
pHluid: The Design of a Parallel Functional Language Implementation on

Workstations

Cormac Flanagan

Rice University

Department of Computer Science

Houston, Texas 77251-1892, USA

cormac@cs rice. edu

Abstract

This paper describes the distributed memory implemen-
tation of a shared memory parallel functional language.

The language is Id, an implicitly parallel, mostly func-
tional language that is currently evolving into a dialect

of Haskell. The target is a distributed memory machine,
because we expect these to be the most widely available
parallel platforms in the future. The difficult problem is
to bridge the gap between the shared memory language

model and the distributed memory machine model. The
language model assumes that all data is uniformly ac-

cessible, whereas the machine has a severe memory hi-

erarchy: a processor’s access to remote memory (using

explicit communication) is orders of magnitude slower

than its access to local memory. Thus, avoiding com-

munication is crucial for good performance. The Id lan-
guage, and its general dataflow-inspired compilation to

multithreaded code are described elsewhere. In this pa-
per, we focus on our new parallel runtime system and
its features for avoiding communication and for tolerat-
ing its latency when necessary: mukithreading, schedul-
ing and load balancing; the distributed heap model and

distributed coherent cacheing, and parallel garbage col-

lection. We have completed the fist implementation,
and we present some preliminary performance measure-

ments.

Keywords: parallel and distributed implementations;

garbage collection and run-time systems; data flow.

1 Introduction

This paper describes the distributed memory implemen-

tation of a shared memory parallel functional language.

The language is Id [19], an implicitly parallel, mostly
functional language designed in the datailow group at
MIT. Id is semantically similar to Haskell [14] and is in
fact currently evolving into pH [I], a dialect of Haskell.

Permission to make digitablwtrd copy of pal or ail of thk vmrk for pwsonal
or classroom use is ranted without fee provided that copies are not made

kor distributed for pro or commercial advanfa e, the copyright notice, the
title of the publication and ik date appear, an8notice is dven that
copying is by permission of ACM, Inc. To copy otherwise, to mpublii, to
post on aervars, or to redistribute to Iis&, requires prior apaoifio parmieaion
and/or a fee.

(

Rlshiyur S. Nikhil

Digital Equipment Corp.

Cambridge Research Laboratory

One Kendall Square, Bldg. 700

~ambridge, Massachusetts 02139, USA

nikhil@crl. dec. com

Economics seems to dictate that most scalable parallel
platforms in the next five to ten years will be clusters

of SMPS (symmetric/shared memory multiprocessors),
i.e., machines consisting of a number of nodes that com-
municate using message passing over a switched inter-
connection network, where each node may be a small
SMP (bus-based, 2-4 processors). Larger shared mem-

ory machines are of course possible, as demonstrated by
the Stanford DASH multiprocessor [17], and the I&R
machines [15], but they are likely to be high-end ma-

chines and not widely available. Further, scala le shared

k

memory machines (like the DASH) are also b “lt with

physically distributed memories for scalability, d face
some similar problems with their memory hierarchies.

Even at small numbers of processors (such as 4 to 8),

many more people are likely to have access to clusters of

uuiprocessors of that size than SMPS. Thus, our target

i
for Id is a distributed memory, message passin ma-

chine. In our initial implementation, each nod is a
conventional uniprocessor workstation, not an SMP. We
know how to extend this to exploit SMP nodes and be-
lieve it will be easy (handling distributed memory is the

major hurdle).

The difficult problem is to bridge the gap between the

shared memory model of the language and the distribu-
ted memory model of the machine. In Id, as in Haskell,

SML and Scheme, the language model assumes that all
data is uniformly accessible, whereas the machine has

a severe memory hierarchy: a processor’s access to re-
mote memory (using explicit message passing) is typi-

cally orders of magnitude slower than its access to local
memory. Thus, minimizing communication, avoiding

communication if possible, and tolerating the latency of
remote operations, are all crucial for good performance.

The pHluid system is a compiler and runtime system for

the Id language that we have been building at Digital’s

Cambridge Research Laboratory for some years. Based

on ideas originating in dattiow architectures [11] the
compiler produces multithreaded code for conventional

machines.

In this paper, we focus on novel aspects of a new par-
allel runtime system for pHluid, in particular features
that avoid communication and tolerate its latency when
necessary: multithreadlng, scheduling and load balanc-
in~; a distributed heap model and distributed coher-

lThe name pHluid IS a play on Id, pH and datajlow.

ICFP ’96 5/96 PA, USA
01996 ACM o-69791 -771 -W6/0005...$3SO

169

ent cacheing, and parallel garbage collection. We also
present some preliminary performance data.

2 Background on Id and its compilation to mul-
tithreaded code

FThe importmt messages of this section are summarized

~n its last paragraph. Readers familiar with topics such

as Id, Id compilation, dat aflow, message driven execu-
tion, fine grain multithreading, etc. may wish to skip

this section and just read the last paragraph.]

Id [19] is an implicitly parallel, mostly functional, lan-
guage designed in the dataflow group at MIT. It has

many features common to other modern functional Ian-
guages like Haskell and SML– higher-order functions,

a Hindley-Milner polymorphic type system with user-
defined algebraic types, pattern-matching notation, ar-

ray and list comprehensions, etc. The main novelty of
Id is its implicitly parallel evaluation model: everything

is evaluated eagerly, except for expressions inside con-
ditionals and inside lambdas. This is described in more

detail in [19], but a key behavior relevant to this paper
is that most data structures have I-structure semantics:

given an expression of the form:

cons el e2

we allocate the data structure and evaluate e1 and e2 in
parallel. The reference to the cons cell is immediately

available as the result of the expression. Any consumer
of the data structure that attempts to read the head (or

the tail) of the cell will automatically block, if necessary,

until el (or e2) has completed evaluation and is available

in the data structure2

The major phases of our pHluid compiler for Id are:

●

●

●

Parsing, typechecking, simplification, lambda lift-

ing, optimization, etc., eventually producing P-

RISC assembler, a fine grain mukithreaded ab-
stract machine code (“parallel RISC”).

Translation and peephole optimization, converting
P-RISC assembler to Gnu C.

Gnu C compilation, and linking with our new par-
allel runtime system, written in Gnu C.

We use various C extensions provided by Gnu C, such as

first class C labels, and mapping C variables that con-
tain frequently accessed data such as the heap allocation
pointer into specific machine registers. First class C la-
bels allow us to represent fine grain, dynamically sched-
uled threads conveniently. These Gnu C facilities have
also been used by other researchers for the same pur-
poses. An important point is that the entire compiler
is geared towards producing line grain multithreaded

2This non-strict behavior in fact makes Id semantically C1OSW

to Haskell than to SML, despite its eager evaluation. Recogniz.

ing this semantic similarity, and because of various other syn-

tactic similarities, Id is currently evolving mto pH [1], a dialect

of Haskell.

code for latency tolerance– we do not start with a com-
piler for sequential machines and add parallelism as an
afterthought.

Figure 1 shows an example P-RISC assembler transla-
tion of the following function that counts the nodes in

a binary tree:

def leaves Empty . 1

I leaves (Node x 1 r) = leaves 1 + leaves r;

It is displayed here in graphical form as a control-flow

graph, but it is trivial to linearize with labels and ex-

plicit control transfers. The following features are worth

nlewe% entry cfp cip T
if null?(T)

4 L
i

{ hiload a T[l] ~ r hilosd b ~2] I

“k ‘~FdR~

c: ent~ tl I til enttyt2]

k
join 2 i I

res. fi+f2

+
J

msrge

return cip cfp ras J

Figure 1. P-RISC assembler: An ex-
ample

noting:

●

●

●

●

The function’s code can be viewed as a collection

of threads, each of which is activated by the arrival
of a message (in practice, we optimize away many

messages, both statically and dynamically). Mes-
sages always arrive at entry instructions, whose

arguments correspond to the message payload.

At the top, a call message arrives, which allocates
a frame for this function, and delivers three argu-

ments to the top entry instruction: a continuation

frame pointer, cfp; a continuation label (instruc-

tion pointer) c ip, and the tree itself, T. The if
tests if the tree is empty; if so, the result is 1,

and the return instruction sends a message to the
continuation (cf p, c ip) carrying the result.

If the test fails, we initiate two “heap I-structure

loads”: the hiloads conceptually send messages
to the heap locations T [1] and T [2] requesting
their contents, passing the current frame pointer
(implicitly) and the labels a: and b: respectively
(explicitly) as their respective continuations. The
current function invocation then goes dormant,

with no threads active.

The heap location T [1] eventually responds with
a message, kicking off the thread at a:, placing
the value (the left sub-tree) into local variable L.
The last action of this thread is to initiate a recur-
sive call by sending a call message containing the

170

continuation (current frame pointer and label c:)

and argument subtree L. This recursive call even-

tually returns a message that starts the thread at

c:, loading the count of the left subtree into local
variable t i.

● Similar actions take place at b: and and d:. Thus,

two threads (from c: and d:) arrive at the join
instruction. This instruction counts up the local
variable j (initialized to O). Only the last thread

proceeds, finding that the count j has reached the
terminal count (2); earlier threads die at the j o in.

Thus, t 1 and t 2 are guaranteed ready when the
sum is computed. This final thread computes the

sum and returns the result.

● It is undetermined whether thread a: executes be-

fore b: and whether c: executes before d:. They

are scheduled asynchronously, as and when mes-
sages arrive. Thus, although these threads execute

in some sequential order (because they all execute

on the same processor), the two overall load ac-

tions (communicating to the heap and back) occur
in parallel, and the two recursive function invoca-

tions execute in parallel. This kind of fundamental
attention to latency is quite unique to Id compil-

ers.

● The round-trip time for the request and response

messages of a function call of course depend on
how much work the function does, and whether
the function call is done locally or remotely. The
round-trip time for an hiload depends on a num-

ber of factors:

– Whether the heap location is local or remote.

– The current load on the processor that owns
the heap location, which affects how soon it

can handle the request.

– Whether the heap location is “empty” or not
when the request message arrives. Due to

the non-strict, I-structure semantics, the pro-
ducer may not yet have delivered the value;
in this case, the request message has to be
queued on that location until the value ar-

rives.

However, note that all these sources of delay are
handled uniformly by couching the code as mul-

tiple, fine grain, message-driven threads, each of
which never suspends.

All this was by way of background, and is discussed in

more detail in [18]. The important points to remember

for purposes of this paper are:

● Parallelism in pHluid is at two levels: the function

call is the unit of work distribution across proces-
sors. This is real parallelism, in that these proces-
sors actually execute simultaneously. Within each
function are a number of fine grain threads that
are scheduled asynchronously based on message

arrival. Thk multithreading is pseudo-parallelism,
in that all threads in a function invocation are

●

●

●

Note

multiplexed on the same processor, but it is vi-

tal because it permits overlapping communication,

synchronization and congestion latencies with use-
ful work, and is a clean model for adaptively re-

sponding to the dynamic parallelism of the pro-
gram.

Unlike many other parallel languages, threads in

pHluid are unrelated to function boundaries. Each
function invocation allocates a jrame that con-
tains, among other things, all the local variables

for all the threads of the function. However, be-
cause thread invocation does not involve any frame
or stack resource allocation, threads are extremely
lightweight.

All functions share the same view of the heap, i.e.,

the heap is a shared memory.

Threads in pHluid never suspend. All function
calls and heap accesses are couched as split-phase

transactions: one thread issues a request message,

and a response message later initiates a separate

continuation thread. For heap accesses, the re-

quest message may be queued at the heap location
if the value is not yet available. Thus, data access

synchronization occurs at heap locations, never in
the accessing functions.

that checking the fzdi/em~tv state of a heap loca-
tion is not an issu; tha~ is ‘uniqu~ to I-structure; in Id.

Almost exactly the same issue is faced in lazy language

implement ations where we have to check whether a lo-
cation haa been evaluated yet or still contains a closure.
This relationship is not surprising, because they are two

different ways of implementing non-strictness (and they
are both equally difficult to optimize away).

3 The new parallel runtime system

This section describes the novel aspects of pHluid’s new

parallel runtime system. Recall that our target plat-
form is a distributed memory machine: each PE (Pro-
cessing Element) is a conventional uniprocessor work-

station. These PEs communicate by explicit message-
passing using active messages [21], i.e., each message
contains a code pointer (a “handler”), and the message
is consumed by simply jumping to the handler with the

message itself as an argument. The handler is responsi-
ble for extracting items from the message and executing

arbitrary code that may free or reuse the message.

3.1 Scheduling and Work Distribution

3.1.1 Multithreading

When a thread is executed, it may enable other threads.
For example, consider the following code fragment de-

scribing two threads, starting at labels a: and b:, re-
spectively:

a: b: . . .
h~~oad b T[l]

. . . foo . . .

171

the thread at a: executes an hi.load instruction to ini-
tiate access to a heap location, and continues (at foo).

Conceptually, it sends a message to the heap location,
which eventually produces a response message that en-

ables the other thread at b:.

Each processor maintains a scheduling stack containing
threads that are ready to run. Each entry in the stack

consists of a code pointer, a pointer to the frame of the
enclosing function, and a variable number of arguments.

A thread is pushed on this stack when a response to
a split-phase operation is received. When the current

thread terminates, the system pops and executes the

next thread on this stack.

We avoid a stack empty check on pops from the schedul-

ingstack by including astackempty handler asthebot-
tom entry in thk stack. This handler is invoked when-

ever the system runs out of executable threads. The
handler pushes itself back onto the stack, and then calls

the scheduler (described below) to create new threads.

3.1.2 Function calls

In pHluid, the function call is the unit of work distri-
bution across PEs. By default, the system chooses how

to do this distribution. However, by means of a source
code annotation at a function call site, the programmer

can direct that the call must run on a specific PE. Prim-
itive functions are available to discover the PE on which

the current function is executing, and the total number
of PEs in the current run (this number is decided when

starting the executable; Id code is not compiled with a
knowledge of the number of PEs, expect for the special

case where we know we wish to compile for a uniproces-
sor).

Each function call is encoded as a split-phase action.
The function call itself involves creating a call record
containing the function pointer (or code biock, described

below) and its arguments, including the continuation

argument. The programmer can annotate anY function
call to specify which processor it should run on. When
there is no annotation (the usual case), the runtime sys-

tem chooses where to execute the function. Each pro-
cessor maintains two scheduling queues containing call

records:

● The fixed queue cent ains call records that must be

executed on this processor.

● The stealable gueue contains call records that can
be executed on any processor.

For function calls that have a processor annotation, the
call record is dispatched to the fixed queue of that pro-

cessor. For calls without a processor annotation, the
call record is placed on the local stealable queue. Call
records may migrate between the stealable queues of
various processors according to the work stealing algo-
rithm described below. However, a function call does

not migrate once it has begun executing.

Each function is described by a code block, which consists
of three function entry points:

●

●

●

A fast entry point which assumes the call argu-
ments are already in registers.

A fixed queue entry point which assumes that the
arguments need to be retrieved from a call record

on the fixed queue.

A stealable aueue entrv Doint which assumes that
the argume~ts need t: ‘be retrieved from a call

record on the st ealable queue.

The scheduler invokes a call record by jumping either to

the fixed or to the steabable queue entry point. The fast
entry point is used for an optimization described below.

The code at the entry point then extracts the srgu-
ments from the call record, allocates a frame and starts

evaluating the function’s body. The function later ter-

minates when one of its threads sends a return message

to the function’s continuation, deallocates the function’s
frame, and dies.

3.1.3 Work Scheduling

Naive parallel work scheduling algorithms can result in

an exponentizd growth of the memory requirements of
an application as compared to a sequential execution by

creating a very large number of parallel threads, each of

which simultaneously requires some local storage.

The pHluid work scheduling algorithm is designed to
avoid this problem by reducing the number of simulta-

neously active functions, while still exploiting the avail-
able parallelism to keep all the PEs busy.

The scheduler gives work on the scheduling stack a pri-

ority higher than either the fixed or the stealable queue,
in order to complete existing function activations (if

possible) before creating new ones. The scheduler also
invokes call records on the fixed queue in preference to
those on the stealable queue, since call records on the
stealable queue may later be stolen to keep a different
PE active.

The scheduler tries to approximate the depth first traver-

sal of the function call tree performed by a sequential

execution by treating the fixed and stealable queues as
LIFO queues, or stacks. When we execute a function

call with no processor annotation, or with an explicit
processor annotation specifying the current PE, we push

the call record on the appropriate local queue. Each
PE’s scheduler always pops work from these queues.
The net effect of our scheduler is that once all PEs have
work, each PE tends to settle into a depth-fist traversal
of the call tree similar to that performed by a sequential
implement ation.

3.1.4 Work Stealing

When a PE becomes idle, it sends a steal message to
a randomly-chosen victim PE. The steal message at-
tempts to steal a call record from the victim PE’s steal-

able queue.

Of course, the victim PE may not have any work to
steal, in which case the idle PE randomly chooses a new

172

victim PE. In order to avoid repeatedly bothering active

PEs with steal requests they cannot satisfy, we use a

linear backoff scheme to decide how long the idle PE
must wait before asking that victim PE again, i,e., the

wait time increases linearly with the number of times
we fail. This scheme successfully adapts to both low-

gramdarit y and high-granularity computations.3

If the victim PE’s stealable queue is nonempty, then the

steal message returns the call record from the bottom of
that PE’s stealable queue (i. e., away from the stack-like
end) to the idle PE. The reason for this approach is that

items deeper in the stack are likely to represent fatter
chunks of work, being higher in the call tree [12, 16].

The net effect of our work-stealing algorithm is that we
do not gratuitously fork functions to other PEs. In-

stead, work request messages are only sent when some
PE is idle, and call records only migrate from busy PEs

to idle PEs.

3.1.5 Optimizations

The pHluid system is designed using general message-

sending mechanisms that work in all cases. For example,
the split-phase instruction:

hiload b TIO]

conceptually involves sending a hiload message to the

appropriate PE, which accesses the memory location
T [0], and then sends a split-phase return message to
the original PE.

For cases where the original PE contains the memory at

location T [0], we avoid the overhead of sending these
messages by immediately performing the hil oad oper-

ation and pushing the enabled thread at b: onto the

scheduhng stack. We also avoid the message sending
overhead in other cases by inlining other split-phase op-
erations where possible.

We also optimize split-phase operations that are imme-

diately followed by a halt instruction. For example,
consider the following code fragment:

a: hiload b TIO] b: . . .

halt

If the hiload operation can be satisfied on the current
processor, then the pHluid system performs the load

and immediately jumps to the thread at b:, without
the overhead of pushing that thread on the scheduling
stack and invoking the scheduler.

Similarly, for a function call with no processor anno-
tation followed immediately by a halt instruction, we
avoid the overhead of manipulating the st ealable queue
by simply placing the arguments into appropriate regis-

ters and invoking the fast entry point (described above)
of that function’s codeblock.

3 Our work-stealing algorlthm N a variant of that used in the

Cilk system developed at MITIs], Our algorithm was developed

jointly with Martin Carlisle of Princeton University

3.2 Distributed memory model and distributed
coherent cacheing

The memory of each PE is divided into five regions:

Compiled code and static data: Static data in-

cludes data structures that describe codeblocks
and the other memory areas, etc. These are simply
replicated at the same address on all PEs.

The heap: this contains actual Id data structures
(constructed data, arrays and closures), and is de-

scribed in greater detail below.

The store: this area contains objects that are ex-
plicitly allocated and deallocated by the runtime
system, and which are never accessed remotely.

These include frames for function invocations, the

fixed scheduling queue, heap access requests that

are waiting on empty locations, etc. These objects
are managed in a freelist organized by object size.
Each PE maps its store at a different address, so
that we can determine where a frame is located by

looking at its address (frames are never accessed
remotely, but we do need to know a frame’s PE so

that we can send a message to it, e.g., for sending
a heap access response or for sending a result to a

function’s continuation).

The stealable queue: in principle this could be al-

located in the store, but because it is manipulated
so heavily (since most function calls go through

the stealable queue), we allocate a special region

for it and treat it as a deque with contiguous en-

tries, allowing cheap pushes and pops from both
ends.

The scheduling stack: this stack is also allocated

in a contiguous memory area for performance rea-
sons.

In a previous sequential implementation, and in an ini-
tial parallel implementation, we allocated everything in
a single heap (as in the SML/NJ implementation [4, 3]).
However, we chose to separate out those objects that
can be explicitly deallocated and which are not accessed

remotely, in order to reduce garbage collection pres-
sure. Although explicit deallocation of system objects

incurs a small overhead, it does not require any com-
munication, and significantly reduces the frequency of

communication-intensive global garbage collection.

3.2.1 The heap

Heap objects are represented quite conventionally, as
contiguous chunks of memory. An object consists of a

header word followed by one word for each field (arrays
have extra words for index bounds and pre-computed
index calculation coefficients). We use the lowest-order
bit to tag immediate. Thus, for example, integers lose

1 bit of precision, but this is not a problem on our cur-
rent platform, 64-bit Alpha workstations. If a field of
a heap object does not contain an immediate value, it
always contains a pointer, either to another heap ob-
ject or to a deferred list of continuations waiting for the

173

field to transition from empty to fuli. Since the field
contains a pointer in either case, and since our point-

ers are always aligned to word boundaries, this frees up
another low-order bit to use as a full/empty bit and

distinguish between these two cases. This works even
if the field is of immedlat e type (e ,g., integer), because
for the duration that it remains empty, it contains only
a pointer and not an immediate, and the full/empty bit
is available.

The heap is the only area that requires global access.

We use the operating system’s virtual memory mapping

facilities (remap) so that the heap occupies the same ad-

dress range on all PEs. The heap consists of a number
of fixed-size “pages”, each of which is currently 1 KB

in size. We partition “ownership” of these pages across
the PEs. This, although each PE sees the whole address

range, it only owns pages representing only a chunk that
is l/P of the total heap size (where P is the number of

PEs), and it can only allocate objects into these pages.
The remaining pages are treated as a cache for the data

owned by other PEs.

The advantage of this approach is that heap addresses

do not have to be translated or undirected in going from
one PE to another. Further, by examining an object’s

heap address, a PE can cheaply determine whether it
owns the object or only a cached copy. The downside

of this approach is that large amounts of address space
are required as we increase the number of processors.

Although this may somewhat limit the scalability of our
system on 32-bit machines, it is not a problem on next-

generation 64-bit architectures.

We conjecture that the amount of physical memory re-

quired per PE will scale in a reasonable fashion, since
only a small portion of the cache pages may actually be

used between garbage collection cycles. If this conjec-
ture does not hold in practice, we intend to implement

a scheme that limits the number of cache pages in use
at any time by explicitly deallocating cache pages.

3.2.2 Heap cacheing

Because Id is a mostly functional language, the vast

majority of objects in the heap are I-structure objects.
These objects are accessed via the hiload operation,

therefore we design our heap caching protocol to opti-
mize this operation.

Every heap location is tagged to specify whether it is full

or emptg in order to implement I-structure semantics.
When a heap object is allocated, all its slots are initially
empty, and these slots become full when they are initial-

ized. Once an I-structures is initialized, it can never be
changed. This funct~onal nature of I-structures allows
us to implement a very simple cache-coherence strategy,
The invariant maintained by our strategy is that each
cache page is always consistent with the corresponding
“real” page, in the sense that the only allowable differ-
ence is that a cache page may be empty at a location
that is full (or defined) in the corresponding real page.

We associate a valid bit with every cache page. If a
cache page is marked invalid, it implies that each I-
structure in the page should be interpreted as being

empty. Initially, every cache page is marked invalid,
thus ensuring that the cache invariant holds at the start

of program execution.

On a local hiload, i.e., an hiload to a heap address that

is owned by the current PE, we check the full/empty
tag; if full, we return the value (more accurately, as de-

scribed before, push the value and enabled thread on the
local scheduling stack). If empty, we queue the hiload’s

continuation on the heap location, allocating the queue
entries themselves in the store, not the heap.

On an hiload to a location owned by some other PE,
we check our cache at that location. If we’re lucky,
the location is full, and the value can be read imme-
diately. Otherwise, we need to retrieve the location’s
value from the owner PE of that page. Since we need
to communicate with the owner PE anyway, it makes

sense to request an up-to-date copy of that page at the
same time, in the expect at ion that future h i.loads to
the same page can be satisfied immediately using the
new copy of the page. Provided there is no outstanding

request for that page, we simply send a hiload message
to the owner of the page, and also request an up-to-

date copy of the page. However, if there is already an
outstanding request for that page, then we queue the

hi load locally, and reprocess it as soon as the new copy
is received, since the new copy may allow us to satisfy

the hiload locally, without performing any additional
communication.

An hist ore (“heap I-store”) operation always writes

through the cache to the owner PE (there, it may cause
waiting continuations to be released). However, most
hist ores are to locally-owned locations. Consider a

typical Id constructor expression of the form (e 1, e2):
the heap allocation for the pair, and the two hist ores

initializing the pair are part of the same function, and so
the histores are guaranteed to be local, since memory
allocation is always performed using the local memory
of each PE.

Because the hist ore operation only initializes a pre-
viously empty location, it does not affect the consis-

tency of existing cache copies of the page containing
that location. Thus, the PE that owns a page never

has to send any “invalidation” messages to other PEs
that have previously obtained copies of that page. In

fact, the owner does not have to keep track of which
PEs obtained cached copies, and it is perfectly safe for
the owner to send multiple copies of the same page at
different times. A new copy of the page is guaranteed
to be consistent with a previous copy— the only differ-
ences will be that some previously empty locations may
now be full.

A general observation here is that our distributed cache-
coherence protocol relies heavily on the mostly-function-
al nature of the source language; the protocol is trivial
compared to those required for imperative languages [2].

We mentioned that Id is not a pure functional language
— it has side-effecting constructs that operate on “S-
tructures”. However, as in SML and unlike Scheme,
these side-effects are constrained by the type system
to specific objects and operations, and this allows the
compiler to isolate them into special P-RISC assembler

174

instructions: bmload (for “heap M-structure load”) and

hmst ore (for “heap M-structure store”). These never

interfere wit h the “functional” hi load and h ist ore op-

erations, i.e., the same heap location cannot be accessed

by both I-structure and M-structure operations. Thus,

the consistency of I-structure cacheing is not compro-

mised. Our preliminary implement ation of these side-
effecting instructions does not involve caching – they

always read and write through to the owner. We expect
the overhead to be acceptable on many programs be-

cause, as in SML, side effecting operations have a much
lower frequency compared to normal functional opera-

tions. However, programs that use M-structures exten-
sively will require a more sophisticated implementation

of these operations.

3.3 Parallel distributed garbage collection

The pHluid system uses a “stop-and-copy” approach for

performing parallel garbage collection. Whenever any
PE runs out of heap space, all the processors suspend

their current activities to participate in a global garbage
collection cycle. The garbage collector is a parallel ex-

tension of the conventional Cheney two-space copying
collector [9].

The first action taken by each PE during garbage col-

lection is to deallocate the cache pages (using munmap),
since these pages will become inconsistent during gar-

bage collection. Special care must be taken with hiload
requests queued on a cache page. These hiload requests

are dispatched to the owner PE, where they are queued
on the specific locations that they refer to. This commu-

nication can amortized by bundling it with other com-
munication that is necessary during GC anyway.

Next, each PE allocates (with remap) a to-space into

which local reachable objects will be copied. We ex-
pect that physical memory pages previously used for

the cache will be reused for the to-space.

Each PE maintains two pointers into its to-space in the
usual manner: a scan pointer and a tree pointer. Ob-

jects in to-space below the scan pointer only contain
pointers to other objects in to-space, whereas objects
above the scan pointer may refer to objects in from-

space.

During GC, each PE then calls the function move-oh j ect
on each of its local roots. This function copies an ob-

ject from the from-space into the to-space. For local
objects, this function behaves exactly as in a conven-
tional Cheney collector – it copies the object to the free

pointer, incremented the free pointer and returns the
new address of that object.

For non-local objects, the function sends a move-obj ect
message to the owner PE of that object. That PE then
copies the object into to-space, and returns an active
message that, when invoked, updates the appropriate

location in the memory of the original PE with the new
address in to-space of the object. Since this operation
is implemented in a split-phase manner, the original PE
can continue copying other objects while the operation
is in progress.

To avoid deadlock, the pHluid system uses separate
queues for regular computation messages and GC mes-

sages. Each processor treats its incoming computation

message queue as part of its root set, and updates all

messages (via the function move.ob j ect) to refer only to

to-space objects. We ensure that all outstanding com-

putation messages are received, and hence updated, by
their destination PE during GC by sending a flush mes-

sage along the FIFO pipe connecting each pair of PEs.

Detecting termination of a global GC cycle is difficult

because each PE only has direct knowledge of its own
status, and messages characterizing the status of other

PEs may be out-of-date by the time they are received.

We characterize the status of a PE as inactive once that

PE has:

1.

2.

3.

4.

Copied all known live objects into its to-space,

Updated all entries in the computation message
queue,

Received all incoming flush messages, and

Received a response to each move-oh j ect split-
phase operation.

A PE that is inactive may become active again on re-
ceipt of a move.obj ect message. The global garbage
collection cycle can only terminate when all PEs are in-

active simultaneously. We detect this situation using

the following protocol:

Conceptually, the PEs are organized as a ring. At any
time a particular PE (the “terminator-PE’>) is respon-

sible for detecting GC termination. When this PE be-
comes inactive, it tries to send a PEs - inact ive? mes-

sage around the ring of PEs. If this message encounters
an active PE, then that PE becomes the terminator-PE.

Otherwise, the message is successfully forwarded around
the ring and returned to the terminator-PE.

At this stage, the terminator-PE needs to ensure that

all PEs are still inactive. It does this by sending a

PEs-st ill-inactive? message around the ring of PEs.

If this message encounters a PE which has been ac-
tive since receiving the PEs - inact ive? message, then

that PE becomes the terminator-PE. Otherwise, the
PEs-st ill-inactive? message is successfully returned

to the terminator PE. At this stage we can guaran-
tee that all PEs are inactive. The terminator-PE then

broadcasts a message announcing the termination of the
GC cycle. On receipt of this message, each PE returns
an acknowledgement and resumes computation.

To ensure that distinct GC cycles do not overlap, a PE
that exhausts its heap space sends a request for a new

GC cycle to the terminator-PE of the previous cycle.
That terminator-PE waits, if necessary, until all PEs
acknowledge termination of the last GC cycle, before
broadcasting a message initiating the new cycle.

4 Preliminary Performance Measurements

We have just completed a fist implementation of the
system as described above. We have taken some pre-
liminary performance measurements, but we have yet

175

to perform a detailed analysis of these timings in order
to understand exactly where the time goes.

Our implementation (both the compiler and the com-
piled code) runs on Digital Alpha workstations under

Digital Unix, using gcc to compile the C “object code”
and the runtime system. The parallel system runs on

any network of Alpha workst at ions. Currently, it uses

UDP sockets as the basic packet delivery mechanism.

UDP sockets are unreliable (packet delivery and packet
order are not guaranteed), so we implemented a thin

reliability layer above UDP sockets called RPP, for Re-
liable Packet Protocol; this is still advantageous over
TCP. which is a reliable m-otocol. for several reasons:.
it is packet based, not stream based, and so does not

need “packet parsing” by the receiver, and it automat-
ically multiplexes incoming packets from all peers into

a single receive queue, instead of having to wait on N

receive aueues. one ~er Deer. With RPP. It will be triv-.,. .
ial for us in the future to exploit faster packet delivery

mechanisms, even if they are unreliable.

Our parallelism measurements were taken on a par-

ticular configuration with eight 225 MHz Alpha work-

stations with an ATM interconnection network, run-
ning Digital Unix. Communication is still rather ex-

pensive relative to computation speed. The following
table shows the round trip latency from a UDP socket
send to a UDP socket receive, for various packet sizes:

Packet size Round trip latency

(Bytes) (psecs)

64 550

128 580

256 680

1024 908
4096 1820

The maximum bandwidth is about 12 MBytes/see (close

to the ATM maximum). Thus, it is not an easy platform
on which to get any parallel speedup.

For a sequential, uniprocessor baseline, we compared an
Id program compiled for a single processor and executed
on a single processor, with a conventional (sequential) C

program that implements the same algorithm but uses
conventional C idioms. The pHluid compiler was given

a flag to produce code for a uniprocessor, so that it
could optimize away all message-passing code. For the
C compilation phase of the Id program, and for the C
program, we used the same gcc compiler with the same
-02 optimization level. The program we used does a
lot of heap allocation: paraf f ins (18) enumerates all

paraffin molecules containing up to 18 carbon atoms,
unique up to certain symmetry conditions– the Id pro-

gram is described in detail in [6]. The C version did
not have any garbage collection (it simply had a large
enough heap). One version of the C code used mallo c ()
for each heap allocation, and another version did its own

allocation out of a large chunk of memory allocated once
using sbrk () at the start of the program.

paraf f ins (18) Time (sees) Relative speed
pHluid 0.53 lx
E (malloc) 0.40 1.3X
C (sbrk) 0.20 2.6x I

We believe that these indicate that pHluid’s uniproces-
sor performance for Id programs is approaching com-

petitive performance for functional language implemen-
tations (the study in [13] measures the performance of

another program, the pseudoknot benchmark. It com-

pares a functional version compiled with over 25 func-

tional language compilers, and a C version. The best
functional versions were about 1.4x, 1.5x, 1.9x and 2.ox

slower than C).

The following table shows the elapsed time to call and

return from a trivial function that takes a void argu-
ment and simply returns a void result (in Id, void is the

trivial type with just one value of type void). We mea-
sured this for two cases: a local call, where the function

executes on the same PE as the caller, and for a directed
remote call, where the function is directed, by means of

an annotation, to execute on a different PE from the
caller (this does not involve any work stealing):

Local function call 9 psecs

Remote function call 1987 psecs

Recall that the remote function call involves allocating
a call record containing the function pointer, normal ar-

guments and continuation arguments; sending it to the
remote PE; at the remote PE, reading the message and

executing its handler which, in this case, places it on
the fixed queue; executing the scheduler which takes the

call record off this queue, allocates a frame, and invokes
the function at the fixed queue entry point, which un-

marshalls the normal and continuation arguments; and,
follows a similar process for the return. The messages in

each direction are of the order of 100 Bytes, whose raw

round-trip latency is about 580 psecs (from the previ-

ous table); thus, the overhead is quite high, about 1400
psecs, and is clearly an area with much room for im-

provement.

The following table shows the speed of the hiload and

hist ore heap access operations. All accesses are to full
I-structure locations (but they still perform the tests for
emptiness, etc.).

Operation (psecs)

1 Local hiload 7

2 Remote hiload, uncached, unmapped 1466

3 Remote hi.load, uncached, mapped 1196

4 Remote hiload, cached 4
5 Local histore 5

6 Remote histore 1047

The first line describes an hiload to a heap object that
is local, i. e., on the same PE. The next three lines de-
scribe an hiload to a field of a remote object, i.e., allo-
cated on a different PE. Line 2 is for the case when the
remote object has not yet been locally cached, and the
page containing that object has not yet been mapped
into the loczd address space. In line 3, the object is not
yet locally cached, but it is on a page that has been lo-
cally mapped (due to an earlier remote access to some
other location on that page). Line 5 is for the case when

it has been locally cached. For lines 2 and 3, we send

176

a relatively small request message, and we get back an

entire heap page (1 KB in size). The raw UDP commu-

nication latencies for this are about 225 + 454 psecs.

Thus, there is still about 517 ~secs overhead beyond
the raw communication cost to fetch and install a cache

copy of a heap page, plus about 270 ,usecs if we have
to map the page in. Line 4 just shows that hiloads to
cached data proceed much faster (we do not know why
it is faster than the the local hi load in line 1). Simi-
larly, lines 5 and 6 are for a local and remote hlstore,

respectively. A remote hist ore involves a round-trip
communication (the return message is treated as an ac-

knowledgement that the histore has completed).

We have been able to measure parallel speedups only

for some small programs because of a current prob-

lem in an early phase of the pHluid compiler (which
was implemented before the parallel runtime system)

wherein list comprehensions are translated into sequen-
tial loops, thus eliminating parallelism (for example, our
paraf f ins program uses list comprehensions heavily,
and so we have not yet been able to measure its parallel

performance). Figure 2 shows speedups for three small

programs. The trees program is a synthetic benchmark

that creates a balanced binary tree to a given depth,
copies the tree several times, counts the leaves and re-

turns the count. nqueens (12) is the standard N-queens

problem with a board size of 12. matrix-multiply (500)

creates two 500x500 floating point matrices, multiplies
them, and sums the resulting matrix. The last program
uses explicit distribution of work, directing a sub-matrix
computation to be performed on a specific PE.

These figures were measured on a testbed system with

“only” eight processors. Eight processors is certainly
well within the range of SMPS, and one may argue that

there is no need to go to a distributed memory imple-

mentation. However, we believe that it is important to

look at distributed memory systems even at this size, for
several reasons. First, eight-processor workstation clus-

ters are a lot more common, and cheaper, than eight-

processor SMPS. Fhrther, there is a growing trend away
from massively parallel multicomputers towards achiev-
ing the same power by assembling small-degree clusters
of small-degree SMPS.

Although these figures are for relatively small programs
and do not supply any diagnostic detail about how and

where time is spent, we find them encouraging consider-
ing that we are using such an expensive communication

layer. It would not have been surprising to see very little
speedup at all, or even a slowdown, It appears that our

runtime system mechanisms for avoiding, eliminating
and tolerating communication are effective. We hope to

do much more detailed performance studies in the near
future.

5 Related Work

We are not aware of any other implementations of con-
ventional shared memory functional languages for dis-
tributed memory machines, that address the cost of re-
mote communications as aggressively as pHluid does.

There have of course been several implementations on

shared memory machines (such as [16] and [7]), and im-
plementations of message-passing functional languages

on distributed memory machines (such as Erlang [5]).

However, implementing a shared memory language on a

distributed memory machine appears to require a sub-
st anti ally different approach, with latency-tolerance a
high priority throughout the design.

The Berkeley Id/TAM compiler [10] shares the same
dataflow heritage as our pHluid compiler and, not sur-

prisingly, has many similarities (although they share

no code). TAM itself (Threaded Abstract Machine) is
somewhat similar to our P-RISC Assembler, but our

scheduling discipline for threads is quite different (these

two scheduling disciplines have been compared in detail

by Ellen Spertus at MIT, and is reported in [20]). The

Berkeley Id-on-TAM system has been implemented on
dktributed memory machines with relatively fast com-

munication facilities, such as the Connection Machine
CM-5 and the MIT J-Machine, but not to our knowl-
edge on workstation farms. The Berkeley Id/TAM sys-
tem does not use distributed cacheing, nor does it have

a garbage collector. We do not know what mechanism
is used for work and data distribution, and if it has any

automatic load balancing mechanism.

We have become aware of other implementations of func-

tional languages on distributed memory machines— on
Transputer networks some years ago, a parallel Haskell

at Glasgow over PVM more recently, and a distributed
memory implementation of Sisal currently in progress—
but we do not know what, if any, latency-tolerance fea-
tures they use. All these systems start with a com-
piler optimized for sequential execution, and incremen-

tally modify them for parallel execution. In contrast,
the pHluid and Berkeley TAM compilers have latency-

tolerance at the forefront throughout, and consequently

have a very different abstract machine model based on

fine grain, message driven multithreading.

6 Conclusion

In this paper we have described our implementation of
a modern shared memory parallel functional language;

the novelty is in the way we target distributed mem-
ory machines, including workstations clusters with rel-

atively poor communication facilities. Here, aggres-
sive latency-tolerance is a central preoccupation, and is

achieved by a combination of the compilation strategy

(producing &e grain threads), a work-stealing mech-
anism that avoids distributing work unnecessarily, a
distributed coherent cacheing mechanism for the heap
that exploits the functional nature of the language, a

memory organization that reduces pressure for global
garbage collection by managing several dynamically al-
located objects purely locally, and a parallel garbage
collector. We also presented some preliminary perfor-

mance measurements.

Our pHluid implementation is new and still immature,

and there is a lot of work ahead: making it sturdy
enough to handle more substantial programs; imple-
menting it on distributed memory platforms with faster
interconnects (such as Digital’s Memory Channel, which

achieves communication latencies of less than 5 psecs),

177

Q trees -

8
linear speed.p

7

6

5

4

3

2

i :/:

,~
012 5678

Nui%ber of Processors

9 .qu6+ns(i2) — -

8
Ihnw Weed”p

7

6

5

4

3

2

i :/:

01 1
012 678

N.kw o! Pmca5sors

Figure 2. Parallel speedups of some small Id programs

01 J
0123 678

Number of Pro&ors

taking detailed performance measurements and charac-
terizing the system to understand the bottlenecks; im-

proving the heap cacheing model to be more economical
in memory use (to avoid each PE having to map the

full heap); exploiting SMPS as cluster nodes (i. e., us-
ing shared memory when available); adding support for

large distributed arrays (currently no object, including

arrays, may be larger than one PE’s heap); etc.

Acknowledgements: The “P-RISC to Gnu C“ phase
of the compiler was originally designed and implemented
on Sparcstations by Derek Chiou of MIT’s Lab for Com-
puter Science. We ported this implementation to our

Digital Alpha workstations. The work-stealing algo-
rithm with linear backoff was jointly developed with

Martin Carlisle of Princeton University; he implemented
it in Cid, another parallel language implementation at

Digital CRL.

References

[1]

[2]

[3]

[4]

[5]

[6]

ADITYA, S., ARVIND, AUGUSTSSON, L., MAESSEN,
J.-W., AND NIKHIL, R. S. Semantics of pH: A Par-
allel Dialect of Haskell. !n in Proc. Haskell Work-
shop (at FPCA 95), La Jolla, CA (June 1995).

AGARWAL, A., SIMONI, R., HENNESSY, J., AND

HOROWITZ, M. An Evaluation of Directory
Schemes for Cache Coherence. In Proc. 15th. Ann.

Intl. Sgmp. on Computer Architecture, Hawaii
(May 1988).

APPEL, A. Garbage Collection can be Faster than
Stack Allocation. Information Processing Letters
25, 4 (1987), 275–279.

APPEL, A., AND MAC QUEEN, D. B. A Standard
ML Compiler. In Proc. Conf. on Functional Pro-
gramming and Computer Architecturel Portland,
Oregon (September 1987). Springer-Verlag LNCS

274.

ARMSTRONG, J., VIRDING, R., AND WILLIAMS, M.
Concurrent Programming in Erlang. Prentice Hall,

1993. ISBN: 0-13-285792-8.

ARVIND, HELLER, S., AND NIKHIL, R. S. Program-
ming Generality and Parallel Computers. ESCOM
Science Publishers, P.O .Box 214, 2300 AE Leiden,

The Netherlands, 1988, pp. 255–286. Proc. 4th Intl.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Symp. on Biological and Artificial Intelligence Sys-
tems, Trento, Italy, September 1988.

AUGUSTSSON, L., AND JOHNSSON, T. Parallel

Graph Reduction with the <nu,G>-machine. In

Proc. Fourth Intl. Conf. on Functional Program-
mmg Languages and Computer Architecture, Lon-

don (September 1989), pp. 202-213.

BLUMOFE, R. D., JOERG, C. F., KUSZMAUL,
B. C., LEISERSON, C. E., RANDALL, K. H.,
AND ZHOU, Y. Cilk: An Efficient Multithreaded
Runtime System. In Proc, 5th. ACM Syrnp. on

Principles and Practice of Parallel Programming
(PPoPP), Santa Barbara, CA (July 19-21 1995),

pp. 207–216.

CHENEY, C. J. A Nonrecursive List Compacting
Algorithm. Communications of the ACM 13, 11
(November 1970), 677-678.

CULLER, D. E., GOLDSTEIN, S. C., SCHAUSER,
K. E., AND VON EICKEN, T. v. TAM – A Com-
piler Controlled Threaded Abstract Machine. J.

Parallel and Distributed Computing, Special Issue
on Dataflow 18 (June 1993).

GAUDIOT, J.-L., AND BIC (EDITORS), L. Ad-
vanced Topics in Data-flow Computing. Prentice
Hall, 1991.

HALSTEAD, R. Multilisp: A language for concur-

rent symbolic computation. ACM Trans. Pro-
gram. Lang. Syst. 7, 4 (1985), 501–538.

HARTEL, PIETER, H., FEELEY, M., ALT, M., Au-
GUSTSSON, L., BAUMANN, P., BEEMSTER, M.,
CHAILLOUX, E., FLOOD, C. H., GRIESKAMP, W.,

VAN GRONINGEN, J. H. G., HAMMOND, K., HAUS-
MAN, B., IVORY, M. Y., JONES, R. E., LEE, P.,

LEROY, X., LINS, R. D., LOOSEMORE, S., Ro-
JEMO, N., SERRANO, M., TALPIN, J.- P., THACK-
RAY, J., THOMAS, S., WEIS, P., AND WENT-
WORTH, E. P. Benchmarking Implementations of

Functional Languages with “Pseudoknot”, a Float-
Intensive Benchmark. In Workshop on Implemen-
tation of Functional Languages, J. R. W. Giauert
(editor), School of Information Systems, Untv. of
East Anglia (September 1994).

HUDAK, P., PEYTON JONES, S., WADLER, P.,

BOUTEL, B., FAIRBAIRN, J., FASEL, J., GUZMAN,

178

M. M., HAMMOND, K., HUGHES, J., JOHNSSON,
T., KIEBURTZ, R., NIKHIL, R., PARTAIN, W.,

AND PETERSON, J. Report on the Programming
Language Haskell, A Non-strict, Purely Functional
Language, Version 1.2. ACM SIGPLAN Notices
27, 5 (May 1992),

[15] KENDALL SQUARE RESEARCH. Kendall Square Re-
search Technical Summary, 1992.

[16] KRANZ, D. A., HALSTEAD JR., R. H., AND MOHR,

E. MuLT: A High Performance Parallel Lisp. In
Proc. ACM Syrnp. on Programming Language De-

sign and Implementationl Portland, Oregon (June
1989).

[17] LENOSKI, D., LAUDON, J.l GHARACHORLOO, K.,
WEBER, W.-D., GUPTA, A., HENNESSY, J.,

HOROWITZ, M., AND LAM, M. S. A. The Stanford
DASH Multiprocessor. IEEE Computer (March
1992), 63-79.

[18] NIKHIL, R. S. A Multithreaded Implementation of

Id using P-RISC Graphs. In Proc. 6th. Ann. Wk-
shp. on Languages and Compilers for Parallel Com-

puting, Portlandl Oregon, Springer- Verlag LNCS
768 (August 12-14 1993), pp. 390-405.

[19] NIKHIL, R. S. An Overview of the Parallel Lan-

guage Id (a foundation for pH, a parallel dialect

of Haskell). Tech. Rep. Draft, Digital Equipment
Corp., Cambridge Research Laboratory, September
231993.

[20] SPERTUS, E., AND DALLY, W. J. Evaluating the

Locality Benefits of Active Messages. In Proc. 5th.
ACM SIGPLAN Symp. on Principles and Practice

of Parallel Programming (PPoPP), Santa Barbara,
CA (July 19-21 1995), pp. 189-198.

[21] VON EICKEN, T., CULLER, D. E., GOLDSTEIN,
S. C., AND SCHAUSER, K. E. Active Messages:

a Mechanism for Integrated Communication and
Computation. In Proc. 19th. Ann. Intl. Symp.

on Computer Architecture, Gold Coast, Australia
(May 1992), pp. 256-266.

179

