
P-TAC: A Parallel Intermediate Language

Zena Ariola Arvind
Aiken Computational Laboratory Laboratory for Computer Science

Harvard University Massachusetts Institute of Technology
Cambridge MA, 02138 Cambridge MA, 02139

Abstract

P-TAC is an intermediate-level language designed to cap-
ture the sharing of computation. It is a more suitable in-
ternal language for functional language compilers than the
X-calculus or combinators, especially for compiler optimize,
tions. Using P-TAC, a proof for the confluence of Id, a
higher-order functional language augmented with I-structures?
is given. Using the notion of observational congruence the
correctness of some compiler optimizations is shown.

1 introduction

We present P-TAC (for P arallel Three Address Code), a sim-
ple and powerful declarative language, to study the conflu-
ence of the higher-level language Id and the correctness and
confluence of the optimizations used in the Id-to-dataflow-
graph compiler [16]. Id is a modern, higher-order, strongly-
typed declarative language with J.-structures [I, 121, arrays
whose elements get “refined’l during the course of compu-
tation [4]. I-structures have the flavor of variables in logic
languages because it is possible to create an I-structure with-
out giving a definition for each of its elemefits. (In a purely
functional language a variable is given exactly one binding
or definition at creation time.) All Id programs produce
unique results, but a formal proof of the confluence of Id
had eluded us until now.

A formalism that, can express unambiguously the oper-
ational semantics of Id or compiler optimizations must be
able to capture the sharing of computations. For example,
the formalism must distinguish between the following two
programs

((Fa), (Fa)) and {Z = Fa; in (2,s))

which may arise as a consequence of evaluating G (P a),
where G z = (X,X) and u,” is the pairing operation. (The
expressions that appear before the keyword “in” are bind-
ings, while the expression that follows the keyword “in” is
the main expression.) P-TAC captures such distinctions.
In order to model accurately the implementation of a func-
tional language, the sharing of computation is important.
Moreover, it becomes a necessity when the language is ex-
tended with I-structures. So, one way to give an operational

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-328-O/89/0009/0230 $1.50

semantics for Id is to give a translation of Id into P-TAC,
and a well-defined operational semantics for P-TAC. The
advantage of this approach is that P-TAC, unlike other for-
malisms such as the X-calculus or the combinatory calculus,
leaves no room for choice in the sharing of subexpressions.

There are many intermediate languages, such as IF1[15],
FLIC[l4] and Term Graph Rewriting Systems[G, 71, that
have been used to mode! functional language implementa-
tions. P-TAC is related to Traub’s Functional Quads [17],
which is a formalization of the dataflow-inspired model for
the sharing of computation presented in [4, 131. Traub pro-
vided the Yhree address” syntax for dataflow graphs and
proved the confluence of functional Id using an Abstract
Reduction System (ARS). However, we believe that P-TAC
models data structures and locations in a novel way.

We begin the paper by giving the syntax of P-TAC (Sec-
tion 2j and introduce the reader to the concept of I-struc-
tures . In Section 3, we give the operational semantics of
P-TAC in terms of a set of rewrite rules, Rp-TAC, and in
Section 4 we show that P-TAC is confluent. A notion of
observable behavior and program equivalence is introduced
in Section 5. In Section 6, the optimizations used in the Id
compiler are described in terms of some additional rewrite
rules; in particular, some interesting optimizations which
only approximate the behavior of t.he original program are
discussed (Section 6.4). Furthermore, the confluence and
strong normalization properties of some of these optimiza-
tions are proven. In Section 7 the correctness of the opti-
mizations is proven. We end the paper with some possible
directions for future work.

2 Syntax of P-TAC

The syntax of P-TAC is described by the grammar of Fig-
ure 1, whose start symbols are Program and Definition. For
better readability, we will take some liberties with the con-
crete syntax. For example, instead of writing “+ z y”, we
will use the familiar infix notation and write ‘Lx + y”. A
program M in P-TAC is evaluated with respect to D, a set
of user-defined functions Fl . . . F,, which are generated by
the syntactic category Definition. As an example of D, con-
sider the following set of function definitions which may be
mutually recursive:

.i, xl.. . x,,,, = b,,

230

Legend:
PFi means Primitive Function with i arguments
UDF means User Defined Functions
573 means Simple Expression

Integer ::= 1121.-.]rl]-..
Boolean ::= True I False
Variable ::= xlylzl .--ia\bJ~.-lfl...)z~ 1.a.
PFl ::= Nil? I Allocate 1 Len th
PF2 ::= + I- I* I..- 1 Less ,Equal? I

Make-tuplc 1 Select I Apply
PF3 ::= Cond
UDF ::= F”F [G”o I...
s?3 ::= Variable 1 UDF I Integer 1 Boolean 1 Nil
Expression ::= SEIBlock~PFlSElPF2SESEI

PF3 SE SE SE
Block ::= {[Statement;]* in Exprehon}
Statement ::= Binding I Command
Command ::= Store SE SE SE
Binding ::= Variable = Expression
Definition ::= UDF” yariable .I. Variably = Block

n
Program ::= Block

Figure 1. The Grammar of Initial-Terms of P-TAC.

The user-defined functions Fl. . - F, are treated as combina-
tor#, that is, FV(bi) C (21 . . . zmi} for any i. (FV(b) stands
for the set of free v&ables of b). As usual, a program M
must be a “closed expression.” It is customary in the imple-
mentation of functional languages to consider combinatory
normal forma with respect to { FI . . . F,,}.

We begin with a discussion of the pure functional subset
of P-TAC, which simply amounts to disallowing the user to
write Allocate and Store. However, it is important to em-
phasize that the implementation (the operational semantics)
of functional P-TAC will make use of these primitives.

2.1 P-TAC as a Minimal Functional Lmguqe

P-TAC has higher-order functions, currying and tuples, and
a block structure with the usual lexical scoping rules. As is
usually the case in functional languages, the variables on the
left-hand-side (LHS) of bindings in a block must be pairwise
distinct. Bindings may be recursive or mutually recursive,
and their order in a block is not significant. The main re-
striction in P-TAC is that all subexpressions must have a
;o;~esThus, one writes the expression F (a + b) (c + d) as

(2 = a+b;

; 1 cA;tp$ F 2;
in APPLY f ~1

The other restriction is that primitive functions, e.g., +, *,
Cond, etc., are not curried. This restriction does not cause
any loss of expressive power since the curried version of prim-
itive operators can be obtained by giving a user definition,
e.g.,

Plus 2 y = { in 2 f y}

so one can use (Apply Plus e) instead of ((+) e).
In P-TAC, nested function definitions are not permitted.

This restriction does not cause any loss of expressive power

because it is always possible to eliminate all nested func-
tion definitions by %.mbda lifting,” i.e., by passing all free
variables of a function as parameters to the function (91.

The only data structure constructor in functional P-TAC
is Make-tuple, the non-strict pairing operator. The non-
strictness of Make-tuple allows the specification of infinite
lists, such as: {z = Make-tuple 1 2; in z}.

Even though we believe that the translation of Id into P-
TAC is quite straightforward, particular care has to be de-
voted to conditional expressions because, in Id and dataflow
[a, 161, conditionals behave differently than in other func-
tional languages. For example, the following Id expression

(if p then el else ez)

is not equivalent to

{z = el;
1=e2;

in (if p then z else 9))

If we restrict our attention to functional Id (Id without I-
structures), the above two expressions do indeed denote the
same value; the semantic distinction shows up only when Id
with I-structures is considered. Yet even in functional Id,
the two expressions behave differently. In the first expression
either el or e2 gets evaluated, while in the second expression
both el and es get evaluated. In fact, (if p then el else e2)
is equivalent to

where “0” represents a dummy argument. Embedding the
terms el and es inside function definitions prevents their
evaluation because a function body gets evaluated only when
the function is applied to the number of arguments specified
in its definition. It is straightforward to translate the above
Id expression into P-TAC because the if-expression becomes
the P-TAC Cond and definitions for F and G can be lambda
lifted to the top level.

2.2 Cstructures

Implementation of any functional data structure constructor
requires allocation of storage and binding an expression to
each location of the allocated storage. To compute the irh
element of a data structure, the expression associated to
the ith location is evaluated. Thus, an implementation of
“Make-tuple x y” can be written as follows:

{z = Allocate 2; Store z 1 z; Store z 2 y; in z)

It is not legal for the user to write the above term in func-
tional P-TAC, because it contains Allocate and Store. It is
a legal term in full P-TAC.

Normally, these details of data structure operations are
not included explicitly in the operational semantics of func-
tional languages. Moreover, P-TAC departs from other func-
tional languages by giving users direct access to Allocate and
Store primitives. Data structures defined using these prim-
itives are called I-structures. P-TAC places the so-called
“single-assignment” restriction that no more than one store
operation can be performed in any location. In general, thii

231

restriction cannot be checked at compile time. In spite of
this drawback, P-TAC programs have a clear &declarative
meaning” in a manner similar to logic programs.

We go back to the example given in the introduction to
show how to define the operational semantics of I-structures
correctly. Suppose we evaluate

{z = Allocate 2; in Apply G z)

where the function G is defined as

G z = { in Makatuplc z z)

P-TAC dictates that the answer is

{z = Allocate 2; in Make-tuple z z}

(call it Nr) and not the Id expression (Allocate 2, Allocate 2)
which may be written in P-TAC as follows:

iv2 s {x = Allocate 2; y = Allocate 2; in Make-tuple x y)

This distinction is important because Nr and N2 are not
equivalent. Since “Allocate 2” allocates storage, we can say
intuitively that Nr returns a pair containing two references
to the same I-structure, while Ns represents a pair of two dif-
ferent I-structures. The following program can distinguish
between iV1 and Nz:

P 0 = {b = Select 1 a;
c = Select 2 0;
Store b 1 100;
Store c 1 200;

in 0)

Note that (F Nr) # (F A’s). Intuitively, the above pro-
gram stores the value 100 in the first I-structure (named
“b”) and the value 200 in the second I-structure (named
V’), of the pair “a”. The program (F Nr) violates the
single-assignment restriction, because both b and c refer
to the same I-structure. As will be clarified in the suc-
cessive sections, (F Nr) will enter a ‘contradictory” state,
while (F Nz) will terminate successfully. Thus, we have:
(Fi%)#(PNz) a Nl#Nz.

We illustrate the advantage of augmenting a functional
language with I-structures by considering the problem of
“flattening” a list-of-lists. A list in P-TAC can be defined
inductively as follows:

l Nil is a list.

l If zs is a list, then so is (Make-tuple x es) ’ for any x.

Flattening a list-of-lists requires the repeated appending
of two lists. In order to append two lists, in functional P-
TAC one ends up making a copy of the first list and replac-
ing the Nil by the second list. Using I-structures, however,
one can define an “open” list [2] along the lines of a ‘dif-
ference list” in logic programming. An open list is a list of
I-structures where each I-structure has two components and
is referred to as a pair. The first slot of the first pair and
the second slot of the last pair are always empty; an empty
open list can be represented by a pair with two empty slots.
More precisely:

‘This definition of list is not quite correct in Id because Id is
a strongly-typed language with Milner-style type deduction scheme.
Thus, in Id, a Iist is an algebraic type with two disjuncts, while Make-
tuple has the type Tl x T2. In this paper we have ignored type issues
in P-TAC.

(Allocate 2) is an open list.

If xs is an open list then so is (cons-open x xs) for
any x, where cons-open is defined as follows:

cons-open z zs = {,z = Allocate 2; Store z 2 xs;
Store x9 1 2; in z)

The head of the list is contained in the second slot of the
first pair. Appending two open lists only requires storing the
head of the second list in the second component of the pair
at the end of the first list! The use of open lists can avoid
unnecessary copying, as well as expose more parallelism in
the flattening operation. A fuller discussion of the advan-
tages of I-structures is beyond the scope of this paper; the
interested reader is referred to [4].

3 Operational Serrmtics for P-TAC

The operational semantics is given in terms of an Abstract
Reduction System [lo], which is a structure (A, -R) where
A is a set of terms and -A is a binary relation on A. The
relation -+n is derived from the set of rewrite rules, R,
on terms of A. For our purposes, A contains all closed P-
TAC terms, i.e., terms without free variables, generated by
the grammar of Figure 1, with Program as start symbol,
plus all terms that can appear during a program evaluation.
Therefore, we need to extend the grammar of Figure 1 with
new syntactic categories, such as Locations, I-structures
and Closures, in order to name all the different objects
that can appear at run time. The meaning of locations and
closures is informally explained in the next section. The
grammar that generates all elements of A is described in
Figure 2. We will designate the terms generated by Figure 1
as Initial-Terms of P-TAC. The ground values of A cannot
be reduced any further and correspond to the values of P-
TAC, which are integers, booleans, closures and I-structures.

Though the user-defined functions are constants, their
operational meaning, in contrast to the operational mean-
ing of the primitive functions, is given by the user via the
set D. Thus, the abstract reduction system is actually pa-
rameterized by D and therefore, when D is not clear from
the context, we will write (A, -R,,,~)D.

3.1 Locations

The most novel aspect of P-TAC is the way it models data
structure operations using a special class of identifiers called
Locations. An I-structure of n elements is represented by
n Locations. The only permissible operations on locations
are “l-fetch I”, for reading the contents of location I, and
“l-store 1 v”, for storing v, some ground v&e, in location
1. Confluence of P-TAC crucially depends upon the “write-
once” restriction, that is, only one store operation is permit-
ted on a location.

Unlike variables, which are names for expressible valuesz
locations are merely names of memory locations and cannot
appear in a left-hand side of a Bindrng or in the formal list
of a Definition. Furthermore, locations are globally unique,
that is, the scope of a location identifier is the entire pro-
gram. Therefore, unlike a variable with a binding in a block,
a location cannot be o-renamed locally within a block. P-
TAC also does not permit two different location identifiers
to refer to the same location. The syntax and the associ-
ated rewrite rules (to be described in the next section) do

232

Legend:
PFi mean* Primitive Function with i arguments
UDF means User Defined Functions
SE means Simple Expressions

F
means Ground Values
mean.9 Locations

Fc means Fast c&l, see Section 6.2

Integer ::= 112j...lllj...
Boolean ::= True] False
Variable ::= x 1 y 1 2 1 * * * Ialb)...lf)...)xl]...
L ::= lo(nl-**
PPl ::= Nil? 1 Allocate] Length] FC
PF2 ::= +] -] +] . . .] Less] Equal?]

Make-tuplc] Select] Apply] Make+closure
PF3 ::= Cond
VWF ::= F~F IG% I,..
SE ::= Variable I UDF 1 GV
W ::= pt;ge;l Boolean] CJosure I I-structure]

rr
Z-structure ::= (I-6tructure.n L L . . . L I Nil r&,:)

Closure ::= (Closure, UBF”, my Z-structure) (rn<, d
Expression ::= SE]BlockIPFlSElPZ%SESE]

PF3 SE SE SE] I-fetch L
Block ::= ([Statement;]* in Expression}
Statement ::= Binding I Command] StoreError
Command ::= Store SE SE SE] l-store L SE
Binding ::= Variable = Expression

Figure 3. The Grammar of Terms of P-TAC.

not allow any confusion between the name of a location and
its contents. Thus, while a binding like “z = I” has the
meaning that the variables x and y are names for the same
value, the corresponding binding for locations “Ji = Jj” does
not make sense because two location identifiers can never
be the same. No equality-test on locations is permitted, but
equality on location contents can be expressed by writing:
“{ 2 = I-fetch Ji; u= I-fetch Jj; in (Equal? z 1) }“.

Locations are also used to implement CZosures (partial
applications of functions) as described next. We denote the
number of arguments specified in the definition of a user-
defined function F by nF and often write PnF for clarity.
In almost alI implementations of functional languages, sub-
stitutions inside the body of F are not performed until all
the arguments for F have been specified. Thus, when F2
is applied to e, instead of performing a substitution, a data
structure known as a Closure is built. A closure contains
an I-structure to remember the arguments specified so far.
It also contains the number of arguments still missing (the

4.

3.2 Canonical Representation d Terms

Consider the following terms:
1. {x = 8; in {v = z; in z + y})
2. {x =8; g= x; in z + y)
3. (x = 8; in x + x)
4. {in8+8}

Although these terms are syntactically distinct from each
other, they all behave the same operationally. For example,
the Id compiler would represent all these terms using the

same dataflow graph, i.e., 8 + 8. Therefore, in our reduction
system terms that have the same graph, up to isomorphism,
are equivalent. We define then a canonicalization procedure
in order to select a representative of each equivalence class,
i.e., the canonical form of a term. Reductions will be per-
formed only on canonical terms.

Definition 3.1 The canonical form of a term M is ob-
tained as follows:

1. Flatten all blocks according to the following two rules:

{B1; Ba; ..a
x = {BB1; BBa; . . .

;2iE%; --*

in EE} ;;;;’ BB;; BB;; . . .
1

.I. ; Bn ; . . . ; Bn ;
in E} in E}

{EJJiB2;-

z

03g,B2;+;

1; 2; -**

{BBl; BB2; . . . in EE’}
in EE) 3

where BBI and EE;’ indicate o-renaming of variables in
BBi and EE,‘, respectively, to avoid names clashes with
the names in the surrounding scope. Note that we do not
need to rename locations because they are globaJly unique.

2. For each binding oj the form “y = x * in M, where z
and y are distinct variables, replace each occurrence of
“y” in M by %” and then eraode the binding “p = 2”

fromM*
3. For each binding of the form ‘$ = v’) in M, where v

is a ground value, replace each occurrence of “g” in M
bg 5” and then erase the binding “y = v” from M.

Notice only ground values can be substituted freely. This re-
striction on substitution of terms for variables is what allows
P-TAC to model sharing of computation precisely.

Definition 3.2 Two closed terms M and N in canonical
form are said to be a-equivalent if each can be transformed
into the other by a consistent renaming of locations and
bound variables.

Lemma 3.3 Each P-TAC term has a unique canonical form
up to a-renaming.

Proof: Since there are only a finite number of blocks and
occurrences of a variable in a term M, the canonic&z+
tion procedure is strongly normalizing. It is easy to see
that the block flattening rules are locally confluent up to
a-renaming. Since variable substitution rules within a flat-
tened block are also locally confluent, the uniqueness of the
canonical form of M up to o-renaming follows trivially from
Newman’s Lemma [g]. n

Some examples will clarify canonicalization of terms and
o-equivalence.

1. Terms { in z + l}, {y = 1; in 2 + y} and {Z = 2; y =
1; in z + y) have the same canonical form. However,
this canonical form is different from the canonical form
of (2 = Apply F 2; y = 1; in z f y}. This example
shows that a binding whose right-hand-side (HHS) is
not grounded is meaningful in determining the opera-
tional structure of a term.

233

2.

3.

4.

Terms {i-store 1 v; in 5) and {l-store 1 v; z = 5; in z}
have the same canonical form which is different from
{ in 5).

The following two terms are a-equivalent:

{l-store lo ~0;
l-store 11 VI ;
in &structure,2, lo, II)}

The following two terms are not a-equivalent:

{l-store lo (I-structure.2, 12, i3);

l-store 21 (l-structure, 2, 12, /3);
in (I-structure,2, lo, 11))

{i-store 1’ (l-structure, 2, I’, 1’)
l-store l9 {i-structure 2 P 1’).
in (LsttLcture,2, Ik,‘i)>” ’ ’

These terms could arise during the execution of the
terms Nl and Nz introduced in Section 2.2. This fur-
ther emphasizes the point that terms IV1 and N2 are
different.

3.3 Reduction Notions

and {i-store I’ VO;
l-store Ii ~1;
in (l-structure, 2, $, Ii)}

and

Intuitively, we define the evaluation of a program M as con-
sisting of repeatedly rewriting its subterms until no further
rewriting is possible. However, as we shall see shortly, some
of our rewrite rules have a precondition. The following is an
example of a rule with a precondition:

l-store I 5

l-fetch I - 5

where the command l-store J 5 over the line denotes the
precondition. The above rule says that the subterm I-fetch I
of M can be rewritten to 5 if the command l-store 15 occurs
in the context, i.e. , M.

Note from the above example that the precondition does
not, merely allow or disallow the rewriting, but also affects
the outcome of the rewriting. Therefore we define a redex
in our ARS as follows:

Definition 3.4 Given a program M, let N be a subterm of
M. N is said to be a redex ifi it matches the left hand side
of a rule and the precondition of the rule is satisfied. If the
precondition of the rule can be satisfied by more than one
statement then N represents a distinct redex corresponding
to each such statement.

Following Klop [lo], we will sometimes qualify a redex
with the name of the specific rule it matches; thus, we will
say, for example, that “2 + 2” is a &redex, for it matches
the LHS of a C-rule. We remind the reader that a context
C[] is a term with a hole in it, such that, when a suitable
term is plugged in the hole, C[] becomes a proper term [5].
A closed context is a context with no free variables.

Definition 3.5 Given an ARS (A, R), if M,N E A and u
E R, then M reduces to N in one step (M -R N), ifi 3

a context C[j, and a-redex p , such that, M EE C[p] , N E
C[p’], and p - p’ . The transitive reflexive closure of -R

CT
is written as - .

R

We will sometimes explicitly mention the rule being ap-
plied in the reduction by writing M - N. We will also

d
make use of a different notation, M -% N, where p is the

subterm (of term M) being reduced.

3.4 The Rewrite Rules of P-TAC (RP-TAC)

We now present the set of rewrite rules, RP-TAG, for defin-
ing the ARS for P-TAC. In the following R and n represent
a variable and a numeral, respectively. Remember that the
rules are only to be applied to terms in canonical form. To
avoid a distracting discussion of type errors, we assume that
a primitive function is only applied to arguments of appro-
priate types.

a 6 rules

p4+2 7 m+n

(if m = 4

(if m # d

Equal? an 7 True

Equal? mz 7 False

l Conditional rules

Cond Truez y .-b E

Cond False z y =ond y

l Data Constructor rules

Make-tuple z y ;;;;;: {z = Allocate 2; Store z 1 r;

Store 2 2 y; in 2 }

0 I-structure rules

Allocate n ; (l-structure, a, lo . . . L-1)

(Z(J - * * I,1 are globally unique new locations)

Length (I-structure,n, 10 . . .1,.-l) z n

Nil? Nil - True
nil

Nil? isv - False
nil

(if isv is a ground value other than Nil)

Select (I-structure,E, lo . . .I,,) i --+ l-fetch Ii
ad

(0 5 i I n-1)

Select (I-structure,E, 10 - . .l,-l) j z Error

(i-CO v i>n-1)

Store (I-structure,n, lo -- -1,l) i y - l-store Ii y
at0

(0 < i < n-1) ----

Store (I-structure,n, lo . . .Z,-1) i y --+ Store-Error
sto

(i<QVi>*l)

I-storeI 21

I-fetch i s v

where v is a ground value

N E l-store 1 II A N’ z l-store I Y’ A
N, N’ are distinct subterms of program M

M-T
blw

234

l Application rules

Apply (Closure, P”, m, isu) z -
(IPL

{chain = Make-tuple I isv;
in Make-closure (Closure, F”,rn, isv) chain }

where m > 1

F” z1 .z2...z,, = (Bl; &;-..B,; in zj} ED

Apply (Closure, F”, 1, isu) I -+ {z& = I;
wa I

-L-l = Select isu 1;
rest1 = Select isv 2;
4-2 = Select rest1 1;

*
- Select rest--2 1;

$$;...BLi

All local variables in the block on the right hand side are
considered to be new. Note that we will have one instance
of the last rule for every user-defined function.

0 Closure rules

F” - (Closure, F”,z, Nil}

Make-closure (Closure, F”, yk, isu) isu’ 2

where isv, id arr I-rtructute8 v&es

Discussion:

1. By insisting that v be a ground value in the I-fetch
rule, I, we capture the intuition that only ground -
values can be stored into locations. Also notice that
l-store I v is only a precondition for the I-fetch rule,
and thus, it remains unaffected by the application of
the J-fetch rule.

2. According to the blow-up rule, z, the whole program

M is a redez. That is, if an attempt is made to store
something in an I-structure location that already con-
tains a value, the whole program M goes into a %on-
tradictory state” or T.

The blow-up rule seems rather drastic. However, local-
izing the effect of multiple stores would require keeping
track of what computations have depended upon which
fetches. Since a location can be computed at run time
asin{i=ApplyPo; Storeziv;-..),itisnotpos-
sible, in general, to determine if a program will go to
T without executing it. The confluence of P-TAC will
ensure that if any terminating reduction sequence goes
to the T, then so will all the terminating ones.

3. Note that the program will go to T even if the second
value to be stored in a location is the same as the first
one. We could relax this condition by requiring that
the values being stored in a location be ‘unifiable”
with the one already in the location. This poses some
conceptual problems when the values under consider-
ation are closures, and some efficiency problems when
the values are I-structures.

4.

5.

6.

An important fact to be noted is that the blow-up rule
will never be applicable in the functional subset of P-
TA C. If the use of Store only arises indirectly through
Make-tuple, then it is clear that each location has ex-
actly one store operation associated with it. This can
be seen by examining the rewrite rule for Make-tuple.

The I-structure rules allow the specification of infinite
lists, such as: (z = Make-tuple 1 I; in z}. This expres
sion gets reduced to:

{l-store 10 1;
l-store I1 (l-structure, 2, lo, 11);
in (I-structure,2, lo, II)}

where no further reductions are possible.

We have included “errors” in case of I-structures rules
because these errors can not be avoided by static check-
ing. However, we have not provided any rule for error
propagation.

4 Gmfknce d P-TAC

We prove the confluence of P-TAC by showing that P-TAC
is subwmmutative, a property that is defined as follows:

Definition 4.1 An ARS is soid to be subwmmutative,
if V terms M, Ml and MS:

M-M1 AM- M2 w 3 M3 such that

O/l O/l Ml-M3 /\ &-it&

where % meuna in zero or one step.

Lemma 4.2 A reduction relation that is subcommutative is
confluent. [S]

In order to show that P-TAC is subwmmutative, we need
to examine the interaction between rules of Rp-TAC. In
a Term Rewriting System (TRS), the interaction between
rules is often characterized by the notion of “overlapping
patterns”. The pattern of a rule is the abstract syntax tree
associated to the LHS of the rule, where each variable is
replaced by a hole. Thus, the constant symbols on the LHS
of a rule determine the pattern. Two rules are said to be
ambiguous if their patterns overlap. In our ARS two rules
may not overlap, but one of the them may still affect the
other by destroying its preconditions. The following notion
of interfering rules subsumes the notion of overlapping.

Definition 4.3 i-rule interferes with j-rule ifi
1. the application of i-rule can invalidate the precondition

of j-rule; or
2. the pattern of i-rule overlaps with the pattern of j-rule.

Fact 4.4 The blow-up rule, z, and the I-fetch rule, -,

are the only interfering rules in P-TAC.
I-f

The blow-up rule can invalidate the precondition of any
rule. The I-fetch rule interferes with itself as shown by the

235

example below:
(l-store 2 1;

l-store 12;
z = l-fetch 2.

&
h

in z)

The subterm I-fetch 1 matches the (LHS) of the I-fetch rule.
However, the precondition for the rule can be satisfied by
either the subterm (l-store 2 1) or by the subterm (l-store 1
2). Thus, redexes p1 and ps, shown above, do overlap and,
consequently, the I-fetch rule interferes with itself.

Lemma 4.5 P-TAC is subcommutatiue.

Proof; We want to show that V (canonical) M, MI, Ms E
A, and V i-rule, j-rule E RP-TAG, the following holds:

M - Ml A M --+ MZ =+ 3M3 such that
i i

M$Ms A M2
O/l - Ma

I. (Non-interfering rules) Suppose the i-redex does not
interfere with the j-redex. By inspecting the non-
interfering rules of RP-TAC, and the structure of canon-
ical terms, we can see that the i-redex and j-redex have
to be disjoint. By the definition of interference, the i-
reduction (analogously, the j-reduction) cannot inval-
idate the precondition of the j-redex (i-redex). There-
fore, the i and j reductions commute.

2. (Interfering ruler)

2.1 Let i-rule be T and j-rule be different from -.

Since only the:lom-up rule can destroy the FTe
condition for the blw-redex, in the following dia-
gram M2 is still a blw-redex.

M

J1
blw j

T - M2
blw

2.2 Let both i-rule and j-rule be ;. Then,

2.3 Let both i-rule and j-rule be -. Then M is
3-f

a blw-redex which can not be destroyed by the
I-fetch reductions. Hence Ml and M2 are also
blw-redexes.

M

5 Program Equivalence and Observable results

Notice that, unlike functional TRS’s, the normal form of a
P-TAC program will usually contain a number of commands,
such as l-store 1 u, because commands are never erased ac-
cording to our rewrite rules. Such store commands reflect
the state of storage at the end of an execution. Consider the
following two programs, Ml and M2, which are in normal
form:

Ml E { in 9) vs MZ E {l-store ZO 4; l-store 11 5; in 9)

Though these programs are not o-equivalent, they can be
said to produce the same “answer”, i.e., 9. That is, if the
user does not care about the contents of the store at the ter-
mination of his program, he may observe “9” at his terminal
in both cases. Exactly what should be observable about a
value is a tricky question if the value is of a higher-type,
i.e., an I-structure or a closure. For example, to a uget the
internal representation of a function (or of a partial applica-
tion) is of no interest; he can only apply it to another term.
As is to be expected the question of program equivalence,
i.e., whether two programs can be substituted freely for each
other, is related to the notion of “answer” we choose. We
introduce the notion of an erasure to factor out the internal
store of a term.

Definition 5.1 Given a term M, where M is in normal
form, the L-Erasure of M, E(M), is the term obtained by
erasing all commands of the form l-store 1 v, where v is a
ground value, from M.

We introduce the notion of proper-termination and impropcr-
termination to deal with the fact that J?(M) may contain
unresolved I-fetches or circular bindings.

Definition 5.2 Given an ARS P = (A, RP-TAC) and M
E Initial-Terms of A, the answer produced by A!P with re-
spect to P, Ansp(M), is undefined if M does not have a
normal form. Otherwise, M reduces to a normal form N,
and An@(M) is

l if C(N) is T then T;

l if t(N) is of the form { in u) and

l if u is either integer, boolean or Error, then (proper-
terminat,ion, u),

l if v is a closure value, then {proper-termination,
Closure),

l if v is an I-structure value, then (proper-termination,
(l-structure, nJ>,

where proper-termination, Closure, and l-structure are
reserved constants and 11 denotes the length of the I-
structure value;

l if E(N) is of the form {B1; B2; -. . in 9) and

l if u is either integer, boolean or Error, then (improper-
termination, u),

0 if u is a closure value, then (improper-termination,
Closure},

l if u is an I-structure value, then (improper-termination,
(l-structure, nJ),

l else (improper-termination, Nothing).

where improper-termination and Nothing are reserved
constants.

236

pndf
If

to the above dei’initiqn ..$ns(Ml) F Ansl(Mz), for
2 defined at the beginning of this section. The

sa;e is true for the following two programs MB and Md:

MS s {l-store lo 4; and Ma E {l-store16 5;
l-store 11 5; I-store 1; 4;
in in

(l-structure, 2, IO, l,)} (I-structure,2, 16, I;)}

However, MS and MI are not substitutable for each other,
because, for example, the answers produced by u’Select M3 1”
and %ciect M+ 1” are not the same. This example clearly
shows that in the presence of higher-order types, context
plays an important role. Thus, we define the following equiv-
alence between programs [II]:

Definition 5.3 M, NE A are said to be observationally
congruent if V user dejinoble contezts C[]

Ans(C[M]@dns(C[N]).

According to this definition programs Ml and Mz are obser-
vationally congruent, while Ms and Mh are not. As Meyer
points out in [ll], we could have limited the notion of ob-
servable values to, say, the integer a3n without having any
impact on the equivalence of programs!

6 p;m$onal Semantics of an Optinizing Caqiler for

The Id compiler [16] h as several phases. It first translates
Id into high-level dataflow graphs (“program graphs”) and
then repeatedly applies many optimizations to these graphs.
It then generates the “machine graphs”, which is the ma
chine language of the Tagged-Token Dataflow Architecture
(TTDA). It also does optimizations on the machine graphs,
but these are specific to TTDA. P-TAC is very close to pro-
gram graphs. Interestingly enough, the compiler optimiza
tions on program graphs can be expressed in terms of an
abstract reduction system (D, I-CR,), where 2) is the set of
all possible user-defined functions, that is, all the terms gen-
erated by the grammar of Figure 1 with Definition as start
symbol.

6.1 The Definition of a Correct Corrqiler

The rules stated in Section 3.4 are applied only to the main
expression of a program; the definitions of functions are not
involved. The domain of action of a compiler, on the other
hand, ‘is the set of user definitions; the rules are applied to
subterms on the right-hand side of the user-defined func-
tions. Thus, a compiler may be defined as follows:

Defluition 6.1 A compiler iu on ARS (D,-s) which
given D E V transforms the A RS P =(A, R) D into another
ARS &=(A, R}D’, such that,

l.VF, Fx1x2.,.xn=e E D e
3 F, Fx~ xp...x,,=e’ E D’and e - e’;

Re
2. R, is strongly normalizing.

Discussion:

1. There are several useful optimizations that, if included
in R,, will destroy its strongly normalizing property.
In such cases we need to restrict, in some manner,
the number of times such an optimization rule can be
applied. We will discuss one such optimization later.

2. Usually a compiler will only produce e’s in normal
forms with respect to R,. If R, is confluent then it
is guaranteed that all terminating reduction sequences
in R, lead to the same “efficient” program, and we can
concentrate on finding an efficient reduction strategy
for generating the optimized program.

3. The exclusion of M, the main expression, from com-
piler optimizations, is not a serious limitation, because
M can be enclosed inside a function body and then op-
timised .

The foremost question regarding any optimization is whe-
ther it preserves the meaning of the original program. Usu-
ally, questions about meanings take us into the denotational
semantics of programs because the optimized program is
not going to be syntactically equioalent or a-equivalent to
the source program. We will sidestep the denotational se-
mantics of P-TAC programs, by formulating the correctness
question in terms of observational congruence. The de%
nition given below basically states that if no program can
“observe” a difference (produce different answers) between
the use of the old and new definitions then the transformrt-
tions are correct.

Definition 6.2 A compiler (2), ---CR,) which given D c V
transforms the ARS P=(A, Rp-r~c)D into another ARS
&=(A, R~-TAc)DI is totally correct with respect to Rp-TAC
if ‘# M E Initial-Term* of A then Ansp(M) I Ansg(M).

In some sense the correctness criterion chosen is too strict.
Generally all we care about is that the transformed program
produces exactly the same answers as the original. Kow-
ever, the cases when the original program does not termi-
nate or terminates improperly, it may be all right for the
transformed program to take some “liberties” and produce
a result. In the denotational jargon we would say that the
originol progmm should be on approximotion of the tmns-
formed program.

Deflnition 6.3 A compiler (V, -EL) which given D E 2)
transforms the ARS P=(A, Rp-TAC)D into onother ARS
&=(A, RP-TAC) Dt is partially correct with respect to RP-TAC
if V M E Initial-Terms of A, if M terminotes properly in
P then Amp(M) E AnsQ(M).

6.2 Compiler Rules that Preserve Total Grrectness (Rcomp)

We begin by examining rules of RP-TAC that may be appli-
cable in the compilation process. We will call such rules as

Rib~~* Since a compiler does not allocate storage, it can-
not execute Allocate or most other I-structurerules. The Ap
ply operator cannot be executed indiscriminately at compile
time either. Besides the difficulty of allocating storage for
closures, the execution of Apply has the potential to get the
compiler into au infinite recursion. This is not acceptable
because a compiler must terminate, regardless of whether
the program is correct or incorrect. Thus, in addition to the
canonicalization procedure given in Definition 3.1, RsmTAC
includes the following rules:

0 6 rules
l Conditional rules
l Nil? rules.

AS usual we will consider reductions only on the canonical
representation of terms.

237

A compiler may apply some additional rewrite rules,
Rapt, to transform a Program into an even more efficient
version. These optimization rules are usually not included
in RP-TAG because it is not clear how the preconditions of
some of these rules can be checked efficiently at run time.
Let

R cmp = RF-TAC U Rapt

A description of R,t follows:

l Arity Detection rule

fl = Apply F” tl;
f2 = APPLY fi 12;

i+l = Apply fn-z x,.--l;

APPLY fn in z FC~(m,*.*rxn)

where it is presumed that there is a combinator FCF (acro-
nym for Fast Call) f or each user-defined function. This rule
detects if all the arguments for a user-defined function are
available. If so, the function is invoked directly, saving the
overhead of creating the intermediate closures.

b Inline Substitution rule

F” z1 ZZ~~~Z,, =(Bl; &;---Bm in tf} E D

FCF(XI,-..,X~) ; {z: = xl;

z:, = xfi;
B;; B;;...B;;
in 2;)

This rule avoids the overhead of the function call completely
by inserting the body of the function in the calling program.
Note that the fc-rule must also be included in RF-Z-AC be-
cause, as we shall see later, not all FC’s can be eliminated at
compile time. FC’s can also be included in the Initial- Terms
of P-TAG.

b Common Subexpression Elimination rule

x=a+b; y=a+b;

y=a+b; - y=z;
cae

Similar cse rules exist for all primitive functions, PFl, PF2
and PF3, except Allocate, Fc and Apply. As the name
suggests this rule avoids recomputation of the same subex-
pression. Function calls cannot be eliminated because of the
possibility of side-effects via I-structures.

b Fetch Elimination rules

x = Make-tuple a b

Se’ect x l 7 =

r = Make-tuple a b

Sekct x 2 z b

x = Allocate n

j Length x 7 n

The above rules eliminate a run time fetch from a data
structure.

Test Elimination rules

z = Allocate n

Nil? x - False
tt

x = Make-tuple a b
Nil? x --+ False

te

Algebraic Identity rules

And Truc = z =

Or Fa’ze= z =
x+0 - x

019

x*1- a?
a(9

.

Any algebraic rule can be included as long it does not have
a precondition and it does not produce a ground value on
the RHS. We will explain the reitSOns for these restrictions
in Section 6.4.

6.3 Confluence and Nadmtion d Rcomp

Theorem 6.4 Rcomp without the Inline Substitution rule is
strongly normalizing.

Proof: The proof is straightforward from the following two
observations:
1.

2.

Application of any rule in Rcomp destroys a redex and
does not duplicate any existing redexes.
Let)z be the number of occurrences of primitive functions
in a term M. It is clear that the application of any rule
of R,,, decreases this number by one. Consequently,
the maximal number of redexes that can be reduced in
a term is at most n.

There are only two rules in RP-XAC and Rcmp that can
increase the number of applications and consequently, re-
dexes. These are the Apply (z) and FC rules, respectively.

Application of - is automatically excluded from Rcomp
aPa

because storage allocation is excluded, and we deliberately
exclude the FC rule to guarantee strong normalization. How-
ever, inline substitution is a very important optimization in
the Id compiler, therefore, the Id compiler passes the bur-
den of guaranteeing termination to the user in the following
way. In Id a user declares every function definition to be
“substitutable” or “not substitutable” by using a keyword
(Defsubat versus Oej).

Notice that because of the elimination of interfering rules,

R&‘AC is confluent. What we want to show is that by ex-
tending R;-,,, with Rapt, which has new interfering rules,
the subcommutative property, and hence, the confluence
property, still holds.

Theorem 6.5 Rcomp is confluent.

Proof: The proof is similar to the one given in Section 4 so,
we only sketch the basic steps.

238

Notice that the cse-rule interferes with itself as shown
below:

Pl h

Mis{y=a+b;..-y...y] M2~(x=a+b;...x...x}

This sort of interference is benign because MI +, M2.
cse-rule also interferes with &rules, and conditional-rules,

etc. However, all these cases are captured by the following
example:

{x=W $l=W...x...y}

WC 6-r
J I
WC

Ml P{y=2+3;*..y...y} M2:{1:=2+3; ..*z...S)

It is straightforward to see that the above diagram can be
clod in one step. n

6.4 Optimizatims that Preserve only Partial Correctness

6.4.1 Confluent Rules (Ro& ,

The reader may be wondering why the following rule was
not included in Rcmp

x*0 - 0
mulo

especially given the fact that the rule

z*l - z
mull

was included.
The reason is that this rule can change the termination

behavior of the program as illustrated by the following ex-
ample:

{“,/Fen;” 12;

b = Equd? x 0 ;
in 53

Without the use of rule --ulO, the above program will pro

duce the answer (improper-termination, 5) because of a cir-
cular dependency between z, y and Q. However, if we apply
the rule ,,i-, the answer produced will be

(proper-termination, 5)

By considering minor variations of the above example, we
can show that the -3 rule can also turn

mul,J

(improper-termination, II)

into T or non-termination, and a non-terminating compu-
tation into anything. However, an interesting fact is that
rule --u;, cannot change the answer of a computation that

produces an answer of the type (proper-termination, v). Fur-
thermore, it cannot change v, the value part of the answer,
even when the unoptimized computation terminates with
(improper-termination,v) (of course, as noted above, im-
proper termination can turn into T). All the R,t, rules
given below have this property.

Test Elimination rule
CT = Allocate n

Nil? x - False
-1

Algebraic Identity rules

And False x ; False

Or True z z True

x*0 - 0
Ql$l

x-x - 0
hl

Equal? tz ---& True

Any algebraic rule that does not have a precondition can

be included here.
Let us define Rcmpl as follows:

R comp, = Rcom,, u &ptl

Lemma 6.6 Reomp, is strongly normaliring and confkent.

Proof: Omitted. Similar to proofs given earlier. n

Discussion: The confluence is quite surprising because RcOmpl
contains the algebraic Equal?-rule, which is a non-left-linear
rule. Since adding this rule to Xcalculus destroys confluence

L-4
10 , we want to clarify why it does not cause any harm in
- AC. Let’s first recall the reduction rule for the fix-point

operator Y:
Yf y+ f(Yf)

we have the following reduction:

Equal? u (Yf) 7 \Equal? f!Yn CYf)

Y-r
\ /

&ac(Eq--r)

Eq--r

Note that the descendent of the Eq-redex is not a redex
any more, while in P-TAC we get

{x=\ t , APPLY I’ f; ‘;;’ G = APPLY f 0’ f);

in Equal. x x ~ y-‘) . -7 I) in Equal. I 1:

Eq--r Eq--r

The main point to grasp is that by naming “Y f”, the
descendent of “Equal? x x” remains a redex, and the dupli-
cation of the computation “Y f” is avoided.

6.4.2 Non Gnfluent Ruks (RWt,)

We now discuss some optimizations that are not confluent.
Let

R cmn*, = R c-l% ” Ilopt,
where rules in Rapt, are defined as follows:

s Fetch Elimination rule

Store z i z

Selectzi-2
fc2

239

. Algebraic Identity rules Pictorially:

x=n + m -
Less78 z - True

aI93

?2;4>0

x=n f m -
Lessx TX

z Fa’w

na>o

x=n + E

Greater n x ----+ False
olg:,

m>O

x=n + m -
Equal? n x s False

m>O

Lemma 6.7 Rcompa is strongly normalizing.
Proof: Trivial. n

We illustrate, by an example, that these transformations
can create havoc in the presence of deadlocks. Consider the
following program:

(z/=x+3;
s=y+3;
b=Lessrg;
a=Condb12;

in a)

This program will produce (improper-termination, Nothing)
in RJLTAC. The trouble is it can produce two different an-
swers if optimized using Reompa because “Less 2 y” repre-
sents two different overlapping redexes - one corresponding
to the precondition “y = z + 3” and the other correspond-
ing to the precondition “z = y + 3”. Therefore, the above
program can produce either 1 or 2 as an answer after having
applied Rcompa .

The main problem with the rules of Rcompl is that they
are potentially overlapping; precondition of any rule can be
satisfied in several ways. The only rule in RP-TAC that
had this characteristic was the I-fetch rule. However, by
disallowing multiple writes in a location via the blour-up rule
we were able to preserve the confluence. We can include a
slightly modified version of the blow-up rule to deal with the
modified version of the fetch elimination rule in Reomp2.

However, there is no easy way of dealing with the “circu-
lar dependency” problem short of doing the dataflow anal-
ysis of the programs. If we could detect all such programs
then we can declare them illegal and conveniently use all
the Rcomp2 rules. Though algorithms for dataflow analysis
are well developed, we have not yet examined them from
the correctness point of view, that is, we don’t know if they
detect all and nothing but deadlocked cycles in a program.

7 The Gwrectness d Rconrp

The correctness of Rcomp would be trivial to decide if all the
rules in R,t were Uderiued rules” in R~-TAc.

Definition 7.1 A rule u E R’ is said to be a derived rule
in(A,R)ifVMEA,M-Ml*3M2,M- M2

0 E)
A MI

1.
- M2.

R

M - MI

+if

Consider the following two versions of the Test elimination
rule, neither of which is in RP-TAC:

z = Allocate 2 z = Allocate n
krl? xc--+ False

versus -
M? x- False

te a*1

The - rule is a derived rule in RP-TAC while - is
Se *Cl

not. This is so because “Allocate n)) can always be reduced
in R~-TAC to get. an I-structure value, and then the Nil?
test can be applied to this I-structure value to get the an-
swer False. On the other hand no rule in RP-TAC matches
“Allocate n”, unless n is grounded, and consequently the
Nil? test may not be applicable either. However, in case
n is grounded, the result according to Rp-TAC. would also
be False. Thus, the dXerence between the two rules shows
up only when we consider the application of the rules to
open terms or terms where the RHS of the binding cor-
responding to n does not get grounded either because of
non-termination or improper-termination.

The only rules in R,t that are derived rules are the Test
elimination rules.

To better understand the behavior of non-derived rules,
consider the following example where MZ is obtained from
Ml by applying the algebraic rule ‘(E * 1 - 2”:

M~s{z=y+l; y=z+l;a=z*l; inz+2]

Ma~{(z=y+l; v=z+l; inz+2}

It so happens that both Ml and MS are in normal form
and are not a-equivalent. However, they do produce the
same observable answers, i.e.,

Ans(Ml) P Ans(M2) z (improper-termination, Nothing)

The correctness of the compiler crucially depends upon the
fact that the effect, of a non-derived rule cannot be “ob-
served” by any program.

Definition 7.2 An instance of a rule is a rule obtained by
substituting a ground value for a free variable in the rule.

For example, an ipstance of 41r~~Make-tup’e a b** is obtained
ectcl-a

by substituting a ground value for either %z” or “b” , e.g.,
‘,x = Make-tuple 2 b,,

Select 3: 1 - 2 *

Definition 7.3 A grounded instance of a rule is a rule
obtained by substituting ground values for all the free vari-
ables in the rule.

For example, a grounded instance of “And True x - xn is

“And True False - False”; a grounded instance of the previ-

ous Fetch Elimination rule is ,‘x = Make-tuple 2 3 ,,
Sekctx1.2 .

Note that the instance lGse,~~ rz 51’ of the Fetch Elim-

ination rule in RoptZ, even though it introduces a ground
value on the RHS, is not a grounded instance. Furthermore,
it is not a derived rule, while any grounded instance is a
derived rule.

240

Theorem 7.4 A compiler (D, -nE) is partially correct with
respect to RP-TAC if V u E R, all the grounded instances
of u are derived rules in RP-TAC.

Proof: By Definition 6.1 a compiler, given R,, transforms
ARS P = {A, RP-TAC)D into another ARS Q = (A, RP-TAC)~,.
We want to show that V M E Initial-Terms of A, if M ter-
minates properly then M produces the same answer in both
P and Q. We prove the partial correctness of R, by induc-
tion on the number of reduction steps applied to P.

We give the proof only for the base case, that is, suppose
Q is obtained from P in one step by applying rule u E
R,. Thus, the only difference between P and Q is that
Q contains an “optimized” version of a function, say, Fi. In
the following we will write R instead of RP-TAC to reduce
the clutter. Suppose M - M’ - MI in P, where M’

contains the first invocation Ef Fi. a%tce Fi is first applied
in M’, it is possible to mimic in Q the reduction sequence
M - M’. Suppose M’ - Mz in Q, where Ml f= Mz.

wa
This mrans that 3 a u-redex in MI, say p, such that MI 2

0
Mz. Pictorially we have

We will show that if MI terminates properly in P then
it’s possible to close the above diagram in P-TAC.

If Ml terminates properly in P, then all free variables
of p get grounded; consider then the reduction sequence,
crl . ..U”. where redexes or . . . on are the redexes needed to
ground all free variables of p (see the picture below). We
consider two cases.
Case 1
Suppose redexes ~1 . . . Q,, do not interfere with redex p, that
is, al . . . a,, do not destroy expression p or its precondition.
This means that Mi must contain the expression p’ where p’
is a copy of p, which is a a’-redex, where u’ is the grounded
instance of u. Moreover, no rule in RC can destroy the pre-
condition of a P-TAC redex for the following reasons:
1) the grounded instances of any rule that deIetes a com-

mand can not be derived rules;
2) any rule that modifies a “Store” command has to rewrite

that command into the correspondent “I-store” command.
We conclude that it is possible to apply the reduction se-
quence ~1. . . an, to Ms in Q. We thus obtain:

3Mi, M2 =sn Mz) in Q and Mi 7 Mi

Since 8’ is a grounded instance of u, u‘ is a derived rule in
Rp-TAC and hence 3 Ms such that

Case 2
Suppose redexes al . . . oj-1 do not interfere with p and oj
does. (As an example of this situation consider Mr E {z =
Make-tuple 1 y; y = Select x 1; in y} and & 3 {z =
Make-tuple 1 y; y = 1; in y}. Mz is the optimized version

of Ml obtained by applying the fe-rule.) Furthermore, let
oj be the redex needed to ground, say variable Uyn, of rule

u. Thus if, MI
“l-&-l M; and M2 “l.Qr:--l M; then M;

still contains a copy of p, which is a a”-redex, where 0”
is an instance of u in which variable “y” is not grounded.
However, an attempt to ground “y” by applying redex aj,
either the precondition of p or p itself gets destroyed due to
interference. Clearly due to proper-termination in P it must
be the case that both the precondition of p and p itself are
not strict on y. Notice that, if 6” were grounded then there
would exists reduction sequences /3r . . . /$,, 71 . . . ^(m, in P
and Q respectively such that

Due to non-strictness and by the fact that variable y gets
grounded it must be the case that the above reduction se-
quences are indeed applicable to M: and Mi respectively.

n

Corollary 7.5 compilers (D, --+Rsonrp), (2), -nsompl) and

(--Lnp2) are partially correct with respect to RP-TAC.

Theorem 7.6 A compiler (ID, -R,) is totally correct with
respect to RP-TAC if

1. V u E R, all the grounded instances of u are derived
rules in Rp-TAC; and

2. V u E R, the instances of u that can introduce a ground
value on the RHS are derived rules in RP-TAC.

Proof: From the previous theorem the first condition guar-
antees partial correctness. What we want to show next is
that V M E A if M terminates properly in Q then M ter-
minates properly in P. The proof is similar to the previous
one, therefore we will only sketch the basic steps. Suppose

MI L M2, if M2 terminates properly in Q then all free
0

variables of u get grounded in Q. Consider the reduction se-
quence al . . . on that ground those variables. In both cases
of non-interfering and interfering redexes it must be the case
that al... (Y,, are applicable in P. If not it means that u-
reduction does introduce a new ground value in Q and u is
not a derived rule, which contradicts the second condition.
What we have shown so far is that a P-TAC program M ter-
minates properly in P iff M terminates properly in Q. We
can then conclude that a variables gets grounded in P iff it
gets grounded in Q, that is, no information can be deleted
or created. From this we also derive that both improper-
termination, T and I are preserved, since the same argu-
ment applies to all cases we will only analyze the case of
improper-termination. We want to show that if M termi-
nates improperly in P then M terminates improperly in Q.
Note that M can not produce T in Q because this means
that a new ground value is produced in Q, and this violates
what proved previously. Analogously M can not produce J-
in Q. n

Corollary 7.7 The compiler (ZY, -R,,,,) is totally car-
rect with respect to R~.TAc.

8 collclusions

P-TAC has already proven very useful in understanding and
classifying optimizations used in the Id compiler. The only

241

optimization that is in use in the Id compiler but has not
been discussed here is dead code elimination, which essen-
tially deletes bindings corresponding to those variables that
are not needed to produce the final answer. This optimiza-
tion also requires dataflow analysis and can turn a program
producing T or improper-termination into a properly ter-
minating program. Dead code elimination can also interfere
with deadlock detection and optimizations in Rcomp3.

It appears that even though ARSs are very useful to
describe correctness of many optimizations they are inad-
equate for describing optimizations that require dataflow
analysis. Hence, it may be worth extending the work in
the direction that facilitates bringing in graph-theoretic re-
sults. We also think that, exploring connections with the
work on strictness analysis may be profitable.

Acknowledgments

Part of the motivation for this work came from observing
Ken Traub’s success in modeling sharing of computations in
his Functional Quads. He also provided many detailed and
useful comments on several drafts of this paper. We got the
idea of modeling compiler optimizations as an ARS from a
talk P.L. Curien gave at M.1.T in November 1987, where
he described the work of ThCr+se Hardin. Unfortunately we
have not been able to read the thesis [S] because it is in
French!

We are grateful to Vinod Kathail for innumerable dis-
cussions about Term Rewriting Systems and the ~-calculus,
and the specific issues discussed in this paper. A discus-
sion with Albert Meyer was very helpful in clarifying the
question regarding observational congruence and compiler
correctness.

Many thanks to Shail Gupta, Jamey Hicks, Gary Lind-
Strom (Utah), R.S. Nikhil, Surya Mantha (Utah), Jon Ricke
and Jonathan Young for reading the current draft of the
paper and for providing insightful comments.

Funding for this work has been provided in part by the
Advanced Research Projects Agency of the Department of
Defense under the Office of Naval Research contract N00014-
84-K-0099 (MIT) and N0039-88-C-0163 (Harvard).

References

PI

PI

t31

PI

Arvind and K. Ekanadham. Future Scientific Program-
ming on Parallel Machines. Journal of Parallel and
Distributed Computing, 5(5), October 1988.

Arvind, S. Heller, and R. S. Nikhil. Programming Gen-
erality and Parallel Computers. In Proceedings of the
Fourth International Symposium on Biological and Ar-
tificial Intelligence Systems, E. Clementi and S. Chin
(eds), Trento, Italy, pages 255-286. ESCOM Science
Publishers, Leiden, The Netherlands, September 1988.

Arvind and R. S. Nikhil. Executing a Program on
the MIT Tagged-Token Dataflow Architecture. In Pro-
ceedings of the PARLE Conference, Eindhouen, The
Netherlands, Springer- Verlag LNCS 259, June 198’7.
(To appear in IEEE Transactions on Computers).

Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures:
Data Structures for Parallel Computing. In Proceed-
ings of the Workshop on Graph Reduction, Santa Fe,

[51

[61

171

[81

PI

WI

P11

P-4

[131

[141

[151

WI

El71

lvew Mexico, Springer-Verlag LNCS 279, pages 336-
$69, September/October 1987.

H. Barendregt. The Lambda Calculus: Its Syntax and
Semantics. North-Holland, Amsterdam, 1984.

8. P. Barendregt, M. C. J. D. van Eekelen, J. R. W.
Zlauert, J. R. Kennaway, M. J. Plasmeijer, and M. R.
Sleep. Towards an Intermediate Language Based on
Graph Rewriting. In Proceedings of the PARLE Con-
ference, Eindhoven, The Netherlands, Springer-Verlag
LNCS 259, pages 159-175, June 1987.

H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W.
Glauert, J. R. Kennaway, M. J. Plasmeijer, and M. R.
Sleep. Term Graph Rewriting. In Proceedings of
the PARLE Conference, Eindhoven, The Netherlands,
Springer-Verlag LNCS 259, pages 141-158, June 1987.

T. Hardin. RCsultat de Confluence pour les Rkgles
Fortes da la Logique Combinatoire Categoique et Liens
avec les Lambda-calculs. Ph.D. thesis, UniversitC Paris
VII, October 1987.

T. Johnsson. Lambda lifting: Transforming pro-
grams to recursive equations. In Proceedings of Func-
tional Programming Languages and Computer Architec-
ture Conference, Nancy, France, Springer- Verlag LNCS
201, September 1985.

J. Klop. Term Rewriting Systems. Course Notes, Sum-
mer course organized by Corrado Boehm, Ustica,ItaIy,
September 1985.

A. R. Meyer and S. S. Cosmadakis. Semantical
Paradigms: Notes for an Invited Lecture. Technical re-
port, MIT Laboratory for Computer Science, 545 Tech-
nology Square, Cambridge, MA 02139, July 1988.

R. S. NikhiI. Id (Version 88.1) Reference Manual.
Technical Report CSG Memo 284, MIT Laboratory for
Computer Science, 545 Technology Square, Cambridge,
MA 02139, August 1988.

R. S. Nikhil, K. Pingali, and Arvind. Id Nouveau. Tech-
nical Report CSG Memo 265, Computation Structures
Group, MIT Lab. for Computer Science, Cambridge,
MA 02139, July 1986.

S. L. Peyton Jones. FLIC - a Functional Language
Intermediate Code. ACM SIGPLAN Notices, 23(8):30-
48, August 1988.

S. K. Skedzielewski and M. L. Welcome. Data Flow
Graph Optimization in IFl. In Proceedings of Func-
tional Programming Languages and Computer Architec-
ture Conference, Nancy, France, Springer- Verlag LNCS
801, pages 17-34, September 1985.

K. R. Traub. A Compiler for the MIT Tagged-Token
Dataflow Architecture. Technical Report LCS TR-370,
MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139, August 1986.

K. R. Traub. Sequential Implementation of Lenient.
Programming Languages. Technical Report LCS TR-
417, MIT Laboratory for Computer Science, 545 Tech-
nology Square, Cambridge, MA 02139, May 1988.

242

