolic and
Algebraic Computation. Springer, pp. 139-168.

56 Loidl et al.

Lester, B.: 1993, The Art of Parallel Prograrnming. Prentice-Hall.

Lipson, J. D.: 1971, ‘Chinese Remainder and Interpolation Algorithms’. In:
SYMSAM’71 — Symp. on Symbolic and Algebraic Manipulation. pp. 372-391,
Academic Press.

Loidl, H.-W.: 1997, ‘LinSolv: a Case Study in Strategic Parallelism’. In: J.
O’Donnell (ed.): Glasgow Workshop on Functional Programming. Ullapool,
Scotland, September 15-17.

Loidl, H.-W.: 1998, ‘Granularity in Large-Scale Parallel Functional Programming’.
Ph.D. thesis, Dept. of Computing Science, Univ. of Glasgow.

Loidl, H.-W.: 2001, ‘Load Balancing in a Parallel Graph Reducer’. In: K. Hammond
and S. Curtis (eds.): SFP’01 — Scottish Functional Programming Workshop,
Vol. 3 of Trends in Functional Programming. Bristol, UK, pp. 63-74, Intellect.

Loidl, H.-W.: 2002, ‘The Virtual Shared Memory Performance of a Parallel Graph
Reducer’. In: H. Bal, K.-P. Lohr, and A. Reinefeld (eds.): CCGrid 2002 — Intl.
Symp. on Cluster Computing and the Grid. Berlin, Germany, pp. 311-318, IEEE
Press.

Loidl, H.-W., R. Morgan, P. W. Trinder, S. Poria, C. Cooper, S. L. Peyton Jones,
and R. Garigliano: 1997, ‘Parallelising a Large Functional Program Or: Keeping
LOLITA Busy’. In: IFL 97 — 9th Intl. Workshop on the Implementation of
Functional Languages 1997, Vol. 1467 of LNCS. Univ of St Andrews, Scotland,
pp- 198-213, Springer.

Loidl, H.-W., N. Scaife, G. Michaelson, and P. Trinder: 2003, ‘Design Decisions in
Implementing Parallel Functional Languages’. In: PPDP’03 — Intl. Conf. on
Principles and Practice of Declarative Programming. Uppsala, Sweden, August
27-29. In preparation.

Loidl, H.-W., P. Trinder, and C. Butz: 2001, ‘Tuning Task Granularity and Data
Locality of Data Parallel GpH Programs’. Parallel Processing Letters 11(4),
471-486.

Loidl, H.-W., P. Trinder, K. Hammond, S. Junaidu, R. Morgan, and S. Peyton
Jones: 1999, ‘Engineering Parallel Symbolic Programs in GPH’. Concurrency —
Practice and Ezperience 11, 701-752.

Loogen, R.: 1999, ‘Programming Language Constructs’. In: K. Hammond and
G. Michaelson (eds.): Research Directions in Parallel Functional Programming.
Springer, pp. 63-91.

Michaelson, G., N. Scaife, P. Bristow, and P. King: 2001, ‘Nested Algorithmic
Skeletons from Higher Order Functions’. Parallel Algorithms and Applications
16, 181-206. Special Issue on High Level Models and Languages for Parallel
Processing.

Milner, R., M. Tofte, R. Harper, and D. MacQueen: 1997, The Definition of Standard
ML (Revised). Cambridge, MA: MIT Press.

Mirani, R.: 1996, ‘High-level Abstractions for Parallel Functional Programming’.
Ph.D. thesis, Yale University.

Mirani, R. and P. Hudak: 1995, ‘First-Class Schedules and Virtual Maps’. In:
FPCA’95 — Conf. on Functional Programming Languages and Computer
Architecture. La Jolla, CA, pp. 78-85, ACM Press.

Mohr, E., D. Kranz, and R. Halstead Jr.: 1991, ‘Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel Programs’. IEEE Transactions on Parallel
and Distributed Systems 2(3), 264-280.

MPI: 1997, ‘MPI-2: Extensions to the Message-Passing Interface’. Technical report,
Univ. of Tennessee, Knoxville.

Comparing Parallel Functional Languages: Programming and Performance Y

Nikhil, R. and Arvind: 2001, Implicit Parallel Programming in pH. Morgan
Kaufmann Publishers. ISBN 1-55860-644-0.

Nocker, E., J. Smetsers, M. van Eekelen, and M. Plasmeijer: 1991, ‘Concurrent
Clean’. In: PARLE’91 — Parallel Architectures and Languages Europe, Vol. 505
of LNCS. Veldhoven, The Netherlands, pp. 202-219, Springer.

Pelagatti, S.: 2002, ‘Task and Data Parallelism in P3L’. In: F. Rabhi and S. Gorlatch
(eds.): Patterns and Skeletons for Parallel and Distributed Computing. Springer.

Peiia, R. and F. Rubio: 2001, ‘Parallel Functional Programming at Two Levels of Ab-
straction’. In: PPDP’01 — Intl. Conf. on Principles and Practice of Declarative
Programming. Firenze, Italy, September 5-7, pp. 187-198.

Pepper, P.: 1993, ‘Deductive Derivation of Parallel Programs’. In: R. Paige,
J. Reif, and R. Wachter (eds.): Parallel Algorithm Derivation and Program
Transformation. Kluwer Academic Publishers, pp. 1-53.

Peyton Jones, S., C. Hall, K. Hammond, W. Partain, and P. Wadler: 1993, ‘The
Glasgow Haskell Compiler: a Technical Overview’. In: Joint Framework for
Information Technology Technical Conference. Keele, UK, pp. 249-257.

Peyton Jones, S., J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Bur-
ton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones, J.
Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and P. Wadler:
1999, ‘Haskell 98: A Non-strict, Purely Functional Language’. Available at
http://www.haskell.org/.

Plasmeijer, R., M. van Eekelen, M. Pil, and P. Serrarens: 1999, ‘Parallel and
Distributed Programming in Concurrent Clean’. In: K. Hammond and G.
Michaelson (eds.): Research Directions in Parallel Functional Programming.
Springer, pp. 323-338.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery: 1992, Numerical Recipes
in C: The Art of Scientific Computing, Chapt. LU Decomposition and Its
Applications. Cambridge University Press, 2nd edition. ISBN 0-521-43108-5.

PVM: 1993, ‘Parallel Virtual Machine Reference Manual, Version 3.2’. Univ. of
Tennessee.

Quinn, M.: 1994, Parallel Computing. McGraw-Hill.

Ridge, D., D. Becker, P. Merkey, and T. Sterling: 1997, ‘Beowulf: Harnessing the
Power of Parallelism in a Pile-of-PCs’. In: IEEE Aerospace Conference. pp.
79-91.

Rubio, F.: 2001, ‘Programacién Funcional Paralela Eficiente en Eden’. Ph.D. thesis,
Universidad Complutense de Madrid, Spain. In Spanish.

Sansom, P. and S. Peyton Jones: 1993, ‘Generational Garbage Collection for Haskell’.
In: FPCA’93 — Functional Programming Languages and Computer Architecture.
Copenhagen, Denmark, pp. 106-116, ACM.

Sansom, P. and S. Peyton Jones: 1995, ‘Time and Space Profiling for Non-Strict,
Higher-Order Functional Languages’. In: POPL’95 — Symp. on Principles of
Programming Languages. pp. 355-366, ACM.

Scaife, N., G. Michaelson, and S. Horiguchi: 2001, ‘Comparative Cross-Platform
Performance Results from a Parallelizing SML Compiler’. In: IFL’01 — Intl.
Workshop on the Implementation of Functional Languages, Vol. 2312 of LNCS.
Stockholm, Sweden, Sep 24-26, pp. 138-154.

Serot, J.: 2001, ‘Tagged-token Data-flow for Skeletons’. Parallel Processing Letters
11(4), 377-392.

Taylor, F.: 1996, ‘Parallel Functional Programming by Partitioning’. Ph.D. thesis,
Univ. of London.

58 Loidl et al.

Trinder, P., K. Hammond, H.-W. Loidl, and S. Peyton Jones: 1998, ‘Algorithm +
Strategy = Parallelism’. J. of Functional Programming 8(1), 23-60.

Trinder, P., K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones: 1996,
‘GUM: a Portable Parallel Implementation of Haskell’. In: PLDI’96 — Program-
ming Language Design and Implementation. Philadephia, USA, pp. 78-88, ACM
Press.

Trinder, P., H.-W. Loidl, and R. Pointon: 2002, ‘Parallel and Distributed Haskells’.
J. of Functional Programming 12(4-5), 469-510.

WWW-GPH: 2001, ‘Glasgow Parallel Haskell’. WWW page.
<URL:http://www.macs.hw.ac.uk/"dsg/gph/>.

Appendix
A. Auxiliary Functions

This appendix summarises auxiliary functions we have used in the body
of the paper. Most of these functions modify a data structure so as to
define parallelism over this modified data structure.

Figure 33 presents the GPH code for some predefined strategies used
in the body of the paper. The strategy parListChunk c s xs specifies
the evaluation of segments of size c of the list xs in parallel, applying
the strategy s to every list element.

-- sequentially applies a strategy to the first n elements of a list
segListN :: (Integral a) => a -> Strategy b -> Strategy [b]
seqListN n strat [] ()

seqListN 0 strat xs ()

seqListN n strat (x:xs) strat x ‘seqg' (segListN (n-1) strat xs)

-- applies a strategy to (sequential) chunks of a list in parallel

parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat [] = ()
parListChunk n strat xs = seqListN n strat xs ‘par’

parListChunk n strat (drop n xs)

Figure 33. Predefined evaluation strategies

Figure 34 summarises the functions, used in the Eden code, for split-
ting lists into segments of (almost) equal size and merging them again.
This is used for example by the matMult and raytracer examples
to achieve “data clustering”. The function splitIntoN n xs splits the
list xs into n segments of the same size, whereas the function splitAtN
n xs splits a list into segments of the size n. The function takeEach
extracts each n-th element from a given list. It is used in unshuffleN to
produce a list of lists of every n-th element, starting with 0-th, 1-st, 2-
nd, etc element. Thus, unshufflel is an alternative form of clustering,

Comparing Parallel Functional Languages: Programming and Performance 59

observing the following identity for all n that divide the length of the
input list:
shuffleN . (unshuffleNn) == id

-- Auxiliary functions for splitting and merging lists

bresenham :: Int -> Int -> [Int]
bresenham n p = take p (bresenhaml n)
where bresenhaml m = (m‘div‘'p) :bresenhaml ((m‘mod‘p)+n)

-- split list into n sublists of (almost) same size
splitIntoN :: Int -> [a] -> [[a]]
splitIntoN n xs = £ bh xs

where bh = bresenham (length xs) n

£ 00 00 =1
f (t:ts) xs = hs : (f ts rest)
where (hs,rest) = splitAt t xs
-- split list into blocks of size n
splitAtN :: Int -> [a] -> [[a]]
splitAtN n [] = []
splitAtN n xs = ys : splitAtN n zs
where (ys,zs) = splitAt n xs

-- pick every n-th element from a list, starting from Oth elem
takeEach :: Int -> [a] -> [a]

takeEach n [] = []

takeEach n (x:xs) = x : (takeEach n (drop (n-1) xs))

-- list of lists of every n-th element, starting from Oth, 1st,
unshuffleN :: Int -> [a] -> [[a]]
unshuffleN n xs = [takeEach n (drop i xs) | i <- [0..n-1]]

-- combine a list of lists generated by unshuffleN

shuffleN :: [[b]] -> [b]
shuffleN ([]:) = []
shuffleN xss = map head xss ++ shuffleN (map tail xss)

Figure 84. Functions for splitting and merging lists

Address for Offprints:

Hans-Wolfgang Loidl

Ludwig-Maximilians-Universitat Miinchen,

Institut fir Informatik,

D 80538 Miinchen,

Germany.

Email: hwloidlQ@informatik.uni-muenchen.de

URL: http://wuw.tcs.informatik.uni-muenchen.de/"hwloidl/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

