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Abstract 

Monolithic approaches to functional language arrays, such aa 
Haskell array comprehensions, define elements all at once, 
at the time the array is created, instead of incrementally. 
Although monolithic arrays are elegant, a naive implemen- 
tation can be very inefficient. For example, if a compiler 
does not know whether an element has zero or many defi- 
nitions, it must compile runtime tests. If a compiler does 
not know inter-element data dependences, it must resort to 
pessimistic strategies such as compiling elements as thunks, 
or making unnecessary copies when updating an array. 

Subscript analysis, originally developed for imperative 
language vectorizing and parallelising compilers, can be 
adapted to provide a functional language compiler with the 
information needed for efficient compilation of monolithic 
arrays. Our contribution is to develop the number-theoretic 
basis of subscript analysis with assumptions appropriate to 
functional arrays, detail the kinds of dependence informa- 
tion subscript analysis can uncover, and apply that depen- 
dence information to sequential efficient compilation of func- 
tional arrays. 

1 Introduction 

In recent years many proposals have been put forth for in- 
corporating arrays into functional languages, the differences 
being captured in trade-offs between expressiveness and ef- 
ficiency. One of the most popular proposals puts forth what 
are called non-strict monolithic arrays. Versions of such ar- 
rays have been used in several functional languages, includ- 
ing FEL [17], Alfl [9], and Id-Nouveau [19], and a number 
of articles have been written about them [22, lo]. Most re- 
cently, a form of such arrays has been adopted in Haskell 
[14], where they are called “array comprehensions.” 

Non-strict arrays may contain undefined (i.e., I) ele- 
ments, yet still be well-defined overall; this in contrast to 

‘This research was supported by the Department of Energy under 
grant DEFGOZ-86ER25012 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct com- 
mercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is 
by permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

01990 ACM 0-89791-364-7/90/0006/0137 $1.50 

Proceedings of the ACM SIGPLAN’SO Conference on 
Programming Language Design and Implementation. 
White Plains, New York, June 20-22, 1990. 

strict arrays which are completely undefined if any one ele- 
ment is undefined. Non-strict arrays are more in the spirit 
of lazy, or call-by-need evaluation, whereas strict arrays cap- 
ture the essence of call-by-value computation. 

Monolithic arrays are ones whose elements are defined 
all at once, at the moment the array value is created, in 
contrast to incremental arrays whose values are defined in- 
crementally. Monolithic arrays are more in the spirit of func- 
tional programming, whereas incremental arrays, although 
functional, resemble the imperative array model. There are 
many variations of monolithic arrays (four different kinds 
are described in [22]), and aside from the non-strict arrays 
found in the languages mentioned previously, strict varia- 
tions are used in VAL [18], Connection Machine Lisp [20], 
and of course, APL [16]. 

Scientific computing makes extremely stringent demands 
on run-time efficiency. Although non-strict monolithic func- 
tional language arrays, such as Haskell array comprehen- 
sions, are semantically elegant and expressive, a naive im- 
plementation is prohibitive for scientific computing. In this 
paper we focus on techniques for the efficient compilation 
of non-strict monolithic arrays for sequential execution. We 
will use a slight generalization of Haskell syntax through- 
out, although our ideas may be easily applied to other lan- 
guages. We adapt subscript analysis, originally developed 
for imperative language compilers, to the problems encoun- 
tered in compiling functional language arrays. We also in- 
troduce several syntactic extensions to Haskell that retain 
expressiveness while conveying useful information to the op- 
timizing phases of the compiler. 

Imperative languages overspecify evaluation order of ar- 
ray elements, whereas functional languages underapecifyeval- 
uation order. Compilers for both make the pessimistic as- 
sumption of overestimating dependencies between array el- 
ements. Both therefore resort to pessimistic strategies to 
preserve semantics: imperative languages prohibit vector- 
ization and parallelization, whereas functional languages use 
expensive run-time representations, even for sequential exe- 
cution. Subscript analysis, by giving a better approximation 
to the true partial order of dependences, permits important 
optimizations. 

We begin by discussing the advantages of non-strict mono- 
lithic arrays evaluated in a strict context for achieving both 
expressiveness and efficiency. We then introduce Haskell 
array comprehensions, and an extension called nested com- 
prehensions that offer more control over the order in which 
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array elements are specified. We detail the possible run-time 
inefficienciee of functional language arrays, and the compiler 
analyses needed to remove these inefficiencies. We outline 
the number theoretic basis of the subscript analysis needed 
to create the dependence graphs to support some of these 
optimizations. We present efficient algorithms on these de- 
pendence graphs that statically schedule sequential compu- 
tation of monolithic arrays and of incremental arrays to re- 
move these inefficiencies. In conclusion, although we focus 
on sequential computation, we suggest how this work can 
be applied to vectorization and parallelization of functional 
language programs. 

2 Non-Strict versus Strict Arrays 

We will define the difference between non-strict and strict 
arrays, and the advantages and drawbacks of each. We will 
also define the idea of evaluating a non-strict array in a strict 
context, which combines the advantages of both strict and 
non-strict arrays. 

There are many ways to consider arrays, but for the 
present we consider an array a constructor, similar to CONS, 
but with an arbitrarily large number of element slots. Be- 
cause the number of elements can be arbitrary, we do not 
provide a separate selector for each element, but instead 
a single selector that takes both the array and an element 
subscript as its arguments. 

[22] considers several different ways to define a monolithic 
array, r.e., an array whose elements are completely defined 
by the call to the constructor function that originally creates 
the array. Let army be such a constructor function. We will 
discuss the semantics of array in the next section; but for 
now we can distinguish strict and non-strict versions of the 
constructor function. We will call an array strict if it is 
returned by a strict constructor function, which evaluates 
all the elements oi the monolithic array at its creation, and 
non-strict or laty if it is created by a non-strict constructor 
function, which defines the elements of the array but does 
not evaluate them. 

Definition: Let a!i be the value at subscript i of array 
a. An array a is strict if for any i within the array bounds 
of a, a!i = I implies that a = 1. 

It is easy to show that if a strict array is recursively 
defined, the entire array must evaluate to I ([3]). In fact the 
computation of any recursively defined data structure built 
with strict constructor functions is always nonterminating. 

Because the mathematical specification of arrays in sci- 
entific computing so often uses recurrence equations, we 
prefer a non-strict array constructor for its expressiveness. 
Unfortunately, non-strict arrays in general must represent 
the delayed computation of array elements as closures, or 
thunks, which have significant runtime costs. These costs 
will be detailed in a later section. 

But in nearly all scientific programs, the programmer 
knows that an array is used in a context that will demand 
all the elements. We say that an array is used in a strict 
context if the surrounding program is guaranteed to demand 
the value of every element in the array. If we know: 

s that a non-strict array is used in a strict context, and 

l a safe (partial) order of evaluation of the elements, 
such that no element is evaluated until after every el- 
ement on which it has a dependence, 

then we perhaps have the opportunity to treat the non-strict 
array operationally like a strict array, storing and selecting 
element values directly rather than as closures. Finding a 
safe schedule is the subject of the latter part of the paper. 
But how to be sure the array is used in a strict context? 

There is an extensive literature in the functional lan- 
guage community on analyzing the strictness of a program 
using non-strict data structures such as a list. We could 
try to develop a compile-time strictness analysis for arrays. 
Such an analysis may be an interesting direction for further 
research, and will certainly need to incorporate a subscript 
analysis similar to the one presented here, or an analysis of 
simple sections such as [4]. The drawback is that such an 
analysis is likely to be intellectually complex and computa- 
tionally expensive, since it will generally need to analyze not 
just the recursive context in which the array is defined, but 
the entire program in which it is used. This is unfortunate, 
since the scientific programmer nearly always intends that 
all the array elements be evaluated when it is defined. 

Indeed, discovering the pattern of recursive dependences 
may require analysis over the entire program, not just the 
local definition of the array. Consider the function: 

f u - letrec v = . . . u . . . 
in v 

where u and v are both non-strict arrays. The definition of v 
depends upon u, but apparently is not self-dependent. Or is 
it? Consider the context letrec a = g (f a) where a is a 
non-strict array. Clearly this program context makes v’s def- 
inition recursive. A scientific programmer rarely expresses 
such an obscure form of self-dependence, but the compiler 
(or another programmer) can never be sure by inspecting 
only the definition of f. 

We will take the path of letting the programmer spec- 
ify that an array is used in a strict context. Let us define 
a function force-elements, which forces a demand for ev- 
ery element of its array argument, returning a “strictified” 
version of the array; 

I 1 * if (3j) : a!i = I 
(force-elements a)!i = a,i otherwise 

If we recursively define a non-strict array a, such that the 
recursive definition only refers to a, but all other references 
are to a’ - force-element8 a, then we can be sure that a 
is used in a strict context. We introduce as syntax a new 
version of letrec to define bindings for non-strict arrays in 
a strict context: 

(letrec* x = EO in El) = 
(\ x . El) (force-elements (fix (\ x . EO))) 

Naturally, letrec* can introduce multiple mutually recur- 
sive bindings by treating x as a tuple. 

If we rewrite our example as f u - letrec* v = . . . 
in v, then we can be sure that every element of v is evalu- 
ated before v is returned from f. When the elements of v are 
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of a type with only zero-ary constructors, such as floating 
point numbers, we can be sure every element is completely 
evaluated. In this case, if a caller to f creates a hidden re- 
cursive dependence such as letrec a = g (f a), then v = 
1. We can be confident that if v has any recursive depen- 
dence on itself, this dependence will appear explicitly in the 
letrace that defines v. 

letrec* allows the programmer to specify easily and ele- 
gantly both that an array is recursively defined and that ev- 
ery element of an array is evaluated before the array is used. 
It also specifies that there can be no subtle hidden recursive 
dependence6 outside the scope of the letrec* bindings. 

3 Haskell’s Array Comprehensions 

Haskell has a family of non-strict monolithic arrays whose 
special interaction with list comprehensions provides a con- 
venient “array comprehension” syntax for defining arrays 
monolithically. As an example, here is how to define a vec- 
tor of squares of the integers from 1 to n: 

let a = array (1 ,n) 
C (i,i*i) I i <- [i..nl 1 

The first argument to array is a tuple of bound.9, and thus 
this array has size n and is indexed from 1 to n. The sec- 
ond argument is a list of subscript/value pairs whose order 
is irrelevant, but which can only have one value associated 
with each subscript. It is written here as a conventional “list 
comprehension,” which resembles mathematical set notation 
and has become a popular syntax for lists within the func- 
tional programming community. 

The ith element of an array a is written a!i, and thus 
in the above case we have that a!i = i*i. 

We introduce the binary infix operator : =, which returns 
the pair of its two arguments, as syntax to reduce the num- 
ber of parentheses and make array comprehensions more 
readable. This syntax is meant to be reminiscent of the 
equal sign in a let binding: read i := v as “let array ele- 
ment i equal v.” 

Perhaps the nicest aspect of non-strict monolithic arrays 
is that one can program in a style that not only resembles 
mathematical notation, but that also preserves the mathe- 
matical semantics. In particular, they allow the expression 
of recursivearrays in a concise, perspicuous, and well-defined 
manner. For example, consider this mathematical specifica- 
tion of an array a: 

{ 

1 ifi =l, llj<n 

a;,j = 
1 ifj= 1,25i<n 
ai-lj + ai-1,;~1 C ai,j-1 

2si<n, 2sjln 

This is a specification of an n x n matrix using a ‘wavefront 
recurrence” where the north and west borders are 1, and 
each other element is the sum of its north, north-west, and 
west neighbors. In Haskell this would be written (using ++ 
as the infix operator for append): 

letrec* a = array ((l,l),(n.n>) 

( C (l,j) := 1 I j <- Cl..nl 1 ++ 
C (i,l) :- 1 I i <- [2..n] 1 ++ 
E (i,j) := a!(i-l,j> + 

a! (i, j-l> + a! (i-i, j-i) 
I i <- C2. .al, j <- 12. .nl 3 1 

Note the similarity between the two specifications. Although 
the subscript/value pairs are expressed as a list, the order 
of the list is completely irrelevant, thanks to the non-strict 
semantics of the array. In implementing such recurrences 
in, say, Fortran, one must be sure to write the program such 
that the elements are stored in an order consistent with the 
dependencies. With non-strict arrays, one is freed of that 
concern. 

So far our monolithic array function assumes that each 
possible subscript is specified exactly once. Haskell also of- 
fers a more general monolithic array function that relaxes 
this requirement [15]. An accumulated array is created by 
specifying a default element value a for an element that re- 
ceives no definitions, and a combining function f to combine 
the values for an element that receives multiple definitions. 
If f is not associative and commutative, the order of svpairs 
must be preserved. The analysis we develop in later sections 
apply to ordinary monolithic arrays in which elements with 
no definitions or multiple definitions are treated as errors, 
and therefore the order of svpairs can be changed. An in- 
teresting direction for further work would be to extend this 
analysis to general accumulated arrays. 

3.1 Generalization of list Comprehensions 

In our experience using array comprehensions in scientific 
computation, we have found it convenient to use a slight 
generalization of the list comprehension syntax that pro- 
vides more control over the creation of intermediate lists; 
this has the added benefit of allowing us to state more clearly 
the optimizations that we perform. These nestedlist com- 
prehensions, as we call them, look very much like ordinary 
list comprehensions, but allow the specification of a tree- 
shaped hierarchy of lists, all of which are appended together 
to yield the final result. For example, consider this ordinary 
list comprehension: 

a = array ((S,l), (m,n)) 
I: El0 := Eli where v = E3 

I j C- CZ..ml, i <- [l..nl 1 
+* [ E20 := E21 where v = E3 

I j <- CZ..ml, i <- [l..nl 1 
++ [ E40 :- E41 I i <- [I. .n] ] 

Ordinary list comprehensions offer no way to express the 
notion that all the expressions are nested within the shared 
generator i <- [I. .n], that El0 : - Eli and E20 := E21 
are further nested within shared generator j <- Cl. .ml, 
that v is a free variable over both El and E2 binding com- 
mon subexpression E3, and that i but not j is free over E3. 
Using nested list comprehensions (written with [* . . . *I 
brackets), we could write instead: 

a = array ((l,l), (n,n>) 
[* ( [* [ El0 := Ell, E20 := E21 1 

I j <- C2..d *I 
where v = E3) ++ [ E40 := E41 1 

I i <- Cl..nl *I 
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Consider the expression tree for this nested list comprehen- 
sion, 

i <- Cl..nl 
l 

/++\ 
let v = E3 in 
j <- [2..ml [ E40 :- E41 1 

i 

[ El0 :-<l 1 [ E20 ‘++,\ := E21 ] 

Each node returns a list. The append nodes permit branch- 
ing into different kinds of list expressions. The generator 
nodes, such as i <- cl. .n], create one instance of the list 
below it for each instance of the generator index i, then 
append those instances together to yield a result list. 

Although the order of the list of subscript/value pairs 
is irrelevant to the semantics of an array comprehension, it 
has a great effect on the efficiency, and thus we would like 
to express the order that best suits our needs; nested array 
comprehension give us just that degree of expressiveness. In 
the remainder of this paper we will use nested list compre- 
hensions. 

A nested list comprehension is a only a syntactic ex- 
tension that is translated by a translation rule TE to more 
primitive language constructs. TE for nested comprehensions 
is a simple extension of TE for ordinary list comprehensions 
given in [23]: 

TE{ [* E 1 i <- L *] ) 
= flatmap (\ i . TEC E 1) L 

TEC C* E I i C- L; 9 *I 1 
= flatmap (\ i . ‘IF.< [* E I 9 *I 1) L 

TEC [* E 1 B *I 1 
= if B then TEE E 1 else Cl 

TEC El ++ E2) ) 
- TEC El ) ++ TEC E2 1 

TE{ let BINDS in E 1 
- let BINDS in TEC E ) 

TEC [ E 1 ) 
- [El 

flatnap f [I = Cl 
flatmap f x:x0 = (f x) ++ (flatmap f ‘10) 

We include rules for let constructs and the append operator 
++, since they give the flexibility that ordinary list compre- 
hensions lack. The only real change is in the first rule, which 
for ordinary comprehensions is: 

I-EC c E I i <- L 1 1 
- flatmap (\ i . TEI C E I 1) L 

?‘E makes the semantics of nested comprehensions clear, but 
as an implementation it requires a tremendous amount of 
unnecessary CONSing. [23] transforms the simple translw 
tion TE for ordinary comprehensions into a more complicated 
translation that creates no CONS cell that is not part of the 
result; this transformation can be easily adapted to TE for 
nested comprehensions. 

But we can go further. The vast majority of scientific 
applications can be expressed as fold1 of some operator 
over a list, where: 

fold1 f a Cl = a 
f old1 f a x :xs - f old1 f (f a x.) IS 

And the vast majority of scientific applications can be ex- 
pressed as list comprehensions in which the generators are 
over an arithmetic sequence of integers, such as: 

i <- [low, inc. .high] 
i <- [high,dec. .loul 

For example: 

sum C a!k * b!k I i <- Ci..nI 1 
where sum xs = fold1 (+I 0. x8 

We can always transform this pattern, the application of 
f old1 to a list comprehension over arithmetic sequence gen- 
erators, as syntax, we can always into the application of a 
specialized first-order tail-recursive function that create no 
CONS cells - no intermediate lists - whatsoever. In other 
words, we translate such fold1 calls into DO loops, where 
the generators become loop indices, and the accumulator 
argument a in f old1 holds the ‘state’ updated by the loop. 
See [3] for formal details. This pattern is so common that 
we propose to treat it as syntax, just as we treat list com- 
prehensions as syntax. 

Since it is often clearer to express a notion such as sum 
by encapsulating the f old1 call in a function, while passing 
in the list comprehension as an argument, we will write a 
function such as sum as a macro. 

An array comprehension - the application of the array 
function to a bounds and a list comprehension - is a special 
case of the application of fold1 to a list comprehension. 
The initial value of the accumulator is an empty array of the 
appropriate bounds, and the accumulating function updates 
the array as it encounters each subscript/value pair. 

Although elegant and expressive, array comprehensions 
may be difficult to implement efficiently on sequential ma- 
chines. We have discussed how to eliminate the apparent 
proliferation of lists - but that turns out to be the least of 
our problems! In the next section we elaborate on the issues 
that must be faced. 

4 Inefficiencies of Array Comprehensions 

The metric against which we measure the efficiency of arrays 
is that provided by conventional imperative arrays-in par- 
ticular, constant-time lookup, and constant-time/zero-space 
update. The two most obvious difficulties in achieving this 
goal with array comprehensions are: (1) the standard (but 
now more complicated) problem of overcoming the ineffi- 
ciencies of lazy evaluation, and (2) the problem of avoiding 
the construction of the many intermediate lists that the sec- 
ond argument to array seems to need. But there is more to 
it than this, and thus we begin with a detailed discussion of 
the key sources of inefficiency: 

140 



Bounds checking. Avoiding bounds checking is equally 
difficult with functional and imperative arrays, and thus we 
ignore this issue in the present paper, since existing imper- 
ative language techniques work just as well. Indeed, many 
imperative languages eliminate this cost simply by turning 
off bounds checking altogether, at the expense of compromis- 
ing program correctness. Ideally one would use properties 
of subscripts and loop indices to eliminate or at least lift 
bounds checks outside of loops. 

Detecting write collisions. Only one ‘(assignment” is 
allowed per element in an monolithic array; thus some mech- 
anism must be provided to check for subscript/value pairs 
with the same subscript. In this paper we will describe a 
subscript analysis similar to detecting output dependences 
in imperative arrays, which can frequently establish at com- 
pile time that write collisions are impossible. 

Detecting “empties”. The bounds argument in an 
array comprehension establishes the size of the array, but 
there may not be an subscript/value pair for a particular 
subscript-the value at that position is thus undefined, and 
we call it an empty. Rather than check for the definedness 
of elements at run-time, we would like to know at compile- 
time that there are no empties. Such a condition exists if 
all of the following conditions hold: 

There are no write collisions. 

There are no out-of-bounds definitions. 

The number of subscript/value pairs is equal to the 
number of array elements. 

If these conditions hold, the indices in the list of subscript/value 
pairs must be a permutation of the array’s indices, therefore 
every subscript has a definition and there are no empties. In 
most cases, one can determine these conditions at compile 
time or, if that falls, in straight-line code before entering 
ally loops. 

The overhead of “thunks”. The simplest, and in 
general the only, way to implement non-strict arrays is to 
represent each element as a “thunk” (i.e., a delayed rep- 
resentation of a value), which is evaluated upon demand. 
This is the standard way of realizing lazy evaluation, but 
the cost can be exorbitant in large arrays, at least in com- 
parison to strict arrays. The cost includes the space and 
time overheads of creating, testing, and garbage collecting 
thunks. We will show how to use subscript analysis, similar 
to finding true dependences in imperative arrays, to find a 
safe schedule for evaluating elements without thunks. 

Copying / trailers / reference counting. Express- 
ing a new array as the compositions of an old array with 
new definitions for some elements creates the problem of 
deciding what to do with the old array - ideally we would 
like to reuse it; i.e. update it in place. In the case where 
no reference is made to the old array, this problem is the 
same as that faced in implementing incremental arrays, and 
has been studied extensively in the past [5, 111. However in 
this paper we will discuss a variation of the problem-that 
in which the old array elements are used to create the new 
ones, and thus a safe schedule of the updates needs to be 
determined to do the updates in place. We will show that 
a subscript analysis, similar to detecting anti-dependence8 

in imperative arrays, can frequently find a safe schedule for 
solving this problem. 

Avoiding intermediate lists. This is perhaps the 
most obvious problem to solve, but it turns out to be rather 
easy! It amounts to a simple variation on the transformation 
of ordinary list comprehensions in [23], which is a special 
case of “deforestation” as proposed in [24]. All intermedi- 
ate lists can be replaced by tail-recursive loops. Since this 
problem has been studied extensively elsewhere, we ignore 
it in this paper. 

In conclusion, there are many inefficiencies that need to 
be overcome, and we will concentrate in this paper on detect- 
ing write collisions, eliminating thunks, updating arrays in 
place, and avoiding checks for the “definedness” of elements. 
The solutions to all of these problems involve some sort of 
subscript analysis. Indeed, recently there has emerged in the 
compiler community the folklore that the problem of compil- 
ing functional arrays efficiently for sequential execution has 
a lot in common with the problem of compiling imperative 
arrays efficiently for parallel machines, To some extent this 
is true, and not surprising once subscript analysis becomes 
necessary, but the details are non-trivial and the analogy 
is not as straightforward as one might think. One of the 
key contributions of our work is to make this relationship 
precise - to elucidate the transfer of the concepts of sub- 
script analysis and true, output, and anti-dependencesfrom 
the imperative to the functional framework. 

5 Examples Of Dependence Graphs 

The essential result of subscript analysis is a dependence 
graph that indicates which elements in an array depend on 
which others. It is similar to dependence graphs used in the 
imperative framework (for example, see [2, 71, and we give 
a few examples to demonstrate the idea. 

An array expression will typically take a nested list com- 
prehension for its subscript/value pair list. Each innermost 
intermediate list in this comprehension will be a singleton 
list specifying a subscript/value pair expression of the form C 
s := P 1; we will call each such singleton list a a/~ clause. A 
s/v clause plays a role very similar to an assignment state- 
ment in a DO loop specifying an array in an imperative 
language. 

In a recursively defined array, we can draw a dependence 
edge between each source element that provides data and a 
corresponding sink element that needs that data. Each array 
element is computed as an instanceof some s/v clause in the 
subscript/value pairs list comprehension. We can consider 
the dependence edge between a particular source element 
and sink element as an instance of a dependence edge be- 
tween the corresponding source clause and sink clause. 

When the subscript expressions are linear in the loop 
indices, and the loop bounds are statically known, compile- 
time subscript analysis allows us to construct a dependence 
graph with s/v clauses as vertices and dependence edges be- 
tween s/v clauses. The analysis labels the edges with infor- 
mation about the direction of the dependence with respect 
to the loops surrounding the source and sink clauses; such 
labels are called direction vectors [2]. For example, an 
edge labeled (>) says that source and sink are surround by 
a single-level loop; for every instance of this edge, the source 
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element is always computed at a “later” value of the loop 
index, relative to the “earlier” loop index value at which the 
corresponding sink element is computed. 

We put quotation marks around “earlier” and “later” 
because we are talking about the relative position of a de 
pendence’s source and sink instances within the range of 
the loop index, not the temporal order in which those in- 
stances are executed at run time. However, once we know 
the direction-labeled dependence edges between s/v clauses 
of a list comprehension, we can use that information to de- 
cide whether the order specified by the list comprehension 
is safe for sequential compilation without thunks. The or- 
der is safe for thunkless compilation if for every edge in the 
dependence graph, the source instance is always computed 
before the sink instance. If the list comprehension’s order 
is not safe, the direction-labeled dependence edges can fre- 
quently give us enough information to restructure the list 
comprehension to achieve a safe order, while preserving the 
semantics of the array expression. 

Let us represent a list comprehension as an expression 
tree; using the subscript analysis described in the next sec- 
tion, we will put labeled dependence edges between s/v 
clauses. 

let a = array (1,300) 
C* t 3*i :- . . . 3 ++ -- Clause 1 

E 3*i-1 := . . . a!(3*(i-1)) .., I ++ 
-- Clause 2 

C 3*i-2 := . . . a!(3*i) .,. J 
-- Clause 3 

I i C- Cl..1001 *I 

i <- Cl..1001 

In this example the labeled edge 1 - 2 (<) says that clause 
1 in an “earlier” instance of loop i supplies a value needed 
by clause 2 in a “later” instance of that loop. For thunkless 
sequential compilation, the loop must run temporally in the 
forward direction, from 1 to 100. The edge 1 + 3 (=) says 
that within a single instance of loop i clause 1 supplies a 
value needed by clause 3. For thunkless compilation, clause 
1 must be computed befoxe clause 3 within a single instance, 
but the relative order of 1 and 2 or of 2 and 3 does not 
matter. 

i <- ll..lOO] 

In this example edge 2 + 1 (=, >) says that clause 2 supplies 
data to clause 1 in the same instance of the outer i loop, 
but from a “later” to an “earlier” instance of the inner j 

loop. The 2 + 1 (=, >) edge requires that within a single 
i instance, the j loop must run in the backward direction 
(from 20 to 1) to permit thunkless compilation. The 1 + 
2 (<, >) and 2 -+ 3 (<) edges agree that the i loop must 
run in the forward direction to permit thunkless compilation, 
but neither edge influences the inner j loop. 

In the next section we explain how subscript analysis 
computes the labeled dependence edges between s/v clauses 
of the list comprehension expression tree. In the section on 
code generation we explain how to use this dependence in- 
formation to generate a safe schedule for the list comprehen- 
sion such that every dependence edge’s source is computed 
before its sink, allowing compilation of a recursively defined 
array without thunks. 

6 Subscript Analysis 

We will briefly outline the adaptation of subscript analysis 
to functional monolithic arrays in the case of l-dimensional 
subscripts. The analysis can be extended to multi-dimensional 
subscripts by ANDing tests on each dimension, or by lin- 
earization of the array; see [6]. Consider two references to 
array m, surrounded by d shared loops: 

m - array bounds 
c* .*. m!(f ii . . . id) . . . 

. . . m!(g il . . . id) . . . 
I il <- [l..NlJ , . . . . id <- [l..Nd] *I 

We want to know if there is a dependence between two ref- 
erences to an array: do they refer to the same element? 

Notice that the loops have been normalized: the low 
value of the index is 1, and the index increment is 1. When 
the subscript expressions are linear in the loop indices, the 
surrounding loops can always be put in normalized form 
([21]). A huge number of scientific programs use only lin- 
ear subscripts, and the derivation of subscript analysis algo- 
rithms assumes linear subscripts with normalized loops. 

Definition: The bounded integer BoJution test: there 
exists a dependence between these two references to array m 
if and only if within the region of interest 

R = {(XI, . . . . xd, YI, . . ., Id) 

1 sl,$h E [I-Ml], . . . . Zd, yd E [l..Md]) 

there exists an integer solution to the dependence equation 

h 21 . . . Xd y1 . . . yd 
= 'of 21 . . . 2d) - (9 3'1 . . . ?/d) 

= . 0 

In other words, there must be values for the loop indices 
that make the difference between the two subscripts equal 
zero. 

Here zk and $!k are two instances of the loop index ik. 
But if a dependence exists, we may want further informa- 
tion: what is the direction of the dependence with respect to 
the surrounding loops? We get this information by further 
constraints on R; that is, by constraining the relative val- 
ues of the loop indices for the two references. For example, 
the dependence edge label (=, <, >, *) means a dependence 
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holds with the constraints ~1 = ~1, 22 < ~2, z3 > 03, no 
constraint on the relative values of xl and 94. 

There are tractable decision algorithms when the sub- 
script functions f and g are linearin the loop indices. Linear 
diophantine equation theory gives us an exact test (heCe8- 

sary and sufficient) for the existence of a bounded integer 
solution, but it is exponential in the number of surrounding 
loops ([25], [S]). For 1 or 2 levels of nesting this algorithm is 
reasonable. But from this definition of dependence we can 
derive two theorems give us inexact tests (necessary but not 
sufficient) that are linear in the depth of loop nesting. 

Theorem 1: The any integer .~olution test: there is a 
dependence only if there is an integer solution to the de- 
pendence equation, regardless of whether the solution falls 
within R. 

Theorem 2: The bounded rational solution teut: there 
is a dependence only if there is a rational solution to the 
dependence equation within R. 

The bounded integer test is an “if-and-only-if” definition 
of dependence. The two theorems weaken this definition 
to an “only-if”, the first by dropping the bounds on the 
solution, the second by dropping the requirement that the 
solution be integer. 

l The GCD testis derived from the first theorem. This 
test is the same for dependence testing in imperative and 
functional arrays. Let the linear subscripts be: 

f Xl . . . Zd = 00 + Cd=1 akXk> 
9 11 . . . Yd = bo + cf=, bkYk 

Label the d nested loops from the set Q = [l..d], outermost 
first. Partition Q according to the constraints placed on Zk 
and yk by region R: 

l Q. = the set of all loops k with no constraints on Zk 
and Ik, 

l Qc = the set of all loops k with the constraint zk < yk, 

and SO forth. There exists a dependence only if 

gcd(. . a, Uj - bj,. . . , ak,. . . , bk . . .) 1 bo - 00 
where j E QE and 

kE(Q<uQ>uQ.). 

l The Banerjee inequality test is derived from the second 
theorem. For linear subscripts, we can determine lower and 
upper bounds on the difference (f 21 . . . zd) -(g yl . . . yd) 
between the two subscripts. If those bounds do not bracket 
zero, then the two references cannot be to the same array 
element, and a dependence cannot exist. We will outline a 
variation on the proofs of Theorem 2 in [25] and Theorem 4 
in [2] to find the these bounds using assumptions appropri- 
ate to functional arrays. Previous work assumes imperative 
array semantics, which depend upon the surrounding loops 
running in the specified direction, whereas functional array 
semantics are independent of loop direction. 

We compute the bounds on the dependence equation ex- 
pression by summing the bounds on its terms, one term for 
each surrounding loop. The kind of constraint put upon a 

term’s loop indices determines how we compute its upper 
and lower bounds. 

Deflnition: For integer t let us define the positiue part 
2+ and the negative part 2’ 88 in [25] and [2]: 

t+ = 

t 

t iftl0, 
0 if t < 0. 

t- -t if = t 5 0, 
0 if t > 0. 

0 

Lemma: Let k E Q.. We want to find the minimum 
and maximum for the term Ukzk - bkvk, where the relative 
values of Xk and yk are unconstrained - either instance of 
loop k Cab take on any value within the loop bounds [l..Mk]. 
The bounds on this term are: 

(Ok - bk) - (a; -I- bz)(h!fk - 1) 
5 akxk - h/k 5 

(Uk - bk) + (a; + b;)(Mk - 1) 

Proof: The bounds on the term OkXk - bkgk equals the sum 
of the bounds on the terms akzk and -bkgk. Let us find the 
bounds on CXk2k. Let Xk = 1-t Sk. Then 

akXk =ak+ak$k, 

o<sk~h!fk-1. 

Then by Lemma 1 in [2]: 

-.j$f-&; 1) < akSk < a;Z(Mk - I), 

ak- r -1) _<akxk 5 ok + az(hfk - 1). 

Similar reasoning give us bounds: 

-bk - b;(iwk - 1) 5 -bkyk 5 -bk + b;(Mk - 1). 

Adding the bounds on terms CZkXk and -bkYk give us the 
bounds on akXk - bkyk. 0 

Theorem: Given a partition Q = Q.. U Q< U Q> U Q. 
placing a constrained region of interest R on the shared loops 
surrounding two subscript expressions (f x1 . . . zd) and 

I 
g I1 . . . vd), the difference (h 11 . . . xd yl . . . gd) = 
f xl . . . zd) - (9 !/l . . . yd) between these subscripts can 

equal zero only if the following expressions for h’s minimum 
and maximum bracket zero: 

minR h = C&c&k - bk) 
1 E,,,. -(a,- +b:)@fk - 1) 

kEg<(-h - (a;; + bk)+(Mk - 2)) 

+ ~k&-h - bk)+(Mk - 1)) 

+ CkEQ>(ak - (ak + b;)-(Mk - 2)) 

5 0 5 

maxR h f E,,9tak+- bk) 

k@.&(ak + b;)(Mk - l) 

+ xkE9<(-bk + (at - bk)+(Mk - 2)) 

+ ~k&-(ak - bk)+(Mk - l)) 

+ %C?> 
(ak + (Uk + b;)+(Mk - 2)) 

Proof: We developed the lower and upper bounds on a term 
for any loop k E Q.. By similar proofs, minima and max- 
ima can be derived for k E Q<, Q., , and Q> in which re- 
gion R constrains the relative values of zk and yk (see [2], 
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[25]). Gathering these inequalities we get the lower and up- 
per bounds on the difference between the two subscripts. 
The difference between the two subscripts can only be zero 
if the bounds on the difference brackets zero. 0 

This inequality must be satisfied for a dependence to ex- 
ist, given this set of constraints. Of course, since this is a 
necessary but not sufficient test, the satisfaction of this in- 
equality does not tell us that a dependence does exist, but 
only that we cannot prove that it does not exist given these 
constraints. Naturally we start with no constraints, e.g., 
(*, *, *) for a 3-level nested loop. If a dependence is impos- 
sible with no constraints, then certainly it is impossible with 
sharper constraints. 

Given loop nesting depth n, a single exact test costs 
O(P) time. The GCD test costs O(n) time, but if it is sat- 
isfied we only know that a dependence is possible, and we 
know nothing about the direction constraints on the pos- 
sible dependence. The Banerjee test costs O(n) time, and 
when constraints are given on R it tells us gives a direc- 
tion vector label for the possible dependence. Unfortunately, 
we need O(P) different Banerjee tests in the worst case to 
completely determine the direction vector on a dependence. 
However, [6] suggests a search tree approach to refining the 
constraints on the region R for the Banerjee test. In many 
cases the search tree approach gives complete information on 
any possible dependence between a pair of array references 
in O(n) or even O(1) time. 

So far we have presented the Banerjee test for shared 
loops. If either array reference is further surrounded by 
unshared loops, we need to compute the unshared loops’ 
contributions to the bounds. 

If subscript analysis shows us that no two s/v clause in- 
stances can write to the same element, we do not compile any 
runtime code to check for collisions. If an inexact subscript 
test says a collisions is possible, we must compile collision 
testing code, and inform the programmer of the risk. If an 
exact subscript test says a collision will definitely happen, 
we Aag an error. 

For an accumulated array, which allows multiple values 
to be combined into a single element, the combining function 
may be non-commutative. If this is the case, any reschedul- 
ing of the order of evaluating s/v pairs must maintain the 
order in which values are combined into an element. Write 
collisions edges then become true output dependence edges, 
and ordering information on these edges put a constraint on 
the permissible scheduling. 

8 Thunkless Code Generation 

Our next goal is to compile an array so there is no need for 
thunks: for every dependence edge between two elements of 
the array, we want to make sure the source is always com- 
puted before the sink. The compiler needs to be concerned 
with two kinds of dependence edges [2]: 

Lemma: If loop k over [l..Mk] surrounds subscript (f Q...), 
but does not surround the other subscript (g VI...), then the 
contribution the loop k term makes to the bounds on h is: 

Uk-‘“;(&-f) <akXk <Uk+U$(&-1). 

Likewise, if loop k over [l..Nk] surrounds (g yl...) but not 
(f xi...), then the contribution the loop k term makes to 
the bounds on h is: 

--bk - bt (Nk - 1) 5 -bkYk 5 -bk + b;(Nk - 1). 0 

Proof: Simply use the proof for unconstrained xk and yk, but 
drop the contribution of the subscript that is not contained 
within loop k. 

7 Detecting Write Cotlisions 

Only one “assignment” is allowed per element in an mono- 
lithic array; thus some mechanism must be provided to check 
for subscript/value pairs with the same subscript. Detect- 
ing write collisions at compile time is similar to the problem 
of detecting output dependence5 in imperative arrays: do 
two instances of s/v clauses (in an imperative language, two 
instances of assignments statements) write to the same ele- 
ment? 

The GCD and Banerjee tests are necessary but not suf- 
ficient: they can show that a write collision cannot occur, 
but they cannot show that a collision definitely will occur, 
only that it may potentially occur. 

Loop-carried dependencesin which the sink and source 
occur in different loop instances, such as (<) (source 
is in an ‘earlier” instance than sink), (>) (source is 
in a “later” instance than sink), (=, <) (source is in 
the same outer loop instance as sink, but an “earlier” 
inner loop instance); 

Loop-independent dependencea in which the sink and 
source occur in the same loop instance, such as (=) or 
(=,=), or do not share a loop at all, such as (). 

We will develop the principles for single-level loops, then 
generalize to nested loops. 

8.1 Thunkless Code For a Single-level loop 

In a single-level loop, the loop-carried dependence (<) and 
(>) determine the direction of the loop, whereas the loop- 
independendent dependences (=) determine the order in 
which s/v clauses are computed within a single loop in- 
stance. We can ignore (=) edges when determining the loop 
direction (unless we choose to split the loop into multiple 
passes; see below), and we can ignore (<) and (>) edges 
when determining the order of clauses within a single loop 
instance. 

8.1.1 loop Direction Scheduling 

To determine the loop direction we have these cases: 

l There are no loop-carried edges: all edges are (=) with 
sink and source in the same instance. The loop may 
run either direction. The graph may be either cyclic 
or aciyclic. 
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The loop-carried edges are all (<) (or all (>)). Then 
simply choose the loop direction that guarantees com- 
putation of sources before sinks. The graph may be 
either cyclic or acyclic. 

Both (<) and (>) edges are present. This case is more 
difficult, and is the subject of the next section. 

8.1.2 Loop Direction Scheduling With Both (<) and (>) 
Edges 

When an array expression contains both (<) and (>) edges, 
our algorithm for scheduling loop direction depends on whether 
the dependence graph: 

0 acyclic, 

l cyclic with no cycle containing both (<) and (>) edges, 
or 

l cyclic with at least one cycle containing both (<) and 
(>) edges. 

A dependence graph is cyclic if at least one of its SCCs 
(strongly connected components) contains more than a sin- 
gle vertex. If a SCC contains both (<) and (>) edges, then 
that SCC must contain a cycle with both edge types: since 
every vertex in an SCC can reach every other vertex in that 
SCC, every pair of (<) and (>) edges in an SCC must take 
part in a cycle. Computing the SCCs of a graph G = (V, E) 
costs O(max(lVl, IEI)) t ime, and we inspect all IEI edges to 
classify the graph’s SC&. 

l Acyclic graph with both (<) and (>) edges. Wrap each 
vertex’s corresponding s/v clause in a separate loop, and 
schedule the loops consecutively as ordered by topological 
sort. The sort must consider both loop-carried and loop- 
independent (=) edges. 

For example, consider the graph 

V = (4 B, Cl, 
E = {A + B (<), B -+ C(>), Ad C(z)}. 

Since A depends on no other clauses, we can compute it in a 
loop running either direction. When the A loop is complete, 
we can compute B in a separate loop also running either 
direction; although B depends on A from an “earlier” loop 
instance, splitting the loop into two loops which compute 
all As before all Bs also satisfies the dependence, no matter 
which way the two loops run. Likewise, schedule the C loop 
after the A and B loops. 

This approach - a separate loop pass for each s/v clause 
- works for any acyclic graph, but when several nodes are 
connected by dependence edges agree that on a loop direc- 
tion, we can collapse the separate passes for these nodes 
into a single loop. In the example above there are 3 differ- 
ent schedules that can collapse the 3 loops into 2 loops, with 
less loop overhead. A static scheduling algorithm for acyclic 
dependence graphs is given in the next subsection. 

l Cyclic graph with both (<) and (>) edges, but no cycle 
contains both edge types. Consider the quotient graph we get 
by collapsing each SCC to a single vertex, and discarding all 
edges internal to a SCC. This quotient graph is a DAG which 

can be scheduled by a slight modification of the scheduling 
algorithm for the acyclic graph described above. If an SCC 
is a single vertex or contains only (=) edges, its surrounding 
loop may run either direction; if it contains any (<) edges 
((>) edges) it must run in the forward (backward) direction. 

l Cyclic graph with at least one cycle containing both (<) 
and (>) edges. We cannot schedule the loop in a way that 
guarantees every source is computed before every sink. Con- 
sider the graph V = {A, B}, E = {A - B (<), B --+ A(>)}. 
We cannot run a single loop, either forward or backward, 
that satisfies both dependence edges, nor can we split the 
loop into two loops. We have no choice but to compile using 
thunks. However, monolithic array comprehensions involve 
only flow dependences; for loops updating incremental ar- 
rays, a dependence cycle involving an antidependence edge 
can be broken. 

8.1.3 Scheduling an Acyclic Dependence Graph With Both 
(<) and (>) Edges 

Static scheduling algorithm: Suppose we want to schedule 
the first pass in the forward direction, which satisfies (=) 
and (<) but not (>) dependences. 

Definition: A node must be marked as ‘not-ready’ for 
a forward direction loop pass if it is reachable from any root 
(a node of in-degree zero) in the DAG via any path that 
includes at least one (>) edge. Otherwise a node is marked 
‘ready.’ 0 

Schedule all the ‘ready’ nodes in the first pass, then 
delete them from the graph. Repeat until there are no nodes 
left. At every step the graph is a DAG, every DAG contains 
at least one root, and every root is ‘ready’, so at least one 
node gets deleted each step, and the scheduling algorithm 
terminates in at most [VI steps. 

Obviously the most common dependence graphs open 
room for many refinements. Often all the loopcarried de- 
pendence edges leaving the roots will specify the same de- 
pendence direction, so it makes sense to schedule the first 
pass in a direction consistent with that dependence direc- 
tion. 

Algorithm to detect ‘not-ready’ nodes: The algorithm is 
a modified depth first search over a DAG. As we visit each 
node i, maintain a variable 8 describing the path from the 
current spanning tree root r to node i: 

l s = ‘ready’ if the path contains no (>) edges 

l s = ‘not-ready’ if the path contains at least one (>) 
edge. 

Each node i has two variables: i.visited and i.ready. As 
usual in DFS, i.wisited = false initially. The initial value 
of i.ready does not matter, but let it be ‘ready’. When we 
visit a node: 

a If i.visited = false, then set i.visited = true, set i.ready 
= s, and continue to visit i’s children. 

0 If i.visited = true, and i.ready = either ‘ready’ or 
‘not-ready’, and s = ‘ready’, then backtrack. 
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l 

a 

If i.visited = true, and iready = ‘not-ready’, and s = 
‘not-ready’, then backtrack. 

If i.visited = true, and i.ready = ‘ready’, and a = ‘not- 
ready’, then i.ready = s = ‘not-ready’, and continue 
to revisit i’s children. 

The algorithm behaves exactly like DFS except in the last 
case, in which a node has already been visited by a ‘ready’ 
path (no (>) edges), and then is revisited via a ‘not-ready’ 
path (at least one (>) edge). If an already visited node 
gets remarked from ‘ready’ to ‘not-ready’, then all its‘ready’ 
descendants must also be remarked ‘not-ready’. 

In the worst case this algorithm will visit every node 
twice and cross every edge twice. The worst case time 
complexity of this algorithm is therefore the same as DFS, 
O(max(lVt, I-W). 

8.1.4 Scheduling Within a Single Instance of a loop 

Drop (<) and (>) edg es w rc can only influence scheduling ( h’ h 
across loop instances) from the graph and consider only (=) 
edges. 

l If the (=) edge graph is acyclic, schedule using topo- 
logical sort. 

l If the (=) edge graph is cyclic, then we cannot choose 
a safe thunkless schedule: compile using thunks. 

8.2 Scheduling Thunkless Code For Nested Loops 

Let us start at the outermost loop. How do we decide loop 
direction? How do we decide the ordering of s/v clauses and 
nested loops within a single instance of the outermost loop? 
For now we will not pursue any more drastic restructurings, 
such as interchange of loop nesting levels. 

Let us collapse each nested inner loop into a single entity, 
retaining edges between s/v clauses of the inner loop as self- 
cyclic edges in the new dependence graph. We treat the 
outer loop as a single-level loop containing a set of entities 
(s/v clauses and inner loops) with no internal structure. Let 
us consider the role of each kind of dependence edge. 

8.2.1 Scheduling the Outermost loop 

(<), (>), and (=) dependence edges connect source and 
sink array references that only involve the outermost loop. 
Such edges can therefore be treated exactly as they are for 
singlc-level loops. A (<) edg e requires the outer loop to run 
forward for the source entity to precede the sink entity. A 
(>) edge requires a backward loop. A (=) edge requires the 
source entity to precede the sink entity within a single outer 
loop instance. 

(c, ..), (>, . ..). or (=, . ..) dependence edges connect source 
and sink array references that involve an inner loop as well. 
Since the inner loop (or loops) involved in such a depen- 
dence must be shared by both source and sink, such edges 
look as if they are self-cyclic upon a single entity from the 
outermost loop’s point of view. 

However, notice that a (<,.,) or (>, . ..) edge can be 
treated exactly like a (<) or (>) edge whose source and sink 
are the same s/v clause: it influences outer loop direction, 
but has no effect on entity ordering within a single instance. 

A (=,... ) dependence edge, on the other hand, can be 
ignored at the level of the outer loop. Since its source and 
sink occur within a single instance of the outer loop, it is 
not loop-carried with respect to the outer loop, and cannot 
influence the outer loop direction. And since its source and 
sink are within a single entity (the same inner loop) from the 
outer loop’s point of view, a (=,...) edge cannot influence 
entity ordering at the level of a single instance of the outer 
loop. 

8.2.2 Scheduling the inner Loops 

We have scheduled the direction of the outer loop and or- 
dering of its entities. When we generate code for one of the 
nested inner loops, it is easy to see which nodes belong in 
the inner loop’s dependence subgraph - they are simply the 
s/v clauses appearing in that inner loop - but which edges 
do we include? We exclude: 

l all edges to or from nodes excluded from the inner 
loop; 

a all (<), (>), and (=) edges, since they only influence 
scheduling at the level of the outermost loop; 

l all (<, . ..) and (>, . ..) edges, since they connect source 
and sink in separate outer loop instances, and we are 
generating code for the inner loop within a single in- 
stance of the outer loop. 

We keep only (= , . ..) edges: they are the only edges relevant 
to generating code for an inner loop. 

For example, a (<, =) or (>, <) edge influences loop di- 
rection for the outer loop, but has no influence whatever on 
the inner loop. A (=, <) or (=, =) edge has no influence 
whatever on the outer loop, but (=, <) influences inner loop 
direction, and (=,=) influences entity ordering in a single 
instance of the inner loop. In the terminology of [Z], (>, C) 
is loopcarried at level 0 (at the outer loop), and (=, <) is 
loop-carried at level 1 (at the inner loop). 

8.2.3 Summary of Scheduling For Nested loops 

In summary, as we generate code for an outer loop, we treat 
each inner loop as a single entity. We treat (c, . ..) and 
(>, . ..) edges as if they were (<) and (>) edges for scheduling 
outer loop direction. We consider (=) edges, but ignore 
(=, . ..) edges for entity ordering within a single outer loop 
instance. 

When we recursively generate code for one of the inner 
loops, we drop all but (=, .-.> edges. We can strip off the 
leading = and treat this inner loop as if it were now the 
outermost loop. 
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9 Making Updates Single-Threaded 

Often a new array is most conveniently expressed ss the 
composition of an old array with new definitions for some 
section of the array. In this section we define bigupd, a 
useful construct for specifying updates in a semi-monolithic 
manner; that is, over a large piece of an array. We show 
how subscript analysis can let us convert simple incremental 
programs that apparently prohibit in-place update into more 
complicated programs that permit in-place update with min- 
imal or no copying. 

Although monolithic and incremental arrays are of equal 
semantic power - either can be expressed in terms of the 
other - some algorithms are more clearly expressed mono- 
lithically, some incrementally. The incremental approach is 
more expressive (1) when the result array has nearly the 
same contents as the input array, with only a few elements 
changed, or (2) h w en the result array completely changes 
the input array, but the result can overwrite the input in 
place, at a great savings in storage. 

Updating an array in place is only possible if there are 
no other references to the old version of the array - the old 
version is no longer live data. 

Definition: If at every update to an array, there are no 
references to the old version of the array, we say that the 
array is single-threaded. 

Single-threadedness is an operational rather than seman- 
tic concept. A variety of run-time schemes, such as reference 
counts, as well as compile-time schemes, such as abstract ref- 
erence counting and path analysis, have been proposed to 
make sure updates are single-threaded [5, 121. Array trailers 
are a run-time scheme that assumes an update is not single- 
threaded, but gives reasonably good performance when it 
is single-threaded. So far, none of these schemes have been 
cheap enough to use in a practical compiler. However, much 
promise is shown by [8], in which a polymorphic type system 
is guarantee that an incremental array is updated only in a 
single-threaded manner. 

All these schemes require the programmer to make sure 
the array is referenced in a single-threaded manner. But for 
many problems the most mathematically expressive form 
is to write new element values by refering to the original 
array, rather than to an intermediate version of the array. 
Unfortunately, such a form is not single-threaded in its use 
of the array, preventing in-place update. 

But notice that single-threadedness is too strong a re- 
quirement for in-p&e update. We do not require that the 
entire old version of the array be dead, only that the element 
to be updated be dead. If we can determine at compile time 
that an update changes a dead element, then any remaining 
references to the old version of the array refer to elements 
that are unchanged in the new version. We can make the up- 
date single-threaded by changing the remaining old version 
references into new version references. 

In many common cases, the dependence information from 
subscript analysis can be used to transform a simple, non- 
single-threaded form, which may require extensive run-time 
copying, into a more complicated, single-threaded form that 
requires no run-time copying, or only as much run-time 
copying as the equivalent hand-coded form. Let us define 

bigupd a svpairs = fold1 upd a svpairs 

As we discussed earlier, we can treat f old1 aa syntax such 
that when svpaira is written as a list comprehension over 
arithmetic sequence generators, the entire expression can 
be compiled as tail-recursive DO loops. Consider this code 
fragment from LINPACK for swapping rows i and L of a 
matrix. 

let* a’ - bigupd a 
C* C (i,j) := a!(k,j) 1 ++ 

fii/Qk) 

&d--L 3x== 1 
C (k.j) :* a!(i,j) 1 
I j <- Cl..nl *I 

Assume that at the time bigupd is applied, a has no other 
references - a is single-threaded w.r.t bigupd. The two s/v 
clauses are involved in an antidependence cycle, each edge 
of which is labeled (=). A cycle including at least one an- 
tidependence edge can always be broken by node-splitting: 

let* a’ = bigupd a 

/-----‘ --l 
C* let 

( c 

I: 
1 j 

tam{ - a!(i,j) in 

/ 
6w 

(i, j) :- a!(k,j) 1 ++ 

6R 6 c-=> 

CL, j) :- temp %-J 
<- Ci..nl *I 

If there are no antidependence cycles, the loops can always 
be scheduled so that no live value is overwritten. Simply 
treat the antidependence edges as dependence edges, and 
schedule using the techniques in the thunkless compilation 
section. 

We have determined a schedule of selects and updates 
such that whenever an update takes place, the array as a 
whole may still be live, but the element to be updated is 
dead. Since every select from the original array is scheduled 
before an update kills that element, therefore we can con- 
vert all selects from the original array to selects from the 
current intermediate version of the updated array. If the ar- 
ray is single-threaded entering bigupd, it is now guaranteed 
to remain single-threaded within bigupd. 

Antidependence cycles can always be broken by node- 
splitting, but we want to do better than copying the entire 
array. Consider this simplified version of a single step of 
Jacobi iteration: 

let* u’ = bigupd u - 

c* 

-go 

&/ix,, g-, /-) 
(i,jS 

\ 
:= i!(i,j-I) + u!(i.j+l) + 

,~,~qy....p~=~ 

‘u!(i-1,j) +<!(i+l,j) 
1 i <- [l..ml; j <- Cl..nl *I 
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Each reference to the old matrix gives this clause a self- 
cyclic antidependence edge. The inner j loop carries an- 
tidependence edges in both directions, (=, <) and (=, >). 
If there were only one such cycle (say the (=, <) edge) we 
could ensure that a value is not overwritten before it is used 
- satisfy the antidependence - by scheduling the loop in the 
right direction. 

Node-splitting can eliminate the conflicting self-cycle (the 
(=, >) edge) by writing the value into a temporary to be 
carried over to the next j loop iteration. But notice that 
the distance of the loop-carried anti-dependence must be 
constant w.r.t. the loop. If instance j depends on data 
overwritten in instance j - k, we must keep k temporaries. 
Usually the distance will be 1. 

Likewise, node-splitting can eliminate one of the outer i 
loop antidependence cycles, but even when the dependence 
distance is 1, the temporary must be a vector large enough 
to hold all the live values that may be overwritten by the 
inner loop. Nevertheless, node-splitting requires a factor n 
fewer copies than naive compilation, where the outer loop 
has n instances. 

Our examples so far required some copying, but it is 
much more common that a code can be converted to single- 
threaded form with no copying. Examples from LINPACK 
include scaling a matrix row, and in-place SAXPY. Here 
is a version of a single step of Gauss-S&de1 or SOR itera- 
tive solution of an elliptic PDE on a 2D mesh, simplified 
to make the dependences clear. Livermore Loops Kernel 23 
(2-D implicit hydrodynamics code fragment) has the same 
northwest-to-southeast wavefront structure. 

u’ = bigupd u .d 

&y 6 (‘=, 4.) -‘A., 

C* <i.j> :- u!(i.j+l) + u!(i+l,j) + 
~~~~~+yii~~, 

I i <- [2. .m-I]; j <- [2. .n-I] *J 

The dependence graph has a single node with four self-cyclic 
edges: true dependence edges 6(<, =) and a(=, <) and an- 
tidependence edges z(<, =) and z(=, c). At both loop lev- 
els the direction of the loop-carried dependences agree. By 
scheduling the loop directions appropriately, the true depen- 
dences can be satisfied without compiling thunks, and the 
antidependences without copying. 

In conclusion, antidependence edges can be treated ex- 
actly like true dependence edges for the sake of static schedul- 
ing. The goals are different - the schedule must satisfy all 
dependences to avoid compiling thunks, and must satisfy 
all antidependences to avoid unnecessary copying - but the 
scheduling algorithms presented in the previous section do 
not need to distinguish true dependence edges from antide- 
pendence edges. Certain kinds of dependence cycles - with 
all (=) edges or with both (<) and (>) edges - prevent 
static scheduling, but when at least one edge in the cycle 
is an antidependence, it can be broken by node-splitting. 
Node-splitting usually requires much less copying than naive 

compilation; in the examples we have tried, it requires ex- 
actly as much copying ss a hand-coded program. 

10 Further Research 

Subscript analysis was originally developed within the im- 
perative language community to permit vectorization and 
parallelization of sequential programs. We have adapted 
this analysis to the efficient sequential execution of func- 
tional language programs. But obviously this analysis can 
also be extended to the vectorization and parallelization of 
functional language programs as well. As with imperative 
languages, such transformations on functional language pro- 
grams needs to focus on finding innermost loops with no 
loop-carried dependences. 

Vectorization requires the elements of the argument vec- 
tors and the result vector be treated as floating point data, 
so we need to know the arrays are used in a strict context. 
Vectorization techniques are likely to be important not only 
on expensive architectures like the Cray, but in the coming 
years on workstations based on processors such as the In- 
tel i860 and IBM RIOS. These RISC-like processors have 
on-chip floating point hardware that can execute a float- 
ing point instruction every clock cycle, if the compiler can 
achieve such as schedule. 

Efficient use of the memory hierarchy haa a tremendous 
impact on performance in scientific computing. [l] applies 
the dependence information from subscript analysis to the 
problem of enhancing the paging performance of imperative 
language programs through program transformation. Such 
transformation are especially important for functional lan- 
guages, since their focus on ‘what’ is computed rather than 
‘how’ gives less control over such operational behavior. 

11 Conclusions 

Although non-strict monolithic arrays are not perfect solu- 
tions for all applications of arrays, they are very expressive 
in the majority of application areas, and many interesting 
applications have already been programmed using them (see 
[13] for more examples). What we have demonstrated in this 
paper is that they also can be compiled efficiently for sequen- 
tial machines; in most applications we can remove the main 
sources of inefficiency that would otherwise prevent perfor- 
mance comparable to Fortran. 
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