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Performance and Productivity Challenges 
facing Future Scalable Systems

1) Memory wall: Severe non-
uniformities in bandwidth & 
latency in memory hierarchy
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2) Frequency wall: Multiple layers of 
hierarchical heterogeneous 
parallelism to compensate for 
slowdown in frequency scaling

3) Scalability wall: Software will need 
to deliver ~ 105-way parallelism to 
utilize peta-scale parallel systems
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High Complexity of HPC Systems Limits HPC Application 
Development Productivity
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1995: entire chip can be accessed in 1 cycle

2010: only small fraction of chip can be accessed in 1 cycle

Major sources of complexity for application developer:
1) Severe non-uniformities in data accesses
2) Applications must exhibit large degrees of parallelism 

(up to ~ 105 threads)

. . . Complexity leads to increases in all 
phases of HPC Software Lifecycle 

related to parallel code
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Impact of Programming Model on Productivity
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1. Safety – how much of the burden of ensuring absence of 
errors falls on the user? e.g., Type errors, Initialization 
errors, Memory errors, Concurrency errors, Consistency 
errors, …

2. Portability – how much effort is required to move the 
application across multiple platforms and multiple system 
generations?

3. Performance --- how much of the burden of managing and 
tuning program resources falls on the user? 

4. Integration --- to what extent can the programming model 
reuse existing Languages, Environment, Libraries, and 
Tools?
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Impact of Programming Model 
on Compiler-Driven Performance

• MPI: Local memories + message-passing
− Parallelism, locality, and “global view” are completely managed by 

programmer
− Communication, synchronization, consistency operations specified at 

low level of abstraction
Limited opportunities for compiler optimizations

• Java threads, OpenMP: shared-memory parallel programming model
− Uniform symmetric view of all shared data
− Non-transparent performance --- programmer cannot manage data 

locality and thread affinity at different hierarchy levels (cluster, SMT, …)
Limited effectiveness of compiler optimizations

• HPF, UPC: partitioned global address space + SPMD execution model
− User specifies data distribution & parallelism, compiler generates 

communications using owner-computes rule
− Large overheads in accessing shared data; compiler optimizations can 

help applications with simple data access patterns
Limited applicability of compiler optimizations
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X10 Design Guidelines: Design for Productivity & 
Compiler/Runtime-driven Performance

• Start with state-of-the-art OO 
language primitives as foundation 
− No gratuitous changes
− Build on existing skills

• Raise level of abstraction for 
constructs that should be 
amenable to optimized 
implementation
− Monitors atomic sections
− Threads, DMA async activities
− Barriers clocks

• Introduce new constructs to model 
hierarchical parallelism and non-
uniform data access
− Places
− Distributions

• Support common parallel 
programming idioms 
− Data parallelism
− Control parallelism
− Divide-and-conquer
− Producer-consumer / streaming
− Message-passing

• Ensure that every program has a 
well-defined semantics 
− Independent of implementation
− Simple concurrency model & 

memory model

• Defer fault tolerance and reliability 
issues to lower levels of system
− Assume tightly-coupled system 

with dedicated interconnect
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Logical View of X10 Programming Model

heap
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control

heap

stack

control
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Activities &
Activity-local storage

Place-local heap

Partitioned Global heap
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control

heap

stack

control

. . .

Place-local heap

Partitioned Global heap

Inbound 
async
requests

Outbound 
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async
replies
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Place Place

Granularity of 
place can range 
from single h/w
thread to an entire 
scale-up system

• Place = collection of resident activities 
and data
− Maps to a data-coherent unit in a 

large scale system

• Four storage classes:
− Partitioned global
− Place-local
− Activity-local
− Value class instances

• Can be copied/migrated freely

• Activities can be created by
− async statements (one-way msgs)
− future expressions
− foreach & ateach constructs

• Activities are coordinated by
− Atomic sections

• Current restriction: all data accesses in 
an atomic section must be place-local

− Atomic locations
− Clocks (generalization of barriers)
− Force (for result of future)

Activities &
Activity-local storage

Value
Class

Instances
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X10 Type System: Additional Features 

• Unified type system
− All data items are objects

• Value classes and clocked final
− Immutable --- no updatable fields

• Type parameters
− Places, distributions, 

• Nullable
− All types are non-null by default, need to explicitly declare a variable 

as nullable
− For any type T, the type ?T (read: “nullable T”) contains all the values 

of type T, and a special null value, unless T already contains null.
• Support for both rectangular multidimensional arrays (matrices) and 

nested arrays
• . . .
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X10 Runtime design issues
• Places

− Typically, map one place per SMP node
− Scenarios where multiple places/node could be useful

• Virtual partitions
• Coprocessors w/ DMA
• Hierarchical places

• Local async/future operations
− Similar to lightweight threads

• Remote async/future operations
− Similar to active messages
− Runtime system needs to marshall/unmarshall parameters and return 

values

• Possible implementation strategies for atomic sections
− Only execute one atomic section at a time in a place
− Analyzable atomic setcions
− Transactional semantics
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X10, in comparison with Java…

• Removes
− Primitive arithmetic data 

types
− Threads, lock-level 

synchronization

− Single global heap 

− Arrays
− JNI

• Adds
− User-defined value 

types
− Asynchronous 

activities, with atomic 
sections

− Places specifying 
affinity between data 
and computation

− True, distributed, multi-
dimensional arrays

− New efficient 
native/extern code 
invocation mechanisms
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X10, in comparison with MPI+OpenMP …

• Adds
− Places
− Partitioned Global Address Space

− Asynchronous activities w/ 
objects and futures

• Includes reductions

− Strongly-typed invocations and 
return values (futures)

− Clocks
− Asynchronous activities
− Atomic sections
− “at” clauses
− foreach, ateach statements

• Removes
− Processes
− Programmer-managed global data 

structures
− Message passing w/ programmer-

managed marshalling
• Includes reductions

− Low-level message envelopes
• <source, destination, tag, 

communicator>
− Barriers
− OpenMP threads
− Locks, critical sections
− Affinity directives 
− INDEPENDENT directive
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X10 Programming and Runtime Environments

X10 source code

Productivity 
Metrics

X10 
Development 

Toolkit

Fortran source code
(w/ MPI+OpenMP)

Java 
Development 

Toolkit

Integrated Programming Environment: Edit, Compile, Debug, Visualize, Refactor

Use Eclipse platform (eclipse.org) as foundation for integrating tools

Morphogenic Software: separation of concerns, separation of roles

C/C++ source code
(w/ MPI+OpenMP)

C 
Development 

Toolkit

Java source code
(w/ threads & conc utils)

Fortran 
Development 

Toolkit

. . .

Continuous Program Optimization (CPO)

PERCS System Software (K42)

PERCS System Hardware

. . .

X10 
Components

X10 runtime

Fortran 
components

C/C++ 
components

Fortran runtime C/C++ runtime

Java 
components

Java runtime

Performance
Exploration

Fast extern
interface

Integrated Concurrency Library: messages, synchronization, threads

PERCS = Productive
Easy-to-use Reliable
Computer Systems 
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PERCS Programming Model and Tools: 
Addressing Application Development Productivity Challenges
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PERCS Programming Model and Tools: 
Addressing Application Development Productivity Challenges
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Deliver 10x 
improvement in 

development 
productivity 

X10 Programming Model

New programming model provides foundation 
for productivity-improving technologies

Productivity metrics

Morphogenic Software

Visualization, Validation, Verification

Component-Based 
Development

High-Level Parallel 
Programming Tools

Legacy codes

Reduce the  expertise gap
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Async activities: unified abstraction of 
threads and messages

• Async statement (active message)
− async(P){S}: run S at place P
− async(D){S}: run S at place 

containing datum D
− S may contain local atomic 

operations or additional async
activities for same/different places. 

• Example:

• Async expression (future)
− F = future(P){E}, or

F = future(D){E}: Return 
the value of expression E, 
evaluated in place P (or the 
place containing datum D)

− force F or !F : suspend until 
value is known

• Example:
public void put(K key, V value) {

int hash = key.hashCode()% D.size;
async (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

b.v = value;
return;

}
}
buckets[hash] = 

new Bucket<K,V>(key, value, buckets[hash]);
};

}

public ^V get(K key) {
int hash = key.hashCode()% D.size;
return future (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

return b.v;
}

}
return new V();

}
}

Distributed hash-table example
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Clocks: abstraction of barriers

• Operations:
clock c = new clock();
now(c){S}

• Require S to terminate before clock 
can progress.

continue c;
• Signals completion of work  by 

activity in this clock phase.
next c1,…,cn ;

• Suspend until clocks can advance. 
Implicitly continues all clocks. 
c1,…,cn names all clocks for activity.

drop c;
• No further operations on c..

• Semantics
− Clock c can advance only when 

all activities registered with the 
clock have executed continue c..

• Clocked final
− clocked(c) final int l = r;
− Variable is “final” (immutable)  

until next phase
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RandomAccess (GUPS) example

public void run(int a[] blocked, int seed[] cyclic,

int value smallTable[]) {

ateach (start : seed) clock(c) {

int ran = start;

for (int count : 1.. N_UPDATES/place.MAX_PLACES) {

ran = Math.random(ran); 

int j = F(ran); // function F() can be in C/Fortran

int k = smallTable[g(ran)];

async (a[j]) atomic {a[j]^=k;}

} // for

} // ateach

next c;

}
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Regions and Distributions

• Regions
− The domain of some array;

a collection of array indices
− region R = [0..99];
− region R2 = [0..99,0..199];

• Region operators
− region Intersect = R3 && 

R4;
− region Union = R3 || R4;
− Etc.

• Distributions
− Map region elements to places

• distribution D = cyclic(R);

− Domain and range restriction:
• distribution D2 = D | R;

• distribution D3 = D | P;

• Regions/Distributions can be used 
like type and place parameters
− <region R, distribution D>

void m(...)
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ArrayCopy example: example of high-
level optimizations  of async activities

Version 1 (orginal):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn an activity for each index to 
// fetch and copy the value

ateach (i : D.region) 
a[i] = async b[i];

next c; // Advance clock
}

Version 2 (optimized):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn one activity per place 
ateach ( D.places )  

for ( j : D | here ) 
a[i] = async b[i];

next c; // Advance clock 
}

Version 3 (further optimized):
<value T, D, E>  public static void

arrayCopy( T[D] a, T[E] b) {
// Spawn one activity per D-place and one
// future per place p to which E maps an 
// index in (D | here).

ateach ( D.places ) {
region LocalD = (D | here).region;
ateach ( p : E[LocalD] ) {

region RemoteE = (E | p).region;
region Common = 

LocalD && RemoteE;
a[Common] = async b[Common];

}
}

next c; // Advance clock
}
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Uniform treatment of Arrays & Loops 
and Collections & Iterators

• Distributed Collections
− Map collection elements to 

places
− Collection<D,E> identifies a 

collection with distribution D and 
element type E

• Parallel iterators
− foreach (e : C) { … }
− ateach ( C ) { … here … }

• Sequential iterator
− for (e : C) 

• Arrays
− Map region elements to values 

(therefore multidimensional)
− Declared with a given 

distribution
− int[D] array;

• Loops
− ateach (D[R]) { ... }
− ateach (array) { ... }
− foreach (i : R) { ... }
− foreach (i : D) { ... }
− foreach (i : array) { ... }
− sequential variants of foreach

are available as for loops
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Reduction and Scan Operators

• Reduction operator over type T
− Static method with signature: T(T,T)
− Virtual method in class T with signature T(T)
− Operator is expected to be associative and commutative

• Reduction operation: A >> foo() returns value of type T, where
− A is an array over base type T
− A>>foo() performs reductions over all elements of A to obtain a 

single result of type T

• Scan operation: A || foo() returns array, B, of base type T, where
− B[i] = A[0..i]>>foo()
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Example of Unconditional Atomic Sections
SPECjbb2000: Java vs. X10 versions

Java version:
public class Stock extends Entity {…
private float  ytd;
private short orderCount; …
public synchronized void

incrementYTD(short ol_quantity) { …
ytd += ol_quantity; …}…

public synchronized void
incrementOrderCount() { …

++orderCount; …} …
}

X10 version (w/ atomic section):
public class Stock extends Entity {…

private float  ytd;

private short orderCount; …

public atomic void

incrementYTD(short ol_quantity) { …

ytd += ol_quantity; …}…

public atomic void

incrementOrderCount() { …

++orderCount; …} …

}

These two methods cannot be 
executed simultaneously 
because they use the same 
lock

With atomic sections, X10 
implementation can 
choose to execute these 
two methods in parallel

lock

ytd
orderCount ytd

orderCount

lock1

lock2

Layout of 
a “Stock” 

object

Atomic Sections are deadlock-free!
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Migrating Applications to X10

• OpenMP application
− Can be initially implemented as single place w/ one activity per

SPMD virtual processor
− Partition into multiple places for improved performance

• Multithreaded applications
− Can be initially implemented as single place w/ one activity per

thread
− Partition into multiple places for improved performance

• MPI
− Partition into one place per processor
− Replace message-passing operations by asynchronous operations
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Relating optimizations for past programming 
paradigms to X10 optimizations

Programming 
paradigm

Activities Storage classes Important optimizations

Message-
passing e.g., 
MPI

Single activity per 
place

Place local Message aggregation, optimization of 
barriers & reductions

Data parallel 
e.g., HPF

Single global 
program

Partitioned global SPMDization, synchronization & 
communication optimizations

PGAS e.g., 
Titanium, UPC

Single activity per 
place

Partitioned global, place local Localization, SPMDization, 
synchronization & communication 
optimizations

DSM e.g., 
TreadMarks

Multiple Partitioned global, activity 
local

Data layout optimizations, page locality 
optimizations

NUMA Single activity per 
place

Partitioned global, activity 
local

Data distribution, synchronization & 
communication optimizations

Futures / active 
messages

Multiple Place-local, activity local Message aggregation, synchronization 
optimization

Co-processor 
e.g., STI Cell

Single activity per 
place

Partitioned-global, place-local Data communication, consistency, & 
synchronization optimizations

Full X10 Multiple activities in 
multiple places

Partitioned-global, place-local, 
activity-local

All of the above



V. Sarkar OOPSLA LaR 2004 Workshop 26

X10 Managed Runtime

Benefits of managed runtime systems and virtual machines are well 
understood …
− Safety
− Productivity
− Portability
− Interoperability
− Isolation
− Virtualization

… but, are managed runtime systems appropriate for addressing 
performance challenges facing future large-scale parallel systems?

Yes, because they enable continuous program optimization
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Continuous Program Optimization (CPO) Continuous Program Optimization (CPO) 
through Performance & Environment Monitoring (PEM) through Performance & Environment Monitoring (PEM) 

• Continuous Program Optimization (CPO) increases programmer productivity 
by automating the laborious and challenging performance tuning effort

• CPO aims at tuning application by optimally

− adapting the application to its behavior and environment

− adapting environment resources to application behavior

• CPO is made possible through continuous whole-system Performance and 
Environment Monitoring (PEM)

Tune & adapt  
(CPO)

Monitor & 
evaluate 
(PEM)

Continuous optimization 
loop

CPO/PEM contact:
Evelyn Duesterwald, IBM
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PEM InfrastructurePEM Infrastructure

O/S

1) Language-independent specification of events 
and their semantics

2) Generate language-specific event data structures and 
header files  (X10, Java, C, C++, Fortran) to support

Layer instrumentation
PEM library
CPO agent 

PE

Visualizer
PEM 
trace 

XML Event 
specification

PEM 
Tools 

Hardware/Simulator
P

E
M

 Library 

Application

C
P

O
 A

gent

Virtual Machine

3) PEM implementation with a platform-independent API 

1

2

3

Contacts for PE Visualizer tool:
Peter Sweeney (IBM), 
Matthias Hauswirth (U. Colorado)
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PEM Scenario: Exploring the PEM Scenario: Exploring the 
Performance Impact of Large PagesPerformance Impact of Large Pages

K42

PE

Visualizer
umt2k 
PEM 

traces

XML event format

PEM 
Tool 

Scripts

GP-UL
P

E
M

 

P
E

M
 client

umt2k
(scientific,Fortran/C)

Preliminary Work for building a CPO Agent 
for Adaptive Page Sizing

Vertical Event Traces:
App layer:  phase markers
O/S layer: page faults
Hardware layer: PMU counters
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Summary of Performance Exploration
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Complete run of umt2                                        
(initial configuration with 4K  pages) 
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Zoom into innermost loop
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Blue – 4k pages
Brown – Initial Large Page Mapping: each structure aligned at large page boundary
Red  - Optimized large page mapping: Offset each data structure to avoid conflicts
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X10 Status and Plans
• Draft Language Design Report available internally w/ set of sample 

programs
• Implementation begun on X10 Prototype #1 for 1/2005

− Functional reference implementation of language subset, not 
optimized for performance

− Support for calls to single-threaded native code (C, Fortran)
• Productivity experiments planned for 7/2005

− Use prototype #1 and related tools (PE, refactoring) to 
compare X10 w/ MPI, UPC

− Revise language based on feedback from productivity 
experiments

• Prototype #2 planned for 12/2005
− Includes design & prototype implementation of selected 

optimizations for parallelism, synchronization and locality in 
X10 programs

− Revise language based on feedback from design evaluation
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X10 Implementation Challenges
• Type checking/inference to 

enforce semantic guarantees
− Clocked types
− Place-aware types

• Consistency management
− Lock assignment for atomic 

sections
− Data-race detection

• Activity aggregation
− Batch activities into a single 

thread.

• Message aggregation
− Batch “small” messages.

• Load-balancing
− Dynamic, adaptive migration 

of place from one processor 
to another. 

• Continuous optimization
− Efficient implementation of 

scan/reduce 

• Efficient invocation of 
components in foreign 
languages 
− C, Fortran

• Garbage collection across 
multiple places
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Conclusions and Future Work

• Future Large-scale Parallel Systems will be accompanied by  severe 
productivity and performance challenges 

Opportunity for Languages, Compilers, and Runtime technologies to 
have even greater impact on scalable systems than before

• Summarized X10 language approach in PERCS project, with a focus on 
next steps:
− Use applications and productivity studies to refine design decisions 

in X10
− Prototype solutions to address implementation challenges

• Future work (beyond 2005)
− Community effort to build consensus on standardized “high 

productivity” languages for HPC systems in the 2010 timeframe
− Explore integration of X10 ideas with other research language 

efforts under way in IBM
• XJ, BPEL, …


