
Compilation of Haslcell Array Comprehensions for Scientific Computing

Steven Anderson Paul Hudak *

Yale University
Department of Computer Science

Box 2158 Yale Station
New Haven CT 06520-2158

anderson-steveQcs.yale.edu hudak-paulQcs.yale.edu

Abstract

Monolithic approaches to functional language arrays, such aa
Haskell array comprehensions, define elements all at once,
at the time the array is created, instead of incrementally.
Although monolithic arrays are elegant, a naive implemen-
tation can be very inefficient. For example, if a compiler
does not know whether an element has zero or many defi-
nitions, it must compile runtime tests. If a compiler does
not know inter-element data dependences, it must resort to
pessimistic strategies such as compiling elements as thunks,
or making unnecessary copies when updating an array.

Subscript analysis, originally developed for imperative
language vectorizing and parallelising compilers, can be
adapted to provide a functional language compiler with the
information needed for efficient compilation of monolithic
arrays. Our contribution is to develop the number-theoretic
basis of subscript analysis with assumptions appropriate to
functional arrays, detail the kinds of dependence informa-
tion subscript analysis can uncover, and apply that depen-
dence information to sequential efficient compilation of func-
tional arrays.

1 Introduction

In recent years many proposals have been put forth for in-
corporating arrays into functional languages, the differences
being captured in trade-offs between expressiveness and ef-
ficiency. One of the most popular proposals puts forth what
are called non-strict monolithic arrays. Versions of such ar-
rays have been used in several functional languages, includ-
ing FEL [17], Alfl [9], and Id-Nouveau [19], and a number
of articles have been written about them [22, lo]. Most re-
cently, a form of such arrays has been adopted in Haskell
[14], where they are called “array comprehensions.”

Non-strict arrays may contain undefined (i.e., I) ele-
ments, yet still be well-defined overall; this in contrast to

‘This research was supported by the Department of Energy under
grant DEFGOZ-86ER25012

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01990 ACM 0-89791-364-7/90/0006/0137 $1.50

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

strict arrays which are completely undefined if any one ele-
ment is undefined. Non-strict arrays are more in the spirit
of lazy, or call-by-need evaluation, whereas strict arrays cap-
ture the essence of call-by-value computation.

Monolithic arrays are ones whose elements are defined
all at once, at the moment the array value is created, in
contrast to incremental arrays whose values are defined in-
crementally. Monolithic arrays are more in the spirit of func-
tional programming, whereas incremental arrays, although
functional, resemble the imperative array model. There are
many variations of monolithic arrays (four different kinds
are described in [22]), and aside from the non-strict arrays
found in the languages mentioned previously, strict varia-
tions are used in VAL [18], Connection Machine Lisp [20],
and of course, APL [16].

Scientific computing makes extremely stringent demands
on run-time efficiency. Although non-strict monolithic func-
tional language arrays, such as Haskell array comprehen-
sions, are semantically elegant and expressive, a naive im-
plementation is prohibitive for scientific computing. In this
paper we focus on techniques for the efficient compilation
of non-strict monolithic arrays for sequential execution. We
will use a slight generalization of Haskell syntax through-
out, although our ideas may be easily applied to other lan-
guages. We adapt subscript analysis, originally developed
for imperative language compilers, to the problems encoun-
tered in compiling functional language arrays. We also in-
troduce several syntactic extensions to Haskell that retain
expressiveness while conveying useful information to the op-
timizing phases of the compiler.

Imperative languages overspecify evaluation order of ar-
ray elements, whereas functional languages underapecifyeval-
uation order. Compilers for both make the pessimistic as-
sumption of overestimating dependencies between array el-
ements. Both therefore resort to pessimistic strategies to
preserve semantics: imperative languages prohibit vector-
ization and parallelization, whereas functional languages use
expensive run-time representations, even for sequential exe-
cution. Subscript analysis, by giving a better approximation
to the true partial order of dependences, permits important
optimizations.

We begin by discussing the advantages of non-strict mono-
lithic arrays evaluated in a strict context for achieving both
expressiveness and efficiency. We then introduce Haskell
array comprehensions, and an extension called nested com-
prehensions that offer more control over the order in which

137

array elements are specified. We detail the possible run-time
inefficienciee of functional language arrays, and the compiler
analyses needed to remove these inefficiencies. We outline
the number theoretic basis of the subscript analysis needed
to create the dependence graphs to support some of these
optimizations. We present efficient algorithms on these de-
pendence graphs that statically schedule sequential compu-
tation of monolithic arrays and of incremental arrays to re-
move these inefficiencies. In conclusion, although we focus
on sequential computation, we suggest how this work can
be applied to vectorization and parallelization of functional
language programs.

2 Non-Strict versus Strict Arrays

We will define the difference between non-strict and strict
arrays, and the advantages and drawbacks of each. We will
also define the idea of evaluating a non-strict array in a strict
context, which combines the advantages of both strict and
non-strict arrays.

There are many ways to consider arrays, but for the
present we consider an array a constructor, similar to CONS,
but with an arbitrarily large number of element slots. Be-
cause the number of elements can be arbitrary, we do not
provide a separate selector for each element, but instead
a single selector that takes both the array and an element
subscript as its arguments.

[22] considers several different ways to define a monolithic
array, r.e., an array whose elements are completely defined
by the call to the constructor function that originally creates
the array. Let army be such a constructor function. We will
discuss the semantics of array in the next section; but for
now we can distinguish strict and non-strict versions of the
constructor function. We will call an array strict if it is
returned by a strict constructor function, which evaluates
all the elements oi the monolithic array at its creation, and
non-strict or laty if it is created by a non-strict constructor
function, which defines the elements of the array but does
not evaluate them.

Definition: Let a!i be the value at subscript i of array
a. An array a is strict if for any i within the array bounds
of a, a!i = I implies that a = 1.

It is easy to show that if a strict array is recursively
defined, the entire array must evaluate to I ([3]). In fact the
computation of any recursively defined data structure built
with strict constructor functions is always nonterminating.

Because the mathematical specification of arrays in sci-
entific computing so often uses recurrence equations, we
prefer a non-strict array constructor for its expressiveness.
Unfortunately, non-strict arrays in general must represent
the delayed computation of array elements as closures, or
thunks, which have significant runtime costs. These costs
will be detailed in a later section.

But in nearly all scientific programs, the programmer
knows that an array is used in a context that will demand
all the elements. We say that an array is used in a strict
context if the surrounding program is guaranteed to demand
the value of every element in the array. If we know:

s that a non-strict array is used in a strict context, and

l a safe (partial) order of evaluation of the elements,
such that no element is evaluated until after every el-
ement on which it has a dependence,

then we perhaps have the opportunity to treat the non-strict
array operationally like a strict array, storing and selecting
element values directly rather than as closures. Finding a
safe schedule is the subject of the latter part of the paper.
But how to be sure the array is used in a strict context?

There is an extensive literature in the functional lan-
guage community on analyzing the strictness of a program
using non-strict data structures such as a list. We could
try to develop a compile-time strictness analysis for arrays.
Such an analysis may be an interesting direction for further
research, and will certainly need to incorporate a subscript
analysis similar to the one presented here, or an analysis of
simple sections such as [4]. The drawback is that such an
analysis is likely to be intellectually complex and computa-
tionally expensive, since it will generally need to analyze not
just the recursive context in which the array is defined, but
the entire program in which it is used. This is unfortunate,
since the scientific programmer nearly always intends that
all the array elements be evaluated when it is defined.

Indeed, discovering the pattern of recursive dependences
may require analysis over the entire program, not just the
local definition of the array. Consider the function:

f u - letrec v = . . . u . . .
in v

where u and v are both non-strict arrays. The definition of v
depends upon u, but apparently is not self-dependent. Or is
it? Consider the context letrec a = g (f a) where a is a
non-strict array. Clearly this program context makes v’s def-
inition recursive. A scientific programmer rarely expresses
such an obscure form of self-dependence, but the compiler
(or another programmer) can never be sure by inspecting
only the definition of f.

We will take the path of letting the programmer spec-
ify that an array is used in a strict context. Let us define
a function force-elements, which forces a demand for ev-
ery element of its array argument, returning a “strictified”
version of the array;

I 1 * if (3j) : a!i = I
(force-elements a)!i = a,i otherwise

If we recursively define a non-strict array a, such that the
recursive definition only refers to a, but all other references
are to a’ - force-element8 a, then we can be sure that a
is used in a strict context. We introduce as syntax a new
version of letrec to define bindings for non-strict arrays in
a strict context:

(letrec* x = EO in El) =
(\ x . El) (force-elements (fix (\ x . EO)))

Naturally, letrec* can introduce multiple mutually recur-
sive bindings by treating x as a tuple.

If we rewrite our example as f u - letrec* v = . . .
in v, then we can be sure that every element of v is evalu-
ated before v is returned from f. When the elements of v are

138

of a type with only zero-ary constructors, such as floating
point numbers, we can be sure every element is completely
evaluated. In this case, if a caller to f creates a hidden re-
cursive dependence such as letrec a = g (f a), then v =
1. We can be confident that if v has any recursive depen-
dence on itself, this dependence will appear explicitly in the
letrace that defines v.

letrec* allows the programmer to specify easily and ele-
gantly both that an array is recursively defined and that ev-
ery element of an array is evaluated before the array is used.
It also specifies that there can be no subtle hidden recursive
dependence6 outside the scope of the letrec* bindings.

3 Haskell’s Array Comprehensions

Haskell has a family of non-strict monolithic arrays whose
special interaction with list comprehensions provides a con-
venient “array comprehension” syntax for defining arrays
monolithically. As an example, here is how to define a vec-
tor of squares of the integers from 1 to n:

let a = array (1 ,n)
C (i,i*i) I i <- [i..nl 1

The first argument to array is a tuple of bound.9, and thus
this array has size n and is indexed from 1 to n. The sec-
ond argument is a list of subscript/value pairs whose order
is irrelevant, but which can only have one value associated
with each subscript. It is written here as a conventional “list
comprehension,” which resembles mathematical set notation
and has become a popular syntax for lists within the func-
tional programming community.

The ith element of an array a is written a!i, and thus
in the above case we have that a!i = i*i.

We introduce the binary infix operator : =, which returns
the pair of its two arguments, as syntax to reduce the num-
ber of parentheses and make array comprehensions more
readable. This syntax is meant to be reminiscent of the
equal sign in a let binding: read i := v as “let array ele-
ment i equal v.”

Perhaps the nicest aspect of non-strict monolithic arrays
is that one can program in a style that not only resembles
mathematical notation, but that also preserves the mathe-
matical semantics. In particular, they allow the expression
of recursivearrays in a concise, perspicuous, and well-defined
manner. For example, consider this mathematical specifica-
tion of an array a:

{

1 ifi =l, llj<n

a;,j =
1 ifj= 1,25i<n
ai-lj + ai-1,;~1 C ai,j-1

2si<n, 2sjln

This is a specification of an n x n matrix using a ‘wavefront
recurrence” where the north and west borders are 1, and
each other element is the sum of its north, north-west, and
west neighbors. In Haskell this would be written (using ++
as the infix operator for append):

letrec* a = array ((l,l),(n.n>)

(C (l,j) := 1 I j <- Cl..nl 1 ++
C (i,l) :- 1 I i <- [2..n] 1 ++
E (i,j) := a!(i-l,j> +

a! (i, j-l> + a! (i-i, j-i)
I i <- C2. .al, j <- 12. .nl 3 1

Note the similarity between the two specifications. Although
the subscript/value pairs are expressed as a list, the order
of the list is completely irrelevant, thanks to the non-strict
semantics of the array. In implementing such recurrences
in, say, Fortran, one must be sure to write the program such
that the elements are stored in an order consistent with the
dependencies. With non-strict arrays, one is freed of that
concern.

So far our monolithic array function assumes that each
possible subscript is specified exactly once. Haskell also of-
fers a more general monolithic array function that relaxes
this requirement [15]. An accumulated array is created by
specifying a default element value a for an element that re-
ceives no definitions, and a combining function f to combine
the values for an element that receives multiple definitions.
If f is not associative and commutative, the order of svpairs
must be preserved. The analysis we develop in later sections
apply to ordinary monolithic arrays in which elements with
no definitions or multiple definitions are treated as errors,
and therefore the order of svpairs can be changed. An in-
teresting direction for further work would be to extend this
analysis to general accumulated arrays.

3.1 Generalization of list Comprehensions

In our experience using array comprehensions in scientific
computation, we have found it convenient to use a slight
generalization of the list comprehension syntax that pro-
vides more control over the creation of intermediate lists;
this has the added benefit of allowing us to state more clearly
the optimizations that we perform. These nestedlist com-
prehensions, as we call them, look very much like ordinary
list comprehensions, but allow the specification of a tree-
shaped hierarchy of lists, all of which are appended together
to yield the final result. For example, consider this ordinary
list comprehension:

a = array ((S,l), (m,n))
I: El0 := Eli where v = E3

I j C- CZ..ml, i <- [l..nl 1
+* [E20 := E21 where v = E3

I j <- CZ..ml, i <- [l..nl 1
++ [E40 :- E41 I i <- [I. .n]]

Ordinary list comprehensions offer no way to express the
notion that all the expressions are nested within the shared
generator i <- [I. .n], that El0 : - Eli and E20 := E21
are further nested within shared generator j <- Cl. .ml,
that v is a free variable over both El and E2 binding com-
mon subexpression E3, and that i but not j is free over E3.
Using nested list comprehensions (written with [* . . . *I
brackets), we could write instead:

a = array ((l,l), (n,n>)
[* ([* [El0 := Ell, E20 := E21 1

I j <- C2..d *I
where v = E3) ++ [E40 := E41 1

I i <- Cl..nl *I

139

Consider the expression tree for this nested list comprehen-
sion,

i <- Cl..nl
l

/++\
let v = E3 in
j <- [2..ml [E40 :- E41 1

i

[El0 :-<l 1 [E20 ‘++,\ := E21]

Each node returns a list. The append nodes permit branch-
ing into different kinds of list expressions. The generator
nodes, such as i <- cl. .n], create one instance of the list
below it for each instance of the generator index i, then
append those instances together to yield a result list.

Although the order of the list of subscript/value pairs
is irrelevant to the semantics of an array comprehension, it
has a great effect on the efficiency, and thus we would like
to express the order that best suits our needs; nested array
comprehension give us just that degree of expressiveness. In
the remainder of this paper we will use nested list compre-
hensions.

A nested list comprehension is a only a syntactic ex-
tension that is translated by a translation rule TE to more
primitive language constructs. TE for nested comprehensions
is a simple extension of TE for ordinary list comprehensions
given in [23]:

TE{ [* E 1 i <- L *])
= flatmap (\ i . TEC E 1) L

TEC C* E I i C- L; 9 *I 1
= flatmap (\ i . ‘IF.< [* E I 9 *I 1) L

TEC [* E 1 B *I 1
= if B then TEE E 1 else Cl

TEC El ++ E2))
- TEC El) ++ TEC E2 1

TE{ let BINDS in E 1
- let BINDS in TEC E)

TEC [E 1)
- [El

flatnap f [I = Cl
flatmap f x:x0 = (f x) ++ (flatmap f ‘10)

We include rules for let constructs and the append operator
++, since they give the flexibility that ordinary list compre-
hensions lack. The only real change is in the first rule, which
for ordinary comprehensions is:

I-EC c E I i <- L 1 1
- flatmap (\ i . TEI C E I 1) L

?‘E makes the semantics of nested comprehensions clear, but
as an implementation it requires a tremendous amount of
unnecessary CONSing. [23] transforms the simple translw
tion TE for ordinary comprehensions into a more complicated
translation that creates no CONS cell that is not part of the
result; this transformation can be easily adapted to TE for
nested comprehensions.

But we can go further. The vast majority of scientific
applications can be expressed as fold1 of some operator
over a list, where:

fold1 f a Cl = a
f old1 f a x :xs - f old1 f (f a x.) IS

And the vast majority of scientific applications can be ex-
pressed as list comprehensions in which the generators are
over an arithmetic sequence of integers, such as:

i <- [low, inc. .high]
i <- [high,dec. .loul

For example:

sum C a!k * b!k I i <- Ci..nI 1
where sum xs = fold1 (+I 0. x8

We can always transform this pattern, the application of
f old1 to a list comprehension over arithmetic sequence gen-
erators, as syntax, we can always into the application of a
specialized first-order tail-recursive function that create no
CONS cells - no intermediate lists - whatsoever. In other
words, we translate such fold1 calls into DO loops, where
the generators become loop indices, and the accumulator
argument a in f old1 holds the ‘state’ updated by the loop.
See [3] for formal details. This pattern is so common that
we propose to treat it as syntax, just as we treat list com-
prehensions as syntax.

Since it is often clearer to express a notion such as sum
by encapsulating the f old1 call in a function, while passing
in the list comprehension as an argument, we will write a
function such as sum as a macro.

An array comprehension - the application of the array
function to a bounds and a list comprehension - is a special
case of the application of fold1 to a list comprehension.
The initial value of the accumulator is an empty array of the
appropriate bounds, and the accumulating function updates
the array as it encounters each subscript/value pair.

Although elegant and expressive, array comprehensions
may be difficult to implement efficiently on sequential ma-
chines. We have discussed how to eliminate the apparent
proliferation of lists - but that turns out to be the least of
our problems! In the next section we elaborate on the issues
that must be faced.

4 Inefficiencies of Array Comprehensions

The metric against which we measure the efficiency of arrays
is that provided by conventional imperative arrays-in par-
ticular, constant-time lookup, and constant-time/zero-space
update. The two most obvious difficulties in achieving this
goal with array comprehensions are: (1) the standard (but
now more complicated) problem of overcoming the ineffi-
ciencies of lazy evaluation, and (2) the problem of avoiding
the construction of the many intermediate lists that the sec-
ond argument to array seems to need. But there is more to
it than this, and thus we begin with a detailed discussion of
the key sources of inefficiency:

140

Bounds checking. Avoiding bounds checking is equally
difficult with functional and imperative arrays, and thus we
ignore this issue in the present paper, since existing imper-
ative language techniques work just as well. Indeed, many
imperative languages eliminate this cost simply by turning
off bounds checking altogether, at the expense of compromis-
ing program correctness. Ideally one would use properties
of subscripts and loop indices to eliminate or at least lift
bounds checks outside of loops.

Detecting write collisions. Only one ‘(assignment” is
allowed per element in an monolithic array; thus some mech-
anism must be provided to check for subscript/value pairs
with the same subscript. In this paper we will describe a
subscript analysis similar to detecting output dependences
in imperative arrays, which can frequently establish at com-
pile time that write collisions are impossible.

Detecting “empties”. The bounds argument in an
array comprehension establishes the size of the array, but
there may not be an subscript/value pair for a particular
subscript-the value at that position is thus undefined, and
we call it an empty. Rather than check for the definedness
of elements at run-time, we would like to know at compile-
time that there are no empties. Such a condition exists if
all of the following conditions hold:

There are no write collisions.

There are no out-of-bounds definitions.

The number of subscript/value pairs is equal to the
number of array elements.

If these conditions hold, the indices in the list of subscript/value
pairs must be a permutation of the array’s indices, therefore
every subscript has a definition and there are no empties. In
most cases, one can determine these conditions at compile
time or, if that falls, in straight-line code before entering
ally loops.

The overhead of “thunks”. The simplest, and in
general the only, way to implement non-strict arrays is to
represent each element as a “thunk” (i.e., a delayed rep-
resentation of a value), which is evaluated upon demand.
This is the standard way of realizing lazy evaluation, but
the cost can be exorbitant in large arrays, at least in com-
parison to strict arrays. The cost includes the space and
time overheads of creating, testing, and garbage collecting
thunks. We will show how to use subscript analysis, similar
to finding true dependences in imperative arrays, to find a
safe schedule for evaluating elements without thunks.

Copying / trailers / reference counting. Express-
ing a new array as the compositions of an old array with
new definitions for some elements creates the problem of
deciding what to do with the old array - ideally we would
like to reuse it; i.e. update it in place. In the case where
no reference is made to the old array, this problem is the
same as that faced in implementing incremental arrays, and
has been studied extensively in the past [5, 111. However in
this paper we will discuss a variation of the problem-that
in which the old array elements are used to create the new
ones, and thus a safe schedule of the updates needs to be
determined to do the updates in place. We will show that
a subscript analysis, similar to detecting anti-dependence8

in imperative arrays, can frequently find a safe schedule for
solving this problem.

Avoiding intermediate lists. This is perhaps the
most obvious problem to solve, but it turns out to be rather
easy! It amounts to a simple variation on the transformation
of ordinary list comprehensions in [23], which is a special
case of “deforestation” as proposed in [24]. All intermedi-
ate lists can be replaced by tail-recursive loops. Since this
problem has been studied extensively elsewhere, we ignore
it in this paper.

In conclusion, there are many inefficiencies that need to
be overcome, and we will concentrate in this paper on detect-
ing write collisions, eliminating thunks, updating arrays in
place, and avoiding checks for the “definedness” of elements.
The solutions to all of these problems involve some sort of
subscript analysis. Indeed, recently there has emerged in the
compiler community the folklore that the problem of compil-
ing functional arrays efficiently for sequential execution has
a lot in common with the problem of compiling imperative
arrays efficiently for parallel machines, To some extent this
is true, and not surprising once subscript analysis becomes
necessary, but the details are non-trivial and the analogy
is not as straightforward as one might think. One of the
key contributions of our work is to make this relationship
precise - to elucidate the transfer of the concepts of sub-
script analysis and true, output, and anti-dependencesfrom
the imperative to the functional framework.

5 Examples Of Dependence Graphs

The essential result of subscript analysis is a dependence
graph that indicates which elements in an array depend on
which others. It is similar to dependence graphs used in the
imperative framework (for example, see [2, 71, and we give
a few examples to demonstrate the idea.

An array expression will typically take a nested list com-
prehension for its subscript/value pair list. Each innermost
intermediate list in this comprehension will be a singleton
list specifying a subscript/value pair expression of the form C
s := P 1; we will call each such singleton list a a/~ clause. A
s/v clause plays a role very similar to an assignment state-
ment in a DO loop specifying an array in an imperative
language.

In a recursively defined array, we can draw a dependence
edge between each source element that provides data and a
corresponding sink element that needs that data. Each array
element is computed as an instanceof some s/v clause in the
subscript/value pairs list comprehension. We can consider
the dependence edge between a particular source element
and sink element as an instance of a dependence edge be-
tween the corresponding source clause and sink clause.

When the subscript expressions are linear in the loop
indices, and the loop bounds are statically known, compile-
time subscript analysis allows us to construct a dependence
graph with s/v clauses as vertices and dependence edges be-
tween s/v clauses. The analysis labels the edges with infor-
mation about the direction of the dependence with respect
to the loops surrounding the source and sink clauses; such
labels are called direction vectors [2]. For example, an
edge labeled (>) says that source and sink are surround by
a single-level loop; for every instance of this edge, the source

141

element is always computed at a “later” value of the loop
index, relative to the “earlier” loop index value at which the
corresponding sink element is computed.

We put quotation marks around “earlier” and “later”
because we are talking about the relative position of a de
pendence’s source and sink instances within the range of
the loop index, not the temporal order in which those in-
stances are executed at run time. However, once we know
the direction-labeled dependence edges between s/v clauses
of a list comprehension, we can use that information to de-
cide whether the order specified by the list comprehension
is safe for sequential compilation without thunks. The or-
der is safe for thunkless compilation if for every edge in the
dependence graph, the source instance is always computed
before the sink instance. If the list comprehension’s order
is not safe, the direction-labeled dependence edges can fre-
quently give us enough information to restructure the list
comprehension to achieve a safe order, while preserving the
semantics of the array expression.

Let us represent a list comprehension as an expression
tree; using the subscript analysis described in the next sec-
tion, we will put labeled dependence edges between s/v
clauses.

let a = array (1,300)
C* t 3*i :- . . . 3 ++ -- Clause 1

E 3*i-1 := . . . a!(3*(i-1)) .., I ++
-- Clause 2

C 3*i-2 := . . . a!(3*i) .,. J
-- Clause 3

I i C- Cl..1001 *I

i <- Cl..1001

In this example the labeled edge 1 - 2 (<) says that clause
1 in an “earlier” instance of loop i supplies a value needed
by clause 2 in a “later” instance of that loop. For thunkless
sequential compilation, the loop must run temporally in the
forward direction, from 1 to 100. The edge 1 + 3 (=) says
that within a single instance of loop i clause 1 supplies a
value needed by clause 3. For thunkless compilation, clause
1 must be computed befoxe clause 3 within a single instance,
but the relative order of 1 and 2 or of 2 and 3 does not
matter.

i <- ll..lOO]

In this example edge 2 + 1 (=, >) says that clause 2 supplies
data to clause 1 in the same instance of the outer i loop,
but from a “later” to an “earlier” instance of the inner j

loop. The 2 + 1 (=, >) edge requires that within a single
i instance, the j loop must run in the backward direction
(from 20 to 1) to permit thunkless compilation. The 1 +
2 (<, >) and 2 -+ 3 (<) edges agree that the i loop must
run in the forward direction to permit thunkless compilation,
but neither edge influences the inner j loop.

In the next section we explain how subscript analysis
computes the labeled dependence edges between s/v clauses
of the list comprehension expression tree. In the section on
code generation we explain how to use this dependence in-
formation to generate a safe schedule for the list comprehen-
sion such that every dependence edge’s source is computed
before its sink, allowing compilation of a recursively defined
array without thunks.

6 Subscript Analysis

We will briefly outline the adaptation of subscript analysis
to functional monolithic arrays in the case of l-dimensional
subscripts. The analysis can be extended to multi-dimensional
subscripts by ANDing tests on each dimension, or by lin-
earization of the array; see [6]. Consider two references to
array m, surrounded by d shared loops:

m - array bounds
c* .*. m!(f ii . . . id) . . .

. . . m!(g il . . . id) . . .
I il <- [l..NlJ , id <- [l..Nd] *I

We want to know if there is a dependence between two ref-
erences to an array: do they refer to the same element?

Notice that the loops have been normalized: the low
value of the index is 1, and the index increment is 1. When
the subscript expressions are linear in the loop indices, the
surrounding loops can always be put in normalized form
([21]). A huge number of scientific programs use only lin-
ear subscripts, and the derivation of subscript analysis algo-
rithms assumes linear subscripts with normalized loops.

Definition: The bounded integer BoJution test: there
exists a dependence between these two references to array m
if and only if within the region of interest

R = {(XI, xd, YI, . . ., Id)

1 sl,$h E [I-Ml], Zd, yd E [l..Md])

there exists an integer solution to the dependence equation

h 21 . . . Xd y1 . . . yd
= 'of 21 . . . 2d) - (9 3'1 . . . ?/d)

= . 0

In other words, there must be values for the loop indices
that make the difference between the two subscripts equal
zero.

Here zk and $!k are two instances of the loop index ik.
But if a dependence exists, we may want further informa-
tion: what is the direction of the dependence with respect to
the surrounding loops? We get this information by further
constraints on R; that is, by constraining the relative val-
ues of the loop indices for the two references. For example,
the dependence edge label (=, <, >, *) means a dependence

142

holds with the constraints ~1 = ~1, 22 < ~2, z3 > 03, no
constraint on the relative values of xl and 94.

There are tractable decision algorithms when the sub-
script functions f and g are linearin the loop indices. Linear
diophantine equation theory gives us an exact test (heCe8-

sary and sufficient) for the existence of a bounded integer
solution, but it is exponential in the number of surrounding
loops ([25], [S]). For 1 or 2 levels of nesting this algorithm is
reasonable. But from this definition of dependence we can
derive two theorems give us inexact tests (necessary but not
sufficient) that are linear in the depth of loop nesting.

Theorem 1: The any integer .~olution test: there is a
dependence only if there is an integer solution to the de-
pendence equation, regardless of whether the solution falls
within R.

Theorem 2: The bounded rational solution teut: there
is a dependence only if there is a rational solution to the
dependence equation within R.

The bounded integer test is an “if-and-only-if” definition
of dependence. The two theorems weaken this definition
to an “only-if”, the first by dropping the bounds on the
solution, the second by dropping the requirement that the
solution be integer.

l The GCD testis derived from the first theorem. This
test is the same for dependence testing in imperative and
functional arrays. Let the linear subscripts be:

f Xl . . . Zd = 00 + Cd=1 akXk>
9 11 . . . Yd = bo + cf=, bkYk

Label the d nested loops from the set Q = [l..d], outermost
first. Partition Q according to the constraints placed on Zk
and yk by region R:

l Q. = the set of all loops k with no constraints on Zk
and Ik,

l Qc = the set of all loops k with the constraint zk < yk,

and SO forth. There exists a dependence only if

gcd(. . a, Uj - bj,. . . , ak,. . . , bk . . .) 1 bo - 00
where j E QE and

kE(Q<uQ>uQ.).

l The Banerjee inequality test is derived from the second
theorem. For linear subscripts, we can determine lower and
upper bounds on the difference (f 21 . . . zd) -(g yl . . . yd)
between the two subscripts. If those bounds do not bracket
zero, then the two references cannot be to the same array
element, and a dependence cannot exist. We will outline a
variation on the proofs of Theorem 2 in [25] and Theorem 4
in [2] to find the these bounds using assumptions appropri-
ate to functional arrays. Previous work assumes imperative
array semantics, which depend upon the surrounding loops
running in the specified direction, whereas functional array
semantics are independent of loop direction.

We compute the bounds on the dependence equation ex-
pression by summing the bounds on its terms, one term for
each surrounding loop. The kind of constraint put upon a

term’s loop indices determines how we compute its upper
and lower bounds.

Deflnition: For integer t let us define the positiue part
2+ and the negative part 2’ 88 in [25] and [2]:

t+ =

t

t iftl0,
0 if t < 0.

t- -t if = t 5 0,
0 if t > 0.

0

Lemma: Let k E Q.. We want to find the minimum
and maximum for the term Ukzk - bkvk, where the relative
values of Xk and yk are unconstrained - either instance of
loop k Cab take on any value within the loop bounds [l..Mk].
The bounds on this term are:

(Ok - bk) - (a; -I- bz)(h!fk - 1)
5 akxk - h/k 5

(Uk - bk) + (a; + b;)(Mk - 1)

Proof: The bounds on the term OkXk - bkgk equals the sum
of the bounds on the terms akzk and -bkgk. Let us find the
bounds on CXk2k. Let Xk = 1-t Sk. Then

akXk =ak+ak$k,

o<sk~h!fk-1.

Then by Lemma 1 in [2]:

-.j$f-&; 1) < akSk < a;Z(Mk - I),

ak- r -1) _<akxk 5 ok + az(hfk - 1).

Similar reasoning give us bounds:

-bk - b;(iwk - 1) 5 -bkyk 5 -bk + b;(Mk - 1).

Adding the bounds on terms CZkXk and -bkYk give us the
bounds on akXk - bkyk. 0

Theorem: Given a partition Q = Q.. U Q< U Q> U Q.
placing a constrained region of interest R on the shared loops
surrounding two subscript expressions (f x1 . . . zd) and

I
g I1 . . . vd), the difference (h 11 . . . xd yl . . . gd) =
f xl . . . zd) - (9 !/l . . . yd) between these subscripts can

equal zero only if the following expressions for h’s minimum
and maximum bracket zero:

minR h = C&c&k - bk)
1 E,,,. -(a,- +b:)@fk - 1)

kEg<(-h - (a;; + bk)+(Mk - 2))

+ ~k&-h - bk)+(Mk - 1))

+ CkEQ>(ak - (ak + b;)-(Mk - 2))

5 0 5

maxR h f E,,9tak+- bk)

k@.&(ak + b;)(Mk - l)

+ xkE9<(-bk + (at - bk)+(Mk - 2))

+ ~k&-(ak - bk)+(Mk - l))

+ %C?>
(ak + (Uk + b;)+(Mk - 2))

Proof: We developed the lower and upper bounds on a term
for any loop k E Q.. By similar proofs, minima and max-
ima can be derived for k E Q<, Q., , and Q> in which re-
gion R constrains the relative values of zk and yk (see [2],

143

[25]). Gathering these inequalities we get the lower and up-
per bounds on the difference between the two subscripts.
The difference between the two subscripts can only be zero
if the bounds on the difference brackets zero. 0

This inequality must be satisfied for a dependence to ex-
ist, given this set of constraints. Of course, since this is a
necessary but not sufficient test, the satisfaction of this in-
equality does not tell us that a dependence does exist, but
only that we cannot prove that it does not exist given these
constraints. Naturally we start with no constraints, e.g.,
(*, *, *) for a 3-level nested loop. If a dependence is impos-
sible with no constraints, then certainly it is impossible with
sharper constraints.

Given loop nesting depth n, a single exact test costs
O(P) time. The GCD test costs O(n) time, but if it is sat-
isfied we only know that a dependence is possible, and we
know nothing about the direction constraints on the pos-
sible dependence. The Banerjee test costs O(n) time, and
when constraints are given on R it tells us gives a direc-
tion vector label for the possible dependence. Unfortunately,
we need O(P) different Banerjee tests in the worst case to
completely determine the direction vector on a dependence.
However, [6] suggests a search tree approach to refining the
constraints on the region R for the Banerjee test. In many
cases the search tree approach gives complete information on
any possible dependence between a pair of array references
in O(n) or even O(1) time.

So far we have presented the Banerjee test for shared
loops. If either array reference is further surrounded by
unshared loops, we need to compute the unshared loops’
contributions to the bounds.

If subscript analysis shows us that no two s/v clause in-
stances can write to the same element, we do not compile any
runtime code to check for collisions. If an inexact subscript
test says a collisions is possible, we must compile collision
testing code, and inform the programmer of the risk. If an
exact subscript test says a collision will definitely happen,
we Aag an error.

For an accumulated array, which allows multiple values
to be combined into a single element, the combining function
may be non-commutative. If this is the case, any reschedul-
ing of the order of evaluating s/v pairs must maintain the
order in which values are combined into an element. Write
collisions edges then become true output dependence edges,
and ordering information on these edges put a constraint on
the permissible scheduling.

8 Thunkless Code Generation

Our next goal is to compile an array so there is no need for
thunks: for every dependence edge between two elements of
the array, we want to make sure the source is always com-
puted before the sink. The compiler needs to be concerned
with two kinds of dependence edges [2]:

Lemma: If loop k over [l..Mk] surrounds subscript (f Q...),
but does not surround the other subscript (g VI...), then the
contribution the loop k term makes to the bounds on h is:

Uk-‘“;(&-f) <akXk <Uk+U$(&-1).

Likewise, if loop k over [l..Nk] surrounds (g yl...) but not
(f xi...), then the contribution the loop k term makes to
the bounds on h is:

--bk - bt (Nk - 1) 5 -bkYk 5 -bk + b;(Nk - 1). 0

Proof: Simply use the proof for unconstrained xk and yk, but
drop the contribution of the subscript that is not contained
within loop k.

7 Detecting Write Cotlisions

Only one “assignment” is allowed per element in an mono-
lithic array; thus some mechanism must be provided to check
for subscript/value pairs with the same subscript. Detect-
ing write collisions at compile time is similar to the problem
of detecting output dependence5 in imperative arrays: do
two instances of s/v clauses (in an imperative language, two
instances of assignments statements) write to the same ele-
ment?

The GCD and Banerjee tests are necessary but not suf-
ficient: they can show that a write collision cannot occur,
but they cannot show that a collision definitely will occur,
only that it may potentially occur.

Loop-carried dependencesin which the sink and source
occur in different loop instances, such as (<) (source
is in an ‘earlier” instance than sink), (>) (source is
in a “later” instance than sink), (=, <) (source is in
the same outer loop instance as sink, but an “earlier”
inner loop instance);

Loop-independent dependencea in which the sink and
source occur in the same loop instance, such as (=) or
(=,=), or do not share a loop at all, such as ().

We will develop the principles for single-level loops, then
generalize to nested loops.

8.1 Thunkless Code For a Single-level loop

In a single-level loop, the loop-carried dependence (<) and
(>) determine the direction of the loop, whereas the loop-
independendent dependences (=) determine the order in
which s/v clauses are computed within a single loop in-
stance. We can ignore (=) edges when determining the loop
direction (unless we choose to split the loop into multiple
passes; see below), and we can ignore (<) and (>) edges
when determining the order of clauses within a single loop
instance.

8.1.1 loop Direction Scheduling

To determine the loop direction we have these cases:

l There are no loop-carried edges: all edges are (=) with
sink and source in the same instance. The loop may
run either direction. The graph may be either cyclic
or aciyclic.

144

The loop-carried edges are all (<) (or all (>)). Then
simply choose the loop direction that guarantees com-
putation of sources before sinks. The graph may be
either cyclic or acyclic.

Both (<) and (>) edges are present. This case is more
difficult, and is the subject of the next section.

8.1.2 Loop Direction Scheduling With Both (<) and (>)
Edges

When an array expression contains both (<) and (>) edges,
our algorithm for scheduling loop direction depends on whether
the dependence graph:

0 acyclic,

l cyclic with no cycle containing both (<) and (>) edges,
or

l cyclic with at least one cycle containing both (<) and
(>) edges.

A dependence graph is cyclic if at least one of its SCCs
(strongly connected components) contains more than a sin-
gle vertex. If a SCC contains both (<) and (>) edges, then
that SCC must contain a cycle with both edge types: since
every vertex in an SCC can reach every other vertex in that
SCC, every pair of (<) and (>) edges in an SCC must take
part in a cycle. Computing the SCCs of a graph G = (V, E)
costs O(max(lVl, IEI)) t ime, and we inspect all IEI edges to
classify the graph’s SC&.

l Acyclic graph with both (<) and (>) edges. Wrap each
vertex’s corresponding s/v clause in a separate loop, and
schedule the loops consecutively as ordered by topological
sort. The sort must consider both loop-carried and loop-
independent (=) edges.

For example, consider the graph

V = (4 B, Cl,
E = {A + B (<), B -+ C(>), Ad C(z)}.

Since A depends on no other clauses, we can compute it in a
loop running either direction. When the A loop is complete,
we can compute B in a separate loop also running either
direction; although B depends on A from an “earlier” loop
instance, splitting the loop into two loops which compute
all As before all Bs also satisfies the dependence, no matter
which way the two loops run. Likewise, schedule the C loop
after the A and B loops.

This approach - a separate loop pass for each s/v clause
- works for any acyclic graph, but when several nodes are
connected by dependence edges agree that on a loop direc-
tion, we can collapse the separate passes for these nodes
into a single loop. In the example above there are 3 differ-
ent schedules that can collapse the 3 loops into 2 loops, with
less loop overhead. A static scheduling algorithm for acyclic
dependence graphs is given in the next subsection.

l Cyclic graph with both (<) and (>) edges, but no cycle
contains both edge types. Consider the quotient graph we get
by collapsing each SCC to a single vertex, and discarding all
edges internal to a SCC. This quotient graph is a DAG which

can be scheduled by a slight modification of the scheduling
algorithm for the acyclic graph described above. If an SCC
is a single vertex or contains only (=) edges, its surrounding
loop may run either direction; if it contains any (<) edges
((>) edges) it must run in the forward (backward) direction.

l Cyclic graph with at least one cycle containing both (<)
and (>) edges. We cannot schedule the loop in a way that
guarantees every source is computed before every sink. Con-
sider the graph V = {A, B}, E = {A - B (<), B --+ A(>)}.
We cannot run a single loop, either forward or backward,
that satisfies both dependence edges, nor can we split the
loop into two loops. We have no choice but to compile using
thunks. However, monolithic array comprehensions involve
only flow dependences; for loops updating incremental ar-
rays, a dependence cycle involving an antidependence edge
can be broken.

8.1.3 Scheduling an Acyclic Dependence Graph With Both
(<) and (>) Edges

Static scheduling algorithm: Suppose we want to schedule
the first pass in the forward direction, which satisfies (=)
and (<) but not (>) dependences.

Definition: A node must be marked as ‘not-ready’ for
a forward direction loop pass if it is reachable from any root
(a node of in-degree zero) in the DAG via any path that
includes at least one (>) edge. Otherwise a node is marked
‘ready.’ 0

Schedule all the ‘ready’ nodes in the first pass, then
delete them from the graph. Repeat until there are no nodes
left. At every step the graph is a DAG, every DAG contains
at least one root, and every root is ‘ready’, so at least one
node gets deleted each step, and the scheduling algorithm
terminates in at most [VI steps.

Obviously the most common dependence graphs open
room for many refinements. Often all the loopcarried de-
pendence edges leaving the roots will specify the same de-
pendence direction, so it makes sense to schedule the first
pass in a direction consistent with that dependence direc-
tion.

Algorithm to detect ‘not-ready’ nodes: The algorithm is
a modified depth first search over a DAG. As we visit each
node i, maintain a variable 8 describing the path from the
current spanning tree root r to node i:

l s = ‘ready’ if the path contains no (>) edges

l s = ‘not-ready’ if the path contains at least one (>)
edge.

Each node i has two variables: i.visited and i.ready. As
usual in DFS, i.wisited = false initially. The initial value
of i.ready does not matter, but let it be ‘ready’. When we
visit a node:

a If i.visited = false, then set i.visited = true, set i.ready
= s, and continue to visit i’s children.

0 If i.visited = true, and i.ready = either ‘ready’ or
‘not-ready’, and s = ‘ready’, then backtrack.

145

l

a

If i.visited = true, and iready = ‘not-ready’, and s =
‘not-ready’, then backtrack.

If i.visited = true, and i.ready = ‘ready’, and a = ‘not-
ready’, then i.ready = s = ‘not-ready’, and continue
to revisit i’s children.

The algorithm behaves exactly like DFS except in the last
case, in which a node has already been visited by a ‘ready’
path (no (>) edges), and then is revisited via a ‘not-ready’
path (at least one (>) edge). If an already visited node
gets remarked from ‘ready’ to ‘not-ready’, then all its‘ready’
descendants must also be remarked ‘not-ready’.

In the worst case this algorithm will visit every node
twice and cross every edge twice. The worst case time
complexity of this algorithm is therefore the same as DFS,
O(max(lVt, I-W).

8.1.4 Scheduling Within a Single Instance of a loop

Drop (<) and (>) edg es w rc can only influence scheduling (h’ h
across loop instances) from the graph and consider only (=)
edges.

l If the (=) edge graph is acyclic, schedule using topo-
logical sort.

l If the (=) edge graph is cyclic, then we cannot choose
a safe thunkless schedule: compile using thunks.

8.2 Scheduling Thunkless Code For Nested Loops

Let us start at the outermost loop. How do we decide loop
direction? How do we decide the ordering of s/v clauses and
nested loops within a single instance of the outermost loop?
For now we will not pursue any more drastic restructurings,
such as interchange of loop nesting levels.

Let us collapse each nested inner loop into a single entity,
retaining edges between s/v clauses of the inner loop as self-
cyclic edges in the new dependence graph. We treat the
outer loop as a single-level loop containing a set of entities
(s/v clauses and inner loops) with no internal structure. Let
us consider the role of each kind of dependence edge.

8.2.1 Scheduling the Outermost loop

(<), (>), and (=) dependence edges connect source and
sink array references that only involve the outermost loop.
Such edges can therefore be treated exactly as they are for
singlc-level loops. A (<) edg e requires the outer loop to run
forward for the source entity to precede the sink entity. A
(>) edge requires a backward loop. A (=) edge requires the
source entity to precede the sink entity within a single outer
loop instance.

(c, ..), (>, . ..). or (=, . ..) dependence edges connect source
and sink array references that involve an inner loop as well.
Since the inner loop (or loops) involved in such a depen-
dence must be shared by both source and sink, such edges
look as if they are self-cyclic upon a single entity from the
outermost loop’s point of view.

However, notice that a (<,.,) or (>, . ..) edge can be
treated exactly like a (<) or (>) edge whose source and sink
are the same s/v clause: it influences outer loop direction,
but has no effect on entity ordering within a single instance.

A (=,...) dependence edge, on the other hand, can be
ignored at the level of the outer loop. Since its source and
sink occur within a single instance of the outer loop, it is
not loop-carried with respect to the outer loop, and cannot
influence the outer loop direction. And since its source and
sink are within a single entity (the same inner loop) from the
outer loop’s point of view, a (=,...) edge cannot influence
entity ordering at the level of a single instance of the outer
loop.

8.2.2 Scheduling the inner Loops

We have scheduled the direction of the outer loop and or-
dering of its entities. When we generate code for one of the
nested inner loops, it is easy to see which nodes belong in
the inner loop’s dependence subgraph - they are simply the
s/v clauses appearing in that inner loop - but which edges
do we include? We exclude:

l all edges to or from nodes excluded from the inner
loop;

a all (<), (>), and (=) edges, since they only influence
scheduling at the level of the outermost loop;

l all (<, . ..) and (>, . ..) edges, since they connect source
and sink in separate outer loop instances, and we are
generating code for the inner loop within a single in-
stance of the outer loop.

We keep only (= , . ..) edges: they are the only edges relevant
to generating code for an inner loop.

For example, a (<, =) or (>, <) edge influences loop di-
rection for the outer loop, but has no influence whatever on
the inner loop. A (=, <) or (=, =) edge has no influence
whatever on the outer loop, but (=, <) influences inner loop
direction, and (=,=) influences entity ordering in a single
instance of the inner loop. In the terminology of [Z], (>, C)
is loopcarried at level 0 (at the outer loop), and (=, <) is
loop-carried at level 1 (at the inner loop).

8.2.3 Summary of Scheduling For Nested loops

In summary, as we generate code for an outer loop, we treat
each inner loop as a single entity. We treat (c, . ..) and
(>, . ..) edges as if they were (<) and (>) edges for scheduling
outer loop direction. We consider (=) edges, but ignore
(=, . ..) edges for entity ordering within a single outer loop
instance.

When we recursively generate code for one of the inner
loops, we drop all but (=, .-.> edges. We can strip off the
leading = and treat this inner loop as if it were now the
outermost loop.

146

9 Making Updates Single-Threaded

Often a new array is most conveniently expressed ss the
composition of an old array with new definitions for some
section of the array. In this section we define bigupd, a
useful construct for specifying updates in a semi-monolithic
manner; that is, over a large piece of an array. We show
how subscript analysis can let us convert simple incremental
programs that apparently prohibit in-place update into more
complicated programs that permit in-place update with min-
imal or no copying.

Although monolithic and incremental arrays are of equal
semantic power - either can be expressed in terms of the
other - some algorithms are more clearly expressed mono-
lithically, some incrementally. The incremental approach is
more expressive (1) when the result array has nearly the
same contents as the input array, with only a few elements
changed, or (2) h w en the result array completely changes
the input array, but the result can overwrite the input in
place, at a great savings in storage.

Updating an array in place is only possible if there are
no other references to the old version of the array - the old
version is no longer live data.

Definition: If at every update to an array, there are no
references to the old version of the array, we say that the
array is single-threaded.

Single-threadedness is an operational rather than seman-
tic concept. A variety of run-time schemes, such as reference
counts, as well as compile-time schemes, such as abstract ref-
erence counting and path analysis, have been proposed to
make sure updates are single-threaded [5, 121. Array trailers
are a run-time scheme that assumes an update is not single-
threaded, but gives reasonably good performance when it
is single-threaded. So far, none of these schemes have been
cheap enough to use in a practical compiler. However, much
promise is shown by [8], in which a polymorphic type system
is guarantee that an incremental array is updated only in a
single-threaded manner.

All these schemes require the programmer to make sure
the array is referenced in a single-threaded manner. But for
many problems the most mathematically expressive form
is to write new element values by refering to the original
array, rather than to an intermediate version of the array.
Unfortunately, such a form is not single-threaded in its use
of the array, preventing in-place update.

But notice that single-threadedness is too strong a re-
quirement for in-p&e update. We do not require that the
entire old version of the array be dead, only that the element
to be updated be dead. If we can determine at compile time
that an update changes a dead element, then any remaining
references to the old version of the array refer to elements
that are unchanged in the new version. We can make the up-
date single-threaded by changing the remaining old version
references into new version references.

In many common cases, the dependence information from
subscript analysis can be used to transform a simple, non-
single-threaded form, which may require extensive run-time
copying, into a more complicated, single-threaded form that
requires no run-time copying, or only as much run-time
copying as the equivalent hand-coded form. Let us define

bigupd a svpairs = fold1 upd a svpairs

As we discussed earlier, we can treat f old1 aa syntax such
that when svpaira is written as a list comprehension over
arithmetic sequence generators, the entire expression can
be compiled as tail-recursive DO loops. Consider this code
fragment from LINPACK for swapping rows i and L of a
matrix.

let* a’ - bigupd a
C* C (i,j) := a!(k,j) 1 ++

fii/Qk)

&d--L 3x== 1
C (k.j) :* a!(i,j) 1
I j <- Cl..nl *I

Assume that at the time bigupd is applied, a has no other
references - a is single-threaded w.r.t bigupd. The two s/v
clauses are involved in an antidependence cycle, each edge
of which is labeled (=). A cycle including at least one an-
tidependence edge can always be broken by node-splitting:

let* a’ = bigupd a

/-----‘ --l
C* let

(c

I:
1 j

tam{ - a!(i,j) in

/
6w

(i, j) :- a!(k,j) 1 ++

6R 6 c-=>

CL, j) :- temp %-J
<- Ci..nl *I

If there are no antidependence cycles, the loops can always
be scheduled so that no live value is overwritten. Simply
treat the antidependence edges as dependence edges, and
schedule using the techniques in the thunkless compilation
section.

We have determined a schedule of selects and updates
such that whenever an update takes place, the array as a
whole may still be live, but the element to be updated is
dead. Since every select from the original array is scheduled
before an update kills that element, therefore we can con-
vert all selects from the original array to selects from the
current intermediate version of the updated array. If the ar-
ray is single-threaded entering bigupd, it is now guaranteed
to remain single-threaded within bigupd.

Antidependence cycles can always be broken by node-
splitting, but we want to do better than copying the entire
array. Consider this simplified version of a single step of
Jacobi iteration:

let* u’ = bigupd u -

c*

-go

&/ix,, g-, /-)
(i,jS

\
:= i!(i,j-I) + u!(i.j+l) +

,~,~qy....p~=~

‘u!(i-1,j) +<!(i+l,j)
1 i <- [l..ml; j <- Cl..nl *I

147

Each reference to the old matrix gives this clause a self-
cyclic antidependence edge. The inner j loop carries an-
tidependence edges in both directions, (=, <) and (=, >).
If there were only one such cycle (say the (=, <) edge) we
could ensure that a value is not overwritten before it is used
- satisfy the antidependence - by scheduling the loop in the
right direction.

Node-splitting can eliminate the conflicting self-cycle (the
(=, >) edge) by writing the value into a temporary to be
carried over to the next j loop iteration. But notice that
the distance of the loop-carried anti-dependence must be
constant w.r.t. the loop. If instance j depends on data
overwritten in instance j - k, we must keep k temporaries.
Usually the distance will be 1.

Likewise, node-splitting can eliminate one of the outer i
loop antidependence cycles, but even when the dependence
distance is 1, the temporary must be a vector large enough
to hold all the live values that may be overwritten by the
inner loop. Nevertheless, node-splitting requires a factor n
fewer copies than naive compilation, where the outer loop
has n instances.

Our examples so far required some copying, but it is
much more common that a code can be converted to single-
threaded form with no copying. Examples from LINPACK
include scaling a matrix row, and in-place SAXPY. Here
is a version of a single step of Gauss-S&de1 or SOR itera-
tive solution of an elliptic PDE on a 2D mesh, simplified
to make the dependences clear. Livermore Loops Kernel 23
(2-D implicit hydrodynamics code fragment) has the same
northwest-to-southeast wavefront structure.

u’ = bigupd u .d

&y 6 (‘=, 4.) -‘A.,

C* <i.j> :- u!(i.j+l) + u!(i+l,j) +
~~~~~+yii~~, 

I i <- [2. .m-I]; j <- [2. .n-I] *J 

The dependence graph has a single node with four self-cyclic 
edges: true dependence edges 6(<, =) and a(=, <) and an- 
tidependence edges z(<, =) and z(=, c). At both loop lev- 
els the direction of the loop-carried dependences agree. By 
scheduling the loop directions appropriately, the true depen- 
dences can be satisfied without compiling thunks, and the 
antidependences without copying. 

In conclusion, antidependence edges can be treated ex- 
actly like true dependence edges for the sake of static schedul- 
ing. The goals are different - the schedule must satisfy all 
dependences to avoid compiling thunks, and must satisfy 
all antidependences to avoid unnecessary copying - but the 
scheduling algorithms presented in the previous section do 
not need to distinguish true dependence edges from antide- 
pendence edges. Certain kinds of dependence cycles - with 
all (=) edges or with both (<) and (>) edges - prevent 
static scheduling, but when at least one edge in the cycle 
is an antidependence, it can be broken by node-splitting. 
Node-splitting usually requires much less copying than naive 

compilation; in the examples we have tried, it requires ex- 
actly as much copying ss a hand-coded program. 

10 Further Research 

Subscript analysis was originally developed within the im- 
perative language community to permit vectorization and 
parallelization of sequential programs. We have adapted 
this analysis to the efficient sequential execution of func- 
tional language programs. But obviously this analysis can 
also be extended to the vectorization and parallelization of 
functional language programs as well. As with imperative 
languages, such transformations on functional language pro- 
grams needs to focus on finding innermost loops with no 
loop-carried dependences. 

Vectorization requires the elements of the argument vec- 
tors and the result vector be treated as floating point data, 
so we need to know the arrays are used in a strict context. 
Vectorization techniques are likely to be important not only 
on expensive architectures like the Cray, but in the coming 
years on workstations based on processors such as the In- 
tel i860 and IBM RIOS. These RISC-like processors have 
on-chip floating point hardware that can execute a float- 
ing point instruction every clock cycle, if the compiler can 
achieve such as schedule. 

Efficient use of the memory hierarchy haa a tremendous 
impact on performance in scientific computing. [l] applies 
the dependence information from subscript analysis to the 
problem of enhancing the paging performance of imperative 
language programs through program transformation. Such 
transformation are especially important for functional lan- 
guages, since their focus on ‘what’ is computed rather than 
‘how’ gives less control over such operational behavior. 

11 Conclusions 

Although non-strict monolithic arrays are not perfect solu- 
tions for all applications of arrays, they are very expressive 
in the majority of application areas, and many interesting 
applications have already been programmed using them (see 
[13] for more examples). What we have demonstrated in this 
paper is that they also can be compiled efficiently for sequen- 
tial machines; in most applications we can remove the main 
sources of inefficiency that would otherwise prevent perfor- 
mance comparable to Fortran. 

References 

[l] D.J.Kuck Abu-Sufah, W. and D.H.Lawrie. On 
the performance enhancement of paging systems 
through program analysis and transformation. IEEE 
Truns.Cornputerrr, C-30(5):341-355, 1981. 

[2] R. Allen and K. Kennedy. Automatic translation of 
Fortran programs to vector form, ACM TOPLAS, 
9(4):491-542, 1987. 

[3] S. Anderson. Non-strict arrays in a strict context. Re- 
search report, Yale University, Department of Com- 
puter Science, January. 

148 



PI 

PI 

PI 

VI 

PI 

PI 

PO1 

ml 

WI 

1131 

V. Balasundaram. interactive Parallelizution of Numer- 
ical Scientific Programs. PhD thesis, Computer Science 
Department, Rice University, 1989. 

A. Bloss. Update analysis and efficient compilation of 
functional aggregates. In FPCA, pages 26-38, 1989. 

M. Burke and R. Cytron. Interprocedural dependence 
analysis and parallelization. In ACM SIGPLAN, pages 
162-175, 1986. 

D.A.Padua B.Leasure D.J. Kuck, R.H.Kuhn and 
M. J.Wolfe. Dependence graphs and compiler optimiza- 
tion. In ACM POPL, pages 207-217, 1981. 

J. Guzman and P.Hudak. Single-threaded polymorphic 
lambda caIculus. In ACM Conf. on Logic in Computer 
Science, 1990. 

P. Hudak. Alfl reference manual and programmer’s 
guide. Research Report YALEU/DCS/RR-322, Second 
Edition, Yale University, October 1984. 

P. Hudak. Arrays, non-determinism, side-effects, and 
parallelism: A functional perspective. In Proceedings 
of the Santa Fe Graph Reduction Workshop, pages 312- 
327. Los Alamos/MCC, Springer-Verlag LNCS 279, Oc- 
tober 1986. 

P. Hudak. A semantic model of reference counting. 
In ACM Conf.Lisp and Functional Programming, pages 
351-363, 1986. 

P. Hudak. A semantic model of reference counting 
and its abstraction (detailed summary). In Proceed- 
ings 1986 ACM Conference on LISP and Functional 
Programming, pages 351-363. ACM, August 1986. 

P. Hudak and S. Anderson. Haakell solutions to 
the language session problems at the 1988 Salishan 
high-speed computing conference. Technical Report 
YALEU/DCS/RR-62’7, Yale University, Department of 
Computer Science, January 1988. 

[14] P. Hudak and P. Wadler (editors). Report on the func- 
tional programming language haskell. Technical Report 
YALEU/DCS/RR666, Yale University, Department of 
Computer Science, November 1988. 

[15] P. Hudak and P. Wadler (editors). Report on the pro- 
gramming language haskell, a non-strict purely func- 
tional language (version 1.0) October 1989. to appear 
in SIGPLAN Notices. 

[16] ;orve;rs;. A Programming Language. Wiley, New 
, 

[17] R.M. Keller. Fe1 programmer’s guide. AMPS TR 7, 
University of Utah, March X982. 

[18] J.R. Mcgraw. The VAL language: description and anal- 
ysis. TOPLAS, 4(1):44-82, January 1982. 

[19] R.S. Nikhil, K. Pingali, and Arvind. Id Nouveau. Com- 
putation Structures Group Memo 265, Massachusetts 
Institute of Technology, Laboratory for Computer Sci- 
ence, July 1986. 

PO1 

WI 

1221 

P31 

P4l 

1251 

Jr. Steele, Guy L. and W. Daniel Hillis. Connec- 
tion machine lisp: Fine-grained parallel symbolic pro- 
cessing. In Proceedings 1986 ACM Conference on 
Lisp and Functional Programming, pages 279-297, 
Cambridge, Massachusetts, August 1986. ACM SIG- 
PLAN/SIGACT/SIGART. 

D. J.Kuck U. Banerjee, S.C.Chen and R.A.Towle. Time 
and parallel processor bounds for Fortran-like loops. 
IEEE Tmna. Computers, C-28(9):660-670, September 
1979. 

P. Wadler. A new array operation for functional lan- 
guages. In LNCS 295: Proc.Gmph Reduction Work- 
shop, Santa Fe. Springer-Verlag, 1986. 

P. Wadler. List comprehensions. In S.L. Pey- 
ton Jones, editor, Implementation of Functional Pro- 
gmmming Languages. Prentice-Hall, 1987. 

P. Wadler. Deforestation. In LNCS 300: European 
Symposium on Programming. Springer-Verlag, 1988. 

Michael J. Wolfe. Optimizing Supercompilers for Su- 
percomputers. PhD thesis, University of Illinois, 1982. 

149 


