X10: Programming for Hierarchical Parallelism and NonUniform Data Access

Kemal Ebcioglu Vivek Sarkar Vijay Saraswat IBM T.J. Watson Research Center vsarkar@us.ibm.com

LaR 2004 Workshop

OOPSLA 2004

This work has been supported in part by the Defense Advanced Research Projects Agency (DARPA) under contract No. NBCH30390004.

Acknowledgments: PERCS team

IBM PERCS Team members

- IBM Research
- IBM Systems & Technology Group
- IBM Software Group
- PI: Mootaz Elnozahy
- University partners:
 - Cornell
 - LANL
 - MIT
 - Purdue University
 - RPI
 - UC Berkeley
 - U. Delaware
 - U. Illinois
 - U. New Mexico
 - U. Pittsburgh
 - UT Austin
 - Vanderbilt University

V Sarkar

- X10 core team
 - Philippe Charles
 - Kemal Ebcioglu
 - Patrick Gallop
 - Christian Grothoff (Purdue)
 - Christoph von Praun
 - Vijay Saraswat
 - Vivek Sarkar
- Additional contributors to X10 design & implementation ideas:
 - David Bacon
 - Bob Blainey
 - Perry Cheng
 - Julian Dolby
 - Guang Gao (U Delaware)
 - Allan Kielstra
 - Robert O'Callahan
 - Filip Pizlo (Purdue)
 - V.T.Rajan
 - Lawrence Rauchwerger (Texas A&M)

2

- Mandana Vaziri

Performance and Productivity Challenges facing Future Scalable Systems

1) <u>Memory wall:</u> Severe *nonuniformities* in bandwidth & latency in memory hierarchy

2) <u>Frequency wall:</u> Multiple layers of *hierarchical heterogeneous parallelism* to compensate for slowdown in frequency scaling

3) <u>Scalability wall:</u> Software will need to deliver ~ *10⁵-way parallelism* to utilize peta-scale parallel systems

High Complexity of HPC Systems Limits HPC Application Development Productivity

V. Sarkar

OOPSLA LaR 2004 Workshop

IBM

Impact of Programming Model on Productivity

- Safety how much of the burden of ensuring absence of errors falls on the user? e.g., Type errors, Initialization errors, Memory errors, Concurrency errors, Consistency errors, …
- 2. **Portability** how much effort is required to move the application across multiple platforms and multiple system generations?
- **3. Performance** --- how much of the burden of managing and tuning program resources falls on the user?
- **4. Integration** --- to what extent can the programming model reuse existing Languages, Environment, Libraries, and Tools?

Impact of Programming Model on Compiler-Driven Performance

- MPI: Local memories + message-passing
 - Parallelism, locality, and "global view" are completely managed by programmer
 - Communication, synchronization, consistency operations specified at low level of abstraction
 - → Limited opportunities for compiler optimizations
- Java threads, OpenMP: shared-memory parallel programming model
 - Uniform symmetric view of all shared data
 - Non-transparent performance --- programmer cannot manage data locality and thread affinity at different hierarchy levels (cluster, SMT, ...)
 - → Limited effectiveness of compiler optimizations
- HPF, UPC: partitioned global address space + SPMD execution model
 - User specifies data distribution & parallelism, compiler generates communications using owner-computes rule
 - Large overheads in accessing shared data; compiler optimizations can help applications with simple data access patterns

V Sarkar

X10 Design Guidelines: Design for Productivity & Compiler/Runtime-driven Performance

- Start with state-of-the-art OO language primitives as foundation
 - No gratuitous changes
 - Build on existing skills
- Raise level of abstraction for constructs that should be amenable to optimized implementation
 - Monitors \rightarrow atomic sections
 - Threads, DMA \rightarrow async activities
 - Barriers \rightarrow clocks
- Introduce new constructs to model hierarchical parallelism and nonuniform data access
 - Places

/ Sarkar

Distributions

- Support common parallel programming idioms
 - Data parallelism
 - Control parallelism
 - Divide-and-conquer
 - Producer-consumer / streaming
 - Message-passing
- Ensure that every program has a well-defined semantics
 - Independent of implementation
 - Simple concurrency model & memory model
- Defer fault tolerance and reliability issues to lower levels of system
 - Assume tightly-coupled system with dedicated interconnect

7

•

Logical View of X10 Programming Model

- *Place* = collection of resident activities and data
 - Maps to a data-coherent unit in a large scale system
- Four storage classes:
 - Partitioned global
 - Place-local
 - Activity-local
 - Value class instances
 - Can be copied/migrated freely

- Activities can be created by
 - async statements (one-way msgs)
 - future expressions
 - foreach & ateach constructs
- Activities are coordinated by
 - Atomic sections
 - Current restriction: all data accesses in an atomic section must be place-local
 - Atomic locations
 - Clocks (generalization of barriers)
 - Force (for result of future)

V. Sarkar

X10 Type System: Additional Features

- Unified type system
 - All data items are objects
- Value classes and clocked final
 - Immutable --- no updatable fields
- Type parameters
 - Places, distributions,
- Nullable
 - All types are non-null by default, need to explicitly declare a variable as nullable
 - For any type T, the type ?T (read: "nullable T") contains all the values of type T, and a special null value, unless T already contains null.
- Support for both rectangular multidimensional arrays (matrices) and nested arrays
- . .

X10 Runtime design issues

- Places
 - Typically, map one place per SMP node
 - Scenarios where multiple places/node could be useful
 - Virtual partitions
 - Coprocessors w/ DMA
 - Hierarchical places
- Local async/future operations
 - Similar to lightweight threads
- Remote async/future operations
 - Similar to active messages
 - Runtime system needs to marshall/unmarshall parameters and return values
- Possible implementation strategies for atomic sections
 - Only execute one atomic section at a time in a place
 - Analyzable atomic setcions

Transactional semantics

V. Sarkar

OOPSLA LaR 2004 Workshop

X10, in comparison with Java...

- Removes
 - Primitive arithmetic data types
 - Threads, lock-level synchronization
 - Single global heap

- Arrays
- JNI

• Adds

- User-defined value types
- Asynchronous activities, with atomic sections
- Places specifying affinity between data and computation
- True, distributed, multidimensional arrays
- New efficient native/extern code invocation mechanisms

X10, in comparison with MPI+OpenMP ...

Removes

- Processes
- Programmer-managed global data structures
- Message passing w/ programmermanaged marshalling
 - Includes reductions
- Low-level message envelopes
 - <source, destination, tag, communicator>
- Barriers
- OpenMP threads
- Locks, critical sections
- Affinity directives
- INDEPENDENT directive

• Adds

- Places
- Partitioned Global Address Space
- Asynchronous activities w/ objects and futures
 - Includes reductions
- Strongly-typed invocations and return values (futures)
- Clocks
- Asynchronous activities
- Atomic sections
- "at" clauses
- foreach, ateach statements

X10 Programming and Runtime Environments

PERCS Programming Model and Tools: Addressing Application Development Productivity Challenges

PERCS Programming Model and Tools: Addressing Application Development Productivity Challenges

Async activities: unified abstraction of threads and messages

- Async statement (active message)
 - async(P){S}: run S at place P
 - async(D){S}: run S at place
 containing datum D
 - S may contain local atomic operations or additional async activities for same/different places.
- Example:

```
public void put(K key, V value) {
    int hash = key.hashCode()% D.size;
    async (D[hash]) {
        for (_ b = buckets[hash]; b != null; b = b.next) {
            if (b.k.equals(key)) {
                b.v = value;
                return;
            }
        }
        buckets[hash] =
            new Bucket<K,V>(key, value, buckets[hash]);
      };
    };
}
```

- Async expression (future)
 - F = future(P){E}, or
 - $F = future(D) \{E\}$: Return

the value of expression E, evaluated in place P (or the place containing datum D)

- force F or !F: suspend until value is known
- Example:

```
public ^V get(K key) {
    int hash = key.hashCode()% D.size;
    return future (D[hash]) {
        for (_ b = buckets[hash]; b != null; b = b.next) {
            if (b.k.equals(key)) {
                return b.v;
            }
        }
        return new V();
        }
    }
}
```

16

Distributed hash-table example OOPSLA LaR 2004 Workshop

Clocks: abstraction of barriers

• Operations:

```
clock c = new clock();
```

 $now(c){S}$

• Require S to terminate before clock can progress.

continue c;

- Signals completion of work by activity in this clock phase.
- **next** C_1, \ldots, C_n ;
 - Suspend until clocks can advance. Implicitly continues all clocks.
 c₁,...,c_n names all clocks for activity.

drop c;

• No further operations on c...

Semantics

 Clock c can advance only when all activities registered with the clock have executed continue c..

Clocked final

- clocked(c) final int l = r;
- Variable is "final" (immutable) until next phase

RandomAccess (GUPS) example

```
public void run(int a[] blocked, int seed[] cyclic,
            int value smallTable[]) {
    ateach (start : seed) clock(c) {
       int ran = start;
       for (int count : 1.. N UPDATES/place.MAX PLACES) {
           ran = Math.random(ran);
           int j = F(ran); // function F() can be in C/Fortran
           int k = \text{smallTable}[q(ran)];
           async (a[j]) atomic {a[j]^=k;}
       } // for
   } // ateach
   next c;
```


18

V Sarkar

Regions and Distributions

- Regions
 - The domain of some array; a collection of array indices
 - region R = [0..99];
 - region R2 = [0..99,0..199];
- Region operators
 - region Intersect = R3 && R4;
 - region Union = R3 || R4;
 - Etc.

- Distributions
 - Map region elements to places
 - distribution D = cyclic(R);
 - Domain and range restriction:
 - distribution D2 = D | R;
 - distribution D3 = D | P;
- Regions/Distributions can be used like type and place parameters
 - <region R, distribution D> void m(...)

ArrayCopy example: example of highlevel optimizations of async activities

Version 1 (orginal):

```
<value T, D, E> public static void
arrayCopy( T[D] a, T[E] b) {
    // Spawn an activity for each index to
    // fetch and copy the value
    ateach (i : D.region)
        a[i] = async b[i];
    next c; // Advance clock
    }
```

```
Version 2 (optimized):
<value T, D, E> public static void
arrayCopy( T[D] a, T[E] b) {
    // Spawn one activity per place
    ateach ( D.places )
    for ( j : D | here )
        a[i] = async b[i];
    next c; // Advance clock
```

HPCS PERCS Version 3 (further optimized): <value T, D, E> public static void arrayCopy(T[D] a, T[E] b) { // Spawn one activity per D-place and one // future per place p to which E maps an // index in (D | here). ateach (D.places) { region LocalD = (D | here).region; ateach (p : E[LocalD]) { region RemoteE = (E | p).region; region Common = LocalD && RemoteE: a[Common] = async b[Common]; } next c; // Advance clock

20

V. Sarkar

Uniform treatment of Arrays & Loops and Collections & Iterators

• Arrays

- Map region elements to values (therefore multidimensional)
- Declared with a given distribution
- int[D] array;
- Loops
 - ateach (D[R]) { ... }
 - ateach (array) { ... }
 - foreach (i : R) { ... }
 - foreach (i : D) { ... }
 - foreach (i : array) { ... }
 - sequential variants of foreach
 are available as for loops

V. Sarkar

- Distributed Collections
 - Map collection elements to places
 - Collection<D,E> identifies a collection with distribution D and element type E

- Parallel iterators
 - foreach (e : C) { ... }
 - ateach (C) { ... here ... }
- Sequential iterator
 - for (e : C)

Reduction and Scan Operators

- Reduction operator over type T
 - Static method with signature: T(T,T)
 - Virtual method in class T with signature T(T)
 - Operator is expected to be associative and commutative
- Reduction operation: A >> foo() returns value of type T, where
 - A is an array over base type T
 - A>>foo() performs reductions over all elements of A to obtain a single result of type T
- Scan operation: A || foo() returns array, B, of base type T, where
 - B[i] = A[0..i]>>foo()

Example of Unconditional Atomic Sections SPECjbb2000: Java vs. X10 versions

Java version:

public class Stock extends Entity {...

private float ytd;

private short orderCount; ...

public synchronized void

incrementYTD(short ol_quantity) { ...

ytd += ol_quantity; ...}...

public synchronized void

incrementOrderCount() { ...

++orderCount; ...} ...

Layout of a "Stock" object

lock

ytd

orderCount

These two methods cannot be executed simultaneously because they use the same lock

X10 version (w/ atomic section):

```
public class Stock extends Entity {...
private float ytd;
private short orderCount; ...
public atomic void
incrementYTD(short ol_quantity) { ...
ytd += ol_quantity; ...}..
public atomic void
incrementOrderCount() { ...
++orderCount; ...}
```


With atomic sections, X10 implementation can choose to execute these two methods in parallel

23

Atomic Sections are deadlock-free!V. SarkarOOPSLA LaR 2004 Workshop

IBM.

Migrating Applications to X10

- OpenMP application
 - Can be initially implemented as single place w/ one activity per SPMD virtual processor
 - Partition into multiple places for improved performance
- Multithreaded applications
 - Can be initially implemented as single place w/ one activity per thread
 - Partition into multiple places for improved performance
- MPI
 - Partition into one place per processor
 - Replace message-passing operations by asynchronous operations

Relating optimizations for past programming paradigms to X10 optimizations

Programming paradigm	Activities	Storage classes	Important optimizations					
Message- passing e.g., MPI	Single activity per place	Place local	Message aggregation, optimization of barriers & reductions					
Data parallel e.g., HPF	Single global program	Partitioned global	SPMDization, synchronization & communication optimizations					
PGAS e.g., Titanium, UPC	Single activity per place	Partitioned global, place local	Localization, SPMDization, synchronization & communication optimizations					
DSM e.g., TreadMarks	Multiple	Partitioned global, activity local	Data layout optimizations, page locality optimizations					
NUMA	Single activity per place	Partitioned global, activity local	Data distribution, synchronization & communication optimizations					
Co-processor e.g., STI Cell	Single activity per Partitioned-global, place		Data communication, consistency, & synchronization optimizations					
Futures / active messages	Multiple	Place-local, activity local	Message aggregation, synchronization optimization					
Full X10	Multiple activities in multiple places	Partitioned-global, place-local, activity-local	All of the above					

Sarkar

X10 Managed Runtime

Benefits of managed runtime systems and virtual machines are well understood ...

- Safety
- Productivity
- Portability
- Interoperability
- Isolation
- Virtualization
- ... but, are managed runtime systems appropriate for addressing performance challenges facing future large-scale parallel systems?
- → Yes, because they enable *continuous program optimization*

Continuous Program Optimization (CPO) through Performance & Environment Monitoring (PEM)

- Continuous Program Optimization (CPO) increases programmer productivity by automating the laborious and challenging performance tuning effort
- CPO aims at tuning application by optimally
 - adapting the application to its behavior and environment
 - adapting environment resources to application behavior
- CPO is made possible through continuous whole-system Performance and Environment Monitoring (PEM)

PEM Infrastructure

PEM Scenario: Exploring the Performance Impact of Large Pages

Preliminary Work for building a CPO Agent for Adaptive Page Sizing

Summary of Performance Exploration

Zoom into innermost loop

5-Navigator 🛿	← → 🙀 🔓 🤹 👻 🗖 🗖 🗖 Statistics 🕱 Selection Index	-8	
traces	Strip: TLB misses		
AppEvents.sa	L Lavers: Numerical Statistics		
AppEventsDetail.sa	Numerical Statistics	w slide	e
large page.sa	Statistic Value		
larga paga initial as			

📼 🕗 🔤 🛂 🐺 🛑 🗨 🎰 🏤 🏪 💭 😥 🌾 🎲 🛷 🤛

🔄 *AppEvents.sa	🖾 * AppEventsDetail.sa	🖾 *small page	e.sa 🛛 🖾 large pag	ge initial.sa	🖾 large pa	ge.sa 🔼	large page op	timized.sa 🔉	3 📄 snflv	vxyz.c	📄 snswp3	d.c		
+ - ^ v []	Zoom all Zoom out Zoo	m in < >												
		t ¹ t ⁵	• ⁵ • ⁵	5	• ⁵	t ⁵	t2							
					-23	31018925	4314216480 (4545235405)						
page faults small	5282.0(Ms 686 recorcpgflts	1 5	5		5		5		5		5		5	
page faults large p	5282.0 .679 recorcpgfits 0.0	1 +5	+ ⁵ + ⁵	5	<u>нананын</u> ы +5	<u>, 1999:200,000,000,000</u> ,000,000,000,000,000,000	* ⁵	1999-1999-1999-1999-1999-1999-1999-199	<u>n (dirukteri kan daraka</u> t	<u>1919) (9193) (4016</u>	TERSIN BASINIATIN CHAST N	A EPASSO ATSTUDIS	<u>Tanar (sestimator</u>	<u>11)))))))))))))))))))))))))))))))))))</u>
page faults opt lar	5282.0 687 recorcpgflts 0.0 ;	↓1 ↓5	• ⁵ • ⁵	5	, 5	¢ ⁵	• ⁵							
TLB misses large	4062.0 .679 recorcTlbMiss 0.0	1 4 5	•5 •5	5		-5	-5							
TLB misses opt la	4062.0 .687 recorcTlbMiss 0.0	1 5	•5 •5	- 5	, 5	• ⁵	•2							
data ERAT misse	19528.0(M 679 recorcDeratMiss		32922 (23) 55 5 31 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	52000 1 − 2 2 −	inaninan inan Anan inan Anan inan inan			rfkişêşi Artist						
data ERAT opt lar	19528.0 . 687 recorcDeratMiss 0.0 : ۲		•5 •5	5	,5	• ⁵	• ⁵							
L1 load misses lar.	30368.0(M .679 recorcLdMissL1 0.0(Min)		5 5 		5 5	5 5	- 000 000 000 000 1000 000 000 000 000 1000 000							
L1 load misses s	30368.0 687 recorcLdMissL1		•5 •5	5	5	•5 5	∳ 5 1.1.23195-3-							
Blue –	4k pages													

Brown – Initial Large Page Mapping: each structure aligned at large page boundary Red - Optimized large page mapping: Offset each data structure to avoid conflicts

X10 Status and Plans

- Draft Language Design Report available internally w/ set of sample programs
- Implementation begun on X10 Prototype #1 for 1/2005
 - Functional reference implementation of language subset, not optimized for performance
 - Support for calls to single-threaded native code (C, Fortran)
- Productivity experiments planned for 7/2005
 - Use prototype #1 and related tools (PE, refactoring) to compare X10 w/ MPI, UPC
 - Revise language based on feedback from productivity experiments
- Prototype #2 planned for 12/2005
 - Includes design & prototype implementation of selected optimizations for parallelism, synchronization and locality in X10 programs
 - Revise language based on feedback from design evaluation

X10 Implementation Challenges

- **Type checking/inference** to enforce semantic guarantees
 - Clocked types
 - Place-aware types
- Consistency management
 - Lock assignment for atomic sections
 - Data-race detection
- Activity aggregation
 - Batch activities into a single thread.
- Message aggregation

Sarkar

- Batch "small" messages.

- Load-balancing
 - Dynamic, adaptive migration of place from one processor to another.
- Continuous optimization
 - Efficient implementation of scan/reduce
- Efficient invocation of components in foreign languages
 - C, Fortran
- Garbage collection across
 multiple places

Conclusions and Future Work

- Future Large-scale Parallel Systems will be accompanied by severe productivity and performance challenges
 - ➔ Opportunity for Languages, Compilers, and Runtime technologies to have even greater impact on scalable systems than before
- Summarized X10 language approach in PERCS project, with a focus on next steps:
 - Use applications and productivity studies to refine design decisions in X10
 - Prototype solutions to address implementation challenges
- Future work (beyond 2005)
 - Community effort to build consensus on standardized "high productivity" languages for HPC systems in the 2010 timeframe
 - Explore integration of X10 ideas with other research language efforts under way in IBM
 - XJ, BPEL, ...

Sarkar

