
GC Points in a Threaded Environment

Ole Agesen

M/S MTV29-01
901 San Antonio Road
Palo Alto, CA 94303-4900

GC Points in a Threaded Environment

Ole Agesen

SMLI TR-98-70 December 1998

Abstract:

Many garbage-collected systems, including most that involve a stop-the-world phase, restrict GC to so-
called GC points. In single-threaded environments, GC points carry no overhead: when a GC must be
done, the single thread is already at a GC point. In multi-threaded environments, however, only the thread
that triggers the GC by failing an allocation will be at a GC point. Other threads must be rolled forward to
their next GC point before the GC can take place. We compare, in the context of a high-performance
Java™ virtual machine, two approaches to advancing threads to a GC point, polling and code patching,
while keeping all other factors constant. Code patching outperforms polling by an average of 4.7% and
sometimes by as much as 11.2%, while costing only slightly more compiled code space. Put differently,
since most programs spend less than 1/5 of the time in GC, a 4.7% bottom-line speedup amounts to more
than a 20% reduction in the GC-related costs. Patching is, however, more difficult to implement.

email address:
ole.agesen@east.sun.com

© 1998 Sun Microsystems, Inc. All rights reserved. The SML Technical Report Series is published by Sun Microsystems Laboratories, of Sun
Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>.

1

GC Points in a Threaded Environment

Ole Agesen
Sun Microsystems Laboratories

One Network Drive
Burlington, MA 01803-0903

1 Introduction

Many garbage collection (GC) algorithms copy (or move) objects to reduce fragmentation and/or
to increase performance. For example, to collect an area of memory where one expects the major-
ity of objects to be dead (garbage), the most efficient approach could be one that evacuates the
remaining live objects from the area by copying them to some other place and then returns the
entire area to the free pool of memory. The full story, of course, is more complicated: when
objects are copied, all references to them, whether in (live) objects, local variables, global vari-
ables or registers, must be adjusted to point to the new locations. Thus, the garbage collector must
be able to locate all references in the systemexactly, since if just one reference to a copied object
is left unadjusted or one integer that happens to look like a reference is updated, the program exe-
cution could go wrong.

There are two basic approaches to supporting exact GC: tagging and reference maps.Tagging
reserves one or more bits in each word-sized data item to indicate whether the word represents a
reference or a non-reference.Reference maps, or justmapsfor brevity, associate a data structure
with an area of memory that contains a mixture of references and non-references. To determine if
a given word is a reference, the garbage collector consults the map. In their simplest form, maps
may consist of a bit vector and one may think of them as external tag bits.

Each of the two approaches has its advantages and disadvantages. Tagging is simple but reduces
the range of integers and the precision of floating point numbers and incurs overhead on mutators
to clear the tag bits from operands and reinsert them into results. (A well-designed system of tag
bits will attempt to minimize these disadvantages by carefully choosing the number, location, and
sense of tag bits.) Reference maps, in contrast, retain full range and precision, but incur storage
overhead and complicate the system, since the compiler must emit extra information and the run-
time system must maintain bindings from areas of memory to maps.

Even systems that rely mostly on tagging often use reference maps for some structures. For exam-
ple, the Self system uses tag bits in the heap and for parts of stack frames but reference maps to
describe the contents of CPU registers. The EVM1, a high-performance Java™ virtual machine
for the Solaris™ operating system, relies exclusively on reference maps. This choice is natural
since the Java programming language demands 32 and 64 bit integers and floating point numbers,
leaving no bits for tagging on most contemporary hardware. In more detail, two forms of refer-
ence maps are used:

1. EVM, known previously as ExactVM, is embedded in Sun’s Java 2 SDK, available at http://www.sun.com/solaris/java/.

2

 • object maps:in the Java programming language, every object field has a static type that deter-
mines, for the lifetime of the object, whether the field contains a reference. This makes it possi-
ble to store a constant object map in each class, giving the garbage collector easy access to the
layout of any object since objects contain a pointer to their class.

 • stack frame mapscover a stack frame and the CPU registers. Stack frames differ from objects
in that they change layout as the computation proceeds. For example, on entry to a method,
most of the slots in its frame will contain uninitialized values (non-references); as the computa-
tion progresses, some slots will change to contain references, and when the method returns,
most of the slots will again have reverted back to being non-reference slots (assuming that only
live values are reported as references in the stack frame maps [2]). To reduce the storage over-
head, stack frame maps commonly are only kept for certain so-calledGC points in each
method. This means that GC can only be performed when all mutator threads have reached GC
points.

In single-threaded environments, GC points work extremely well. One simply has to make alloca-
tion points be GC points to ensure the availability of a map in the active frame and make call sites
be GC points to ensure the availability of maps for frames deeper in the stack. The GC points
incur no mutator overhead: allocations have to check that enough space is free anyway, and when
this check fails and a GC is initiated, the single mutator thread is automatically at a GC point.

This ideal situation extends to multi-threaded systems in which only a single thread executes at a
time and context switching is restricted to occur only at GC points, but, unfortunately, does not
apply to unrestricted multi-threaded environments. In the latter class of systems, when one muta-
tor thread attempts an allocation that exceeds the available free space, all we know is thatthis
mutator is at a GC point. Before the GC can be performed, however, we must ensure thatall muta-
tor threads are at GC points. The latter does not come for free. The most common solution
involves advancing the other threads to GC points by:

 • increasing the number of GC points so that they are densely spaced in time, preventing muta-
tors from executing for an unbounded period of time without reaching GC points. Typically,
this involves adding a GC point to any loop that would not otherwise contain one, i.e., any loop
that contains no allocation or calls.

 • providing a mechanism for suspending mutators when they reach a GC point.

The primary contributions of this paper are a detailed description of how mutator threads and GC
coordinate, and a quantitative comparison of two different techniques,polling andcode patching,
for suspending mutators at GC points in the context of a high-performance, multi-threaded Java
virtual machine. The opportunity to compare the two techniques came about as EVM was recently
changed from using polling to suspend at GC points to using code patching. Thus, we have an
occasion to compare the two approaches while keeping all other factors constant. Patching is sim-
ilar to debuggers’ use of break points to suspend execution at a given location. Our poll-less GC
design and implementation grew out of the collaborative work of our team at Sun, notably Mario
Wolczko, Ross Knippel, Bill Bush, and the author, and it benefited from discussions with our Sun
colleague Lars Bak related to his similar work.

Our results show that on the SPARC™ version of EVM, code patching outperforms polling by
0.6% - 11.2% in terms of execution speed (instruction counts), but increases code space by 5.1% -

3

8.5%, and is somewhat harder to implement correctly (mainly because it interacts with fundamen-
tal properties of the architecture such as registers and delay slots).

The focus in this paper is stop-the-world GC algorithms that require mutator threads to be sus-
pended while garbage collection takes place. Other GC algorithms in which mutator threads run
concurrently with the garbage collector most of the time, still require short periods of no mutator
activity. An example is the “mostly parallel garbage collector” by Boehm, Demers and Shenker
[3]. Thus, the results presented in this paper apply more broadly than stop-the-world GC.

The rest of this paper is organized as follows. Section 2 presents in detail the thread suspension
process and GC points in EVM. The key aspect of the suspension process is the roll-forward,
which allows the garbage collector to nudge a thread forward to its next GC point where it will be
stopped either by polling code or patched code. In Section 3, we measure total execution time and
code space on a set of benchmark programs, showing that code patching always runs faster than
polling, but uses more compiled code space. Section 4 briefly discusses an alternative to code
patching, an optimized poll sequence, and puts the achieved speedup into perspective. Subse-
quently, Section 5 discusses related work, and Section 6 summarizes and concludes.

2 The thread suspension process in EVM

In the default configuration, EVM uses a two-generation memory system. The young generation
employs a semispace copying collector, typically configured with 2 Mb in each semispace, and
the old generation employs a mark-compact collector within a single contiguous space. All but the
largest objects are allocated in the youngest generation. The garbage collector tenures objects
from the young generation into the old generation once their age, measured in terms of young
generation collections, reaches the current tenuring threshold. The threshold is adjusted after each
young generation collection by monitoring the survival rate, as suggested by Ungar [18]. Further
information about the memory system in EVM can be found in [1, 2, 19].

The principal goal of EVM is high performance for multi-threaded programs executing on hard-
ware with multiple CPUs. To achieve sequential efficiency, EVM uses a combination of interpre-
tation and compilation to execute the bytecode format defined by the Java platform (“Java
bytecode”). The interpreter executes methods that are not performance critical, such as methods
without loops and methods that are invoked infrequently, while an optimizing just-in-time com-
piler translates the remaining methods into machine code. To achieve parallel efficiency, EVM
maps threads defined by the Java platform (“Java threads”) to Solaris threads [9] while the syn-
chronization operations are mapped directly to hardware primitives (compare-and-swap and swap
instructions). EVM runs on both x86 and SPARC processors, although in this paper we will
describe the SPARC version only.

2.1 Co-existence of low-level C code and garbage collection

In EVM, as in most implementations of garbage-collected programming languages, two kinds of
code must co-exist: the low-level implementation code (C), also known as native code, and the
target code (Java bytecode). For Java virtual machines, the amount of native code tends to be
large, since the core class libraries have a fairly broad interface to the virtual machine (e.g., facili-
ties such as reflection, class loading, and threads are all to a large degree implemented in the core

4

virtual machine). The large amount of native code, combined with the general complexity of oper-
ating in a multi-threaded environment, can easily lead to errors, unless a strict discipline is fol-
lowed. In EVM, this discipline consists of two interface layers, implemented using C
preprocessor macros and functions, that allow C code to operate safely on garbage collected
objects (“Java objects”).

Thedirect pointer layerlets C code use direct pointers to operate on Java objects as if they are C
structs. This layer provides all the basic operations on objects, including allocation, field access,
modification, and hashing, and serves to encapsulate object layout such as the location and size of
fields, class pointers, array lengths, etc. The indirect layer, namedLLNI for low-level native inter-
face, is implemented on top of the direct layer. It supports the same operations as the direct layer,
while adding two features: it provides a means for the memory system to keep track exactly of all
locations containing direct pointers to Java objects (thus, fully enabling object relocation), and it
synchronizes object manipulation operations with the garbage collector to ensure that both muta-
tor and garbage collector threads always see a consistent view of memory.

The direct pointer layer provides maximally efficient access to objects but it is unrealistic to use it
throughout the VM. It is essential that it can be used in the most performance critical parts such as
the bytecode interpreter loop, but for the majority of the code in the virtual machine, a slightly
less efficient but more convenient object interface is preferable. LLNI was designed to add conve-
nience while minimizing performance loss. First, let us review the significant drawbacks that cli-
ents of the direct pointer layer would face:

 • The collector must know the location of all direct pointers to Java objects so that they can be
updated when the objects move, or the collector must be prevented from moving (or reclaim-
ing) objects that are referenced by pointers of which it has no knowledge. Hence, either the cli-
ent must meticulously register every location containing a pointer to a Java object (and it is not
obvious how to do this when passing pointers into and out of functions) or ruthlessly pin
objects while holding on to such pointers (the ramifications of pinning even a few objects tem-
porarily can be significant for many GC algorithms).

 • Even if the collector knows about a pointer and updates it, a problem can occur if the collector
relocates an object “while” the object is being modified. Conceivably, a modification such as

ptr->fieldName = newContents;

involves computingptr + offset and then storing into that address. In the worst case, a
garbage collection will happen and the object gets relocated between computing this address
and performing the store.

The LLNI layer overcomes the former problem by introducing an extra layer of indirection and
the latter problem by (efficiently) synchronizing object access with the garbage collector. Figure 1
shows the use of registered indirection cells to allow the GC to track all direct object pointers.
Once the indirection cell has been registered with the garbage collector, the indirect pointer,
which we refer to as an LLNI handle, can safely be passed from function to function, stored, or
returned. (It should be emphasized that even though the LLNI layer uses indirect pointers, Java
objects still reference each other directly, and local variables in Java bytecode stack frames oper-
ate with direct references. We also note that LLNI handles share only the indirection property
with the “handles” described in the JVM specification [10]; LLNI handles are not necessarily in

5

one-to-one correspondence with objects and they can reference different objects at different
times.)

LLNI overcomes the second problem by synchronizing with the garbage collector to ensure that
objects are not moved while the operation is performed. Several implementations of this synchro-
nization are possible, with various efficiency/complexity trade-offs. The most important technique
uses a thread-local counter,inconsistentCount . When this counter is greater than zero, the
mutator thread isinconsistent. WheninconsistentCount is zero, the mutator isconsistent.
An inconsistent mutator signals to the garbage collector that it—temporarily—cannot tolerate
GC. For a given mutator thread, the counter reveals the number of on-going LLNI operations
(some operations can nest, although most cannot). Now, an operation to set a field in an object,

LLNI_writeRefField(object, fieldName, newValue)

may be implemented as follows:

1. threadLocal->inconsistentCount++; /* Operation starts: GC cannot be tolerated. */
2. (*object)->fieldName = newValue;
3. threadLocal->inconsistentCount--; /* Operation ends; GC OK as far as this op. goes. */
4. if (threadLocal->inconsistentCount == 0 && gc_stop_threads)
5. wait_for_gc_end();

The statement in line 1 causes the mutator to become inconsistent before executing the GC-sensi-
tive operation in line 2. Here we have written out the pointer dereference and field access for spec-
ificity, but in reality the body of an LLNI operation is usually an invocation of the corresponding
direct pointer operation. Lines 3 to 5 return the thread to the consistent state (the role of theif
statement will be explained in Section 2.2). The code delineated by the increment and decrement
of inconsistentCount is called aninconsistent region. In the example above, line 2 is an
inconsistent region.

Heap (all Java objects live here)

Java obj.

void foo(Ijava_lang_Object f) {
if (!LLNI_isNull(f)) bar(f);

}

Indirection cell,
which the GC
knows contains a
pointer to a Java
object; will be

Figure 1. LLNI uses indirect pointers, registering the indirection cell with the garbage collector.

updated if obj.
is moved

6

In general, inconsistent regions must execute in bounded time because while one thread is incon-
sistent, garbage collection is impossible, potentially blocking progress of all threads in the system
until the inconsistent thread becomes consistent again. However, indefinite inconsistent regions
can be permitted, as long as the thread periodically (and frequently)offersto suspend for GC. We
use this relaxation to allow threads to execute inconsistently in compiled code and in the bytecode
interpreter loop,offeringto become consistent at each GC point. Being able to assume no interfer-
ence from GC and no object movement, except at the well-defined GC points, allows more effi-
cient execution with direct pointers in the performance-critical interpreter loop and compiled
code.

For completeness, though it is not directly relevant to the present paper, let us mention that the
LLNI layer in EVM is used to implement the Java platform’s public interface for native code
(JNI). For the duration of JNI calls, except for short routines that are implemented using LLNI,
the mutator thread remains consistent and is therefore able to tolerate GC at most times. In this
manner, the support for exact GC provided by LLNI carries over to arbitrary native code written
by users.

In summary, LLNI affords convenience and exactness to C code operating on garbage-collected
objects by using registered indirection cells to refer to objects and synchronizing with the garbage
collector by means of short-duration lightweight inconsistent regions.

2.2 Common GC suspension steps

We can now describe the sequence of steps that take place when a garbage collection is per-
formed. These steps, except for the differences explained in Section 2.3 and 2.4, are the same
whether polling or code patching is used.

1. A new thread, theGC thread, is created to perform the GC (use of a separate thread ensures
that a predictable amount of stack space is available, regardless of the depth of the stack of
the mutator thread that triggers GC).

2. The GC thread suspends all the mutator threads and sets the global boolean
gc_stop_threads to true.

3. The GC thread iterates over all mutator threads. For each mutatorT, if T is consistent, it is
already able to tolerate a GC, so it is simply left suspended. IfT is inconsistent, the GC
thread restartsT. There are now two possibilities:T is executing in an inconsistent region, in
which case it will suspend itself at the end of the region, orT is executing in compiled code
or in the bytecode interpreter loop, in which caseT will suspend itself when it reaches the
next GC point (where it offers to become consistent).

4. The GC thread waits for all the restarted inconsistent mutators to reach GC points and sus-
pend themselves (monitoring progress with a counter that the mutators increment just before
they suspend themselves).

5. Now all mutators in the system have been stopped either in a consistent state or at a GC
point, so the garbage collection can be done.

6. Finally, the GC thread resumes all the mutators and, having completed its job, terminates.

7

The significance of theif statement at the end of inconsistent regions should be clear now. If a
mutatorT is suspended in an inconsistent region, the garbage collector will resume it (step 3),
expecting it to resuspend itself soon (step 4). Theif statement in line 4 of the code fragment
given in Section 2.1 takes care of this suspension.

The key to achieving good overall performance is to limit the overhead imposed on mutator
threads in their normal execution. GC happens infrequently enough, even in a generational system
with a relatively small young generation, that the GC thread’s actions have little impact on overall
system performance. There are two direct sources of overhead imposed on mutators in the scheme
described above: overhead resulting from transitioning in and out of inconsistent regions and
overhead resulting from offering consistent points in the compiled code and the interpreter loop.
We will study each of these costs in Section 3.2, but first we describe in detail the two techniques
for offering consistent points. We will not look at costs, such as the serialization resulting from the
stop-the-world operation itself.

2.3 Polling to suspend for GC

Our first implementation of EVM used polling in both the interpreter loop and the compiled code
to offer suspension at GC points. In the interpreter loop, poll code of the following form would be
invoked before every back-branch and method call:

if (gc_stop_threads) wait_for_gc_end().

The just-in-time compiler generated equivalent polling code:

sethi %hi(&gc_stop_threads), %g1
ld [%g1 + %lo(&gc_stop_threads)], %g1 -- load the boolean gc_stop_threads into %g1
brz,pt %g1 skip_wait -- common case is to take the branch (no GC)
nop -- branch delay slot
call wait_for_gc_end -- GC is happening, suspend till it is done
nop -- call delay slot

skip_wait:

In the common case, when no GC is pending, four of the six instructions execute. The compiler
would emit polling code prior to back branches and in method prologues (rather than at call sites).
As an optimization, polling would be elided from the prologue of any method that contained at
most one call site. To see why this optimization does not jeopardize prompt GC suspension, we
note that in the absence of tail-calls, if a thread executes entirely within a set of loop-free methods
M each with at most one call site, the thread will amass a stack of height proportional to the exe-
cution time. Thus, the thread will either produce a stack overflow or step outside ofM very rap-
idly. By offering a consistent point in the code that handles stack overflow, prompt GC suspension
has been maintained.

The polling in the interpreter loop has virtually no impact on overall system performance. The
general execution speed of interpreted bytecode is slow enough that it overwhelms the cost of
polling, which executes at the speed of optimized, compiled C code. More importantly, perfor-
mance critical bytecode should be compiled, so if a program spends a significant fraction of its
time in the interpreter loop, we are already losing. In contrast to the interpreter loop, polling is a
significant source of overhead for compiled code. The major problem is its cost in the frequent
case when the call towait_for_gc_end() is not taken. Worse yet, the overhead is imposed in

8

two situations that are particularly important for overall system performance: loops and method
calls.

2.4 Code patching to suspend for GC

To eliminate the polling overhead in compiled code, we designed a suspension scheme based on
code patching. The idea is to “patch in” calls towait_for_gc_end() when needed, i.e., when
preparing for GC. This saves work for the mutator threads, since they will not be executing any
GC-related code unless GC is imminent, but adds work to the GC thread since it must now patch
and unpatch code. Since GC is relatively rare, shifting work from mutators to the garbage collec-
tor is a net gain.

More concretely, consider three arbitrary machine instructions in a compiled method:

instr 1
*instr 2

instr 3.

We have markedinstr 2 with an asterisk to denote that it is a GC point. Code patching tempo-
rarily overwrites the instruction at the GC point (instr 2) with some other instruction that causes
suspension. Once the GC completes, the original instruction is restored and the mutators are
restarted. While the basic idea behind code patching is straightforward, the details turn out to be
nontrivial.

2.4.1 The modified GC suspension steps

With code patching, the GC thread performs the same as before, except for additions to step 3 to
patch the compiled code and to step 6 to restore the original code. The modified steps 3 and 6
become:

3´. The GC thread iterates over all mutator threads. For each mutatorT, if T is consistent, it is
already able to tolerate a GC, so it is simply left suspended. Otherwise, ifT is executing in
a compiled methodC (determined by looking upT’s program counter2 in a global data
structure that maps code addresses to compiled methods), the garbage collector replaces
the instructions at each GC point inC with a GC trap. Any attempt to execute a GC trap
will cause the thread to suspend itself. ThenT is resumed and, as before, it will execute
until it either becomes consistent (at which point the polling at the end of the consistent
region will cause suspension) or it hits a GC trap (at which point the trap will force suspen-
sion).

6´. Finally, the GC thread removes the GC traps that were inserted in step 3´, resumes all the
mutators and, having completed its job, terminates.

2. The SPARC architecture actually has two program counters, PC and nPC, having to do with idiosyncrasies of delay slots. The
consequence is that in the rare cases when PC and nPC point into different compiled methods, we must patch both methods. This
happens when a thread is suspended after executing a call, but before executing the delay slot instruction.

9

2.4.2 Choosing code for GC traps

Execution of a GC trap must force a control-flow change to a routine that (eventually) suspends
the mutator thread. On the way, it must capture the full state of the mutator at the time of the trap.
The mutator needs the state when it resumes after the GC and the garbage collector needs the state
to scan the registers and current frame of the mutator.

These requirements would be nicely satisfied if we could use acall instruction to implement
GC traps. The call would branch to a routine that saves all registers to thread-local storage and
then suspends. Unfortunately, on SPARC processors, calls have delay slots, making the instruc-
tion following a call execute “while the call is being taken.” Consider again the three instructions
shown in Section 2.4 where the GC point is at the second instruction,instr 2. Should a non-
idempotent instructioninstr 3 follow the GC point, an error would occur if we used plain calls
to implement GC traps, sinceinstr 3 would be executed when the trap is taken (in the delay slot
of the call) and again when the mutator is resumed after GC. Could we use a call followed by a
nop , which replaces the delay slot instruction, to implement a GC trap? The answer is no. We
could have multiple mutators executing in the same method and one of them may be just about to
execute the delay slot instruction. If this instruction were to be replaced with anop , incorrect
behavior would follow. We considered rendering the delay slots harmless by requiring any
instruction following a GC point to be idempotent or invertible. In practice, many instructions are
idempotent, including most tests, register moves, stores, loads that don’t use the target register to
compute the effective address, and others. Several more instructions, such as add, sub, and xor, are
invertible, making it possible to undo their effect in the GC trap routine and therefore making it
safe to re-execute them when the mutator resumes after GC. In our case, however, retrofitting such
a constraint into the just-in-time compiler’s code generator was nontrivial, so we decided to look
for alternative solutions.

As a first try, we implemented GC traps using hardware traps rather than calls (traps have no delay
slots). The beauty of this scheme is that it leverages the operating system’s routines for capturing
thread state. Specifically, we used aclrb [%g0] instruction to generate a trap (clear the byte at
address zero (%g0)), which Solaris then transforms into a segmentation violation signal. The sig-
nal handler will be presented with a so-calleducontext data structure, which contains the full
state of the thread at the point of the trap, and which can be used to resume the thread by issuing a
setcontext() call. In terms of programming effort and portability, this solution is preferable
over thecall instruction that we first considered. Unfortunately, upon implementing the solu-
tion, we found that performance was not as good as we would have liked. On a 167 MHz UltraS-
PARC™ workstation, we timed the delivery of a segmentation violation signal and subsequent
cleanup of the signal mask to 0.16 ms. An extreme but not totally improbable Java application
could contain 200 active threads and allocate at a rate that requires 10 young generation collec-
tions per second. This amounts to a total signal delivery time of 200 * 10 * 0.16 ms = 320 ms in
each second of execution. Spending 32% of the total elapsed time on suspending threads for GC is
not satisfactory.

We also tested theta (trap always) instruction. Its signal delivery was a bit faster, at 0.15 ms, but
could still become a bottleneck. While much faster signal delivery is now possible through the so-
called user-traps in Solaris 7, the need to support earlier versions of Solaris, made us settle on a
more direct solution than kernel signals.

10

We patch in annulled, unconditional branches at the GC points (annulment suppresses the instruc-
tion following the GC point). To recover the PC of the GC point, which the branch instruction
does not save and to get greater reach than the 1Mb that branches span on SPARC processors, we
branch to a two-instruction trampoline routine and from there do a forwarding call to the suspen-
sion routine. Each GC point is given its own trampoline, found at the end of the compiled method,
allowing recovery of the GC point address from the trampoline address. Essentially, we simulate
an annulled call by using an annulled unconditional branch to a call. Figure 2 shows a method
with two GC points before and after insertion of GC traps. The two trampolines correspond to
each of the two GC points. The instruction in the call delay slot in the trampoline is a “fat nop:” it
has no effect but encodes the GC point number by issuing asethi with that number into the
constant zero register%g0.

One subtle problem remains to be solved for GC traps to always work correctly. It involves two
threads executing in the same method. Consider, this example:

call F
L: *ld [%l1 + 8], %o1

Suppose thatL is a GC point and that a threadT1 has just executed the call instruction, but not yet
the delay slot instruction at addressL. Now a garbage collection starts.T1 is suspended and,
because some other threadT2 is executing in the above method, the instruction atL is replaced
with a gc trapba,a . WhenT1 is resumed, it will execute the delay slot instruction, which is now
an unconditional branch. The branch will yankT1 out of theF function and causeT1 to suspend.
After the GC, the GC traps will be removed andT1 will be resumed at addressL, causingT1 to

save %sp, -200, %sp
st %g0, [%sp - 4096]
sethi %hi(0x6b000), %o1

*call ef18bb18
lduw [%sp + 64], %o0
or %o0, 0, %l0
or %i0, %g0, %o1
or %g0, %l0, %o0
lduw [%o0], %g0
call eb409074
nop
or %g0, %l0, %i0

*jmpl [%i7 + 8], %g0
restore %g0, %g0, %g0
call gcTrap_stub
sethi %hi(0x00000), %g0
call gcTrap_stub
sethi %hi(0x01000), %g0

compiled method, normal execution

Figure 2. Compiled code forStringBuffer.toString() , slightly simplified.
Asterisks denote GC points, the only places that change when GC traps are inserted.

tramp0:

tramp1:

save %sp, -200, %sp
st %g0, [%sp - 4096]
sethi %hi(0x6b000), %o1

*br,a tramp0
lduw [%sp + 64], %o0
or %o0, 0, %l0
or %i0, %g0, %o1
or %g0, %l0, %o0
lduw [%o0], %g0
call eb409074
nop
or %g0, %l0, %i0

*br,a tramp1
restore %g0, %g0, %g0
call gcTrap_stub
sethi %hi(0x00000), %g0
call gcTrap_stub
sethi %hi(0x01000), %g0

compiled method, with GC traps

tramp0:

tramp1:

11

skip the call toF. We avoid this problem by requiring that GC traps stay clear of delay slots of
other instructions. In practice, this restriction turned out to be trivially fulfilled by EVM’s just-in-
time compiler. Should this not be the case, problematic GC points can simply be preceded by a
nop to shift them out of the delay slot.

Finally, a complication, which did not occur on SPARC processors, may have to be addressed on
other architectures. On SPARC processors, all instructions are 32 bits wide. On other architec-
tures, instruction widths may vary. To avoid having GC traps partially overwrite the instruction(s)
that follow a GC point or have threads execute a suffix of a GC trap instruction, it may be neces-
sary to have multiple forms of GC trap instructions so that a trap instruction can be selected which
has the same size as the instruction it replaces.

2.4.3 Limiting the amount of code patching

The optimal placement of polling code differs from the optimal placement of GC traps. Polling
code should be placed in method prologues rather than at call sites, since there are fewer methods
than call sites in most programs. GC traps, in contrast, should be placed at call sites. The reason is
that for virtual calls, it is not possiblea priori to determine the actual method that will be invoked.
If we had to place GC traps in all methods that could potentially be invoked from a call site in a
compiled method, in the worst case, we would do work proportional to the size of the program.
The alternative, placing the traps at call sites, bounds the work by the size of the largest method
times the number of active mutator threads (each mutator causes GC traps to be inserted into zero,
one, or two compiled methods). The only additional precaution we have to take is to place GC
traps at return instructions to prevent mutators from escaping out of methods with GC traps.

Extremely large methods represent another concern. While the Java platform’s bytecode verifier
limits individual methods to 64 kb of bytecode, an optimizing compiler could create vastly bigger
compiled methods by inlining. Patching all GC points in a monster method could be costly. We
have not found this to be significant problem in EVM, where the inliner is only moderately
aggressive, but more selective placement of GC traps could go a long way to alleviating the prob-
lem. Specifically, upon observing a mutator thread executing in a compiled methodM that has a
large number of GC points, rather than placing traps at all GC points, it suffices to place traps at
enough places to guarantee that the mutator will hit one of them (the compiler must still emit
trampolines for all the GC points, of course). For example, if the mutator is executing within a
loop and we know the loop structure of the compiled method, it suffices to place a trap in the back
branch of each loop that surrounds the mutator’s location. If other mutators were found at differ-
ent PCs in the same method, more traps could be inserted as necessary.

2.4.4 Interaction with other code patching

GC traps are just one form of code modification in EVM. Code modification is also used for on-
demand class loading at the point of first active use[4], to back out optimizations when optimistic
assumptions are violated by later class loading [5], and for fast virtual calls implemented with
inline caches [6, 8]. In a multi-threaded environment, these different uses of code modification
could collide and lead to races. For example, a trap at a virtual call site could be eradicated by an
inline cache update, letting a mutator escape out of a method with GC traps. This mutator could
then enter a long-running loop in a method without GC traps and indefinitely avoid GC suspen-
sion, thus blocking further progress for all other mutators in the system.

12

Fortunately, the mechanism to avoid such calamity was already in place in EVM. By imposing the
restriction that onlyconsistentthreads are allowed to read and write compiled code, we ensure
that mutators can never observe or overwrite GC traps, since when traps are present, the boolean
gc_stop_threads is true, resulting in immediate suspension of any mutator that attempts to
become consistent.

3 Measurements

Although our primary concern is execution speed, we measured both space and time aspects of
the GC suspension code. Section 3.1 reports space data and Section 3.2 reports time data, in both
cases using the set of benchmark programs shown in Table 1. The first seven benchmarks,
_201_compress through _228_jack, constitute the SPECjvm98 suite [15]. The next two,
_224_richards and _233_tmix, were among several additional SPECjvm98 candidate programs
that were rejected in the final round of voting. We have included these two because they are multi-
threaded. Finally, we selected the remaining benchmarks because they were nontrivial, stress the
memory system, and use many threads.

Although many of the benchmarks are single-threaded, it is, we argue, still fair to use them in a
study of GC suspension code in multi-threaded environments. Indeed, unless the Java virtual
machine special-cases single-threaded programs (EVM does not), the execution overhead of GC
polls remain the same whether one or multiple threads execute the code containing the polls. It is
also worth observing that essentially all Java applications are de facto multi-threaded, even those

Table 1. Characterization of benchmark programs.

Benchmark Description #linesa

a. Approximate number of lines of source code in the benchmark itself, excluding standard class
library code.

#threadsb

b. Max number of mutator threads encountered during a GC,excluding three system threads (final-
izer, reference handler, and signal dispatcher).

#GCs

_201_compress LZW compression and decompression 927 1 19

_202_jess Version of NASA’s CLIPS expert system shell 10,579 1 142

_209_db Search and modify a database 1,028 1 42

_213_javac Source to bytecode compiler 25,211 1 114

_222_mpegaudio Decompress audio file n/a 1 2

_227_mtrt Multi-threaded image rendering 3,799 3 73

_228_jack Parser generator generating itself 8,194 1 125

_224_richards Five threads running multiple versions of O/S simulator 3,637 1 (5c)

c. The _224_richards benchmark runs five user threads, but when the GCs occur, only a single
thread is active.

2

_233_tmix Thread mix: sort, crc, producer-consumer, primes, etc. 8,194 9 23

simplifier Boolean expression simplifier written; by Robert Cartwright 472 1 591

java-in-java [16] Bytecode interpreter written in Java language running the DeltaBlue prg.10,069 1 87

java verifier Bytecode verifier verifying itself; by Christine Flood 4,032 1 33

volano serverd

d. VolanoMark version 2.0.0 build 137 [13].

“Chat server,” reads and distributes messages n/a 407 3

volano client Generates work-load to stress server n/a 401 16

13

that only start a single thread, since the standard class libraries in the Java platform and the virtual
machine itself start a number of “system threads” to handle object finalization and other back-
ground tasks.

3.1 Space

The space costs of exact garbage collection have two components: the maps required to decode
stack frames at GC points and the code and data structures required to suspend threads at GC
points. Counted per GC point, the space overhead for maps is independent of the GC suspension
mechanism and has previously been documented [2, 7], so here we will concentrate on the latter.

In EVM, the GC poll sequence contains 6 SPARC instructions (see Section 2.3), which amounts
to 24 bytes. A just-in-time compiler doing more flow analysis than our present one should be able
to share thesethi instructions among several poll points, reducing the average cost to just over
20 bytes, but in the following we will use the slightly more conservative number of 24 bytes.

The poll-less GC suspension mechanism requires a 2 instruction trampoline (8 bytes) for each GC
point, placed at the end of methods. We also need a way to map a given trampoline back to the
corresponding GC point in the compiled code. However, in EVM, each method has an array of
stack frame maps, allowing a positional matching of, say, thei’th trampoline back to thei’th
stackmap, from which the address of the GC point in the compiled code can be found easily (stack
maps contain a relative PC). Since these stack maps are necessary anyway, and since they are the
same whether polling or patching is used, we don’t include their costs in the space budget for poll-
less GC suspension.

Table 2 gives compiled code space costs for the two GC suspension approaches. For polling, the
table gives three numbers for each benchmark: the number of GC points in compiled code, the
number of poll points, and the total code space. In this case, there are many more GC points than
GC polls, since many GC points need no poll (e.g., call sites need a stack map, but require no poll
code since there is a poll in the prologue of the callee; exception handler entry points constitute
another category of GC points that require no poll code). Overall, polling code amounts to at most
4% of the total code space. For patching, there are slightly more GC points than for polling. The
increase results from removing a GC point from many but not all method prologues (recall that
the poll was optimized away for trivial methods, see Section 2.3) but adding a GC point inevery
method return. Adding further to the space cost, every GC point now has an associated trampo-
line, which, although smaller than the poll sequence, occurs more often. The net result is that
patching increases the total compiled code space over polling by 5.1% - 8.5%. We note, however,
that the increased code space does not represent a significant icache dilution, since the added
instructions (the GC trampolines) are kept out of line. In fact, icache utilization should improve,
since the patching system avoids inline poll sequences.

Architecture and operating systems properties made us design a code patching scheme that uses
an annulled branch to jump to a call. If the SPARC architecture had no delay slots or had an
annulled call, or if the operating system had fast traps, trampolines would be unnecessary and
code patching would produce a small space savings, since the poll code could be removed without
the addition of trampolines.

14

3.2 Time

Now consider time. We primarily report cycle and instruction counts gathered using the hardware
performance counters in the UltraSPARC chip. Such counters are more accurate than elapsed
time, with instruction counts being repeatable to at least five digits of precision, regardless of
other activity on the machine, and cycle counts repeatable to two or more digits of precision.
Since the counters only measure user level activity we also report the elapsed time as a bottom-
line validation.

3.2.1 Cost of GC points in compiled code

The most important time component is the cost of offering consistent points during compiled code
execution. This cost is the only time measure that depends on whether we use polling or traps.
Table 3 summarizes the results obtained on our benchmarks. Code patching reduces total instruc-
tion counts by an average of 4.7%, ranging from 0.6% to 11.2% improvement, with a similar
reduction in cycles and elapsed time.

3.2.2 Cost of inconsistent regions

Our primary aim is to compare the cost of polling with the cost of patching. However, whether the
system polls or patches, another source of time overhead remains: the cost of transitioning in and
out of inconsistent regions. This overhead is specific to the approach taken in EVM. In this sec-
tion, we estimate the cost of these transitions. Our motivation for reporting these numbers is that
we have found the inconsistent/consistent thread distinction an effective technique to facilitate
coexistence of GC and large amounts of core virtual machine code written in a low-level language

Table 2. Compiled code space costs of polling versus code patching.

polling code patching
expansion,
total codeBenchmark #GC points #GC polls total code #GC points total code

_201_compress 2,577 287 223 kb 2,706 237 kb 6.2%

_202_jess 4,537 525 358 kb 4,697 381 kb 6.3%

_209_db 2,739 319 230 kb 2,863 244 kb 6.0%

_213_javac 9,538 905 710 kb 10,014 765 kb 7.6%

_222_mpegaudio 2,947 415 287 kb 3,114 302 kb 5.1%

_227_mtrt 3,562 359 318 kb 3,718 339 kb 6.5%

_228_jack 5,432 463 408 kb 5,665 442 kb 8.2%

_224_richards 3,664 398 320 kb 3,927 341 kb 6.5%

_233_tmix 3,139 378 259 kb 3,299 276 kb 6.5%

simplifier 1,826 237 186 kb 1,953 196 kb 5.3%

java-in-java 5,722 346 432 kb 5,908 469 kb 8.5%

java verifier 3,126 366 265 kb 3,260 282 kb 6.3%

volano server 4,955 428 396 kb 5,191 426 kb 7.5%

volano client 2,744 314 252 kb 2,906 268 kb 6.2%

Average 6.6%

15

like C. By reporting the overhead, we hope other projects can make more informed decisions
when designing and implementing run-time systems for languages with garbage collection.

To estimate the cost of transitioning in and out of inconsistent regions, we first determined the
cost of an empty inconsistent region (consistent-inconsistent-consistent). Since threads keep their
inconsistentCount in thread-local storage, and since the garbage collector only inspects
counts on suspended mutators, the count can be manipulated without any locking. This enables
very fast inconsistent regions. On an UltraSPARC CPU, an empty inconsistent region can be exe-
cuted in 7 cycles or 10 instructions. While this measurement reflects the best case (no register
pressure because the inconsistent region is very small), and does not account for the costs incurred
by inconsistent regions preventing code motion and scheduling, we have no reason to expect the
average inconsistent region to be vastly slower. Next, we instrumented the virtual machine to
count the number of times a thread decrements itsinconsistentCount , shown in the second
column of Table 4. (This method of counting slightly overestimates the costs since for nested
inconsistent regions only the outermost one incurs the full cost of transitioning.) Multiplying the
per-region cost with the number of times threads leave inconsistent regions gives us an estimate of
the total cost of managing inconsistent regions (third column). This cost can then be compared
with the total number of instructions executed in each benchmark (fourth column). As the ratios in
the last column of the table show, the cost of inconsistent regions never exceeds 4% of the total
instructions and is usually significantly lower.

In an independent experiment, Mario Wolczko modified the virtual machine to use no inconsistent
regions. This isalmostsafe for single-threaded programs. The tests that successfully ran on this
modified virtual machine produced results in agreement with those in Table 4. At the time of this
writing, unfortunately, these measurements can no longer be repeated since parts of the system
have come to rely on inconsistent regions in a way that is nontrivial to take out.

Table 3. Time comparison of polling and patching.

polling patching relative improvement

Benchmark instructions cycles elapsed time instructions cycles elapsed time instructions cycles elapsed time

_201_compress 11992.336M 15510.227M 103.9s 11129.601M 14731.292M 89.5s 7.2% 5.0% 13.8%

_202_jess 4299.264M 6145.159M 40.0s 4108.723M 6129.151M 39.8s 4.4% 0.3% 0.6%

_209_db 9386.964M 17171.363M 144.1s 9033.079M 16703.559M 140.2s 3.8% 2.7% 2.7%

_213_javac 8781.495M 11409.766M 82.7s 8422.158M 11223.930M 79.8s 4.1% 1.6% 3.5%

_222_mpegaudio 13781.832M 16163.663M 98.7s 13253.414M 16017.162M 97.1s 3.8% 0.9% 1.6%

_227_mtrt 3351.789M 5269.001M 33.0s 3251.974M 5110.383M 31.8s 3.0% 3.0% 3.7%

_228_jack 5906.806M 8353.468M 61.0s 5432.232M 7963.031M 58.1 s 8.0% 4.7% 4.7%

_224_richards 8616.369M 11662.088M 70.3s 7805.225M 10737.659M 64.7s 9.4% 7.9% 7.9%

_233_tmix 23042.037M 31766.119M 193.4s 20450.609M 29499.330M 179.5s 11.2% 7.1% 7.3%

simplifier 3037.558M 5578.371M 45.9s 3018.266M 5443.144M 45.8s 0.6% 2.4% 0.2%

java-in-java 4196.891M 5684.919M 42.6s 4007.502M 5285.704M 37.2s 4.5% 7.0% 12.7%

java verifier 537.325M 714.751M 5.9s 527.468M 677.197M 5.8s 1.8% 5.3% 1.2%

volano server 1112.771M 2191.149M
52.7s

1084.244M 2125.578M
51.5s

2.6% 3.0%
2.2%

volano client 1137.254M 2222.953M 1117.006M 2215.791M 1.8% 0.3%

Average 4.7% 3.7% 4.8%

16

4 Discussion

Our colleague Steve Dever proposed an optimization of the polling scheme for compiled code that
reduces the number of instructions for a non-taken poll from four to two. The optimized scheme
uses Solaris’ ability to write-protect a page of virtual memory. The virtual machine allocates a
“poll page” of virtual memory. In normal operation, this page is write-enabled, but when threads
must suspend for GC the garbage collector write-protects the page. A poll, then, consists of two
instructions:

sethi %hi(pollPageAddr), %g1
clrb [%g1] .

Normally, the write succeeds, but when the poll page is write-protected, the write results in a sig-
nal. The signal handler analyzes the signal to identify it as a poll, and then suspends the thread.
Mosberger, Druschel, and Peterson refer to this technique as “controlled faults” [11]. The main
advantage of this alternative poll sequence over the poll code shown in Section 2.3 is the reduc-
tion in the number of instructions from four executed (and six emitted) to two executed (and two
emitted). Thus, in terms of time efficiency, the optimized poll code falls approximately halfway
between the original unoptimized poll code and the code patching solution. The main disadvan-
tages of the optimized poll code are the relatively high cost of UNIX signals as discussed in Sec-
tion 2.4.2 and the fact that it does not completely eliminate the polling overhead.

If an interpreter for the hardware instruction set is available, it can be used instead of code patch-
ing to roll threads forward to the next GC point. The interpreter stops execution when the current
thread becomes consistent or reaches a GC point. Now, an inconsistent mutator can be rolled for-
ward simply by resuming it on the interpreter instead of the raw hardware. Moss and Kohler used
this interpretation (“emulation”) technique in an implementation of Trellis/Owl [12]: to prevent

Table 4. Estimated cost of transitioning in and out of inconsistent regions.

Benchmark
#inconsistent

regions
 #instructions to
establish regions

total #instructions
w. patching

estim. relative cost
of incons. regions

_201_compress 87,768 0.877M 11129.601M 0.00%

_202_jess 5,371,894 53.718M 4108.723M 1.30%

_209_db 144,094 1.440M 9033.079M 0.01%

_213_javac 7,811,040 78.110M 8422.158M 0.92%

_222_mpegaudio 2,545,358 25.453M 13253.414M 0.19%

_227_mtrt 108,285 1.082M 3251.974M 0.03%

_228_jack 5,591,570 55.915M 5432.232M 1.02%

_224_richards 91,252 0.912M 7805.225M 0.01%

_233_tmix 3,620,231 36.202M 20450.609M 0.17%

simplifier 1,870,479 18.704M 3018.266M 0.61%

java-in-java 6,894,003 68.940M 4007.502M 1.72%

java verifier 2,090,997 20.909M 527.468M 3.96%

volano server 895,548 8.955M 1084.244M 0.82%

volano client 1,335,357 13.353M 1117.006M 1.19%

Average 0.85%

17

untimely preemption from leaving threads in a non-debuggable state or a state in which garbage
collection cannot be allowed, the system would use emulation to roll preempted threads forward
into a safe region of code. Interpretation is attractive on systems where icache coherency or vari-
able instruction sizes make code modification difficult. The main disadvantages to interpretation
are, first, that it is a considerable task to implement an interpreter for a modern architecture, and,
second, that in the roll-forward phase threads will execute at a fraction of their normal speed,
potentially requiring a higher density of GC points to keep the GC start latency reasonable.

The reduction in instruction counts that patching achieves over polling may seem relatively small
in the context of Java virtual machines where, these days, advances in technology almost rou-
tinely deliver much more dramatic speedups. However, several points should be kept in mind.
First, as unrelated optimizations continue to improve the speed of the rest of the system, the rela-
tive advantage of patching over polling will increase. Second, when Java virtual machine technol-
ogy matures to the same level as current implementations of older languages like C and Fortran, a
speed difference of a few percent may be all that separates the most competitive Java virtual
machines. Third, unlike compiler optimization, which in a dynamic system like a Java virtual
machine doesn’t come for free (compile time takes away from execution time), GC poll elimina-
tion benefits even short-running programs since it has virtually no fixed overhead.

Finally, we would like to offer an different angle on our results. The instruction count reduction
resulting from patching should be seen not just in relation to the total number of instructions, but
also in relation to the number of instructions spent in the garbage collector, since, after all, GC
points are a GC-related cost. Because most programs on EVM spend less than a fifth of their total
time in GC, one may view code patching as reducing the cost of garbage collection by approxi-
mately 5 * 4.7% = 23%. This is a significant speedup to get in a highly tuned memory system.

5 Related work

Mosberger, Druschel, and Peterson discuss software implementations of atomic (“uninterrupt-
ible”) sequences for uniprocessor operating systems [11]. They advocate the use of roll-forward:
if a thread is about to be interrupted in the middle of an atomic sequence, it is rolled forward to the
end of the sequence by the interrupt handler. In many regards, atomic sequences resemble the
regions of code between GC points in our system. Mosberger, Druschel, and Peterson suggest
several ways to stop threads at the end of an atomic sequence, including code patching, faulting
instructions (such as a dummy write to page that can be write-protected), and code cloning
(threads are restarted in a copy of the code that has been modified to cause suspension at the
desired point).

Tamches and Miller have developed a code instrumentation scheme that allows instrumentation of
a running operating system kernel [17]. Their technique, implemented on the SPARC processor, is
similar to the present work and also must work correctly in a threaded environment. To instrument
a point in a piece of active code, they replace a single instruction with an annulled branch. The
branch diverts control flow to a so-called springboard routine, similar to our GC trampolines,
from where a longer-reaching branch or call forwards to the actual instrumentation code. Tamches
and Miller have no control over the layout of the code that they instrument, so they could not
assume the luxury of springboards conveniently placed at the end of every method. Instead, they

18

find pieces of unused memory, such as that resulting from initialization code that has already run,
to place their instrumentation code.

Peyton Jones and Ramsey discuss machine-independent support for, among other things, garbage
collection in the context of C--, a “portable assembler” language [14]. They define safe points as
program points where it is safe to suspend execution and subsequently inspect and modify vari-
ables and perform GC. Thus, safe points generalize our GC points. They also propose the opera-
tion ExecuteToNextSafePont() , which can be invoked after a thread has received an
asynchronous event, such as an exception or a GC suspension request originating in another
thread. They do not give a concrete implementation ofExecuteToNextSafePont() , but for
performance reasons it would seem attractive to use code patching similar to the scheme
described in this paper.

6 Conclusions

We have described the steps involved in suspending all mutators at GC points in EVM. Its corner-
stone is a distinction between inconsistent and consistent mutator threads, where the former tem-
porarily cannot tolerate a GC. When GC is imminent, all mutators are suspended, whereupon the
inconsistent ones are restarted to allow them to execute up to the next consistent point. Our study
shows that a polling system, the most straightforward approach to stopping threads at GC points,
on average executes 4.7% more instructions than patching. The main disadvantages to patching
are a 6.6% higher space cost, in our implementation, and increased implementation complexity.

By today’s standard, a single-digit percentage speedup of Java applications may seem relatively
insignificant, but as Java virtual machine technology continues to mature, the relative importance
of GC poll elimination will likely increase. Moreover, a justifiable way to view our results is that
patching yields a 23% reduction of GC-related costs in EVM. We hope that by documenting the
present work and results, future implementors of garbage-collected run-time systems can make a
more informed choice about the thread suspension mechanism.

Acknowledgments. The concrete design and implementation of the poll-less GC suspension code
described in this paper evolved through discussions with several people at Sun Microsystems.
Ross Knippel and Mario Wolczko, in particular, were directly involved in the design and imple-
mentation. LLNI was developed in early 1997 at Sun Labs by the Java Topics group. Lars Bak,
David Detlefs, Alex Garthwaite, Urs Hölzle, Doug Lea, Steve Heller, Derek White, and Mario
Wolczko read drafts and offered advice and suggestions that significantly improved this paper.
Thanks to Sreeram Duvvuru for explaining intricacies of SPARC architecture delay slots.

19

References
1. Ole Agesen and David L. Detlefs. Finding References in Java Stacks.OOPSLA’97 Garbage Collection and

Memory Management Workshop. Atlanta, GA, October 1997. http://www.dcs.gla.ac.uk/~huw/oopsla97/gc/
papers.html.

2. Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage Collection and Local Variable Type-Precision and
Liveness in Java Virtual Machines. InProceedings of the ACM SIGPLAN ’98 Conference Programming Lan-
guage Design and Implementation (PLDI), p. 269-279, Montreal, Canada, June 1998.

3. Hans-Juergen Boehm, Alan J. Demers, and Scott Shenker. Mostly Parallel Garbage Collection. InProceedings
of the ACM SIGPLAN ‘91 Conference on Programming Language Design and Implementation (PLDI), p. 157-
164, Toronto, ON, Canada, June 1991.

4. Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert Wilson, and Mario Wolczko.
Compiling Java Just in Time: Using runtime compilation to improve Java program performance.IEEE Micro,
17(3), p. 36-43, May/June 1997.

5. David Detlefs and Ole Agesen.Inlining of Virtual Methods. To be presented at ECOOP’99.

6. L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80 System. InProceedings
of the 11th Symposium on the Principles of Programming Languages, p. 297-302, Salt Lake City, UT, 1984.

7. Amer Diwan, Eliot Moss, and Richard Hudson. Compiler Support for Garbage Collection in a Statically Typed
Language. InProceedings of the ACM SIGPLAN ’92 Conference Programming Language Design and Imple-
mentation (PLDI), p. 273-282, San Francisco, CA, June 1992.

8. Urs Hölzle.Adaptive Optimization in Self: Reconciling High Performance with Exploratory Programming.
Ph.D. thesis, Department of Computer Science, Stanford University, Stanford, CA, August 1994. Also published
as Sun Microsystems Laboratories Technical Report, SMLI TR-95-35, March 1995.

9. Bil Lewis and Daniel L. Berg.A Guide to Multithreaded Programming: Threads Primer.SunSoft Press and
Prentice Hall, 1996.

10. Timothy Lindholm and Frank Yellin.The Java Virtual Machine Specification. The Java Series, Addison-Wes-
ley, 1996.

11. David Mosberger, Peter Druschel, and Larry L. Peterson. Implementing Atomic Sequences on Uniprocessors
Using Rollforward.Software—Practice and Experience, 26(1), p. 1-23, January 1996.

12. J. Eliot B. Moss and Walter H. Kohler. Concurrency Features for the Trellis/Owl Language. In Proc.European
Conference on Object-Oriented Programming (ECOOP’87), p. 171-180, LNCS 276, 1987.

13. John Neffinger. Which Java VM scales best?JavaWorld,August 1998. http://www.javaworld.com/javaworld/
jw-08-1998/jw-08-volanomark.html. See also www.volano.com.

14. Simon L. Peyton Jones, and Norman Ramsey.Machine-Independent Support for Garbage Collection, Debug-
ging, Exception Handling, and Concurrency,Technical Report, CS-98-19, Department of Computer Science,
University of Virginia, August 1998.

15. SPEC jvm98 Benchmarks. August 19, 1998 release. http://www.spec.org/osg/jvm98.

16. Antero Taivalsaari.Implementing a Java™ Virtual Machine in the Java Programming Language.Technical
Report, SMLI TR-98-64, Sun Microsystems Laboratories, Sun Microsystems, Inc., 901 San Antonio Road, Palo
Alto, CA 94303 USA, March 1998.

17. Ariel Tamches and Barton P. Miller.Fine-Grained Dynamic Instrumentation of Commodity Operating System
Kernels.Third Symposium on Operating Systems Design and Implementation (OSDI’99), New Orleans, Febru-
ary 1999.

18. David Ungar and Frank Jackson. An Adaptive Tenuring Policy for Generation Scavengers. InACM Transactions
on Programming Languages and Systems, 14(1), p. 1-28, January 1992.

19. Derek White and Alex Garthwaite.The GC Interface in the EVM.Technical Report, SMLI TR-98-67, Sun
Microsystems Laboratories, Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 USA, Decem-
ber 1998.

20

About the Author

Ole Agesen is a Senior Staff Engineer in the Java Topics Group in Sun Labs. Previously, he
worked in the Kanban group and the Self group, also in Sun Labs. He has an M.S. degree from
Aarhus University in Denmark and M.S. and Ph.D. degrees from Stanford University in Califor-
nia.

