
X10: Programming for Hierarchical
Parallelism and NonUniform Data Access

X10: Programming for Hierarchical
Parallelism and NonUniform Data Access

Kemal Ebcioglu
Vivek Sarkar

Vijay Saraswat
IBM T.J. Watson Research Center

vsarkar@us.ibm.com

LaR 2004 Workshop

OOPSLA 2004

This work has been supported in part by the Defense
Advanced Research Projects Agency (DARPA) under

contract No. NBCH30390004.

Kemal Ebcioglu
Vivek Sarkar

Vijay Saraswat
IBM T.J. Watson Research Center

vsarkar@us.ibm.com

LaR 2004 Workshop

OOPSLA 2004

This work has been supported in part by the Defense
Advanced Research Projects Agency (DARPA) under

contract No. NBCH30390004.

V. Sarkar OOPSLA LaR 2004 Workshop 2

Acknowledgments: PERCS team
• X10 core team

− Philippe Charles
− Kemal Ebcioglu
− Patrick Gallop
− Christian Grothoff (Purdue)
− Christoph von Praun
− Vijay Saraswat
− Vivek Sarkar

• Additional contributors to X10 design &
implementation ideas:
− David Bacon
− Bob Blainey
− Perry Cheng
− Julian Dolby
− Guang Gao (U Delaware)
− Allan Kielstra
− Robert O'Callahan
− Filip Pizlo (Purdue)
− V.T.Rajan
− Lawrence Rauchwerger (Texas A&M)
− Mandana Vaziri
− Jan Vitek (Purdue)

• IBM PERCS Team members
− IBM Research
− IBM Systems & Technology Group
− IBM Software Group
− PI: Mootaz Elnozahy

• University partners:
− Cornell
− LANL
− MIT
− Purdue University
− RPI
− UC Berkeley
− U. Delaware
− U. Illinois
− U. New Mexico
− U. Pittsburgh
− UT Austin
− Vanderbilt University

V. Sarkar OOPSLA LaR 2004 Workshop 3

Performance and Productivity Challenges
facing Future Scalable Systems

1) Memory wall: Severe non-
uniformities in bandwidth &
latency in memory hierarchy

Clusters (scale-out)
SMP

Multiple cores on a chip

Coprocessors (SPUs)
SMTs
SIMD
ILP

. . . L3 Cache

Memory

. . .

L2 Cache

PEs,
L1 $

Proc Cluster
PEs,
L1 $. . .

L2 Cache

PEs,
L1 $

Proc Cluster
PEs,
L1 $

. . .

. . .

. . .

2) Frequency wall: Multiple layers of
hierarchical heterogeneous
parallelism to compensate for
slowdown in frequency scaling

3) Scalability wall: Software will need
to deliver ~ 105-way parallelism to
utilize peta-scale parallel systems

V. Sarkar OOPSLA LaR 2004 Workshop 4

High Complexity of HPC Systems Limits HPC Application
Development Productivity

L3 Cache

Memory

. . .

L2 Cache

PEs,
L1 $

Proc Cluster
PEs,
L1 $. . .

L2 Cache

PEs,
L1 $

Proc Cluster
PEs,
L1 $

. . .

. . .

O
ne

 b
illi

on
 tr

an
si

st
or

s
in

 a
 c

hi
p

\\

1995: entire chip can be accessed in 1 cycle

2010: only small fraction of chip can be accessed in 1 cycle

Major sources of complexity for application developer:
1) Severe non-uniformities in data accesses
2) Applications must exhibit large degrees of parallelism

(up to ~ 105 threads)

. . . Complexity leads to increases in all
phases of HPC Software Lifecycle

related to parallel code

HPC Software Lifecycle

Production
Runs of

Parallel Code

R
eq

ui
re

m
en

ts

In
pu

t D
at

a

W
rit

te
n

Sp
ec

ifi
ca

tio
n

A
lg

or
ith

m
D

ev
el

op
m

en
t

So
ur

ce
 C

od
e Development of Parallel

Source Code ---
Design, Code,

Test, Port,
Scale, OptimizePa

ra
lle

l
Sp

ec
ifi

ca
tio

n

Maintenance and
Porting of Parallel Code

// //

Impact of Programming Model on Productivity

V. Sarkar OOPSLA LaR 2004 Workshop 5

1. Safety – how much of the burden of ensuring absence of
errors falls on the user? e.g., Type errors, Initialization
errors, Memory errors, Concurrency errors, Consistency
errors, …

2. Portability – how much effort is required to move the
application across multiple platforms and multiple system
generations?

3. Performance --- how much of the burden of managing and
tuning program resources falls on the user?

4. Integration --- to what extent can the programming model
reuse existing Languages, Environment, Libraries, and
Tools?

V. Sarkar OOPSLA LaR 2004 Workshop 6

Impact of Programming Model
on Compiler-Driven Performance

• MPI: Local memories + message-passing
− Parallelism, locality, and “global view” are completely managed by

programmer
− Communication, synchronization, consistency operations specified at

low level of abstraction
Limited opportunities for compiler optimizations

• Java threads, OpenMP: shared-memory parallel programming model
− Uniform symmetric view of all shared data
− Non-transparent performance --- programmer cannot manage data

locality and thread affinity at different hierarchy levels (cluster, SMT, …)
Limited effectiveness of compiler optimizations

• HPF, UPC: partitioned global address space + SPMD execution model
− User specifies data distribution & parallelism, compiler generates

communications using owner-computes rule
− Large overheads in accessing shared data; compiler optimizations can

help applications with simple data access patterns
Limited applicability of compiler optimizations

V. Sarkar OOPSLA LaR 2004 Workshop 7

X10 Design Guidelines: Design for Productivity &
Compiler/Runtime-driven Performance

• Start with state-of-the-art OO
language primitives as foundation
− No gratuitous changes
− Build on existing skills

• Raise level of abstraction for
constructs that should be
amenable to optimized
implementation
− Monitors atomic sections
− Threads, DMA async activities
− Barriers clocks

• Introduce new constructs to model
hierarchical parallelism and non-
uniform data access
− Places
− Distributions

• Support common parallel
programming idioms
− Data parallelism
− Control parallelism
− Divide-and-conquer
− Producer-consumer / streaming
− Message-passing

• Ensure that every program has a
well-defined semantics
− Independent of implementation
− Simple concurrency model &

memory model

• Defer fault tolerance and reliability
issues to lower levels of system
− Assume tightly-coupled system

with dedicated interconnect

V. Sarkar OOPSLA LaR 2004 Workshop 8

Logical View of X10 Programming Model

heap

stack

control

heap

stack

control

. . .

Activities &
Activity-local storage

Place-local heap

Partitioned Global heap

heap

stack

control

heap

stack

control

. . .

Place-local heap

Partitioned Global heap

Inbound
async
requests

Outbound
async
requests

Outbound
async
replies

Inbound
async
replies

. . .

Place Place

Granularity of
place can range
from single h/w
thread to an entire
scale-up system

• Place = collection of resident activities
and data
− Maps to a data-coherent unit in a

large scale system

• Four storage classes:
− Partitioned global
− Place-local
− Activity-local
− Value class instances

• Can be copied/migrated freely

• Activities can be created by
− async statements (one-way msgs)
− future expressions
− foreach & ateach constructs

• Activities are coordinated by
− Atomic sections

• Current restriction: all data accesses in
an atomic section must be place-local

− Atomic locations
− Clocks (generalization of barriers)
− Force (for result of future)

Activities &
Activity-local storage

Value
Class

Instances

V. Sarkar OOPSLA LaR 2004 Workshop 9

X10 Type System: Additional Features

• Unified type system
− All data items are objects

• Value classes and clocked final
− Immutable --- no updatable fields

• Type parameters
− Places, distributions,

• Nullable
− All types are non-null by default, need to explicitly declare a variable

as nullable
− For any type T, the type ?T (read: “nullable T”) contains all the values

of type T, and a special null value, unless T already contains null.
• Support for both rectangular multidimensional arrays (matrices) and

nested arrays
• . . .

V. Sarkar OOPSLA LaR 2004 Workshop 10

X10 Runtime design issues
• Places

− Typically, map one place per SMP node
− Scenarios where multiple places/node could be useful

• Virtual partitions
• Coprocessors w/ DMA
• Hierarchical places

• Local async/future operations
− Similar to lightweight threads

• Remote async/future operations
− Similar to active messages
− Runtime system needs to marshall/unmarshall parameters and return

values

• Possible implementation strategies for atomic sections
− Only execute one atomic section at a time in a place
− Analyzable atomic setcions
− Transactional semantics

V. Sarkar OOPSLA LaR 2004 Workshop 11

X10, in comparison with Java…

• Removes
− Primitive arithmetic data

types
− Threads, lock-level

synchronization

− Single global heap

− Arrays
− JNI

• Adds
− User-defined value

types
− Asynchronous

activities, with atomic
sections

− Places specifying
affinity between data
and computation

− True, distributed, multi-
dimensional arrays

− New efficient
native/extern code
invocation mechanisms

V. Sarkar OOPSLA LaR 2004 Workshop 12

X10, in comparison with MPI+OpenMP …

• Adds
− Places
− Partitioned Global Address Space

− Asynchronous activities w/
objects and futures

• Includes reductions

− Strongly-typed invocations and
return values (futures)

− Clocks
− Asynchronous activities
− Atomic sections
− “at” clauses
− foreach, ateach statements

• Removes
− Processes
− Programmer-managed global data

structures
− Message passing w/ programmer-

managed marshalling
• Includes reductions

− Low-level message envelopes
• <source, destination, tag,

communicator>
− Barriers
− OpenMP threads
− Locks, critical sections
− Affinity directives
− INDEPENDENT directive

V. Sarkar OOPSLA LaR 2004 Workshop 13

X10 Programming and Runtime Environments

X10 source code

Productivity
Metrics

X10
Development

Toolkit

Fortran source code
(w/ MPI+OpenMP)

Java
Development

Toolkit

Integrated Programming Environment: Edit, Compile, Debug, Visualize, Refactor

Use Eclipse platform (eclipse.org) as foundation for integrating tools

Morphogenic Software: separation of concerns, separation of roles

C/C++ source code
(w/ MPI+OpenMP)

C
Development

Toolkit

Java source code
(w/ threads & conc utils)

Fortran
Development

Toolkit

. . .

Continuous Program Optimization (CPO)

PERCS System Software (K42)

PERCS System Hardware

. . .

X10
Components

X10 runtime

Fortran
components

C/C++
components

Fortran runtime C/C++ runtime

Java
components

Java runtime

Performance
Exploration

Fast extern
interface

Integrated Concurrency Library: messages, synchronization, threads

PERCS = Productive
Easy-to-use Reliable
Computer Systems

V. Sarkar OOPSLA LaR 2004 Workshop 14

PERCS Programming Model and Tools:
Addressing Application Development Productivity Challenges

Grand challenge:
Deliver 10x

improvement in
development
productivity

A
cc

el
er

at
e

th
e

 s
of

tw
ar

e
lif

ec
yc

le

Productivity metrics

Morphogenic Software

Visualization, Validation, Verification

Component-Based
Development

High-Level Parallel
Programming Tools

X10 Programming Model Legacy codes

Reduce the expertise gap

V. Sarkar OOPSLA LaR 2004 Workshop 15

PERCS Programming Model and Tools:
Addressing Application Development Productivity Challenges

A
cc

el
er

at
e

th
e

 s
of

tw
ar

e
lif

ec
yc

le
Grand challenge:

Deliver 10x
improvement in

development
productivity

X10 Programming Model

New programming model provides foundation
for productivity-improving technologies

Productivity metrics

Morphogenic Software

Visualization, Validation, Verification

Component-Based
Development

High-Level Parallel
Programming Tools

Legacy codes

Reduce the expertise gap

V. Sarkar OOPSLA LaR 2004 Workshop 16

Async activities: unified abstraction of
threads and messages

• Async statement (active message)
− async(P){S}: run S at place P
− async(D){S}: run S at place

containing datum D
− S may contain local atomic

operations or additional async
activities for same/different places.

• Example:

• Async expression (future)
− F = future(P){E}, or

F = future(D){E}: Return
the value of expression E,
evaluated in place P (or the
place containing datum D)

− force F or !F : suspend until
value is known

• Example:
public void put(K key, V value) {

int hash = key.hashCode()% D.size;
async (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

b.v = value;
return;

}
}
buckets[hash] =

new Bucket<K,V>(key, value, buckets[hash]);
};

}

public ^V get(K key) {
int hash = key.hashCode()% D.size;
return future (D[hash]) {

for (_ b = buckets[hash]; b != null; b = b.next) {
if (b.k.equals(key)) {

return b.v;
}

}
return new V();

}
}

Distributed hash-table example

V. Sarkar OOPSLA LaR 2004 Workshop 17

Clocks: abstraction of barriers

• Operations:
clock c = new clock();
now(c){S}

• Require S to terminate before clock
can progress.

continue c;
• Signals completion of work by

activity in this clock phase.
next c1,…,cn ;

• Suspend until clocks can advance.
Implicitly continues all clocks.
c1,…,cn names all clocks for activity.

drop c;
• No further operations on c..

• Semantics
− Clock c can advance only when

all activities registered with the
clock have executed continue c..

• Clocked final
− clocked(c) final int l = r;
− Variable is “final” (immutable)

until next phase

V. Sarkar OOPSLA LaR 2004 Workshop 18

RandomAccess (GUPS) example

public void run(int a[] blocked, int seed[] cyclic,

int value smallTable[]) {

ateach (start : seed) clock(c) {

int ran = start;

for (int count : 1.. N_UPDATES/place.MAX_PLACES) {

ran = Math.random(ran);

int j = F(ran); // function F() can be in C/Fortran

int k = smallTable[g(ran)];

async (a[j]) atomic {a[j]^=k;}

} // for

} // ateach

next c;

}

V. Sarkar OOPSLA LaR 2004 Workshop 19

Regions and Distributions

• Regions
− The domain of some array;

a collection of array indices
− region R = [0..99];
− region R2 = [0..99,0..199];

• Region operators
− region Intersect = R3 &&

R4;
− region Union = R3 || R4;
− Etc.

• Distributions
− Map region elements to places

• distribution D = cyclic(R);

− Domain and range restriction:
• distribution D2 = D | R;

• distribution D3 = D | P;

• Regions/Distributions can be used
like type and place parameters
− <region R, distribution D>

void m(...)

V. Sarkar OOPSLA LaR 2004 Workshop 20

ArrayCopy example: example of high-
level optimizations of async activities

Version 1 (orginal):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn an activity for each index to
// fetch and copy the value

ateach (i : D.region)
a[i] = async b[i];

next c; // Advance clock
}

Version 2 (optimized):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn one activity per place
ateach (D.places)

for (j : D | here)
a[i] = async b[i];

next c; // Advance clock
}

Version 3 (further optimized):
<value T, D, E> public static void

arrayCopy(T[D] a, T[E] b) {
// Spawn one activity per D-place and one
// future per place p to which E maps an
// index in (D | here).

ateach (D.places) {
region LocalD = (D | here).region;
ateach (p : E[LocalD]) {

region RemoteE = (E | p).region;
region Common =

LocalD && RemoteE;
a[Common] = async b[Common];

}
}

next c; // Advance clock
}

V. Sarkar OOPSLA LaR 2004 Workshop 21

Uniform treatment of Arrays & Loops
and Collections & Iterators

• Distributed Collections
− Map collection elements to

places
− Collection<D,E> identifies a

collection with distribution D and
element type E

• Parallel iterators
− foreach (e : C) { … }
− ateach (C) { … here … }

• Sequential iterator
− for (e : C)

• Arrays
− Map region elements to values

(therefore multidimensional)
− Declared with a given

distribution
− int[D] array;

• Loops
− ateach (D[R]) { ... }
− ateach (array) { ... }
− foreach (i : R) { ... }
− foreach (i : D) { ... }
− foreach (i : array) { ... }
− sequential variants of foreach

are available as for loops

V. Sarkar OOPSLA LaR 2004 Workshop 22

Reduction and Scan Operators

• Reduction operator over type T
− Static method with signature: T(T,T)
− Virtual method in class T with signature T(T)
− Operator is expected to be associative and commutative

• Reduction operation: A >> foo() returns value of type T, where
− A is an array over base type T
− A>>foo() performs reductions over all elements of A to obtain a

single result of type T

• Scan operation: A || foo() returns array, B, of base type T, where
− B[i] = A[0..i]>>foo()

V. Sarkar OOPSLA LaR 2004 Workshop 23

Example of Unconditional Atomic Sections
SPECjbb2000: Java vs. X10 versions

Java version:
public class Stock extends Entity {…
private float ytd;
private short orderCount; …
public synchronized void

incrementYTD(short ol_quantity) { …
ytd += ol_quantity; …}…

public synchronized void
incrementOrderCount() { …

++orderCount; …} …
}

X10 version (w/ atomic section):
public class Stock extends Entity {…

private float ytd;

private short orderCount; …

public atomic void

incrementYTD(short ol_quantity) { …

ytd += ol_quantity; …}…

public atomic void

incrementOrderCount() { …

++orderCount; …} …

}

These two methods cannot be
executed simultaneously
because they use the same
lock

With atomic sections, X10
implementation can
choose to execute these
two methods in parallel

lock

ytd
orderCount ytd

orderCount

lock1

lock2

Layout of
a “Stock”

object

Atomic Sections are deadlock-free!

V. Sarkar OOPSLA LaR 2004 Workshop 24

Migrating Applications to X10

• OpenMP application
− Can be initially implemented as single place w/ one activity per

SPMD virtual processor
− Partition into multiple places for improved performance

• Multithreaded applications
− Can be initially implemented as single place w/ one activity per

thread
− Partition into multiple places for improved performance

• MPI
− Partition into one place per processor
− Replace message-passing operations by asynchronous operations

V. Sarkar OOPSLA LaR 2004 Workshop 25

Relating optimizations for past programming
paradigms to X10 optimizations

Programming
paradigm

Activities Storage classes Important optimizations

Message-
passing e.g.,
MPI

Single activity per
place

Place local Message aggregation, optimization of
barriers & reductions

Data parallel
e.g., HPF

Single global
program

Partitioned global SPMDization, synchronization &
communication optimizations

PGAS e.g.,
Titanium, UPC

Single activity per
place

Partitioned global, place local Localization, SPMDization,
synchronization & communication
optimizations

DSM e.g.,
TreadMarks

Multiple Partitioned global, activity
local

Data layout optimizations, page locality
optimizations

NUMA Single activity per
place

Partitioned global, activity
local

Data distribution, synchronization &
communication optimizations

Futures / active
messages

Multiple Place-local, activity local Message aggregation, synchronization
optimization

Co-processor
e.g., STI Cell

Single activity per
place

Partitioned-global, place-local Data communication, consistency, &
synchronization optimizations

Full X10 Multiple activities in
multiple places

Partitioned-global, place-local,
activity-local

All of the above

V. Sarkar OOPSLA LaR 2004 Workshop 26

X10 Managed Runtime

Benefits of managed runtime systems and virtual machines are well
understood …
− Safety
− Productivity
− Portability
− Interoperability
− Isolation
− Virtualization

… but, are managed runtime systems appropriate for addressing
performance challenges facing future large-scale parallel systems?

Yes, because they enable continuous program optimization

V. Sarkar OOPSLA LaR 2004 Workshop 27

Continuous Program Optimization (CPO) Continuous Program Optimization (CPO)
through Performance & Environment Monitoring (PEM) through Performance & Environment Monitoring (PEM)

• Continuous Program Optimization (CPO) increases programmer productivity
by automating the laborious and challenging performance tuning effort

• CPO aims at tuning application by optimally

− adapting the application to its behavior and environment

− adapting environment resources to application behavior

• CPO is made possible through continuous whole-system Performance and
Environment Monitoring (PEM)

Tune & adapt
(CPO)

Monitor &
evaluate
(PEM)

Continuous optimization
loop

CPO/PEM contact:
Evelyn Duesterwald, IBM

V. Sarkar OOPSLA LaR 2004 Workshop 28

PEM InfrastructurePEM Infrastructure

O/S

1) Language-independent specification of events
and their semantics

2) Generate language-specific event data structures and
header files (X10, Java, C, C++, Fortran) to support

Layer instrumentation
PEM library
CPO agent

PE

Visualizer
PEM
trace

XML Event
specification

PEM
Tools

Hardware/Simulator
P

E
M

 Library

Application

C
P

O
 A

gent

Virtual Machine

3) PEM implementation with a platform-independent API

1

2

3

Contacts for PE Visualizer tool:
Peter Sweeney (IBM),
Matthias Hauswirth (U. Colorado)

V. Sarkar OOPSLA LaR 2004 Workshop 29

PEM Scenario: Exploring the PEM Scenario: Exploring the
Performance Impact of Large PagesPerformance Impact of Large Pages

K42

PE

Visualizer
umt2k
PEM

traces

XML event format

PEM
Tool

Scripts

GP-UL
P

E
M

P
E

M
 client

umt2k
(scientific,Fortran/C)

Preliminary Work for building a CPO Agent
for Adaptive Page Sizing

Vertical Event Traces:
App layer: phase markers
O/S layer: page faults
Hardware layer: PMU counters

V. Sarkar OOPSLA LaR 2004 Workshop 30

Summary of Performance Exploration

0.0%

50.0%

100.0%

150.0%

200.0%

tim
e

pa
ge

fa
ul

ts

TL
B

da
ta

ER
A

T

L1 da
ta

small page large page large page opt

V. Sarkar OOPSLA LaR 2004 Workshop 31

Complete run of umt2
(initial configuration with 4K pages)

V. Sarkar OOPSLA LaR 2004 Workshop 32

Zoom into innermost loop

V. Sarkar OOPSLA LaR 2004 Workshop 33

Blue – 4k pages
Brown – Initial Large Page Mapping: each structure aligned at large page boundary
Red - Optimized large page mapping: Offset each data structure to avoid conflicts

V. Sarkar OOPSLA LaR 2004 Workshop 34

X10 Status and Plans
• Draft Language Design Report available internally w/ set of sample

programs
• Implementation begun on X10 Prototype #1 for 1/2005

− Functional reference implementation of language subset, not
optimized for performance

− Support for calls to single-threaded native code (C, Fortran)
• Productivity experiments planned for 7/2005

− Use prototype #1 and related tools (PE, refactoring) to
compare X10 w/ MPI, UPC

− Revise language based on feedback from productivity
experiments

• Prototype #2 planned for 12/2005
− Includes design & prototype implementation of selected

optimizations for parallelism, synchronization and locality in
X10 programs

− Revise language based on feedback from design evaluation

V. Sarkar OOPSLA LaR 2004 Workshop 35

X10 Implementation Challenges
• Type checking/inference to

enforce semantic guarantees
− Clocked types
− Place-aware types

• Consistency management
− Lock assignment for atomic

sections
− Data-race detection

• Activity aggregation
− Batch activities into a single

thread.

• Message aggregation
− Batch “small” messages.

• Load-balancing
− Dynamic, adaptive migration

of place from one processor
to another.

• Continuous optimization
− Efficient implementation of

scan/reduce

• Efficient invocation of
components in foreign
languages
− C, Fortran

• Garbage collection across
multiple places

V. Sarkar OOPSLA LaR 2004 Workshop 36

Conclusions and Future Work

• Future Large-scale Parallel Systems will be accompanied by severe
productivity and performance challenges

Opportunity for Languages, Compilers, and Runtime technologies to
have even greater impact on scalable systems than before

• Summarized X10 language approach in PERCS project, with a focus on
next steps:
− Use applications and productivity studies to refine design decisions

in X10
− Prototype solutions to address implementation challenges

• Future work (beyond 2005)
− Community effort to build consensus on standardized “high

productivity” languages for HPC systems in the 2010 timeframe
− Explore integration of X10 ideas with other research language

efforts under way in IBM
• XJ, BPEL, …

