
Defunctionalization at Work �

Olivier Danvy and Lasse R. Nielsen

BRICS
y

Department of Computer Science

University of Aarhus z

Abstract
Reynolds's defunctionalization technique is a whole-program
transformation from higher-order to �rst-order functional
programs. We study practical applications of this trans-
formation and uncover new connections betw een seemingly
unrelated higher-order and �rst-order speci�cations and be-
tween their correctness proofs. Defunctionalization there-
fore appearsboth as a springboard for rev ealing new con-
nections and as a bridge for transferring existing results be-
tw een the �rst-order world and the higher-order world.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (functional)
programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features|A bstract data typ es,Con-
trol structur es, Data types and structures, Procedures, func-
tions, and subroutines, Recursion; E.1 [Data]: Data Struc-
tures|R ecords; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs|Functional constructs; F.4.1
[Mathematical Logic and Formal Languages]: Lambda
calculus and related systems; I.2.2 [Arti�cial Intelligence]:
Automatic Programming|Program transformation.

Keywords
Church encoding, closure conversion, con tinuations, continu-
ation-passing style (CPS), CPS transformation, defunction-
alization, direct-st yle transformation, �rst-order programs,
higher-order programs, lambda-lifting, ML, regular expres-
sions, Sc heme, supercombinator conversion, syntactic theo-
ries.

zNy Munkegade, Building 540, DK-8000 Aarhus C, Denmark

E-mail: fdanvy,lrng@brics.dk
�An extended version of this article is available
as the BRICS technical report RS-01-23.
yBasic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1. Background and Introduction
In �rst-order programs, all functions are named and each
call refers to the callee by its name. In higher-order pro-
grams, functions may be anonymous, passed as arguments,
and returned as results. As Strachey put it [49], functions
are second-class denotable values in a �rst-order program,
and �rst-class expressible values in a higher-order program.
One may then w onder how �rst-class functions are repre-
sented at run time.

� First-class functions are often represen ted with clo-
sures, i.e., expressible values pairing a code pointer
and the denotable values of the variables occurring
free in that code, as proposed by Landin in the mid-
1960's [30]. Today, closures are the most common rep-
resen tation of �rst-class functions in the world of eager
functional programming [1, 17, 32], as well as a stan-
dard representation for implementing object-oriented
programs [23]. They are also used to implement higher-
order logic programming [8].

� Alternatively, higher-order programs can be defunc-
tionalize d into �rst-order programs, as proposed by
Reynolds in the early 1970's [43]. In a defunction-
alized program, �rst-class functions are represented
with �rst-order data types: a �rst-class function is
introduced with a constructor holding the values of
the free v ariables of a function abstraction, and it is
eliminated with a case expression dispatching over the
corresponding constructors.

� First-class functions can also be dealt with by trans-
lating functional programs into combinators and using
graph reduction, as proposed by Turner in the mid-
1970's [51]. This implementation technique has been
investigated extensively in the world of lazy functional
programming [27, 29, 37, 38].

Compared to closure conversion and to combinator conver-
sion, defunctionalization has been used very little. The goal
of this article is to study practical applications of it.
We �rst illustrate defunctionalization with tw oconcrete

examples (Sections 1.1 and 1.2). In the �rst program, tw o
function abstractions are instantiated once, and in the sec-
ond program, one function abstraction is instantiated re-
peatedly .We then characterize defunctionalization in a nut-
shell (Section 1.3) before reviewing related work (Section 1.4).
Finally, we raise questions to which defunctionalization pro-
vides answers (Section 1.5).

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
PPDP 01 Florence, Italy
© ACM 2001 1-58113-388-x/01/09…$5.00

162

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

1.1 A sample higher-order program with a
static number of closures

In the following ML program, aux is passed a �rst-class func-
tion, applies it to 1 and 10, and sums the results. The main

function calls aux twice and multiplies the results. All in all,
two function abstractions occur in this program, in main.

(* aux : (int -> int) -> int *)
fun aux f

= f 1 + f 10

(* main : int * int * bool -> int *)
fun main (x, y, b)

= aux (fn z => x + z) *
aux (fn z => if b then y + z else y - z)

Defunctionalizing this program amounts to de�ning a data
type with two constructors, one for each function abstrac-
tion, and its associated apply function. The �rst function
abstraction contains one free variable (x, of type integer),
and therefore the �rst data-type constructor requires an in-
teger. The second function abstraction contains two free
variables (y, of type integer, and b, of type boolean), and
therefore the second data-type constructor requires an inte-
ger and a boolean.
In main, the �rst �rst-class function is thus introduced

with the �rst constructor and the value of x, and the second
with the second constructor and the values of y and b.
In aux, the functional argument is passed to a second-

class function apply that eliminates it with a case expression
dispatching over the two constructors.

datatype lam = LAM1 of int
| LAM2 of int * bool

(* apply : lam * int -> int *)
fun apply (LAM1 x, z)

= x + z
| apply (LAM2 (y, b), z)

= if b then y + z else y - z

(* aux_def : lam -> int *)
fun aux_def f

= apply (f, 1) + apply (f, 10)

(* main_def : int * int * bool -> int *)
fun main_def (x, y, b)

= aux_def (LAM1 x) * aux_def (LAM2 (y, b))

1.2 A sample higher-order program with a
dynamic number of closures

A reviewer wondered what happens for programs that \dy-
namically generate" new closures, and whether such pro-
grams lead to new constants and thus require extensible case
expressions. The following example illustrates such a situ-
ation and shows that no new constants and no extensible
case expressions are needed.
In the following ML program, aux is passed two arguments

and applies one to the other. The main function is given a
number i and a list of numbers [j1, j2, ...] and returns
the list of numbers [i+j1, i+j2, ...]. One function ab-
straction, fn i => i + j, occurs in this program, in main, as
the second argument of aux. Given an input list of length n,
the function abstraction is instantiated n times in the course
of the computation.

(* aux : int * (int -> int) -> int *)
fun aux (i, f)

= f i

(* main = fn : int * int list -> int list *)
fun main (i, js)

= let fun walk nil
= nil

| walk (j :: js)
= (aux (i, fn i => i + j)) :: (walk js)

in walk js
end

Defunctionalizing this program amounts to de�ning a data
type with only one constructor, since there is only one func-
tion abstraction, and its associated apply function. The
function abstraction contains one free variable (j, of type
integer), and therefore the data-type constructor requires
an integer.
In main, the �rst-class function is introduced with the con-

structor and the value of j.
In aux, the functional argument is passed to a second-

class function apply that eliminates it with a case expression
dispatching over the constructor.

datatype lam = LAM of int

(* apply : lam * int -> int *)
fun apply (LAM j, i)

= i + j

(* aux_def : int * lam -> int *)
fun aux_def (i, f)

= apply (f, i)

(* main_def : int * int list -> int list *)
fun main_def (i, js)

= let fun walk nil
= nil

| walk (j :: js)
= (aux_def (i, LAM j)) :: (walk js)

in walk js
end

Given an input list of length n, the constructor LAM is used
n times in the course of the computation.

1.3 Defunctionalization in a nutshell
In a higher-order program, �rst-class functions arise as in-
stances of function abstractions. All these function abstrac-
tions can be enumerated in a whole program. Defunctional-
ization is thus a whole-program transformation where func-
tion types are replaced by an enumeration of the function
abstractions in this program.
Defunctionalization therefore takes its roots in type the-

ory. Indeed, a function type hides typing assumptions from
the context, and, as pointed out by Minamide, Morrisett,
and Harper in their work on typed closure conversion [32],
making these assumptions explicit requires an existential
type. For a whole program, this existential type can be
represented with a �nite sum together with the correspond-
ing injections and case dispatch, and this representation is
precisely what defunctionalization achieves.
These type-theoretical roots do not make defunctional-

ization a straitjacket, to paraphrase Reynolds about Al-
gol [42]. For example, one can use several apply functions,
e.g., grouped by types, as in Bell, Bellegarde, and Hook's
work [4]. One can also defunctionalize a program selectively,
e.g., only its continuations, as in Section 3. One can even
envision a lightweight defunctionalization similar to Steckler
and Wand's lightweight closure conversion [47], as in Baner-
jee, Heintze, and Riecke's recent work [2].

163

1.4 Related work
Originally, Reynolds devised defunctionalization to trans-
form a higher-order interpreter into a �rst-order one [43].
He presented it as a programming technique, and never used
it again [44].
Since then, defunctionalization has not been used much,

though when it has, it was as a full-edged implementation
technique: Bondorf uses it to make higher-order programs
amenable to �rst-order partial evaluation [5]; Tolmach and
Oliva use it to compile ML programs into Ada [50]; Fegaras
uses it in his object-oriented database management system,
lambda-DB [18]; Wang and Appel use it in type-safe garbage
collectors [54]; and defunctionalization is an integral part of
MLton [7] and of Boquist's Haskell compiler [6].
Only lately has defunctionalization been formalized: Bell,

Bellegarde, and Hook showed that it preserves types [4];
Nielsen proved its partial correctness using denotational se-
mantics [35, 36]; and Banerjee, Heintze and Riecke proved
its total correctness using operational semantics [2].

1.5 This work
Functional programming encourages fold-like recursive de-
scents, typically using auxiliary recursive functions. Often,
these auxiliary functions are higher order in that their co-
domain is a function space. For example, if an auxiliary
function has an accumulator of type �, its co-domain is
� ! �, for some �. For another example, if an auxiliary
function has a continuation of type � ! �, for some �,
its co-domain is (� ! �) ! �. How do these functional
programs compare to programs written using a �rst-order,
data-structure oriented approach?
Wand's classical work on continuation-based program trans-

formations [53] was motivated by the question \What is a
data-structure continuation?". Each of the examples con-
sidered in Wand's paper required a eureka step to design
a data structure for representing a continuation. Are such
eureka steps always necessary?
Continuations are variously presented as a functional rep-

resentation of the rest of the computation and as a functional
representation of the context of a computation [20]. Wand's
work addressed the former view, so let us consider the latter
one. For example, in his PhD thesis [19], Felleisen developed
a syntactic approach to semantics relying on the �rst-order
notions of `evaluation context' and of `plugging expressions
into contexts'. How do these �rst-order notions compare to
the notion of continuation?
In the rest of this article, we show that defunctionalization

provides a single answer to all these questions. All the pro-
grams we consider perform a recursive descent and use an
auxiliary function. When this auxiliary function is higher-
order, defunctionalization yields a �rst-order version with an
accumulator (e.g., tree attening in Section 2.1 and list re-
versal in Section 2.2). When this auxiliary function is �rst-
order, we transform it into continuation-passing style; de-
functionalization then yields an iterative �rst-order version
with an accumulator in the form of a data structure (e.g.,
string parsing in Section 3.1 and regular-expression match-
ing in Section 5). We also consider a de�nitional interpreter
for a syntactic theory and we identify that it is written in
a defunctionalized form. We then \refunctionalize" it and
obtain a continuation-passing de�nitional interpreter whose
continuations represents the evaluation contexts of the syn-
tactic theory (Section 4).

In addition, we observe that defunctionalization and Church
encoding have dual purposes, since Church encoding is a
classical way to represent data structures with higher-order
functions. What is the result of defunctionalizing a Church-
encoded data structure? And what does one obtain when
Church-encoding the result of defunctionalization?
Similarly, we observe that backtracking is variously imple-

mented in a �rst-order setting with one or two stacks, and
in a higher-order setting with one or two continuations. It
is natural enough to wonder what is the result of Church-
encoding the stacks and of defunctionalizing the continua-
tions. One can wonder as well about the correctness proofs
of these programs|how do they compare?
In the rest of this article, we also answer these questions.

We defunctionalize two programs using Hughes's higher-
order representation of intermediate lists and obtain two
eÆcient and traditional �rst-order programs (Section 2.2).
We also clarify the extent to which Church encoding and de-
functionalization can be considered as inverses of each other
(Sections 2.3, 2.4, and 2.5). Finally, we compare and con-
trast a regular-expression matcher and its proof before and
after defunctionalization (Section 5).

2. Defunctionalization of List- and of Tree-
Processing Programs

We consider several canonical higher-order programs over
lists and trees and we defunctionalize them. In each case,
defunctionalization yields a known, but unrelated solution.
We then turn to Church encoding, which provides a uniform
higher-order representation of data structures. We consider
the result of defunctionalizing Church-encoded data struc-
tures, and we consider the result of Church-encoding the
result of defunctionalization.

2.1 Flattening a binary tree into a list
To atten a binary tree into a list of its leaves, we choose
to map a leaf to a curried list constructor and a node to
function composition, homomorphically. In other words, we
map a list into the monoid of functions from lists to lists.
This de�nition hinges on the built-in associativity of func-
tion composition.

datatype 'a bt = LEAF of 'a
| NODE of 'a bt * 'a bt

(* cons : 'a -> 'a list -> 'a list *)
fun cons x xs

= x :: xs

(* flatten : 'a bt -> 'a list *)
(* walk : 'a bt -> 'a list -> 'a list *)
fun flatten t

= let fun walk (LEAF x)
= cons x

| walk (NODE (t1, t2))
= (walk t1) o (walk t2)

in walk t nil
end

Eta-expanding the result of walk and inlining cons and o

yields a curried version of the fast atten function with an
accumulator.

(* flatten_ee : 'a bt -> 'a list *)
(* walk : 'a bt -> 'a list -> 'a list *)

164

fun flatten_ee t
= let fun walk (LEAF x) a

= x :: a
| walk (NODE (t1, t2)) a

= walk t1 (walk t2 a)
in walk t nil
end

It is also instructive to defunctionalize flatten. Two func-
tional values occur|one for the leaves and one for the nodes|
and therefore they give rise to a data type with two construc-
tors. Since flatten is homomorphic, the new data type is
isomorphic to the data type of binary trees, and therefore
the associated apply function could be made to work directly
on the input tree, e.g., using deforestation [52]. At any rate,
we recognize this apply function as an uncurried version of
the fast atten function with an accumulator.

datatype 'a lam = LAM1 of 'a
| LAM2 of 'a lam * 'a lam

(* apply : 'a lam * 'a list -> 'a list *)
fun apply (LAM1 x, xs)

= x :: xs
| apply (LAM2 (f1, f2), xs)

= apply (f1, apply (f2, xs))

(* cons_def : 'a -> 'a lam *)
fun cons_def x

= LAM1 x

(* o_def : 'a lam * 'a lam -> 'a lam *)
fun o_def (f1, f2)

= LAM2 (f1, f2)

(* flatten_def : 'a bt -> 'a list *)
(* walk : 'a bt -> 'a lam *)
fun flatten_def t

= let fun walk (LEAF x)
= cons_def x

| walk (NODE (t1, t2))
= o_def (walk t1, walk t2)

in apply (walk t, nil)
end

The monoid of functions from lists to lists corresponds to
Hughes's novel representations of lists [28], which we treat
next.

2.2 Higher-order representations of lists
In the mid-1980's, Hughes proposed to represent intermedi-
ate lists as partially applied concatenation functions [28], so
that instead of constructing a list xs, one instantiates the
function abstraction fn ys => xs @ ys. The key property of
this higher-order representation is that lists can be concate-
nated in constant time. Therefore, the following naive ver-
sion of reverse operates in linear time instead of in quadratic
time, as with the usual linked representation of lists, where
lists are concatenated in linear time.

(* append : 'a list -> 'a list -> 'a list *)
fun append xs ys

= xs @ ys

(* reverse : 'a list -> 'a list *)
fun reverse xs

= let fun walk nil
= append nil

| walk (x :: xs)
= (walk xs) o (append [x])

in walk xs nil
end

Let us defunctionalize this program. First, like Hughes,
we recognize that appending the empty list is the identity
function and that appending a single element amounts to
consing it.

(* id : 'a list -> 'a list *)
fun id ys

= ys

(* cons : 'a -> 'a list -> 'a list *)
fun cons x xs

= x :: xs

(* reverse : 'a list -> 'a list *)
(* walk : 'a list -> 'a list -> 'a list *)

fun reverse xs
= let fun walk nil

= id
| walk (x :: xs)

= (walk xs) o (cons x)
in walk xs nil
end

The function space 'a list -> 'a list arises because of three
functional values: id, in one conditional branch; and, in the
other, the results of consing an element and of calling walk.
We thus defunctionalize the program using a data type

with three constructors and its associated apply function.

datatype 'a lam = LAM0
| LAM1 of 'a
| LAM2 of 'a lam * 'a lam

(* apply : 'a lam * 'a list -> 'a list *)
fun apply (LAM0, ys)

= ys
| apply (LAM1 x, ys)

= x :: ys
| apply (LAM2 (f, g), ys)

= apply (f, apply (g, ys))

This data type makes it plain that in Hughes's monoid of
intermediate lists, concatenation is performed in constant
time (here with LAM2).
The rest of the defunctionalized program reads as follows.

(* id_def : 'a lam *)
val id_def = LAM0

(* cons_def : 'a -> 'a lam *)
fun cons_def x = LAM1 x

(* o_def : 'a lam * 'a lam -> 'a lam *)
fun o_def (f, g) = LAM2 (f, g)

(* reverse_def : 'a list -> 'a list *)
(* walk : 'a list -> 'a lam *)
fun reverse_def xs

= let fun walk nil
= id_def

| walk (x :: xs)
= o_def (walk xs, cons_def x)

in apply (walk xs, nil)
end

The auxiliary functions are only aliases for the data-type
constructors. We also observe that LAM1 and LAM2 are always
used in connection with each other. Therefore, they can be
fused in a single constructor LAM3 and so can their treatment
in apply lam. The result reads as follows.

165

datatype 'a lam_alt = LAM0
| LAM3 of 'a lam_alt * 'a

(* apply_lam_alt : 'a lam_alt * 'a list -> 'a list *)
fun apply_lam_alt (LAM0, ys)

= ys
| apply_lam_alt (LAM3 (f, x), ys)

= apply_lam_alt (f, x :: ys)

(* reverse_def_alt : 'a list -> 'a list *)
(* walk : 'a list -> 'a lam_alt *)
fun reverse_def_alt xs

= let fun walk nil
= LAM0

| walk (x :: xs)
= LAM3 (walk xs, x)

in apply_lam_alt (walk xs, nil)
end

As in Section 2.1, we can see that reverse def alt embeds its
input list into the data type lam alt, homomorphically. The
associated apply function could therefore be made to work
directly on the input list. We also recognize apply lam alt

as an uncurried version of the fast reverse function with an
accumulator.
Hughes also uses his representation of intermediate lists

to de�ne a `�elds' function that extracts words from strings.
His representation gives rise to an eÆcient implementation
of the �elds function. And indeed, as for reverse above, de-
functionalizing this implementation gives the fast implemen-
tation that accumulates words in reverse order and reverses
them using a fast reverse function once the whole word has
been found. Defunctionalization thus con�rms the e�ective-
ness of Hughes's representation.

2.3 Defunctionalizing Church-encoded
non-recursive data structures

Church-encoding a value amounts to representing it by a �-
term in such a way that operations on this value are carried
out by applying the representation to speci�c �-terms [3, 9,
24, 33].
A data structure is a sum in a domain. (When the data

structure is inductive, the domain is recursive.) A sum is
de�ned by its corresponding injection functions and a case
dispatch [55, page 133]. Church-encoding a data structure
consists in (1) combining injection functions and case dis-
patch into �-terms and (2) operating by function applica-
tion.
In the rest of this section, for simplicity, we only consider

Church-encoded data structures that are uncurried. This
way, we can defunctionalize them as a whole.
For example, monotyped Church pairs and their selectors

are de�ned as follows.

(* Church_pair : 'a * 'a -> ('a * 'a -> 'a) -> 'a *)
fun Church_pair (x1, x2)

= fn s : 'a * 'a -> 'a => s (x1, x2)

(* Church_fst : (('a * 'a -> 'a) -> 'b) -> 'b *)
fun Church_fst p

= p (fn (x1, x2) => x1)

(* Church_snd : (('a * 'a -> 'a) -> 'b) -> 'b *)
fun Church_snd p

= p (fn (x1, x2) => x2)

A pair is represented as a �-term expecting one argument.
This argument is a selector corresponding to the �rst or the
second projection.

In general, each of the injection functions de�ning a data
structure has the following form.

inji = �(x1; :::; xn):�(s1; :::; sm):si (x1; :::; xn)

So what happens if one defunctionalizes a Church-encoded
data structure, i.e., the result of the injection functions?
Each injection function gives rise to a data-type constructor
whose arguments correspond to the free variables in the term
underlined just above. These free variables are precisely the
parameters of the injection functions, which are themselves
the parameters of the original constructors that were Church
encoded.
Therefore defunctionalizing Church-encoded data struc-

tures (i.e., the result of their injection functions) gives rise to
the same data structures, prior to Church encoding. These
data structures are accessed through the auxiliary apply
functions introduced by defunctionalization.
For example, monotyped Church pairs and their selectors

are defunctionalized as follows.

� The selectors are closed terms and therefore the cor-
responding constructors are parameterless. By de�-
nition, a selector is passed a tuple of arguments and
returns one of them.

datatype sel = FST
| SND

(* apply_sel : sel * ('a * 'a) -> 'a *)
fun apply_sel (FST, (x1, x2))

= x1
| apply_sel (SND, (x1, x2))

= x2

� There is one injection function for pairs, and there-
fore it gives rise to a data type with one constructor
for the values of the two free variables of the result
of Church pair. The corresponding apply function per-
forms a selection. (N.B: apply pair calls apply sel, re-
ecting the curried type of Church pair.)

datatype 'a pair = PAIR of 'a * 'a

(* apply_pair : 'a pair * sel -> 'a *)
fun apply_pair (PAIR (x1, x2), s)

= apply_sel (s, (x1, x2))

� Finally, constructing a pair amounts to constructing
a pair, �a la Tarski one could say [21], and selecting a
component of a pair is achieved by calling apply pair,
which in turns calls apply sel.

(* Church_pair_def : 'a * 'a -> 'a pair *)
fun Church_pair_def (x1, x2)

= PAIR (x1, x2)

(* Church_fst_def : 'a pair -> 'a *)
fun Church_fst_def p

= apply_pair (p, FST)

(* Church_snd_def : 'a pair -> 'a *)
fun Church_snd_def p

= apply_pair (p, SND)

An optimizing compiler would inline both apply functions.
The resulting selectors, together with the defunctionalized
pair constructor, would then coincide with the original def-
inition of pairs, prior to Church encoding.

166

2.4 Defunctionalizing Church-encoded
recursive data structures

Let us briey consider Church-encoded binary trees. Two
injection functions occur: one for the leaves, and one for the
nodes. A Church-encoded tree is a �-term expecting two
arguments. These arguments are the selectors corresponding
to whether the tree is a leaf or whether it is a node.

fun Church_leaf x
= fn (s1, s2) => s1 x

fun Church_node (t1, t2)
= fn (s1, s2) => s2 (t1 (s1, s2), t2 (s1, s2))

Due to the recursive nature of binary trees, Church-node

propagates the selectors to the subtrees.
In general, each of the injection functions de�ning a data

structure has the following form.

inji = �(x1; :::; xn):
�(s1; :::; sm):si (x1; :::; xj (s1; :::; sm); :::; xn)

where xj (s1; :::; sm) occurs for each xj that is in the data
type.
So what happens if one defunctionalizes a Church-encoded

recursive data structure, i.e., the result of the injection func-
tions? Again, each injection function gives rise to a data-
type constructor whose arguments correspond to the free
variables in the term underlined just above. These free vari-
ables are precisely the parameters of the injection functions,
which are themselves the parameters of the original con-
structors that were Church encoded.
Therefore defunctionalizing Church-encoded recursive data

structures (i.e., the result of their injection functions) also
gives rise to the same data structures, prior to Church en-
coding. These data structures are accessed through the aux-
iliary apply functions introduced by defunctionalization.
Let us get back to Church-encoded binary trees. Since

defunctionalization is a whole-program transformation, we
consider a whole program. Let us consider the function com-
puting the depth of a Church-encoded binary tree. This
function passes two selectors to its argument. The �rst is
the constant function returning 0, and accounting for the
depth of a leaf. The second is a function that will be applied
to the depth of the subtrees of each node, and computes the
depth of the node by taking the max of the depths of the
two subtrees and adding one.

fun Church_depth t
= t (fn x => 0,

fn (d1, d2) => 1 + Int.max (d1, d2))

This whole program is defunctionalized as follows.

� The selectors give rise to two constructors, SEL LEAF

and SEL NODE, and the corresponding two apply func-
tions, apply sel leaf and apply sel node.

datatype sel_leaf = SEL_LEAF

fun apply_sel_leaf (SEL_LEAF, x)
= 0

datatype sel_node = SEL_NODE

fun apply_sel_node (SEL_NODE, (d1, d2))
= Int.max (d1, d2) + 1

� As for the injection functions, as noted above, they
give rise to two constructors, LEAF and NODE, and the
corresponding apply function.

datatype 'a tree = LEAF of 'a
| NODE of 'a tree * 'a tree

fun Church_leaf_def x
= LEAF x

fun Church_node_def (t1, t2)
= NODE (t1, t2)

� Finally, the defunctionalized main function applies its
argument to the two selectors.

(* depth_def : 'a tree -> int *)
(* apply_tree : 'a tree * (sel_leaf * sel_node) -> int *)
fun depth_def t

= apply_tree (t, (SEL_LEAF, SEL_NODE))
and apply_tree (LEAF x, (sel_leaf, sel_node))

= apply_sel_leaf (sel_leaf, x)
| apply_tree (NODE (t1, t2), (sel_leaf, sel_node))
= apply_sel_node (sel_node,

(apply_tree (t1,
(sel_leaf, sel_node)),

apply_tree (t2,
(sel_leaf, sel_node))))

Again, an optimizing compiler would inline both apply func-
tions and SEL LEAF and SEL NODE would then disappear. The
result would thus coincide with the original de�nition of bi-
nary trees, prior to Church encoding.

2.5 Church-encoding the result of defunction-
alization

As can be easily veri�ed with the Church pairs and the
Church trees above, Church-encoding the result of defunc-
tionalizing a Church-encoded data structure gives back this
Church-encoded data structure: the apply functions revert
to simple applications, the main data-structure constructors
become injection functions, and the auxiliary data-structure
constructors become selectors.
In practice, however, one often inlines selectors during

Church encoding if they only occur once|which Shivers
refers to as \super-beta" [45]. Doing so yields an actual
inverse to defunctionalization, as illustrated in Section 4.3.
This \refunctionalization" is used, e.g., in Danvy, Grobauer,
and Rhiger's work on goal-directed evaluation [13]. We also
illustrate it in Section 4.3.
In Church-encoded data structures, selectors have the a-

vor of a continuation. In the next section, we consider how
to defunctionalize continuations.

3. Defunctionalization of CPS-Transformed
First-Order Programs

As functional representations of control, continuations pro-
vide a natural target for defunctionalization. In this section,
we investigate the process of transforming direct-style pro-
grams into continuation-passing style (CPS) programs [12,
48] and defunctionalizing their continuation. We then com-
pare this process with Wand's continuation-based program-
transformation strategies [53].

167

3.1 String parsing
We consider a recognizer for the language 0n1n. We write
it as a function of type int list -> bool. The input is a
list of integers, and the recognizer checks whether it is the
concatenation of a list of n 0s and of a list of n 1s (and
therefore of length 2n).
We start with a recursive-descent parser traversing the

input list.

(* rec0 : int list -> bool *)
(* walk : int list -> int list *)
fun rec0 xs

= let exception NOT
fun walk (0 :: xs')

= (case walk xs'
of 1 :: xs''

=> xs''
| _
=> raise NOT)

| walk xs
= xs

in (walk xs = nil) handle NOT => false
end

The auxiliary function walk traverses the input list. Every
time it encounters 0, it calls itself recursively. When it meets
something else than 0, it returns the rest of the list, and
expects to �nd 1 at every return. In case of mismatch (i.e.,
a list element other than 1 for returns, or a list that is too
short or too long), an exception is raised.
Let us write walk in continuation-passing style [12, 48].

(* rec1 : int list -> bool *)
(* walk : int list * (int list -> bool) -> bool *)
fun rec1 xs

= let fun walk (0 :: xs', k)
= walk (xs', fn (1 :: xs'')

=> k xs''
| _

=> false)
| walk (xs, k)

= k xs
in walk (xs, fn xs' => xs' = nil)
end

The auxiliary function walk traverses the input list tail-
recursively (and thus does not need any exception). If it
meets something else than 0, it sends the current list to the
current continuation. If it encounters 0, it iterates down the
list with a new continuation. If the new continuation is sent
a list starting with 1, it sends the tail of that list to the cur-
rent continuation; otherwise, it returns false. The initial
continuation tests whether it is sent the empty list.
Let us defunctionalize rec1. Two function abstractions

occur: one for the initial continuation and one for interme-
diate continuations.

datatype cont = CONT0
| CONT1 of cont

(* apply2 : (cont * int list) -> bool *)
fun apply2 (CONT0, xs')

= xs' = nil
| apply2 (CONT1 k, 1 :: xs'')

= apply2 (k, xs'')
| apply2 (CONT1 k, _)

= false

(* rec2 : int list -> bool *)
(* walk : int list * cont -> bool *)

fun rec2 xs
= let fun walk (0 :: xs', k)

= walk (xs', CONT1 k)
| walk (xs, k)

= apply2 (k, xs)
in walk (xs, CONT0)
end

We identify the result as implementing a push-down automa-
ton [26]. This automaton has two states and one element in
the stack alphabet. The two states are represented by the
two functions walk and apply2. The stack is implemented
by the data type cont. The transitions are the tail-recursive
calls. This automaton accepts an input if processing this
input ends with an empty stack.
We also observe that cont implements Peano numbers.

Let us replace them with ML integers.

(* apply3 : (int * int list) -> bool *)
fun apply3 (0, xs')

= xs' = nil
| apply3 (k, 1 :: xs'')

= apply3 (k-1, xs'')
| apply3 (k, _)

= false

(* rec3 : int list -> bool *)
(* walk : int list * int -> bool *)
fun rec3 xs

= let fun walk (0 :: xs', k)
= walk (xs', k+1)

| walk (xs, k)
= apply3 (k, xs)

in walk (xs, 0)
end

The result is the usual iterative two-state recognizer with a
counter.
In summary, we started from a �rst-order recursive version

and we CPS-transformed it, making it higher-order and thus
defunctionalizable. We identi�ed that the defunctionalized
program implements a push-down automaton. Noticing that
the defunctionalized continuation implements Peano arith-
metic, we changed its representation to built-in integers and
we identi�ed that the result is the usual iterative two-state
recognizer with a counter.

3.2 Continuation-based program transforma-
tion strategies, reconsidered

Wand's classical work on continuation-based program trans-
formation [53] suggests one (1) to CPS-transform a pro-
gram; (2) to design a data-structure representation for the
continuation; and (3) to use this representation to improve
the initial program. We observe that in each of the exam-
ples mentioned in Wand's article, defunctionalization an-
swers the challenge of �nding a data structure representing
the continuation|which is signi�cant because �nding such
\data-structure continuations" was one of the motivations
of the work. Nevertheless, defunctionalization is not con-
sidered in the textbooks and articles that refer to Wand's
article.1

At any rate, Wand's work was seminal in that it showed
how detouring via CPS yields iterative programs with accu-
mulators. In addition, Reynolds's work shows how defunc-
tionalizing the continuation of CPS-transformed programs
gives rise to traditional, �rst-order accumulators.
1The textbooks and articles we are aware of include those
found in the Research Index at http://citeseer.nj.nec.com/.

168

We also observe that defunctionalized continuations ac-
count for the call/return patterns of recursively de�ned func-
tions. Therefore, as pointed out by Dijkstra in the late
1950's [16], they evolve in a stack-like fashion. A corollary of
this remark is that before defunctionalization, continuations
are also used LIFO when they result from the CPS transfor-
mation of a program that does not use control operators [10,
11, 12, 14, 15, 39, 40, 48].

4. A Syntactic Theory in the Light of Defunc-
tionalization

In this section, we present a de�nitional interpreter for a
syntactic theory [19, 56] of arithmetic expressions. We ob-
serve that this de�nitional interpreter corresponds to the
output of defunctionalization. We present the correspond-
ing higher-order interpreter, which is in continuation-passing
style. Its continuation represents the evaluation context of
the syntactic theory.

4.1 A syntactic theory
We consider a simpli�ed language of arithmetic expressions.
An arithmetic expression is either a value (a literal) or a
computation. A computation is either an addition or a con-
ditional expression testing whether its �rst argument is zero.

e ::= n j e+ e j ifz e e e

A syntactic theory provides a reduction relation on ex-
pressions by de�ning values, evaluation contexts, and re-
dexes [19].
The values are literals, and the evaluation contexts are

de�ned as follows.

v ::= n

E ::= [] j E[[] + e] j E[v + []] j E[ifz [] e e]

Plugging an expression e into a context E, written E[e],
is de�ned as follows.

([])[e] = e

(E[[] + e0])[e] = E[e+ e0]
(E[v + []])[e] = E[v + e]

(E[ifz [] e1 e2])[e] = E[ifz e e1 e2]

The reduction relation is then de�ned by the following
rules, where the expressions plugged into the context on the
left-hand side are called redexes.

E[n1 + n2] ! E[n3] where n3 is the sum of n1 and n2
E[ifz 0 e1 e2] ! E[e1]
E[ifz n e1 e2] ! E[e2] if n 6= 0

These de�nitions satisfy a \unique decomposition" lemma
[19, 56]: any expression, e, that is not a value can be uniquely
decomposed into an evaluation context, E, and a redex, r,
such that e = E[r].

4.2 Implementation
Arithmetic expressions are de�ned with the following data
type.

datatype ae = V of int
| C of comp

and comp = ADD of ae * ae
| IFZ of ae * ae * ae

In ae, we distinguish between values (literals) and computa-
tions (additions and conditional expressions), as traditional.
Evaluation contexts are de�ned with the following data

type.

datatype ec = EMPTY
| ADD1 of ec * ae
| ADD2 of ec * int
| IFZ0 of ec * ae * ae

The corresponding plugging function reads as follows.

(* plug : ec * ae -> ae *)
fun plug (EMPTY, e)

= e
| plug (ADD1 (x, e2), e)

= plug (x, C (ADD (e, e2)))
| plug (ADD2 (x, i1), e)

= plug (x, C (ADD (V i1, e)))
| plug (IFZ0 (x, e1, e2), e)

= plug (x, C (IFZ (e, e1, e2)))

A computation undergoes a reduction step when (1) it is
decomposed into a redex and its context, (2) the redex is
contracted, and (3) the result is plugged into the context.

(* reduce1 : comp * ec -> ae *)
fun reduce1 (ADD (V i1, V i2), x)

= plug (x, V (i1+i2))
| reduce1 (ADD (V i1, C c2), x)

= reduce1 (c2, ADD2 (x, i1))
| reduce1 (ADD (C c1, e2), x)

= reduce1 (c1, ADD1 (x, e2))
| reduce1 (IFZ (V 0, e1, e2), x)

= plug (x, e1)
| reduce1 (IFZ (V i, e1, e2), x)

= plug (x, e2)
| reduce1 (IFZ (C c0, e1, e2), x)

= reduce1 (c0, IFZ0 (x, e1, e2))

Evaluation is speci�ed by repeatedly performing a reduc-
tion until a value is obtained.

(* eval : ae -> int *)
fun eval (V i)

= i
| eval (C c)

= eval (reduce1 (c, EMPTY))

4.3 Refunctionalization
We observe that the program above precisely corresponds to
the output of defunctionalization: plug is the apply function
of ec. The corresponding input to defunctionalization thus
reads as follows.

(* reduce1 : comp * (ae -> 'a) -> 'a *)
fun reduce1 (ADD (V i1, V i2), x)

= x (V (i1+i2))
| reduce1 (ADD (V i1, C c2), x)

= reduce1 (c2, fn e2 => x (C (ADD (V i1, e2))))
| reduce1 (ADD (C c1, e2), x)

= reduce1 (c1, fn e1 => x (C (ADD (e1, e2))))
| reduce1 (IFZ (V 0, e1, e2), x)

= x e1
| reduce1 (IFZ (V i, e1, e2), x)

= x e2
| reduce1 (IFZ (C c0, e1, e2), x)

= reduce1 (c0, fn e0 => x (C (IFZ (e0, e1, e2))))

(* eval : ae -> int *)
fun eval (V i)

= i
| eval (C c)

= eval (reduce1 (c, fn e => e))

169

We observe that reduce1 is written in continuation-passing
style. Its continuation therefore represents the evaluation
context of the syntactic theory.

4.4 Back to direct style
Since reduce1 uses its continuation canonically, it can be
mapped back to direct style [10, 14]. The direct-style version
of reduce1 reads as follows.

(* reduce1 : comp -> ae *)
fun reduce1 (ADD (V i1, V i2))

= V (i1+i2)
| reduce1 (ADD (V i1, C c2))

= C (ADD (V i1, reduce1 c2))
| reduce1 (ADD (C c1, e2))

= C (ADD (reduce1 c1, e2))
| reduce1 (IFZ (V 0, e1, e2))

= e1
| reduce1 (IFZ (V i, e1, e2))

= e2
| reduce1 (IFZ (C c0, e1, e2))

= C (IFZ (reduce1 c0, e1, e2))

(* eval : ae -> int *)
fun eval (V i)

= i
| eval (C c)

= eval (reduce1 c)

The result is a de�nitional interpreter with an implicit
representation of contexts.

4.5 Summary and conclusion
We have considered a naive de�nitional interpreter for a syn-
tactic theory, and have observed that the contexts and their
plugging function are the defunctionalized counterpart of a
continuation. This observation has led us to implement the
de�nitional interpreter in direct style. (In that sense, Sec-
tions 3 and 4 are symmetric, since Section 3 starts with a
direct-style program and ends with a defunctionalized CPS
program.)
One may wonder how the various representations of con-

texts in a syntactic theory inuence reasoning about pro-
grams. In the next section, we compare two correctness
proofs of a program, before and after defunctionalization.

5. A Comparison between Correctness Proofs
before and after Defunctionalization:
Matching Regular Expressions

We consider a traditional continuation-based matcher for
regular expressions [26], we defunctionalize it, and we com-
pare and contrast its correctness proof before and after de-
functionalization. To this end, Section 5.1 briey reviews
regular expressions and the languages they represent; Sec-
tion 5.2 presents the continuation-based matcher, which is
higher-order, and its defunctionalized counterpart; and Sec-
tion 5.3 compares and contrasts their correctness proofs.

5.1 Regular expressions
The grammar for regular expressions, r, over the alphabet
� and the corresponding language, L(r), are as follows.

r ::= 0 L(0) = ;
j 1 L(1) = f�g
j c L(c) = fcg where c 2 �
j r r L(r1 r2) = L(r1)L(r2)

j r+r L(r1+r2) = L(r1) [L(r2)
j r� L(r�) = L(r)� =

S
i2!(L(r))

i

We represent strings as lists of ML characters, and regular
expressions as elements of the following ML datatype.

datatype regexp = ZERO | ONE | CHAR of char
| CAT of regexp * regexp
| SUM of regexp * regexp
| STAR of regexp

We de�ne the corresponding notion of \the language of a
regular expression" as follows.

L(ZERO) = fg
L(ONE) = fnilg

L(CHAR c) = f[c]g
L(CAT(r1, r2)) = L(r1)L(r2)
L(SUM(r1, r2)) = L(r1) [L(r2)

L(STAR r) =
S
i2!(L(r))

i

The concatenation of languages is de�ned as L1L2 = fx@y j
x 2 L1 ^ y 2 L2g, where we use the append function (noted
@ as in ML) to concatenate strings.

5.2 The two matchers
Our reference matcher for regular expressions is higher-order
(Figure 1). We then present its defunctionalized counterpart
(Figure 2).

5.2.1 The higher-order matcher
Figure 1 displays our reference matcher, which is composi-
tional and continuation-based. Compositional: all recursive
calls to accept operate on a proper subpart of the regular-
expression under consideration. And continuation-based:
the control ow of the matcher is driven by continuations.
The main function is match. It is given a regular expression

and a list of characters, and calls accept with the regular
expression, the list, and an initial continuation expecting a
list of characters and testing whether this list is empty.
The accept function recursively descends its input regular

expression, threading the list of characters.
The accept star function is a lambda-lifted version of a

recursive continuation de�ned locally in the STAR branch.
(The situation is exactly the same as in a compositional
matcher for an imperative language with while loops. There,
one writes an auxiliary recursive function as well.) This
recursive continuation checks that matching has progressed
in the string.
Recently, Harper has published a similar matcher to il-

lustrate \proof-directed debugging" [25]. Playfully, he con-
sidered a non-compositional matcher that does not check
progress when matching a Kleene star. His article shows
(1) how one stumbles on the non-compositional part when
attempting a proof by structural induction; and (2) how
one realizes that the matcher diverges for pathological regu-
lar expressions such as STAR ONE. Harper then (1) makes his
matcher compositional and (2) normalizes regular expres-
sions to exclude pathological regular expressions. Instead,
we start from a compositional matcher and we include a
progress test in accept star, which lets us handle patholog-
ical regular expressions.

170

(* accept : regexp * char list * (char list -> bool) -> bool *)
(* accept_star : regexp * char list * (char list -> bool) -> bool *)
fun accept (r, s, k)

= (case r of ZERO => false
| ONE => k s
| CHAR c => (case s of (c'::s') => c = c' andalso k s'

| nil => false)
| CAT (r1, r2) => accept (r1, s, fn s' => accept (r2, s', k))
| SUM (r1, r2) => accept (r1, s, k) orelse accept (r2, s, k)
| STAR r' => accept_star (r', s, k))

and accept_star (r, s, k)
= k s orelse accept (r, s, fn s' => not (s = s') andalso accept_star (r, s', k))

(* match : regexp * char list -> bool *)
fun match (r, s)

= accept (r, s, fn s' => s' = nil)

Figure 1: Higher-order, continuation-based matcher for regular expressions

datatype regexp_stack = EMPTY | ACCEPT of regexp * regexp_stack | ACCEPT_STAR of char list * regexp * regexp_stack

(* accept_def : regexp * char list * regexp_stack -> bool *)
(* accept_star_def : regexp * char list * regexp_stack -> bool *)
(* pop_and_accept : regexp_stack * char list *)
fun accept_def (r, s, k)

= (case r of ZERO => false
| ONE => pop_and_accept (k, s)
| CHAR c => (case s of (c'::s') => c = c' andalso pop_and_accept (k, s')

| nil => false)
| CAT (r1, r2) => accept_def (r1, s, ACCEPT (r2, k))
| SUM (r1, r2) => accept_def (r1, s, k) orelse accept_def (r2, s, k)
| STAR r' => accept_star_def (r', s, k))

and accept_star_def (r, s, k)
= pop_and_accept (k, s) orelse accept_def (r, s, ACCEPT_STAR (s, r, k))

and pop_and_accept (EMPTY, s')
= s' = nil

| pop_and_accept (ACCEPT (r2, k), s')
= accept_def (r2, s', k)

| pop_and_accept (ACCEPT_STAR (s, r, k), s')
= not (s = s') andalso accept_star_def (r, s', k)

(* match : regexp * char list -> bool *)
fun match (r, s)

= accept_def (r, s, EMPTY)

Figure 2: First-order, stack-based matcher for regular expressions

5.2.2 The first-order matcher
Defunctionalizing the matcher of Figure 1 yields a data type
representing the continuations and its associated apply func-
tion.
The data type represents a stack of regular expressions

(possibly with a side condition for the test in Kleene stars).
The apply function merely pops the top element o� this
stack and tries to match it against the rest of the string.
We thus name the data type \regexp stack" and the apply
function \pop and accept". We also give a meaningful name
to the datatype constructors. Figure 2 displays the result.

5.3 The two correctness proofs
We give a correctness proof of both the higher-order version
and the �rst-order version, and we investigate whether each
proof can be converted to a proof for the other version.
The correctness criterion we choose is simply that for all

regular expressions r and strings s (represented by a list of
characters),

�
match (r, s) terminates, and
s 2 L(r) , match (r, s); true

When writing match (r, s) ; true, we mean that evalu-
ating match (r, s) terminates and yields the result true.
More generally we equate expressions if they evaluate to
the same result (and therefore divergent expressions are not
equivalent to anything). We also reason about ML programs
equationally.

5.3.1 Correctness proof of the higher-order
matcher

Since match (r, s) = accept (r, s, fn s' => s' = nil),
by de�nition, it is suÆcient to prove that for s and r as
above, and for any function from lists of characters to booleans
terminating on all suÆxes of s, denoted by k,�

accept (r, s, k) terminates, and
s 2 L(r)L(k) , accept (r, s, k); true

where we de�ne the language of a \string-acceptor" k as the
set fs j k s; trueg.

171

The proof is by structural induction on the regular ex-
pression. In the case where r = STAR r', a subproof shows
that the following holds for any string.�

accept star (r', s, k) terminates, and
s 2 L(r')�L(k) , accept star (r', s, k); true

The subproof is by well-founded induction on the structure
of the string (suÆxes are smaller) for the \(" direction, and
by mathematical induction on the natural number n such
that s 2 L(r')nL(k) for the \)" direction. Both subproofs
use the outer induction hypothesis for accept (r', s, k).
We can transfer this proof to the defunctionalized ver-

sion. Since k s translates to pop and accept (k, s), we
de�ne L(k) to read fs j pop and accept (k, s); trueg.
The proof then goes through in exactly the same format.

5.3.2 Correctness proof of the first-order
matcher

Alternatively, if we were to prove the correctness of the �rst-
order matcher directly, we would be less inclined to recognize
the stack k as representing a function. Instead, we could
easily end up proving the following three propositions by
mutual induction.

P1(r; s; k) :=
accept (r, s, k); true , s 2 L(r)L(k)

P2(k; s) :=
pop and accept (k, s); true , s 2 L(k)

P3(r; s; k) :=
accept star (r, s, k); true , s 2 L(r)�L(k)

where we de�ne the language of a stack of regular expres-
sions as follows.

L(EMPTY) = fnilg
L(ACCEPT (r, k)) = L(r)L(k)

L(ACCEPT STAR (s, r, k)) = (L(r)�L(k)) n fsg

For brevity we ignore the termination part of the proof
and assume that all the functions are total. We prove, by
well-founded induction on the propositions themselves, that
P1, P2, and P3 hold for any choices of s, r, and k. The
ordering is an intricate mapping into !� !, ordered lexico-
graphically so that the proof of a proposition only depends
on \smaller" propositions.
This proof is more convoluted than the higher-order one

for two reasons:

1. it separates the language of the continuation from the
function that matches it, so one has to check whether
the function really matches the correct language; and

2. it combines the two nested inductions of the higher-
order proof into one well-founded induction.

Still this proof reveals a property of the continuations in the
higher-order version, namely that there are at most three dif-
ferent kinds of continuations in use, something that cannot
be seen from the type of the continuation|a full function
space.
We could thus de�ne a subset of this function space in-

ductively, so that it only contains the functions that can be
generated by the three abstractions. The �rst-order proof

could then be extended to the higher-order program by as-
suming everywhere that the continuation k lies in this subset
and showing that newly generated continuations do too. In
e�ect, the set of continuations is partitioned into disjoint
subsets, just as the �rst-order datatype represents a sum,
and then we can prove something about elements in each
part.

5.4 Summary and conclusion
We have considered a matcher for regular expressions, both
in higher-order form and in �rst-order form, and we have
compared them and their correctness proof. The di�erence
between the function-based and the datatype-based repre-
sentation of continuations is reminiscent of the concept of
`junk' in algebraic semantics [22]. One representation is
a full function space where many elements do not corre-
spond to an actual continuation, and the other represen-
tation only contains elements corresponding to actual con-
tinuations. This di�erence �nds an echo in the correctness
proofs of the two matchers. In the �rst we cannot know
what the function will do, and in the second we can inspect
the value. On the other hand, we could make assumptions
about the functions by restricting the function space (even if
only in the proof) to a smaller one that is still closed under
the constructions used.
Another di�erence between the two proofs is where the

language of a continuation is treated. In the �rst-order
case, a continuation can be inspected, so we can prove some-
thing for all continuations independently of where each one
is de�ned. In the higher-order case, however, the only place
where we know anything about a continuation is where it
is constructed, because in the proof, we can look inside the
abstraction where this continuation appears textually.
More generally, this section also illustrates that defunc-

tionalizing a functional interpreter for a backtracking lan-
guage that uses success continuations yields a recursive in-
terpreter with one stack [13, 31, 41]. Similarly, defunction-
alizing a functional interpreter that uses success and fail-
ure continuations yields an iterative interpreter with two
stacks [13, 34].

6. Conclusions and Issues
Reynolds's defunctionalization technique connects the world
of higher-order programs and the world of �rst-order pro-
grams. In this article, we have illustrated this connection
by considering a variety of situations where defunctionaliza-
tion proves fruitful in a declarative setting.
Higher-order functions provide a convenient support for

specifying and for transforming programs. As we have shown,
defunctionalization can lead to more concrete speci�cations,
e.g., that use �rst-order accumulators. And as we have seen
with Wand's continuation-based program-transformation
strategies, defunctionalization can automate eureka steps to
represent data-structure continuations.
Conversely, defunctionalization also increases one's aware-

ness that some �rst-order programs naturally correspond
to other, higher-order, programs. For example, functional
interpreters for backtracking languages are variously spec-
i�ed with one or two control stacks and with one or two
continuations, but these speci�cations are not disconnected,
since defunctionalizing the continuation-based interpreters
yields the corresponding stack-based ones. On a related
note, CPS-transforming an interpreter with one continua-

172

tion is already known to automatically yield an interpreter
with two continuations [12]. We are, however, not aware of
a similar transformation for their stack-based counterparts.
We also have compared and contrasted the correctness

proofs of a program, before and after defunctionalization.
We have found that while the �rst-order and the higher-
order programming methods suggest di�erent proof meth-
ods, each of the proofs can be adapted to �t the other version
of the program.
Finally, we have pointed out at the type-theoretical foun-

dations of defunctionalization.

Acknowledgments
Andrzej Filinski and David Toman provided most timely
comments on an earlier version of this article. This work
has also bene�ted from the anonymous reviewers's atten-
tion as well as from Daniel Damian, Julia Lawall, Karoline
Malmkj�r, and Morten Rhiger's comments.
We would also like to thank John Reynolds for his encour-

aging words and Harald S�ndergaard, our program chair-
man, for his patience.

7. References
[1] A. W. Appel and T. Jim. Continuation-passing,

closure-passing style. In M. J. O'Donnell and
S. Feldman, editors, Proceedings of the Sixteenth
Annual ACM Symposium on Principles of
Programming Languages, pages 293{302, Austin,
Texas, Jan. 1989. ACM Press.

[2] A. Banerjee, N. Heintze, and J. G. Riecke.
Semantics-based design and correctness of control-ow
analysis-based program transformations. Unpublished,
Mar. 2001.

[3] H. Barendregt. The Lambda Calculus: Its Syntax and
Semantics, volume 103 of Studies in Logic and the
Foundation of Mathematics. North-Holland, 1984.
Revised edition.

[4] J. M. Bell, F. Bellegarde, and J. Hook. Type-driven
defunctionalization. In M. Tofte, editor, Proceedings of
the 1997 ACM SIGPLAN International Conference on
Functional Programming, pages 25{37, Amsterdam,
The Netherlands, June 1997. ACM Press.

[5] A. Bondorf. Self-Applicable Partial Evaluation. PhD
thesis, DIKU, Computer Science Department,
University of Copenhagen, Copenhagen, Denmark,
1990. DIKU Rapport 90/17.

[6] U. Boquist. Code Optimization Techniques for Lazy
Functional Languages. PhD thesis, Department of
Computing Science, Chalmers University of
Technology, G�oteborg University, G�oteborg, Sweden,
Apr. 1999.

[7] H. Cejtin, S. Jagannathan, and S. Weeks.
Flow-directed closure conversion for typed languages.
In Smolka [46], pages 56{71.

[8] W. Chen, M. Kifer, and D. S. Warren. Hilog: A
foundation for higher-order logic programming. The
Journal of Logic Programming, 15(3):187{230, 1993.

[9] A. Church. The Calculi of Lambda-Conversion.
Princeton University Press, 1941.

[10] O. Danvy. Back to direct style. Science of Computer
Programming, 22(3):183{195, 1994.

[11] O. Danvy. Formalizing implementation strategies for
�rst-class continuations. In Smolka [46], pages 88{103.

[12] O. Danvy and A. Filinski. Representing control, a
study of the CPS transformation. Mathematical
Structures in Computer Science, 2(4):361{391, 1992.

[13] O. Danvy, B. Grobauer, and M. Rhiger. A unifying
approach to goal-directed evaluation. In W. Taha,
editor, Proceedings of the Second Workshop on
Semantics, Applications, and Implementation of
Program Generation (SAIG 2001), Lecture Notes in
Computer Science, Florence, Italy, Sept. 2001.
Springer-Verlag. To appear.

[14] O. Danvy and J. L. Lawall. Back to direct style II:
First-class continuations. In W. Clinger, editor,
Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, LISP Pointers, Vol. V,
No. 1, pages 299{310, San Francisco, California, June
1992. ACM Press.

[15] O. Danvy and F. Pfenning. The occurrence of
continuation parameters in CPS terms. Technical
report CMU-CS-95-121, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania,
Feb. 1995.

[16] E. W. Dijkstra. Recursive programming. In S. Rosen,
editor, Programming Systems and Languages,
chapter 3C, pages 221{227. McGraw-Hill, New York,
1960.

[17] R. K. Dybvig. Three Implementation Models for
Scheme. PhD thesis, Department of Computer
Science, University of North Carolina at Chapel Hill,
Chapel Hill, North Carolina, Apr. 1987. Technical
Report #87-011.

[18] L. Fegaras. lambda-DB. Available online at
http://lambda.uta.edu/lambda-DB/manual/,
1999-2001.

[19] M. Felleisen. The Calculi of �-v-CS Conversion: A
Syntactic Theory of Control and State in Imperative
Higher-Order Programming Languages. PhD thesis,
Department of Computer Science, Indiana University,
Bloomington, Indiana, Aug. 1987.

[20] D. P. Friedman, M. Wand, and C. T. Haynes.
Essentials of Programming Languages, second edition.
The MIT Press, 2001.

[21] J.-Y. Girard. Locus solum. Mathematical Structures in
Computer Science, 11(3), 2001. To appear.

[22] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An
initial algebra approach to the speci�cation,
correctness and implementation of abstract data types.
In Current Trends in Programming Methodology,
volume IV, pages 80{149. Prentice-Hall, 1978.

[23] A. Goldberg and D. Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley,
1983.

[24] M. Goldberg. Recursive Application Survival in the
�-Calculus. PhD thesis, Computer Science
Department, Indiana University, Bloomington,
Indiana, May 1996.

[25] R. Harper. Proof-directed debugging. Journal of
Functional Programming, 9(4):463{469, July 1999.

[26] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, 1979.

173

[27] J. Hughes. Super combinators: A new implementation
method for applicative languages. In D. P. Friedman
and D. S. Wise, editors, Conference Record of the
1982 ACM Symposium on Lisp and Functional
Programming, pages 1{10, Pittsburgh, Pennsylvania,
Aug. 1982. ACM Press.

[28] J. Hughes. A novel representation of lists and its
application to the function \reverse". Information
Processing Letters, 22(3):141{144, 1986.

[29] T. Johnsson. Lambda lifting: Transforming programs
to recursive equations. In J.-P. Jouannaud, editor,
Functional Programming Languages and Computer
Architecture, number 201 in Lecture Notes in
Computer Science, pages 190{203, Nancy, France,
Sept. 1985. Springer-Verlag.

[30] P. J. Landin. The mechanical evaluation of
expressions. Computer Journal, 6:308{320, 1964.

[31] C. Mellish and S. Hardy. Integrating Prolog in the
POPLOG environment. In J. A. Campbell, editor,
Implementations of PROLOG, pages 147{162. Ellis
Horwood, 1984.

[32] Y. Minamide, G. Morrisett, and R. Harper. Typed
closure conversion. In G. L. Steele Jr., editor,
Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Programming Languages,
pages 271{283, St. Petersburg Beach, Florida, Jan.
1996. ACM Press.

[33] T. A. Mogensen. EÆcient self-interpretation in
lambda calculus. Journal of Functional Programming,
2(3):345{363, 1992.

[34] T. Nicholson and N. Y. Foo. A denotational semantics
for Prolog. ACM Transactions on Programming
Languages and Systems, 11(4):650{665, Oct. 1989.

[35] L. R. Nielsen. A denotational investigation of
defunctionalization. Progress report (superseded
by [36]), BRICS PhD School, University of Aarhus,
June 1999.

[36] L. R. Nielsen. A denotational investigation of
defunctionalization. Technical Report BRICS
RS-00-47, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, Dec. 2000.

[37] S. L. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice Hall International
Series in Computer Science. Prentice-Hall
International, 1987.

[38] S. L. Peyton Jones and D. R. Lester. Implementing
Functional Languages. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1992.

[39] J. Polakow. Linear logic programming with ordered
contexts. In M. Gabbrielli and F. Pfenning, editors,
Proceedings of the Second International Conference on
Principles and Practice of Declarative Programming,
pages 68{79, Montr�eal, Canada, Sept. 2000. ACM
Press.

[40] J. Polakow and K. Yi. Proving syntactic properties of
exceptions in an ordered logical framework. In
H. Kuchen and K. Ueda, editors, Fifth International
Symposium on Functional and Logic Programming,
number 2024 in Lecture Notes in Computer Science,
pages 61{77, Tokyo, Japan, Mar. 2001.
Springer-Verlag.

[41] T. A. Proebsting. Simple translation of goal-directed
evaluation. In R. K. Cytron, editor, Proceedings of the
ACM SIGPLAN'97 Conference on Programming
Languages Design and Implementation, SIGPLAN
Notices, Vol. 32, No 5, pages 1{6, Las Vegas, Nevada,
June 1997. ACM Press.

[42] J. C. Reynolds. The essence of Algol. In van Vliet,
editor, International Symposium on Algorithmic
Languages, pages 345{372, Amsterdam, The
Netherlands, 1982. North-Holland.

[43] J. C. Reynolds. De�nitional interpreters for
higher-order programming languages. Higher-Order
and Symbolic Computation, 11(4):363{397, 1998.
Reprinted from the proceedings of the 25th ACM
National Conference (1972).

[44] J. C. Reynolds. De�nitional interpreters revisited.
Higher-Order and Symbolic Computation,
11(4):355{361, 1998.

[45] O. Shivers. Control-Flow Analysis of Higher-Order
Languages or Taming Lambda. PhD thesis, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1991. Technical Report
CMU-CS-91-145.

[46] G. Smolka, editor. Proceedings of the Ninth European
Symposium on Programming, number 1782 in Lecture
Notes in Computer Science, Berlin, Germany, Mar.
2000. Springer-Verlag.

[47] P. A. Steckler and M. Wand. Lightweight closure
conversion. ACM Transactions on Programming
Languages and Systems, 19(1):48{86, Jan. 1997.

[48] G. L. Steele Jr. Rabbit: A compiler for Scheme.
Technical Report AI-TR-474, Arti�cial Intelligence
Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, May 1978.

[49] C. Strachey. Fundamental concepts in programming
languages. Higher-Order and Symbolic Computation,
13(1/2):1{49, 2000.

[50] A. Tolmach and D. P. Oliva. From ML to Ada:
Strongly-typed language interoperability via source
translation. Journal of Functional Programming,
8(4):367{412, 1998.

[51] D. A. Turner. A new implementation technique for
applicative languages. Software|Practice and
Experience, 9(1):31{49, 1979.

[52] P. Wadler. Deforestation: Transforming programs to
eliminate trees. Theoretical Comput. Sci.,
73(2):231{248, 1989.

[53] M. Wand. Continuation-based program transformation
strategies. J. ACM, 27(1):164{180, Jan. 1980.

[54] D. C. Wang and A. W. Appel. Type-safe garbage
collectors. In H. R. Nielson, editor, Proceedings of the
Twenty-Eighth Annual ACM Symposium on Principles
of Programming Languages, pages 166{178, London,
United Kingdom, Jan. 2001. ACM Press.

[55] G. Winskel. The Formal Semantics of Programming
Languages. Foundation of Computing Series. The MIT
Press, 1993.

[56] Y. Xiao, A. Sabry, and Z. M. Ariola. From syntactic
theories to interpreters: Automating proofs of
decomposition lemma. Higher-Order and Symbolic
Computation, 14(4), 2001. To appear.

174

