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Abstract 

P-TAC is an intermediate-level language designed to cap- 
ture the sharing of computation. It is a more suitable in- 
ternal language for functional language compilers than the 
X-calculus or combinators, especially for compiler optimize, 
tions. Using P-TAC, a proof for the confluence of Id, a 
higher-order functional language augmented with I-structures? 
is given. Using the notion of observational congruence the 
correctness of some compiler optimizations is shown. 

1 introduction 

We present P-TAC (for P arallel Three Address Code), a sim- 
ple and powerful declarative language, to study the conflu- 
ence of the higher-level language Id and the correctness and 
confluence of the optimizations used in the Id-to-dataflow- 
graph compiler [16]. Id is a modern, higher-order, strongly- 
typed declarative language with J.-structures [I, 121, arrays 
whose elements get “refined’l during the course of compu- 
tation [4]. I-structures have the flavor of variables in logic 
languages because it is possible to create an I-structure with- 
out giving a definition for each of its elemefits. (In a purely 
functional language a variable is given exactly one binding 
or definition at creation time.) All Id programs produce 
unique results, but a formal proof of the confluence of Id 
had eluded us until now. 

A formalism that, can express unambiguously the oper- 
ational semantics of Id or compiler optimizations must be 
able to capture the sharing of computations. For example, 
the formalism must distinguish between the following two 
programs 

( (Fa), (Fa) ) and {Z = Fa; in (2,s) ) 

which may arise as a consequence of evaluating G (P a), 
where G z = (X,X) and u,” is the pairing operation. (The 
expressions that appear before the keyword “in” are bind- 
ings, while the expression that follows the keyword “in” is 
the main expression.) P-TAC captures such distinctions. 
In order to model accurately the implementation of a func- 
tional language, the sharing of computation is important. 
Moreover, it becomes a necessity when the language is ex- 
tended with I-structures. So, one way to give an operational 
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semantics for Id is to give a translation of Id into P-TAC, 
and a well-defined operational semantics for P-TAC. The 
advantage of this approach is that P-TAC, unlike other for- 
malisms such as the X-calculus or the combinatory calculus, 
leaves no room for choice in the sharing of subexpressions. 

There are many intermediate languages, such as IF1[15], 
FLIC[l4] and Term Graph Rewriting Systems[G, 71, that 
have been used to mode! functional language implementa- 
tions. P-TAC is related to Traub’s Functional Quads [17], 
which is a formalization of the dataflow-inspired model for 
the sharing of computation presented in [4, 131. Traub pro- 
vided the Yhree address” syntax for dataflow graphs and 
proved the confluence of functional Id using an Abstract 
Reduction System (ARS). However, we believe that P-TAC 
models data structures and locations in a novel way. 

We begin the paper by giving the syntax of P-TAC (Sec- 
tion 2j and introduce the reader to the concept of I-struc- 
tures . In Section 3, we give the operational semantics of 
P-TAC in terms of a set of rewrite rules, Rp-TAC, and in 
Section 4 we show that P-TAC is confluent. A notion of 
observable behavior and program equivalence is introduced 
in Section 5. In Section 6, the optimizations used in the Id 
compiler are described in terms of some additional rewrite 
rules; in particular, some interesting optimizations which 
only approximate the behavior of t.he original program are 
discussed (Section 6.4). Furthermore, the confluence and 
strong normalization properties of some of these optimiza- 
tions are proven. In Section 7 the correctness of the opti- 
mizations is proven. We end the paper with some possible 
directions for future work. 

2 Syntax of P-TAC 

The syntax of P-TAC is described by the grammar of Fig- 
ure 1, whose start symbols are Program and Definition. For 
better readability, we will take some liberties with the con- 
crete syntax. For example, instead of writing “+ z y”, we 
will use the familiar infix notation and write ‘Lx + y”. A 
program M in P-TAC is evaluated with respect to D, a set 
of user-defined functions Fl . . . F,, which are generated by 
the syntactic category Definition. As an example of D, con- 
sider the following set of function definitions which may be 
mutually recursive: 

.i, xl.. . x,,,, = b,, 
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Legend: 
PFi means Primitive Function with i arguments 
UDF means User Defined Functions 
573 means Simple Expression 

Integer ::= 1121.-.]rl]-.. 
Boolean ::= True I False 
Variable ::= xlylzl .--ia\bJ~.-lfl...)z~ 1.a. 
PFl ::= Nil? I Allocate 1 Len th 
PF2 ::= + I- I* I..- 1 Less ,Equal? I 

Make-tuplc 1 Select I Apply 
PF3 ::= Cond 
UDF ::= F”F [G”o I... 
s?3 ::= Variable 1 UDF I Integer 1 Boolean 1 Nil 
Expression ::= SEIBlock~PFlSElPF2SESEI 

PF3 SE SE SE 
Block ::= {[Statement;]* in Exprehon} 
Statement ::= Binding I Command 
Command ::= Store SE SE SE 
Binding ::= Variable = Expression 
Definition ::= UDF” yariable .I. Variably = Block 

n 
Program ::= Block 

Figure 1. The Grammar of Initial-Terms of P-TAC. 

The user-defined functions Fl. . - F, are treated as combina- 
tor#, that is, FV(bi) C (21 . . . zmi} for any i. (FV(b) stands 
for the set of free v&ables of b). As usual, a program M 
must be a “closed expression.” It is customary in the imple- 
mentation of functional languages to consider combinatory 
normal forma with respect to { FI . . . F,,}. 

We begin with a discussion of the pure functional subset 
of P-TAC, which simply amounts to disallowing the user to 
write Allocate and Store. However, it is important to em- 
phasize that the implementation (the operational semantics) 
of functional P-TAC will make use of these primitives. 

2.1 P-TAC as a Minimal Functional Lmguqe 

P-TAC has higher-order functions, currying and tuples, and 
a block structure with the usual lexical scoping rules. As is 
usually the case in functional languages, the variables on the 
left-hand-side (LHS) of bindings in a block must be pairwise 
distinct. Bindings may be recursive or mutually recursive, 
and their order in a block is not significant. The main re- 
striction in P-TAC is that all subexpressions must have a 
;o;~esThus, one writes the expression F (a + b) (c + d) as 

(2 = a+b; 

; 1 cA;tp$ F 2; 
in APPLY f ~1 

The other restriction is that primitive functions, e.g., +, *, 
Cond, etc., are not curried. This restriction does not cause 
any loss of expressive power since the curried version of prim- 
itive operators can be obtained by giving a user definition, 
e.g., 

Plus 2 y = { in 2 f y} 

so one can use (Apply Plus e) instead of ((+) e). 
In P-TAC, nested function definitions are not permitted. 

This restriction does not cause any loss of expressive power 

because it is always possible to eliminate all nested func- 
tion definitions by %.mbda lifting,” i.e., by passing all free 
variables of a function as parameters to the function (91. 

The only data structure constructor in functional P-TAC 
is Make-tuple, the non-strict pairing operator. The non- 
strictness of Make-tuple allows the specification of infinite 
lists, such as: {z = Make-tuple 1 2; in z}. 

Even though we believe that the translation of Id into P- 
TAC is quite straightforward, particular care has to be de- 
voted to conditional expressions because, in Id and dataflow 
[a, 161, conditionals behave differently than in other func- 
tional languages. For example, the following Id expression 

(if p then el else ez) 

is not equivalent to 

{z = el; 
1=e2; 

in (if p then z else 9)) 

If we restrict our attention to functional Id (Id without I- 
structures), the above two expressions do indeed denote the 
same value; the semantic distinction shows up only when Id 
with I-structures is considered. Yet even in functional Id, 
the two expressions behave differently. In the first expression 
either el or e2 gets evaluated, while in the second expression 
both el and es get evaluated. In fact, (if p then el else e2) 
is equivalent to 

where “0” represents a dummy argument. Embedding the 
terms el and es inside function definitions prevents their 
evaluation because a function body gets evaluated only when 
the function is applied to the number of arguments specified 
in its definition. It is straightforward to translate the above 
Id expression into P-TAC because the if-expression becomes 
the P-TAC Cond and definitions for F and G can be lambda 
lifted to the top level. 

2.2 Cstructures 

Implementation of any functional data structure constructor 
requires allocation of storage and binding an expression to 
each location of the allocated storage. To compute the irh 
element of a data structure, the expression associated to 
the ith location is evaluated. Thus, an implementation of 
“Make-tuple x y” can be written as follows: 

{z = Allocate 2; Store z 1 z; Store z 2 y; in z) 

It is not legal for the user to write the above term in func- 
tional P-TAC, because it contains Allocate and Store. It is 
a legal term in full P-TAC. 

Normally, these details of data structure operations are 
not included explicitly in the operational semantics of func- 
tional languages. Moreover, P-TAC departs from other func- 
tional languages by giving users direct access to Allocate and 
Store primitives. Data structures defined using these prim- 
itives are called I-structures. P-TAC places the so-called 
“single-assignment” restriction that no more than one store 
operation can be performed in any location. In general, thii 
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restriction cannot be checked at compile time. In spite of 
this drawback, P-TAC programs have a clear &declarative 
meaning” in a manner similar to logic programs. 

We go back to the example given in the introduction to 
show how to define the operational semantics of I-structures 
correctly. Suppose we evaluate 

{z = Allocate 2; in Apply G z) 

where the function G is defined as 

G z = { in Makatuplc z z) 

P-TAC dictates that the answer is 

{z = Allocate 2; in Make-tuple z z} 

(call it Nr) and not the Id expression (Allocate 2, Allocate 2) 
which may be written in P-TAC as follows: 

iv2 s {x = Allocate 2; y = Allocate 2; in Make-tuple x y) 

This distinction is important because Nr and N2 are not 
equivalent. Since “Allocate 2” allocates storage, we can say 
intuitively that Nr returns a pair containing two references 
to the same I-structure, while Ns represents a pair of two dif- 
ferent I-structures. The following program can distinguish 
between iV1 and Nz: 

P 0 = {b = Select 1 a; 
c = Select 2 0; 
Store b 1 100; 
Store c 1 200; 

in 0) 

Note that (F Nr) # (F A’s). Intuitively, the above pro- 
gram stores the value 100 in the first I-structure (named 
“b”) and the value 200 in the second I-structure (named 
V’), of the pair “a”. The program (F Nr) violates the 
single-assignment restriction, because both b and c refer 
to the same I-structure. As will be clarified in the suc- 
cessive sections, (F Nr) will enter a ‘contradictory” state, 
while (F Nz) will terminate successfully. Thus, we have: 
(Fi%)#(PNz) a Nl#Nz. 

We illustrate the advantage of augmenting a functional 
language with I-structures by considering the problem of 
“flattening” a list-of-lists. A list in P-TAC can be defined 
inductively as follows: 

l Nil is a list. 

l If zs is a list, then so is (Make-tuple x es) ’ for any x. 

Flattening a list-of-lists requires the repeated appending 
of two lists. In order to append two lists, in functional P- 
TAC one ends up making a copy of the first list and replac- 
ing the Nil by the second list. Using I-structures, however, 
one can define an “open” list [2] along the lines of a ‘dif- 
ference list” in logic programming. An open list is a list of 
I-structures where each I-structure has two components and 
is referred to as a pair. The first slot of the first pair and 
the second slot of the last pair are always empty; an empty 
open list can be represented by a pair with two empty slots. 
More precisely: 

‘This definition of list is not quite correct in Id because Id is 
a strongly-typed language with Milner-style type deduction scheme. 
Thus, in Id, a Iist is an algebraic type with two disjuncts, while Make- 
tuple has the type Tl x T2. In this paper we have ignored type issues 
in P-TAC. 

(Allocate 2) is an open list. 

If xs is an open list then so is (cons-open x xs) for 
any x, where cons-open is defined as follows: 

cons-open z zs = {,z = Allocate 2; Store z 2 xs; 
Store x9 1 2; in z) 

The head of the list is contained in the second slot of the 
first pair. Appending two open lists only requires storing the 
head of the second list in the second component of the pair 
at the end of the first list! The use of open lists can avoid 
unnecessary copying, as well as expose more parallelism in 
the flattening operation. A fuller discussion of the advan- 
tages of I-structures is beyond the scope of this paper; the 
interested reader is referred to [4]. 

3 Operational Serrmtics for P-TAC 

The operational semantics is given in terms of an Abstract 
Reduction System [lo], which is a structure (A, -R) where 
A is a set of terms and -A is a binary relation on A. The 
relation -+n is derived from the set of rewrite rules, R, 
on terms of A. For our purposes, A contains all closed P- 
TAC terms, i.e., terms without free variables, generated by 
the grammar of Figure 1, with Program as start symbol, 
plus all terms that can appear during a program evaluation. 
Therefore, we need to extend the grammar of Figure 1 with 
new syntactic categories, such as Locations, I-structures 
and Closures, in order to name all the different objects 
that can appear at run time. The meaning of locations and 
closures is informally explained in the next section. The 
grammar that generates all elements of A is described in 
Figure 2. We will designate the terms generated by Figure 1 
as Initial-Terms of P-TAC. The ground values of A cannot 
be reduced any further and correspond to the values of P- 
TAC, which are integers, booleans, closures and I-structures. 

Though the user-defined functions are constants, their 
operational meaning, in contrast to the operational mean- 
ing of the primitive functions, is given by the user via the 
set D. Thus, the abstract reduction system is actually pa- 
rameterized by D and therefore, when D is not clear from 
the context, we will write (A, -R,,,~ )D. 

3.1 Locations 

The most novel aspect of P-TAC is the way it models data 
structure operations using a special class of identifiers called 
Locations. An I-structure of n elements is represented by 
n Locations. The only permissible operations on locations 
are “l-fetch I”, for reading the contents of location I, and 
“l-store 1 v”, for storing v, some ground v&e, in location 
1. Confluence of P-TAC crucially depends upon the “write- 
once” restriction, that is, only one store operation is permit- 
ted on a location. 

Unlike variables, which are names for expressible valuesz 
locations are merely names of memory locations and cannot 
appear in a left-hand side of a Bindrng or in the formal list 
of a Definition. Furthermore, locations are globally unique, 
that is, the scope of a location identifier is the entire pro- 
gram. Therefore, unlike a variable with a binding in a block, 
a location cannot be o-renamed locally within a block. P- 
TAC also does not permit two different location identifiers 
to refer to the same location. The syntax and the associ- 
ated rewrite rules (to be described in the next section) do 
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Legend: 
PFi mean* Primitive Function with i arguments 
UDF means User Defined Functions 
SE means Simple Expressions 

F 
means Ground Values 
mean.9 Locations 

Fc means Fast c&l, see Section 6.2 

Integer ::= 112j...lllj... 
Boolean ::= True ] False 
Variable ::= x 1 y 1 2 1 * * * Ialb)...lf)...)xl]... 
L ::= lo(nl-** 
PPl ::= Nil? 1 Allocate ] Length ] FC 
PF2 ::= + ] - ] + ] . . . ] Less ] Equal? ] 

Make-tuplc ] Select ] Apply ] Make+closure 
PF3 ::= Cond 
VWF ::= F~F IG% I,.. 
SE ::= Variable I UDF 1 GV 
W ::= pt;ge;l Boolean ] CJosure I I-structure ] 

rr 
Z-structure ::= (I-6tructure.n L L . . . L I Nil r&,: ) 

Closure ::= (Closure, UBF”, my Z-structure) (rn<, d 
Expression ::= SE]BlockIPFlSElPZ%SESE] 

PF3 SE SE SE ] I-fetch L 
Block ::= ([Statement;]* in Expression} 
Statement ::= Binding I Command ] StoreError 
Command ::= Store SE SE SE ] l-store L SE 
Binding ::= Variable = Expression 

Figure 3. The Grammar of Terms of P-TAC. 

not allow any confusion between the name of a location and 
its contents. Thus, while a binding like “z = I” has the 
meaning that the variables x and y are names for the same 
value, the corresponding binding for locations “Ji = Jj” does 
not make sense because two location identifiers can never 
be the same. No equality-test on locations is permitted, but 
equality on location contents can be expressed by writing: 
“{ 2 = I-fetch Ji; u= I-fetch Jj; in (Equal? z 1) }“. 

Locations are also used to implement CZosures (partial 
applications of functions) as described next. We denote the 
number of arguments specified in the definition of a user- 
defined function F by nF and often write PnF for clarity. 
In almost alI implementations of functional languages, sub- 
stitutions inside the body of F are not performed until all 
the arguments for F have been specified. Thus, when F2 
is applied to e, instead of performing a substitution, a data 
structure known as a Closure is built. A closure contains 
an I-structure to remember the arguments specified so far. 
It also contains the number of arguments still missing (the 

4. 

3.2 Canonical Representation d Terms 

Consider the following terms: 
1. {x = 8; in {v = z; in z + y}) 
2. {x =8; g= x; in z + y) 
3. (x = 8; in x + x) 
4. {in8+8} 

Although these terms are syntactically distinct from each 
other, they all behave the same operationally. For example, 
the Id compiler would represent all these terms using the 

same dataflow graph, i.e., 8 + 8. Therefore, in our reduction 
system terms that have the same graph, up to isomorphism, 
are equivalent. We define then a canonicalization procedure 
in order to select a representative of each equivalence class, 
i.e., the canonical form of a term. Reductions will be per- 
formed only on canonical terms. 

Definition 3.1 The canonical form of a term M is ob- 
tained as follows: 

1. Flatten all blocks according to the following two rules: 

{B1; Ba; ..a 
x = {BB1; BBa; . . . 

;2iE%; --* 

in EE} ;;;;’ BB;; BB;; . . . 
1 

.I. ; Bn ; . . . ; Bn ; 
in E} in E} 

{EJJiB2;- 

z 

03g,B2;+; 

1; 2; -** 

{BBl; BB2; . . . in EE’} 
in EE) 3 

where BBI and EE;’ indicate o-renaming of variables in 
BBi and EE,‘, respectively, to avoid names clashes with 
the names in the surrounding scope. Note that we do not 
need to rename locations because they are globaJly unique. 

2. For each binding oj the form “y = x * in M, where z 
and y are distinct variables, replace each occurrence of 
“y” in M by %” and then eraode the binding “p = 2” 

fromM* 
3. For each binding of the form ‘$ = v’) in M, where v 

is a ground value, replace each occurrence of “g” in M 
bg 5” and then erase the binding “y = v” from M. 

Notice only ground values can be substituted freely. This re- 
striction on substitution of terms for variables is what allows 
P-TAC to model sharing of computation precisely. 

Definition 3.2 Two closed terms M and N in canonical 
form are said to be a-equivalent if each can be transformed 
into the other by a consistent renaming of locations and 
bound variables. 

Lemma 3.3 Each P-TAC term has a unique canonical form 
up to a-renaming. 

Proof: Since there are only a finite number of blocks and 
occurrences of a variable in a term M, the canonic&z+ 
tion procedure is strongly normalizing. It is easy to see 
that the block flattening rules are locally confluent up to 
a-renaming. Since variable substitution rules within a flat- 
tened block are also locally confluent, the uniqueness of the 
canonical form of M up to o-renaming follows trivially from 
Newman’s Lemma [g]. n 

Some examples will clarify canonicalization of terms and 
o-equivalence. 

1. Terms { in z + l}, {y = 1; in 2 + y} and {Z = 2; y = 
1; in z + y) have the same canonical form. However, 
this canonical form is different from the canonical form 
of (2 = Apply F 2; y = 1; in z f y}. This example 
shows that a binding whose right-hand-side (HHS) is 
not grounded is meaningful in determining the opera- 
tional structure of a term. 
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2. 

3. 

4. 

Terms {i-store 1 v; in 5) and {l-store 1 v; z = 5; in z} 
have the same canonical form which is different from 
{ in 5). 

The following two terms are a-equivalent: 

{l-store lo ~0; 
l-store 11 VI ; 
in &structure,2, lo, II)} 

The following two terms are not a-equivalent: 

{l-store lo (I-structure.2, 12, i3); 

l-store 21 (l-structure, 2, 12, /3); 
in (I-structure,2, lo, 11)) 

{i-store 1’ (l-structure, 2, I’, 1’) 
l-store l9 {i-structure 2 P 1’). 
in (LsttLcture,2, Ik,‘i)>” ’ ’ 

These terms could arise during the execution of the 
terms Nl and Nz introduced in Section 2.2. This fur- 
ther emphasizes the point that terms IV1 and N2 are 
different. 

3.3 Reduction Notions 

and {i-store I’ VO; 
l-store Ii ~1; 
in (l-structure, 2, $, Ii)} 

and 

Intuitively, we define the evaluation of a program M as con- 
sisting of repeatedly rewriting its subterms until no further 
rewriting is possible. However, as we shall see shortly, some 
of our rewrite rules have a precondition. The following is an 
example of a rule with a precondition: 

l-store I 5 

l-fetch I - 5 

where the command l-store J 5 over the line denotes the 
precondition. The above rule says that the subterm I-fetch I 
of M can be rewritten to 5 if the command l-store 15 occurs 
in the context, i.e. , M. 

Note from the above example that the precondition does 
not, merely allow or disallow the rewriting, but also affects 
the outcome of the rewriting. Therefore we define a redex 
in our ARS as follows: 

Definition 3.4 Given a program M, let N be a subterm of 
M. N is said to be a redex ifi it matches the left hand side 
of a rule and the precondition of the rule is satisfied. If the 
precondition of the rule can be satisfied by more than one 
statement then N represents a distinct redex corresponding 
to each such statement. 

Following Klop [lo], we will sometimes qualify a redex 
with the name of the specific rule it matches; thus, we will 
say, for example, that “2 + 2” is a &redex, for it matches 
the LHS of a C-rule. We remind the reader that a context 
C[ ] is a term with a hole in it, such that, when a suitable 
term is plugged in the hole, C[ ] becomes a proper term [5]. 
A closed context is a context with no free variables. 

Definition 3.5 Given an ARS (A, R), if M,N E A and u 
E R, then M reduces to N in one step (M -R N), ifi 3 

a context C[ j, and a-redex p , such that, M EE C[p] , N E 
C[p’], and p - p’ . The transitive reflexive closure of -R 

CT 
is written as - . 

R 

We will sometimes explicitly mention the rule being ap- 
plied in the reduction by writing M - N. We will also 

d 
make use of a different notation, M -% N, where p is the 

subterm (of term M) being reduced. 

3.4 The Rewrite Rules of P-TAC (RP-TAC) 

We now present the set of rewrite rules, RP-TAG, for defin- 
ing the ARS for P-TAC. In the following R and n represent 
a variable and a numeral, respectively. Remember that the 
rules are only to be applied to terms in canonical form. To 
avoid a distracting discussion of type errors, we assume that 
a primitive function is only applied to arguments of appro- 
priate types. 

a 6 rules 

p4+2 7 m+n 

(if m = 4 

(if m # d 

Equal? an 7 True 

Equal? mz 7 False 

l Conditional rules 

Cond Truez y .-b E 

Cond False z y =ond y 

l Data Constructor rules 

Make-tuple z y ;;;;;: {z = Allocate 2; Store z 1 r; 

Store 2 2 y; in 2 } 

0 I-structure rules 

Allocate n ; (l-structure, a, lo . . . L-1) 

(Z(J - * * I,1 are globally unique new locations) 

Length (I-structure,n, 10 . . .1,.-l) z n 

Nil? Nil - True 
nil 

Nil? isv - False 
nil 

(if isv is a ground value other than Nil) 

Select (I-structure,E, lo . . .I,,) i --+ l-fetch Ii 
ad 

(0 5 i I n-1) 

Select (I-structure,E, 10 - . .l,-l) j z Error 

(i-CO v i>n-1) 

Store (I-structure,n, lo -- -1,l) i y - l-store Ii y 
at0 

(0 < i < n-1) ---- 

Store (I-structure,n, lo . . .Z,-1) i y --+ Store-Error 
sto 

(i<QVi>*l) 

I-storeI 21 

I-fetch i s v 

where v is a ground value 

N E l-store 1 II A N’ z l-store I Y’ A 
N, N’ are distinct subterms of program M 

M-T 
blw 

234 



l Application rules 

Apply (Closure, P”, m, isu) z - 
(IPL 

{chain = Make-tuple I isv; 
in Make-closure (Closure, F”,rn, isv) chain } 

where m > 1 

F” z1 .z2...z,, = (Bl; &;-..B,; in zj} ED 

Apply (Closure, F”, 1, isu) I -+ {z& = I; 
wa I 

-L-l = Select isu 1; 
rest1 = Select isv 2; 
4-2 = Select rest1 1; 

* 
- Select rest--2 1; 

$$;...BLi 

All local variables in the block on the right hand side are 
considered to be new. Note that we will have one instance 
of the last rule for every user-defined function. 

0 Closure rules 

F” - (Closure, F”,z, Nil} 

Make-closure (Closure, F”, yk, isu) isu’ 2 

where isv, id arr I-rtructute8 v&es 

Discussion: 

1. By insisting that v be a ground value in the I-fetch 
rule, I, we capture the intuition that only ground - 
values can be stored into locations. Also notice that 
l-store I v is only a precondition for the I-fetch rule, 
and thus, it remains unaffected by the application of 
the J-fetch rule. 

2. According to the blow-up rule, z, the whole program 

M is a redez. That is, if an attempt is made to store 
something in an I-structure location that already con- 
tains a value, the whole program M goes into a %on- 
tradictory state” or T. 

The blow-up rule seems rather drastic. However, local- 
izing the effect of multiple stores would require keeping 
track of what computations have depended upon which 
fetches. Since a location can be computed at run time 
asin{i=ApplyPo; Storeziv;-..),itisnotpos- 
sible, in general, to determine if a program will go to 
T without executing it. The confluence of P-TAC will 
ensure that if any terminating reduction sequence goes 
to the T, then so will all the terminating ones. 

3. Note that the program will go to T even if the second 
value to be stored in a location is the same as the first 
one. We could relax this condition by requiring that 
the values being stored in a location be ‘unifiable” 
with the one already in the location. This poses some 
conceptual problems when the values under consider- 
ation are closures, and some efficiency problems when 
the values are I-structures. 

4. 

5. 

6. 

An important fact to be noted is that the blow-up rule 
will never be applicable in the functional subset of P- 
TA C. If the use of Store only arises indirectly through 
Make-tuple, then it is clear that each location has ex- 
actly one store operation associated with it. This can 
be seen by examining the rewrite rule for Make-tuple. 

The I-structure rules allow the specification of infinite 
lists, such as: (z = Make-tuple 1 I; in z}. This expres 
sion gets reduced to: 

{l-store 10 1; 
l-store I1 (l-structure, 2, lo, 11); 
in (I-structure,2, lo, II)} 

where no further reductions are possible. 

We have included “errors” in case of I-structures rules 
because these errors can not be avoided by static check- 
ing. However, we have not provided any rule for error 
propagation. 

4 Gmfknce d P-TAC 

We prove the confluence of P-TAC by showing that P-TAC 
is subwmmutative, a property that is defined as follows: 

Definition 4.1 An ARS is soid to be subwmmutative, 
if V terms M, Ml and MS: 

M-M1 AM- M2 w 3 M3 such that 

O/l O/l Ml-M3 /\ &-it& 

where % meuna in zero or one step. 

Lemma 4.2 A reduction relation that is subcommutative is 
confluent. [S] 

In order to show that P-TAC is subwmmutative, we need 
to examine the interaction between rules of Rp-TAC. In 
a Term Rewriting System (TRS), the interaction between 
rules is often characterized by the notion of “overlapping 
patterns”. The pattern of a rule is the abstract syntax tree 
associated to the LHS of the rule, where each variable is 
replaced by a hole. Thus, the constant symbols on the LHS 
of a rule determine the pattern. Two rules are said to be 
ambiguous if their patterns overlap. In our ARS two rules 
may not overlap, but one of the them may still affect the 
other by destroying its preconditions. The following notion 
of interfering rules subsumes the notion of overlapping. 

Definition 4.3 i-rule interferes with j-rule ifi 
1. the application of i-rule can invalidate the precondition 

of j-rule; or 
2. the pattern of i-rule overlaps with the pattern of j-rule. 

Fact 4.4 The blow-up rule, z, and the I-fetch rule, -, 

are the only interfering rules in P-TAC. 
I-f 

The blow-up rule can invalidate the precondition of any 
rule. The I-fetch rule interferes with itself as shown by the 
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example below: 
(l-store 2 1; 

l-store 12; 
z = l-fetch 2. 

& 
h 

in z) 

The subterm I-fetch 1 matches the (LHS) of the I-fetch rule. 
However, the precondition for the rule can be satisfied by 
either the subterm (l-store 2 1) or by the subterm (l-store 1 
2). Thus, redexes p1 and ps, shown above, do overlap and, 
consequently, the I-fetch rule interferes with itself. 

Lemma 4.5 P-TAC is subcommutatiue. 

Proof; We want to show that V (canonical) M, MI, Ms E 
A, and V i-rule, j-rule E RP-TAG, the following holds: 

M - Ml A M --+ MZ =+ 3M3 such that 
i i 

M$Ms A M2 
O/l - Ma 

I. (Non-interfering rules) Suppose the i-redex does not 
interfere with the j-redex. By inspecting the non- 
interfering rules of RP-TAC, and the structure of canon- 
ical terms, we can see that the i-redex and j-redex have 
to be disjoint. By the definition of interference, the i- 
reduction (analogously, the j-reduction) cannot inval- 
idate the precondition of the j-redex (i-redex). There- 
fore, the i and j reductions commute. 

2. (Interfering ruler) 

2.1 Let i-rule be T and j-rule be different from -. 

Since only the:lom-up rule can destroy the FTe 
condition for the blw-redex, in the following dia- 
gram M2 is still a blw-redex. 

M 

J1 
blw j 

T - M2 
blw 

2.2 Let both i-rule and j-rule be ;. Then, 

2.3 Let both i-rule and j-rule be -. Then M is 
3-f 

a blw-redex which can not be destroyed by the 
I-fetch reductions. Hence Ml and M2 are also 
blw-redexes. 

M 

5 Program Equivalence and Observable results 

Notice that, unlike functional TRS’s, the normal form of a 
P-TAC program will usually contain a number of commands, 
such as l-store 1 u, because commands are never erased ac- 
cording to our rewrite rules. Such store commands reflect 
the state of storage at the end of an execution. Consider the 
following two programs, Ml and M2, which are in normal 
form: 

Ml E { in 9) vs MZ E {l-store ZO 4; l-store 11 5; in 9) 

Though these programs are not o-equivalent, they can be 
said to produce the same “answer”, i.e., 9. That is, if the 
user does not care about the contents of the store at the ter- 
mination of his program, he may observe “9” at his terminal 
in both cases. Exactly what should be observable about a 
value is a tricky question if the value is of a higher-type, 
i.e., an I-structure or a closure. For example, to a uget the 
internal representation of a function (or of a partial applica- 
tion) is of no interest; he can only apply it to another term. 
As is to be expected the question of program equivalence, 
i.e., whether two programs can be substituted freely for each 
other, is related to the notion of “answer” we choose. We 
introduce the notion of an erasure to factor out the internal 
store of a term. 

Definition 5.1 Given a term M, where M is in normal 
form, the L-Erasure of M, E(M), is the term obtained by 
erasing all commands of the form l-store 1 v, where v is a 
ground value, from M. 

We introduce the notion of proper-termination and impropcr- 
termination to deal with the fact that J?(M) may contain 
unresolved I-fetches or circular bindings. 

Definition 5.2 Given an ARS P = (A, RP-TAC) and M 
E Initial-Terms of A, the answer produced by A!P with re- 
spect to P, Ansp(M), is undefined if M does not have a 
normal form. Otherwise, M reduces to a normal form N, 
and An@(M) is 

l if C(N) is T then T; 

l if t(N) is of the form { in u) and 

l if u is either integer, boolean or Error, then (proper- 
terminat,ion, u), 

l if v is a closure value, then {proper-termination, 
Closure), 

l if v is an I-structure value, then (proper-termination, 
(l-structure, nJ>, 

where proper-termination, Closure, and l-structure are 
reserved constants and 11 denotes the length of the I- 
structure value; 

l if E(N) is of the form {B1; B2; -. . in 9) and 

l if u is either integer, boolean or Error, then (improper- 
termination, u), 

0 if u is a closure value, then (improper-termination, 
Closure}, 

l if u is an I-structure value, then (improper-termination, 
(l-structure, nJ), 

l else (improper-termination, Nothing). 

where improper-termination and Nothing are reserved 
constants. 
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pndf 
If 

to the above dei’initiqn ..$ns(Ml) F Ansl(Mz), for 
2 defined at the beginning of this section. The 

sa;e is true for the following two programs MB and Md: 

MS s {l-store lo 4; and Ma E {l-store16 5; 
l-store 11 5; I-store 1; 4; 
in in 

(l-structure, 2, IO, l,)} (I-structure,2, 16, I;)} 

However, MS and MI are not substitutable for each other, 
because, for example, the answers produced by u’Select M3 1” 
and %ciect M+ 1” are not the same. This example clearly 
shows that in the presence of higher-order types, context 
plays an important role. Thus, we define the following equiv- 
alence between programs [II]: 

Definition 5.3 M, NE A are said to be observationally 
congruent if V user dejinoble contezts C[] 

Ans(C[M]@dns(C[N]). 

According to this definition programs Ml and Mz are obser- 
vationally congruent, while Ms and Mh are not. As Meyer 
points out in [ll], we could have limited the notion of ob- 
servable values to, say, the integer a3n without having any 
impact on the equivalence of programs! 

6 p;m$onal Semantics of an Optinizing Caqiler for 

The Id compiler [16] h as several phases. It first translates 
Id into high-level dataflow graphs (“program graphs”) and 
then repeatedly applies many optimizations to these graphs. 
It then generates the “machine graphs”, which is the ma 
chine language of the Tagged-Token Dataflow Architecture 
(TTDA). It also does optimizations on the machine graphs, 
but these are specific to TTDA. P-TAC is very close to pro- 
gram graphs. Interestingly enough, the compiler optimiza 
tions on program graphs can be expressed in terms of an 
abstract reduction system (D, I-CR,), where 2) is the set of 
all possible user-defined functions, that is, all the terms gen- 
erated by the grammar of Figure 1 with Definition as start 
symbol. 

6.1 The Definition of a Correct Corrqiler 

The rules stated in Section 3.4 are applied only to the main 
expression of a program; the definitions of functions are not 
involved. The domain of action of a compiler, on the other 
hand, ‘is the set of user definitions; the rules are applied to 
subterms on the right-hand side of the user-defined func- 
tions. Thus, a compiler may be defined as follows: 

Defluition 6.1 A compiler iu on ARS (D,-s) which 
given D E V transforms the A RS P =(A, R) D into another 
ARS &=(A, R}D’, such that, 

l.VF, Fx1x2.,.xn=e E D e 
3 F, Fx~ xp...x,,=e’ E D’and e - e’; 

Re 
2. R, is strongly normalizing. 

Discussion: 

1. There are several useful optimizations that, if included 
in R,, will destroy its strongly normalizing property. 
In such cases we need to restrict, in some manner, 
the number of times such an optimization rule can be 
applied. We will discuss one such optimization later. 

2. Usually a compiler will only produce e’s in normal 
forms with respect to R,. If R, is confluent then it 
is guaranteed that all terminating reduction sequences 
in R, lead to the same “efficient” program, and we can 
concentrate on finding an efficient reduction strategy 
for generating the optimized program. 

3. The exclusion of M, the main expression, from com- 
piler optimizations, is not a serious limitation, because 
M can be enclosed inside a function body and then op- 
timised . 

The foremost question regarding any optimization is whe- 
ther it preserves the meaning of the original program. Usu- 
ally, questions about meanings take us into the denotational 
semantics of programs because the optimized program is 
not going to be syntactically equioalent or a-equivalent to 
the source program. We will sidestep the denotational se- 
mantics of P-TAC programs, by formulating the correctness 
question in terms of observational congruence. The de% 
nition given below basically states that if no program can 
“observe” a difference (produce different answers) between 
the use of the old and new definitions then the transformrt- 
tions are correct. 

Definition 6.2 A compiler (2), ---CR,) which given D c V 
transforms the ARS P=(A, Rp-r~c)D into another ARS 
&=(A, R~-TAc)DI is totally correct with respect to Rp-TAC 
if ‘# M E Initial-Term* of A then Ansp(M) I Ansg(M). 

In some sense the correctness criterion chosen is too strict. 
Generally all we care about is that the transformed program 
produces exactly the same answers as the original. Kow- 
ever, the cases when the original program does not termi- 
nate or terminates improperly, it may be all right for the 
transformed program to take some “liberties” and produce 
a result. In the denotational jargon we would say that the 
originol progmm should be on approximotion of the tmns- 
formed program. 

Deflnition 6.3 A compiler (V, -EL) which given D E 2) 
transforms the ARS P=(A, Rp-TAC)D into onother ARS 
&=(A, RP-TAC) Dt is partially correct with respect to RP-TAC 
if V M E Initial-Terms of A, if M terminotes properly in 
P then Amp(M) E AnsQ(M). 

6.2 Compiler Rules that Preserve Total Grrectness (Rcomp) 

We begin by examining rules of RP-TAC that may be appli- 
cable in the compilation process. We will call such rules as 

Rib~~* Since a compiler does not allocate storage, it can- 
not execute Allocate or most other I-structurerules. The Ap 
ply operator cannot be executed indiscriminately at compile 
time either. Besides the difficulty of allocating storage for 
closures, the execution of Apply has the potential to get the 
compiler into au infinite recursion. This is not acceptable 
because a compiler must terminate, regardless of whether 
the program is correct or incorrect. Thus, in addition to the 
canonicalization procedure given in Definition 3.1, RsmTAC 
includes the following rules: 

0 6 rules 
l Conditional rules 
l Nil? rules. 

AS usual we will consider reductions only on the canonical 
representation of terms. 
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A compiler may apply some additional rewrite rules, 
Rapt, to transform a Program into an even more efficient 
version. These optimization rules are usually not included 
in RP-TAG because it is not clear how the preconditions of 
some of these rules can be checked efficiently at run time. 
Let 

R cmp = RF-TAC U Rapt 

A description of R,t follows: 

l Arity Detection rule 

fl = Apply F” tl; 
f2 = APPLY fi 12; 

i+l = Apply fn-z x,.--l; 

APPLY fn in z FC~(m,*.*rxn) 

where it is presumed that there is a combinator FCF (acro- 
nym for Fast Call) f or each user-defined function. This rule 
detects if all the arguments for a user-defined function are 
available. If so, the function is invoked directly, saving the 
overhead of creating the intermediate closures. 

b Inline Substitution rule 

F” z1 ZZ~~~Z,, =(Bl; &;---Bm in tf} E D 

FCF(XI,-..,X~) ; {z: = xl; 

z:, = xfi; 
B;; B;;...B;; 
in 2;) 

This rule avoids the overhead of the function call completely 
by inserting the body of the function in the calling program. 
Note that the fc-rule must also be included in RF-Z-AC be- 
cause, as we shall see later, not all FC’s can be eliminated at 
compile time. FC’s can also be included in the Initial- Terms 
of P-TAG. 

b Common Subexpression Elimination rule 

x=a+b; y=a+b; 

y=a+b; - y=z; 
cae 

Similar cse rules exist for all primitive functions, PFl, PF2 
and PF3, except Allocate, Fc and Apply. As the name 
suggests this rule avoids recomputation of the same subex- 
pression. Function calls cannot be eliminated because of the 
possibility of side-effects via I-structures. 

b Fetch Elimination rules 

x = Make-tuple a b 

Se’ect x l 7 = 

r = Make-tuple a b 

Sekct x 2 z b 

x = Allocate n 

j Length x 7 n 

The above rules eliminate a run time fetch from a data 
structure. 

Test Elimination rules 

z = Allocate n 

Nil? x - False 
tt 

x = Make-tuple a b 
Nil? x --+ False 

te 

Algebraic Identity rules 

And Truc = z = 

Or Fa’ze= z = 
x+0 - x 

019 

x*1- a? 
a(9 

. 

Any algebraic rule can be included as long it does not have 
a precondition and it does not produce a ground value on 
the RHS. We will explain the reitSOns for these restrictions 
in Section 6.4. 

6.3 Confluence and Nadmtion d Rcomp 

Theorem 6.4 Rcomp without the Inline Substitution rule is 
strongly normalizing. 

Proof: The proof is straightforward from the following two 
observations: 
1. 

2. 

Application of any rule in Rcomp destroys a redex and 
does not duplicate any existing redexes. 
Let )z be the number of occurrences of primitive functions 
in a term M. It is clear that the application of any rule 
of R,,, decreases this number by one. Consequently, 
the maximal number of redexes that can be reduced in 
a term is at most n. 

There are only two rules in RP-XAC and Rcmp that can 
increase the number of applications and consequently, re- 
dexes. These are the Apply (z) and FC rules, respectively. 

Application of - is automatically excluded from Rcomp 
aPa 

because storage allocation is excluded, and we deliberately 
exclude the FC rule to guarantee strong normalization. How- 
ever, inline substitution is a very important optimization in 
the Id compiler, therefore, the Id compiler passes the bur- 
den of guaranteeing termination to the user in the following 
way. In Id a user declares every function definition to be 
“substitutable” or “not substitutable” by using a keyword 
(Defsubat versus Oej). 

Notice that because of the elimination of interfering rules, 

R&‘AC is confluent. What we want to show is that by ex- 
tending R;-,,, with Rapt, which has new interfering rules, 
the subcommutative property, and hence, the confluence 
property, still holds. 

Theorem 6.5 Rcomp is confluent. 

Proof: The proof is similar to the one given in Section 4 so, 
we only sketch the basic steps. 
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Notice that the cse-rule interferes with itself as shown 
below: 

Pl h 

Mis{y=a+b;..-y...y] M2~(x=a+b;...x...x} 

This sort of interference is benign because MI +, M2. 
cse-rule also interferes with &rules, and conditional-rules, 

etc. However, all these cases are captured by the following 
example: 

{x=W $l=W...x...y} 

WC 6-r 
J I 
WC 

Ml P{y=2+3;*..y...y} M2:{1:=2+3; ..*z...S) 

It is straightforward to see that the above diagram can be 
clod in one step. n 

6.4 Optimizatims that Preserve only Partial Correctness 

6.4.1 Confluent Rules (Ro& , 

The reader may be wondering why the following rule was 
not included in Rcmp 

x*0 - 0 
mulo 

especially given the fact that the rule 

z*l - z 
mull 

was included. 
The reason is that this rule can change the termination 

behavior of the program as illustrated by the following ex- 
ample: 

{“,/Fen;” 12; 

b = Equd? x 0 ; 
in 53 

Without the use of rule --ulO, the above program will pro 

duce the answer (improper-termination, 5) because of a cir- 
cular dependency between z, y and Q. However, if we apply 
the rule ,,i-, the answer produced will be 

(proper-termination, 5) 

By considering minor variations of the above example, we 
can show that the -3 rule can also turn 

mul,J 

(improper-termination, II) 

into T or non-termination, and a non-terminating compu- 
tation into anything. However, an interesting fact is that 
rule --u;, cannot change the answer of a computation that 

produces an answer of the type (proper-termination, v). Fur- 
thermore, it cannot change v, the value part of the answer, 
even when the unoptimized computation terminates with 
(improper-termination,v) (of course, as noted above, im- 
proper termination can turn into T). All the R,t, rules 
given below have this property. 

Test Elimination rule 
CT = Allocate n 

Nil? x - False 
-1 

Algebraic Identity rules 

And False x ; False 

Or True z z True 

x*0 - 0 
Ql$l 

x-x - 0 
hl 

Equal? tz ---& True 

Any algebraic rule that does not have a precondition can 

be included here. 
Let us define Rcmpl as follows: 

R comp, = Rcom,, u &ptl 

Lemma 6.6 Reomp, is strongly normaliring and confkent. 

Proof: Omitted. Similar to proofs given earlier. n 

Discussion: The confluence is quite surprising because RcOmpl 
contains the algebraic Equal?-rule, which is a non-left-linear 
rule. Since adding this rule to Xcalculus destroys confluence 

L-4 
10 , we want to clarify why it does not cause any harm in 
- AC. Let’s first recall the reduction rule for the fix-point 

operator Y: 
Yf y+ f(Yf) 

we have the following reduction: 

Equal? u (Yf) 7 \Equal? f!Yn CYf) 

Y-r 
\ / 

&ac(Eq--r) 

Eq--r 

Note that the descendent of the Eq-redex is not a redex 
any more, while in P-TAC we get 

{x=\ t , APPLY I’ f; ‘;;’ G = APPLY f 0’ f); 

in Equal. x x ~ y-‘) . -7 I) in Equal. I 1: 

Eq--r Eq--r 

The main point to grasp is that by naming “Y f”, the 
descendent of “Equal? x x” remains a redex, and the dupli- 
cation of the computation “Y f” is avoided. 

6.4.2 Non Gnfluent Ruks (RWt,) 

We now discuss some optimizations that are not confluent. 
Let 

R cmn*, = R c-l% ” Ilopt, 
where rules in Rapt, are defined as follows: 

s Fetch Elimination rule 

Store z i z 

Selectzi-2 
fc2 

239 



. Algebraic Identity rules Pictorially: 

x=n + m - 
Less78 z - True 

aI93 

?2;4>0 

x=n f m - 
Lessx TX 

z Fa’w 

na>o 

x=n + E 

Greater n x ----+ False 
olg:, 

m>O 

x=n + m - 
Equal? n x s False 

m>O 

Lemma 6.7 Rcompa is strongly normalizing. 
Proof: Trivial. n 

We illustrate, by an example, that these transformations 
can create havoc in the presence of deadlocks. Consider the 
following program: 

(z/=x+3; 
s=y+3; 
b=Lessrg; 
a=Condb12; 

in a) 

This program will produce (improper-termination, Nothing) 
in RJLTAC. The trouble is it can produce two different an- 
swers if optimized using Reompa because “Less 2 y” repre- 
sents two different overlapping redexes - one corresponding 
to the precondition “y = z + 3” and the other correspond- 
ing to the precondition “z = y + 3”. Therefore, the above 
program can produce either 1 or 2 as an answer after having 
applied Rcompa . 

The main problem with the rules of Rcompl is that they 
are potentially overlapping; precondition of any rule can be 
satisfied in several ways. The only rule in RP-TAC that 
had this characteristic was the I-fetch rule. However, by 
disallowing multiple writes in a location via the blour-up rule 
we were able to preserve the confluence. We can include a 
slightly modified version of the blow-up rule to deal with the 
modified version of the fetch elimination rule in Reomp2. 

However, there is no easy way of dealing with the “circu- 
lar dependency” problem short of doing the dataflow anal- 
ysis of the programs. If we could detect all such programs 
then we can declare them illegal and conveniently use all 
the Rcomp2 rules. Though algorithms for dataflow analysis 
are well developed, we have not yet examined them from 
the correctness point of view, that is, we don’t know if they 
detect all and nothing but deadlocked cycles in a program. 

7 The Gwrectness d Rconrp 

The correctness of Rcomp would be trivial to decide if all the 
rules in R,t were Uderiued rules” in R~-TAc. 

Definition 7.1 A rule u E R’ is said to be a derived rule 
in(A,R)ifVMEA,M-Ml*3M2,M- M2 

0 E) 
A MI 

1. 
- M2. 

R 

M - MI 

+if 

Consider the following two versions of the Test elimination 
rule, neither of which is in RP-TAC: 

z = Allocate 2 z = Allocate n 
krl? xc--+ False 

versus - 
M? x- False 

te a*1 

The - rule is a derived rule in RP-TAC while - is 
Se *Cl 

not. This is so because “Allocate n)) can always be reduced 
in R~-TAC to get. an I-structure value, and then the Nil? 
test can be applied to this I-structure value to get the an- 
swer False. On the other hand no rule in RP-TAC matches 
“Allocate n”, unless n is grounded, and consequently the 
Nil? test may not be applicable either. However, in case 
n is grounded, the result according to Rp-TAC. would also 
be False. Thus, the dXerence between the two rules shows 
up only when we consider the application of the rules to 
open terms or terms where the RHS of the binding cor- 
responding to n does not get grounded either because of 
non-termination or improper-termination. 

The only rules in R,t that are derived rules are the Test 
elimination rules. 

To better understand the behavior of non-derived rules, 
consider the following example where MZ is obtained from 
Ml by applying the algebraic rule ‘(E * 1 - 2”: 

M~s{z=y+l; y=z+l;a=z*l; inz+2] 

Ma~{(z=y+l; v=z+l; inz+2} 

It so happens that both Ml and MS are in normal form 
and are not a-equivalent. However, they do produce the 
same observable answers, i.e., 

Ans(Ml) P Ans(M2) z (improper-termination, Nothing) 

The correctness of the compiler crucially depends upon the 
fact that the effect, of a non-derived rule cannot be “ob- 
served” by any program. 

Definition 7.2 An instance of a rule is a rule obtained by 
substituting a ground value for a free variable in the rule. 

For example, an ipstance of 41r~~Make-tup’e a b** is obtained 
ectcl-a 

by substituting a ground value for either %z” or “b” , e.g., 
‘,x = Make-tuple 2 b,, 

Select 3: 1 - 2 * 

Definition 7.3 A grounded instance of a rule is a rule 
obtained by substituting ground values for all the free vari- 
ables in the rule. 

For example, a grounded instance of “And True x - xn is 

“And True False - False”; a grounded instance of the previ- 

ous Fetch Elimination rule is ,‘x = Make-tuple 2 3 ,, 
Sekctx1.2 . 

Note that the instance lGse,~~ rz 51’ of the Fetch Elim- 

ination rule in RoptZ, even though it introduces a ground 
value on the RHS, is not a grounded instance. Furthermore, 
it is not a derived rule, while any grounded instance is a 
derived rule. 
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Theorem 7.4 A compiler (D, -nE) is partially correct with 
respect to RP-TAC if V u E R, all the grounded instances 
of u are derived rules in RP-TAC. 

Proof: By Definition 6.1 a compiler, given R,, transforms 
ARS P = {A, RP-TAC)D into another ARS Q = (A, RP-TAC)~,. 
We want to show that V M E Initial-Terms of A, if M ter- 
minates properly then M produces the same answer in both 
P and Q. We prove the partial correctness of R, by induc- 
tion on the number of reduction steps applied to P. 

We give the proof only for the base case, that is, suppose 
Q is obtained from P in one step by applying rule u E 
R,. Thus, the only difference between P and Q is that 
Q contains an “optimized” version of a function, say, Fi. In 
the following we will write R instead of RP-TAC to reduce 
the clutter. Suppose M - M’ - MI in P, where M’ 

contains the first invocation Ef Fi. a%tce Fi is first applied 
in M’, it is possible to mimic in Q the reduction sequence 
M - M’. Suppose M’ - Mz in Q, where Ml f= Mz. 

wa 
This mrans that 3 a u-redex in MI, say p, such that MI 2 

0 
Mz. Pictorially we have 

We will show that if MI terminates properly in P then 
it’s possible to close the above diagram in P-TAC. 

If Ml terminates properly in P, then all free variables 
of p get grounded; consider then the reduction sequence, 
crl . ..U”. where redexes or . . . on are the redexes needed to 
ground all free variables of p (see the picture below). We 
consider two cases. 
Case 1 
Suppose redexes ~1 . . . Q,, do not interfere with redex p, that 
is, al . . . a,, do not destroy expression p or its precondition. 
This means that Mi must contain the expression p’ where p’ 
is a copy of p, which is a a’-redex, where u’ is the grounded 
instance of u. Moreover, no rule in RC can destroy the pre- 
condition of a P-TAC redex for the following reasons: 
1) the grounded instances of any rule that deIetes a com- 

mand can not be derived rules; 
2) any rule that modifies a “Store” command has to rewrite 

that command into the correspondent “I-store” command. 
We conclude that it is possible to apply the reduction se- 
quence ~1. . . an, to Ms in Q. We thus obtain: 

3Mi, M2 =sn Mz) in Q and Mi 7 Mi 

Since 8’ is a grounded instance of u, u‘ is a derived rule in 
Rp-TAC and hence 3 Ms such that 

Case 2 
Suppose redexes al . . . oj-1 do not interfere with p and oj 
does. (As an example of this situation consider Mr E {z = 
Make-tuple 1 y; y = Select x 1; in y} and & 3 {z = 
Make-tuple 1 y; y = 1; in y}. Mz is the optimized version 

of Ml obtained by applying the fe-rule.) Furthermore, let 
oj be the redex needed to ground, say variable Uyn, of rule 

u. Thus if, MI 
“l-&-l M; and M2 “l.Qr:--l M; then M; 

still contains a copy of p, which is a a”-redex, where 0” 
is an instance of u in which variable “y” is not grounded. 
However, an attempt to ground “y” by applying redex aj, 
either the precondition of p or p itself gets destroyed due to 
interference. Clearly due to proper-termination in P it must 
be the case that both the precondition of p and p itself are 
not strict on y. Notice that, if 6” were grounded then there 
would exists reduction sequences /3r . . . /$,, 71 . . . ^(m, in P 
and Q respectively such that 

Due to non-strictness and by the fact that variable y gets 
grounded it must be the case that the above reduction se- 
quences are indeed applicable to M: and Mi respectively. 

n 

Corollary 7.5 compilers (D, --+Rsonrp), (2), -nsompl) and 

(--Lnp2) are partially correct with respect to RP-TAC. 

Theorem 7.6 A compiler (ID, -R,) is totally correct with 
respect to RP-TAC if 

1. V u E R, all the grounded instances of u are derived 
rules in Rp-TAC; and 

2. V u E R, the instances of u that can introduce a ground 
value on the RHS are derived rules in RP-TAC. 

Proof: From the previous theorem the first condition guar- 
antees partial correctness. What we want to show next is 
that V M E A if M terminates properly in Q then M ter- 
minates properly in P. The proof is similar to the previous 
one, therefore we will only sketch the basic steps. Suppose 

MI L M2, if M2 terminates properly in Q then all free 
0 

variables of u get grounded in Q. Consider the reduction se- 
quence al . . . on that ground those variables. In both cases 
of non-interfering and interfering redexes it must be the case 
that al... (Y,, are applicable in P. If not it means that u- 
reduction does introduce a new ground value in Q and u is 
not a derived rule, which contradicts the second condition. 
What we have shown so far is that a P-TAC program M ter- 
minates properly in P iff M terminates properly in Q. We 
can then conclude that a variables gets grounded in P iff it 
gets grounded in Q, that is, no information can be deleted 
or created. From this we also derive that both improper- 
termination, T and I are preserved, since the same argu- 
ment applies to all cases we will only analyze the case of 
improper-termination. We want to show that if M termi- 
nates improperly in P then M terminates improperly in Q. 
Note that M can not produce T in Q because this means 
that a new ground value is produced in Q, and this violates 
what proved previously. Analogously M can not produce J- 
in Q. n 

Corollary 7.7 The compiler (ZY, -R,,,,) is totally car- 
rect with respect to R~.TAc. 

8 collclusions 

P-TAC has already proven very useful in understanding and 
classifying optimizations used in the Id compiler. The only 
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optimization that is in use in the Id compiler but has not 
been discussed here is dead code elimination, which essen- 
tially deletes bindings corresponding to those variables that 
are not needed to produce the final answer. This optimiza- 
tion also requires dataflow analysis and can turn a program 
producing T or improper-termination into a properly ter- 
minating program. Dead code elimination can also interfere 
with deadlock detection and optimizations in Rcomp3. 

It appears that even though ARSs are very useful to 
describe correctness of many optimizations they are inad- 
equate for describing optimizations that require dataflow 
analysis. Hence, it may be worth extending the work in 
the direction that facilitates bringing in graph-theoretic re- 
sults. We also think that, exploring connections with the 
work on strictness analysis may be profitable. 
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