On the static and dynamic extents of delimited continuations

Dariusz Biernackia, Olivier Danvya,∗, Chung-chieh Shanb

a BRICS, Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark
b Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA

Received 26 April 2005; received in revised form 10 December 2005; accepted 2 January 2006

Abstract

We show that breadth-first traversal exploits the difference between the static delimited-control operator shift (alias S) and the dynamic delimited-control operator control (alias F). For the last 15 years, this difference has been repeatedly mentioned in the literature but it has only been illustrated with one-line toy examples. Breadth-first traversal fills this vacuum.

We also point out where static delimited continuations naturally give rise to the notion of control stack whereas dynamic delimited continuations can be made to account for a notion of ‘control queue’.

Keywords: Delimited continuations; Direct style; Continuation-passing style (CPS); CPS transformation; Defunctionalization; Control operators; Shift and reset; Control and prompt

1. Introduction

To distinguish between the static extent and the dynamic extent of delimited continuations, we first need to review the notions of continuation and of delimited continuation.

1.1. Background

Continuation-passing style (CPS) is a time-honored and logic-based format for functional programs where all intermediate results are named, all calls are tail calls, and programs are evaluation-order independent [38,54,61,65,73]. While this format has been an active topic of study [5,6,9,28,35,37,40,49,51,57,59,62,66,69,70,76], it also has been felt as a straightjacket both from a semantics point of view [28,29,31,32,44,45,71] and from a programming point of view [18,19,21,22], where one would like to relax the tail-call constraint and compose continuations.

In direct style, continuations are accessed with a variety of control operators such as Landin’s J [50], Reynolds’s escape [65], Scheme’s call/cc [17,46], and Standard ML of New Jersey’s callcc and throw [26]. These control
operators give access to the current continuation as a first-class value. Activating such a first-class continuation has the effect of resuming the computation at the point where this continuation was captured; the then-current continuation is abandoned. Such first-class continuations do not return to the point of their activation—they model jumps, i.e., tail calls [73,74].

In direct style, delimited continuations are also accessed with control operators such as Felleisen et al.’s control (alias \(\mathcal{F} \)) [28,31,32,71] and Danvy and Filinski’s shift (alias \(\mathcal{S} \)) [21–23]. These control operators also give access to the current continuation as a first-class value; activating such a first-class continuation also has the effect of resuming the computation at the point where this continuation was captured; the then-current continuation, however, is then resumed. Such first-class continuations return to the point of their activation—they model non-tail calls.

For a first-class continuation to return to the point of its activation, one must declare its point of completion, since this point is no longer at the very end of the overall computation, as with traditional, undelimited first-class continuations. In direct style, this declaration is achieved with a new kind of operator, due to Felleisen [28,29]: a control delimiter. The control delimiter corresponding to control is called prompt (alias \#). The control delimiter corresponding to shift is called reset (alias \(\langle \cdot \rangle \)) and its continuation-passing counterpart is a classical backtracking idiom in functional programming [1,14,16,53,67,75], one that is currently enjoying a renewal of interest [10,24,43,48,72,78,82]. Other, more advanced, delimited-control operators exist [27,39,42,56,58,64]; we return to them in the conclusion.

In the present work, we focus on shift and control.

1.2. Overview

In Section 2, we present an environment-based abstract machine that specifies the behaviors of shift and control, and we show how the extent of a shift-abstracted delimited continuation is static whereas that of a control-abstracted delimited continuation is dynamic. We show how shift can be trivially simulated in terms of control and prompt, which is a well-known result [11], and we review recently discovered simulations of control and prompt in terms of shift and reset [12,47,68]. In Section 3, we present a roadmap of Sections 4 and 5, where we show how the static extent of a delimited continuation is compatible with a control stack and depth-first traversal, and how the dynamic extent of a delimited continuation can be made to account for a ‘control queue’ and breadth-first traversal.

Prerequisites and preliminaries: Besides some awareness of CPS and the CPS transformation [23,61,73], we assume a passing familiarity with defunctionalization [25,65].

Our programming language of discourse is Standard ML [55]. In the following sections, we will make use of the notational equivalence of expressions such as

\[
\begin{align*}
\text{x1 :: x2 :: xs} \\
(x1 :: x2 :: nil) @ xs \\
[x1, x2] @ xs
\end{align*}
\]

where :: denotes infix list construction and @ denotes infix list concatenation. In an environment where x1 denotes 1, x2 denotes 2, and xs denotes \([3, 4, 5]\), each of the three expressions above evaluates to \([1, 2, 3, 4, 5]\).

2. An operational characterization

In our previous work [7], we derived an environment-based abstract machine for the \(\lambda \)-calculus with shift and reset by defunctionalizing the corresponding definitional interpreter [22]. We use this abstract machine to explain the static extent of the delimited continuations abstracted by shift and the dynamic extent of the delimited continuations abstracted by control.

2.1. An abstract machine for shift and reset

The abstract machine is displayed in Fig. 1; reset is noted \(\langle \cdot \rangle \) and shift is noted \(\mathcal{S} \). The set of possible values consists of closures and captured contexts. The machine extends Felleisen et al.’s CEK machine [30] with a meta-context \(C_2 \), the two transitions for \(\langle \cdot \rangle \) and \(\mathcal{S} \), and the transition for applying a captured context to a value in an
evaluation context and a meta-context. Intuitively, an evaluation context represents the rest of the computation up to the nearest enclosing delimiter, and a meta-context represents all of the remaining computation [20].

Given a term \(t \), the machine is initialized in an \(\text{eval} \)-state with an empty environment \(e_{\text{empty}} \), an empty context \(\text{END} \), and an empty meta-context \(\bullet \). The transitions out of an \(\text{eval} \)-state are defined by cases on its first component:

- a variable \(x \) is looked up in the current environment and the machine switches to a \(\text{cont1} \)-state;
- an abstraction \(\lambda x.t \) is evaluated into a closure \([x, t, e]\) and the machine switches to a \(\text{cont1} \)-state;
- an application \(t_0 t_1 \) is processed by pushing \(t_1 \) and the environment onto the context and switching to a new \(\text{eval} \)-state to process \(t_0 \);
- a reset-expression \(\langle t \rangle \) is processed by pushing the current context on the current meta-context and switching to a new \(\text{eval} \)-state to process \(t \) in an empty context, as an intermediate computation;
- a shift-expression \(S k.t \) is processed by capturing the context \(C_1 \) and binding it to \(k \), and switching to a new \(\text{eval} \)-state to process \(t \) in an empty context.

The transitions of a \(\text{cont1} \)-state are defined by cases on its first component:

- an empty context \(\text{END} \) specifies that an intermediate computation is completed; it is processed by switching to a \(\text{cont2} \)-state;
- a context \(\text{ARG} ((t, e), C_1) \) specifies the evaluation of an argument; it is processed by switching to an \(\text{eval} \)-state to process \(t \) in a new context;
2.2. An abstract machine for control

This change gives a context \(C \) a behavior of \(F \) (alias \(\text{control} \)). In contrast, \(\langle \cdot \rangle \) (alias \(\text{reset} \)) and \# (alias \(\text{prompt} \)) have the same definition. The rest of the machine does not change.

In our previous work [7, Section 4.5], we have pointed out that the dynamic behavior of \(\text{control} \) is incompatible with CPS because the modified abstract machine no longer corresponds to a defunctionalized continuation-passing evaluator [25]. Indeed \(\text{shift} \) is static, whereas \(\text{control} \) is dynamic, in the following sense:

- **shift** captures a delimited continuation in a representation \(C \) that, when applied, remains distinct from the current context \(C \). Consequently, the current context \(C \) cannot be accessed from \(C \) by another use of \(\text{shift} \). (An analogy: in a statically scoped programming language, the environment of an application remains distinct from the environment of the applied function. A non-local variable in the function refers to the environment of its definition. Consequently, the environment of a function application cannot be accessed before the function completes.)

- **control** captures a delimited continuation in a representation \(C \) that, when applied, grafts itself to the current context \(C \). Consequently, the current context \(C \) can be accessed from \(C \) by another use of \(\text{control} \). (An analogy: in a dynamically scoped programming language, the environment of an application is extended with the environment of the applied function. A non-local variable in the function refers to the environment of its application. Consequently, the environment of a function application can be accessed before the function completes.)

This difference of extent can be observed with delimited continuations that, when applied, capture the current continuation [8, Section 5] [21, Section 6.1] [23, Section 5.3] [32, Section 4]. A \(\text{control} \)-abstracted delimited continuation dynamically captures the current continuation, above and beyond its point of activation, whereas a \(\text{shift} \)-abstracted delimited continuation statically captures the current continuation up to its point of activation.
2.3. Simulating *shift* in terms of *control* and *prompt*

It is simple to obtain the effect of *shift* using *control*: for each captured continuation k, every occurrence of $k \, v$ should be replaced by $(k \, v)$ when v is a value, and every other occurrence of k should be replaced with $\lambda x. (k \, x)$. (In ML, for each captured continuation k, every occurrence of $k \, v$ should be replaced by $\text{prompt} (\text{fn} () \mapsto k \, v)$ when v denotes a value, and every other occurrence of k should be replaced with $\text{fn} x \mapsto \text{prompt} (\text{fn} () \mapsto k \, x)$.)

This way, when k (i.e., some context C_1') is applied, the context of its application is always END and it is a consequence of the definition of \star that $C_1' \star \text{END} = C_1'$. The first two authors have recently given a formal proof of the correctness of this simulation [11].

2.4. Simulating *control* in terms of *shift* and *reset*

Recently it has been shown that *control* and *prompt* can be expressed in terms of *shift* and *reset*, which unexpectedly proves that *shift* is actually as expressive as *control*.

- In his previous article [68], Shan presented a simulation that is based on his observation that dynamic continuations are recursive. His simulation keeps (as a piece of mutable state) the context in which a *control*-captured delimited continuation is applied. This simulation is untyped and implemented in Scheme.
- In their recent article [12], Biernacki, Danvy, and Millikin presented a new simulation that is based on a ‘Dynamic Continuation-Passing Style’ (DCPS) for dynamic delimited continuations. Their idea is to use a trail of continuations to represent the context in which a *control*-captured delimited continuation is applied, and to compose continuations by concatenating such trails of continuations. This simulation is typed and implemented in ML.
- In his recent article [47], Kiselyov proposed a new simulation that is based on trampolining. In order to let a *control*-captured continuation access the context where it is applied, he reifies such an access in a sum type interpreted by *prompt*. This simulation is untyped and implemented in Scheme.

Concomitant with each solution is a CPS transformation for *control* and *prompt* that conservatively extends the usual call-by-value CPS transformation for the λ-calculus, with the requirement that continuations be recursive (or more precisely, that their answer type be higher-order and recursive).

In Appendix B, we present Shan’s implementation of *control* and *prompt* in Standard ML of New Jersey [68]. This implementation is based on Filinski’s implementation of *shift* and *reset* in SML [34], which we present in Appendix A. Filinski’s implementation takes the form of a functor mapping the type of intermediate answers to a structure containing an instance of *shift* and *reset* at that type:

```plaintext
signature SHIFT_AND_RESET = sig
  type intermediate_answer
  val shift : ('a -> intermediate_answer) -> intermediate_answer
  val reset : (unit -> intermediate_answer) -> intermediate_answer
end
```

Likewise, our implementation takes the form of a functor mapping the type of intermediate answers to a structure containing an instance of *control* and *prompt* at that type:

```plaintext
signature CONTROL_AND_PROMPT = sig
  type intermediate_answer
  val control : ('a -> intermediate_answer) -> intermediate_answer
  val prompt : (unit -> intermediate_answer) -> intermediate_answer
end
```

2.5. Three examples in ML

Using the implementation of *shift* and *reset* (Appendix A), and of *control* and *prompt* (Appendix B), we present three simple examples illustrating the difference between *shift* and *control*. Let us fix the type of intermediate answers to be `int`:
local structure SR = Shift_and_Reset (type intermediate_answer = int)
in val shift = SR.shift
 val reset = SR.reset
end

local structure CP = Control_and_Prompt (type intermediate_answer = int)
in val control = CP.control
 val prompt = CP.prompt
end

The following ML expression

reset
 (fn () => shift (fn k => 10 + (k 100))
 + shift (fn k' => 1))

evaluates to 11, whereas (replacing reset by prompt and shift by control)

prompt
 (fn () => control (fn k => 10 + (k 100))
 + control (fn k' => 1))

evaluates to 1 and (delimiting the application of k with prompt)

prompt
 (fn () => control (fn k => 10 + prompt (fn () => k 100))
 + control (fn k' => 1))

evaluates to 11.

In the first case, shift (fn k => 10 + (k 100)) is evaluated with a continuation that could be written functionally as fn v => v + shift (fn k' => 1). When k is applied, the expression shift (fn k' => 1) is evaluated in a context that could be represented functionally as fn v => 100 + v and in a meta-context that could be represented as (fn v => 10 + v) :: nil; this context is captured and discarded, and the intermediate answer is 1; this intermediate answer is plugged into the top context from the meta-context, i.e., fn v => 10 + v is applied to 1; the next intermediate answer is 11; and it is the final answer since the meta-context is empty.

In the second case, control (fn k => 10 + (k 100)) is evaluated with a continuation that could be written functionally as fn v => v + control (fn k' => 1). When k is applied, the expression control (fn k' => 1) is evaluated in a context that results from composing fn v => 10 + v and fn v => 100 + v (and therefore could be represented functionally as fn v => 10 + (100 + v)), and in a meta-context which is empty; this context is captured and discarded, and the intermediate answer is 1; and it is the final answer since the meta-context is empty.

In the third case, control (fn k => 10 + prompt (fn () => k 100)) is evaluated with a continuation that could be written functionally as fn v => v + control (fn k' => 1). When k is applied, the expression control (fn k' => 1) is evaluated in a context that results from composing fn v => v and fn v => 100 + v (and therefore could be represented functionally as fn v => 100 + v), and in a meta-context which could be represented as (fn v => 10 + v) :: nil; this context is captured and discarded, and the intermediate answer is 1; this intermediate answer is plugged into the top context from the meta-context, i.e., fn v => 10 + v is applied to 1; the next intermediate answer is 11; and it is the final answer since the meta-context is empty.

The CPS counterpart of the first ML expression above reads as follows:

fn c => c (let val k = fn v => let val k' = fn v' => v + v'
in 1 end
 in 10 + (k 100)
end)

No such simple functional encoding exists for the second and third ML expressions above [12].
3. Programming with delimited continuations

In Section 4, we present an array of solutions to the traditional samefringe example and to its breadth-first counterpart. In Section 5, we present an array of solutions to Okasaki’s breadth-first numbering pearl and to its depth-first counterpart. In both sections, the presentation is structured according to the following diagram:

- Our starting point here is a direct-style eager program (left side of the diagram). We can make this program lazy by using thunks, i.e., functions of type \(\text{unit} \rightarrow 'a \) (center of the diagram).
- We can then defunctionalize the thunks in the lazy program, obtaining a stack-based program (bottom center of the diagram).
- Alternatively, we can view the type \(\text{unit} \rightarrow 'a \) not as a functional device to implement laziness but as a delimited continuation. The lazy program is then, in actuality, a continuation-based one, and one that is the CPS counterpart of a direct-style program using \text{shift} \ and \text{reset} \ (top center of the diagram).
- The stack-based program (bottom center of the diagram) implements a depth-first traversal. Replacing the stack with a queue yields a program implementing a breadth-first traversal (bottom right of the diagram).
- By analogy with the rest of the diagram, we infer the direct-style program using \text{control} \ and \text{prompt} \ (top right of the diagram) from this queue-based program.

The three nodes in the center of the diagram—the CPS program, its direct-style counterpart, and its defunctionalized counterpart—follow the transformational tradition established in Reynolds’s and Wand’s seminal articles about continuations [65,80]. In particular the ‘data-structure continuation’ [80, page 179] of the depth-first program is a stack. By analogy, the data-structure continuation of the breadth-first program is a queue. We conjecture that the queue-based program could be mechanically obtained from the direct-style one by some kind of ‘abstract CPS transformation’ [32,63], but fleshing out this conjecture falls out of the scope of the present article [12].

4. The samefringe problem

We present a spectrum of solutions to the traditional depth-first samefringe problem and its breadth-first counterpart. We work on Lisp-like binary trees of integers (S-expressions):

```plaintext
datatype tree = LEAF of int
| NODE of tree * tree
```
The samefringe problem is traditionally stated as follows. Given two trees of integers, one wants to know whether they have the same sequence of leaves when read from left to right. For example, the two trees NODE (NODE (LEAF 1, LEAF 2), LEAF 3) and NODE (LEAF 1, NODE (LEAF 2, LEAF 3)) have the same fringe [1, 2, 3] (representing it as a list) even though they are shaped differently:

Computing a fringe is done by traversing a tree depth-first and from left to right.

By analogy, we also address the breadth-first counterpart of the samefringe problem. Given two trees of integers, we want to know whether they have the same fringe when traversed in left-to-right breadth-first order. For example, the breadth-first fringe of the left tree just above is [3, 1, 2] and that of the right tree just above is [1, 2, 3].

We express the samefringe function generically by abstracting the representation of sequences of leaves with a data type sequence and a notion of computation (to compute the next element in a sequence):

```
signature GENERATOR = sig
    type 'a computation
    datatype sequence = END
                        | NEXT of int * sequence computation
    val make_sequence : tree -> sequence
    val compute : sequence computation -> sequence
end
```

The following functor maps a representation of sequences of leaves to a structure containing the samefringe function. Given two trees, same_fringe maps them into two sequences of integers (with make_sequence) and iteratively traverses these sequences with an auxiliary loop function. This function stops as soon as one of the two sequences is exhausted or two differing leaves are found:

```
functor make_Same_Fringe (structure G : GENERATOR) = struct
    (* same_fringe : tree * tree -> bool *)
    fun same_fringe (t1, t2) = let (* loop : G.sequence * G.sequence -> bool *)
                             fun loop (G.END, G.END) = true
                                         | loop (G.NEXT (i1, a1), G.NEXT (i2, a2)) = i1 = i2 andalso loop (G.compute a1, G.compute a2)
                                         | loop _ = false
                             in loop (G.make_sequence t1, G.make_sequence t2)
    end
end
```

In the remainder of this section, we review a variety of generators.

4.1. Depth first

4.1.1. An eager traversal

The simplest solution is to represent sequences as a data type isomorphic to that of lists. To this end, we define make_sequence as an accumulator-based flatten function:

```
structure Eager_generator : GENERATOR = struct
    datatype sequence = END
                        | NEXT of int * sequence computation
    withtype 'a computation = 'a
```

In this solution, the sequence of leaves is built eagerly and therefore completely before any comparison takes place. This choice is known to be inefficient because if two leaves differ, the remaining two sequences are not used and therefore did not need to be built.

4.1.2. A lazy traversal

A more efficient solution—and indeed a traditional motivation for lazy evaluation [36, 41]—is to construct the sequences lazily and to traverse them on demand. In the following generator, the data type `sequence` implements lazy sequences; the construction of the rest of the lazy sequence is delayed with a thunk of type `unit -> sequence`; and `make_sequence` is defined as an accumulator-based flatten function:

```ml
(* visit : tree * sequence computation -> sequence *)
fun visit (LEAF i, a) = NEXT (i, a)
| visit (NODE (t1, t2), a) = visit (t1, visit (t2, a))

fun make_sequence t = visit (t, END)

fun compute thunk = thunk ()
end
```

Unlike in the eager solution, the construction of the sequence in `Lazy_generator` and the comparisons in `same_fringe` are interleaved. This choice is known to be more efficient because if two leaves differ, the remaining two sequences are not built at all.

4.1.3. A continuation-based traversal

Alternatively to viewing the thunk of type `unit -> sequence`, in the lazy traversal of Section 4.1.2, as a functional device to implement laziness, we can view it as a delimited continuation that is initialized in the initial call to `visit` in `make_sequence`, extended in the induction case of `visit`, captured in the base case of `visit`, and resumed in `compute`. From that viewpoint, the lazy traversal is also a continuation-based one.

4.1.4. A direct-style traversal with shift and reset

In direct style, the delimited continuation `a` of Section 4.1.3 is initialized with the control delimiter `reset`, extended by functional sequencing, captured by the delimited-control operator `shift`, and resumed by function application.

Using Filinski’s functor `Shift_and_Reset` defined in Appendix A, one can therefore define the lazy generator in direct style as follows:
structure Lazy_generator_with_shift_and_reset : GENERATOR
 = struct
 datatype sequence = END
 | NEXT of int * sequence computation
 withtype 'a computation = unit -> 'a

 local structure SR = Shift_and_Reset
 (type intermediate_answer = sequence)
 in val shift = SR.shift
 val reset = SR.reset
end

(* visit : tree -> unit *)
fun visit (LEAF i)
 = shift (fn a => NEXT (i, a))
 | visit (NODE (t1, t2))
 = let val () = visit t1
 in visit t2
 end

fun make_sequence t
 = reset (fn () => let val () = visit t
 in END
 end)

fun compute thunk
 = thunk ()
end

CPS-transforming visit and make_sequence yields the definitions of Section 4.1.2.
The key points of this CPS transformation are as follows:

- the clause
 visit (NODE (t1, t2))
 = let val () = visit t1
 in visit t2
 end

is transformed into:

visit (NODE (t1, t2), a)
 = visit (t1, fn () => visit (t2, a))

- the clause
 visit (LEAF i)
 = shift (fn a => NEXT (i, a))

is transformed into:

visit (LEAF i, a)
 = NEXT (i, a)

- and the expression
 reset (fn () => let val () = visit t
 in END
 end)

is transformed into:

visit (t, fn () => END)
4.1.5. A stack-based traversal

Alternatively to writing the lazy solution in direct style, we can defunctionalize its computation (which has type sequence computation, i.e., unit -> sequence) and obtain a first-order solution [25,65]. The inhabitants of the function space unit -> sequence are instances of the function abstractions in the initial call to visit (i.e., fn () => END) and in the induction case of visit (i.e., fn () => visit (t2, a)). We therefore represent this function space by (1) a sum corresponding to these two possibilities, and (2) the corresponding apply function, continue, to interpret each of the summands. We represent this sum with an ML data type, which is recursive because of the recursive call to visit. This data type is isomorphic to that of a list of subtrees, which we use for simplicity in the code below. The result is essentially McCarthy’s solution [52]:

```
structure Lazy_generator_stack_based : GENERATOR = struct
  datatype sequence = END
                    | NEXT of int * sequence computation
  withtype 'a computation = tree list

  (* visit : tree * tree list -> sequence *)
  fun visit (LEAF i, a) = NEXT (i, a)
  | visit (NODE (t1, t2), a) = visit (t1, t2 :: a)

  (* continue : tree list * unit -> sequence *)
  and continue (nil, ()) = END
  | continue (t :: a, ()) = visit (t, a)

  fun make_sequence t
    = visit (t, nil)

  fun compute a
    = continue (a, ()
end
```

This solution traverses a given tree incrementally by keeping a stack of its subtrees. To make this point more explicit, and as a stepping stone towards breadth-first traversal, let us fold the definition of continue in the induction case of visit so that visit always calls continue:

```
| visit (NODE (t1, t2), a) = continue (t1 :: t2 :: a, ()
```

(Unfolding the call to continue gives back the definition above.)

We now clearly have a stack-based definition of depth-first traversal, and furthermore we have shown that this stack corresponds to the continuation of a function implementing a recursive descent. (Such a stack is referred to as a ‘data-structure continuation’ in the literature [80, page 179].)

4.2. Breadth first

4.2.1. A queue-based traversal

Replacing the (last-in, first-out) stack, in the definition of Section 4.1.5, by a (first-in, first-out) queue yields a definition that implements breadth-first, rather than depth-first, traversal:

```
structure Lazy_generator_queue_based : GENERATOR = struct
  datatype sequence = END
                    | NEXT of int * sequence computation
  withtype 'a computation = tree list
```

In contrast to Section 4.1.5, where the clause for nodes was (essentially) concatenating the two subtrees in front of the list of subtrees:

\[
| \text{visit (NODE (t1, t2), a)} = \text{continue ([t1, t2] @ a, ())} (* \text{then} *)
\]

the clause for nodes is concatenating the two subtrees in the back of the list of subtrees:

\[
| \text{visit (NODE (t1, t2), a)} = \text{continue (a @ [t1, t2], ())} (* \text{now} *)
\]

Nothing else changes in the definition of the generator. In particular, subtrees are still removed from the front of the list of subtrees by \text{continue}. With this last-in, first-out policy, the generator yields a sequence in breadth-first order.

Because the ::-constructors of the list of subtrees are not solely consumed by \text{continue} but also by @, this definition is not in the range of defunctionalization [25]. Therefore, even though \text{visit} is tail-recursive and constructs a data structure that is interpreted in \text{continue}, it does not correspond to a continuation-passing function. And indeed, traversing an inductive data structure breadth-first does not mesh well with compositional recursive descent: how would one write a breadth-first traversal with a fold function?

4.2.2. A direct-style traversal with control and prompt

The critical operation in the definition of \text{visit}, in Section 4.2.1, is the enqueuing of the subtrees t1 and t2 to the current queue a, which is achieved by the list concatenation a @ [t1, t2]. We observe that this concatenation matches the concatenation of stack frames in the specification of control in Section 2.2.

Therefore—and this is a eureka step—one can write \text{visit} in direct style using control and prompt. To this end, we represent both queues a and [t1, t2] as dynamic delimited continuations in such a way that their composition represents the concatenation of a and [t1, t2]. The direct-style traversal reads as follows:
fun visit (LEAF i) = control (fn a => NEXT (i, a))
| visit (NODE (t1, t2)) = control (fn a => let val END = a ()
val () = visit t1
val () = visit t2
in END
end)

fun make_sequence t = prompt (fn () => let val () = visit t
in END
end)

fun compute a = prompt (fn () => a ())

In the induction case, the current delimited continuation (representing the current control queue) is captured, bound to a, and applied to (). The implicit continuation of this application visits t1 and then t2, and therefore represents the queue [t1, t2]. Applying a seals it to the implicit continuation so that any continuation captured by a subsequent recursive call to visit in a captures both the rest of a and the traversal of t1 and t2, i.e., the rest of the new control queue.

4.3. Summary and conclusion

We have first presented a spectrum of solutions to the traditional depth-first samefringe problem. Except for the defunctionalized ones, all the solutions are compositional in the sense of denotational semantics (i.e., visiting each subtree is defined as the composition of visiting its own subtrees). The one using shift and reset is new. We believe that connecting the lazy solution with McCarthy’s stack-based solution by defunctionalization is new as well.

By replacing the stack with a queue in the stack-based program, we have then obtained a solution to the breadth-first counterpart of the samefringe problem. Viewing this queue as a ‘data-structure continuation’, we have observed that the operations upon it correspond to the operations induced by the composition of a dynamic delimited continuation and the current (delimited) continuation. We have then written this program compositionally and in direct style using control and prompt.

In the induction clause of visit in Section 4.2.2, if we returned after visiting t1 and t2 instead of before,

| visit (NODE (t1, t2))
= control (fn a => let val () = visit t1
val () = visit t2
in a ()
end)

we would obtain depth-first traversal. This modified clause can be simplified into

| visit (NODE (t1, t2))
= let val () = visit t1
in visit t2
end

which coincides with the corresponding clause in Section 4.1.4. The resulting pattern of use of control and prompt in the modified definition is the traditional one used to simulate shift and reset [11].

It is therefore simple to program depth-first traversal with control and prompt. But conversely, obtaining a breadth-first traversal using shift and reset would require a far less simple encoding of control and prompt in terms of shift and reset, such as those discussed in Section 2.4.
5. Numbering a tree

We now turn to Okasaki’s problem of numbering a tree in breadth-first order with successive numbers [60]. We express it in direct style with control and prompt, and we then outline its depth-first counterpart. Okasaki considers fully-labeled binary trees:

\[
\text{datatype tree = LEAF of int} \mid \text{NODE of tree } \ast \text{int } \ast \text{tree}
\]

5.1. Breadth-first numbering

Given a tree \(T \) containing \(|T|\) labels, we want to create a new tree of the same shape, but with the values in the nodes and leaves replaced by the numbers \(1 \ldots |T| \) in breadth-first order. For example, the tree

\[
\text{NODE (NODE (LEAF 0, 0, LEAF 0), 0, LEAF 0)}
\]

contains 5 labels and should be transformed into

\[
\text{NODE (NODE (LEAF 4, 2, LEAF 5), 1, LEAF 3)}
\]

i.e.,

\[
\begin{array}{c}
\text{0} \\
\text{0} \\
\text{0}
\end{array}
\]

should be transformed into

\[
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3}
\end{array}
\]

\[
\begin{array}{c}
\text{0} \\
\text{0} \\
\text{0}
\end{array}
\]

\[
\begin{array}{c}
\text{4} \\
\text{5}
\end{array}
\]

5.1.1. A queue-based traversal

In his solution [60], Okasaki relabels a tree by mapping it recursively into a first-in, first-out list of subtrees at call time and constructing the result at return time by reading this queue. To this end, he needs an auxiliary function

\[
\text{last_two_and_before : int list } \rightarrow \text{int list } \ast \text{int } \ast \text{int}
\]

such that applying it to the list \([x_n, \ldots, x_3, x_2, x_1]\) yields the triple \(([x_n, \ldots, x_3], x_2, x_1)\).

Okasaki’s solution reads as follows:

```ml
(* breadth_first_label : tree -> tree *)
fun breadth_first_label t
    = let (* visit : tree * int * tree list -> tree list *)
        fun visit (LEAF _, i, k)
            = (LEAF i) :: (continue (k, i+1))
        | visit (NODE (t1, _, t2), i, k)
            = let val (rest, t1', t2') = last_two_and_before (continue (k @ [t1, t2], i+1))
                in (NODE (t1', i, t2')) :: rest
                end
        (* continue : tree list * int -> tree list *)
        and continue (nil, _)
            = nil
        | continue (t :: k, i)
            = visit (t, i, k)
        in last (visit (t, 1, nil))
    end
```

where `last` is a function mapping a non-empty list to its last element.

The above algorithm uses two queues of trees:

- the input queue, with function `visit` processing its front element, and with function `continue` processing its tail, and
- the output backwards queue, which is enqueued in both clauses of function `visit`, and which is dequeued by functions `last_two_and_before` and `last`.
5.1.2. A direct-style traversal with control and prompt

As in Section 4.2.2, we observe that the concatenation, in the definition of visit just above, matches the concatenation of stack frames in the specification of control in Section 2.2. One can therefore write the above function in direct style, using control and prompt. However, the solution requires a change of representation of the intermediate answer type of delimited continuations, i.e., the output queue, from tree list to tree list * int in order to unify the type int of the threaded index and the type tree list of the computation.

The direct-style breadth-first numbering program reads as follows:

```sml
local structure CP = Control_and_Prompt
  (type intermediate_answer = tree list * int)
in val control = CP.control
  val prompt = CP.prompt
end

(* breadth_first_label' : tree -> tree *)
fun breadth_first_label' t
  = let (* visit : tree * int -> int *)
    fun visit (LEAF _, i)
      = control
        (fn k =>
          let val (ts, i') = prompt (fn () => k (i+1))
          in ((LEAF i) :: ts, i')
        end)
    | visit (NODE (t1, _, t2), i)
      = control
        (fn k =>
          let val (ts, i') = prompt (fn () => let val (nil, i1) = k (i+1)
          val i2 = visit (t1, i1)
          val i3 = visit (t2, i2)
          in (nil, i3)
        end)
          val (rest, t1', t2') = last_two_and_before ts
          in ((NODE (t1', i, t2')) :: rest, i')
        end)
    in last (#1 (prompt (fn () => let val i = visit (t, 1)
        in (nil, i)
      end)))
  end
```

Again, the queuing effect is obtained in the induction case, where the current delimited continuation (of visit) is captured, bound to k, and applied to the increased index i+1. The implicit continuation of this application visits t1 and then t2. Applying k seals it to the implicit continuation so that any continuation captured by an ulterior recursive call to visit in k captures both the rest of k and the visit of t1 and t2.

In the program above, before the last leaf in the tree is visited, the intermediate results represent the current value of the index. After the last leaf in the tree is visited, the intermediate results represent the current output queue. Therefore, we need to fix the intermediate answer type to tree list * int so that the intermediate results are represented as pairs, where, depending on the stage of the computation, one of the components contains significant information. Before the last leaf in the tree is visited, the significant information (i.e., the index) is contained only in the second component, and the first component is irrelevant and always equal to nil. After the last leaf in the tree is visited, the significant information (i.e., the output queue) is contained only in the first component, and the second component is irrelevant and always equal to |T| + 1 (where T is the input tree and |T| is the number of its labels).

5.2. Depth-first numbering

We now turn to the depth-first counterpart of Okasaki’s pearl, and present a spectrum of solutions to the problem of depth-first tree numbering. Given a tree T containing |T| labels, we want to create a new tree of the same shape, but with the values in the nodes and leaves replaced by the numbers 1...|T| in depth-first order. For example, the tree

```sml
NODE (NODE (LEAF 0, 0, LEAF 0), 0, LEAF 0)
```
should be transformed into

\[\text{NODE (NODE (LEAF 3, 2, LEAF 4), 1, LEAF 5)} \]

5.2.1. A stack-based traversal

It is trivial to write the depth-first counterpart of Okasaki’s solution: one should just replace the queue with a stack, and instead of using \textit{last_two_and_before}, use the auxiliary function

\[
\text{first_two_and_after : int list -> int * int * int list}
\]

such that applying it to the list \([x_1, x_2, x_3, \ldots, x_n]\) yields the triple \((x_1, x_2, [x_3, \ldots, x_n])\).

The depth-first solution reads as follows:

\[
(* \text{depth_first_label : tree -> tree *})
\]

\[
\text{fun depth_first_label t = let (* visit : tree * int * tree list -> tree list *)}
\]

\[
\text{fun visit (LEAF _, i, ts) = (LEAF i) :: (continue (ts, i+1))}
\]

\[
| \text{visit (NODE (t1, _, t2), i, ts) = let val (t1', t2', rest) = first_two_and_after (continue (t1 :: t2 :: ts, i+1))}
\]

\[
\text{in (NODE (t1', i, t2')) :: rest end}
\]

\[
(* \text{continue : tree list * int -> tree list *})
\]

\[
\text{and continue (nil, _)} = \text{nil}
\]

\[
| \text{continue (t :: k, i) = visit (t, i, k)}
\]

\[
\text{in hd (visit (t, 1, nil)) end}
\]

In contrast to Section 5.1.1, where the clause for nodes was concatenating the two subtrees in the back of the list of subtrees, in a first-in, first-out fashion,

\[
\text{last_two_and_before (continue (k @ [t1, t2], i+1)) (* then *)}
\]

the clause for nodes is (essentially) concatenating the two subtrees in front of the list of subtrees, in a last-in, first-out fashion:

\[
\text{first_two_and_after (continue ([t1, t2] @ ts, i+1)) (* now *)}
\]

We can see that the algorithm uses two stacks of trees:

- the input stack, with function \textit{visit} processing its top element, and with function \textit{continue} processing its tail, and
- the output stack, which is pushed on in both clauses of function \textit{visit}, and which is popped off by functions \textit{first_two_and_after} and \textit{hd}.

5.2.2. A continuation-based traversal

In the induction case of \textit{visit}, let us unfold the call to \textit{continue} to obtain the following clause:

\[
| \text{visit (NODE (t1, _, t2), i, ts) = let val (t1', t2', rest) = first_two_and_after (visit (t1, i+1, t2 :: ts))}
\]

\[
\text{in (NODE (t1', i, t2')) :: rest end}
\]

The modified definition is in defunctionalized form: the data type is that of lists and \textit{continue} is the corresponding apply function. The higher-order counterpart of this defunctionalized definition reads as follows:
5.2.3. A direct-style traversal with shift and reset

We view the function of type \(\text{int} \rightarrow \text{tree list} \), in the definition just above, as a delimited continuation. This delimited continuation is initialized in the initial call to visit, extended in the induction case, and captured and resumed in both clauses of visit. In direct style, the initialization is obtained with \(\text{reset} \), the extension is obtained by functional sequencing, the capture is obtained with \(\text{shift} \), and the activation is obtained by function application. The result is another new example of programming with static delimited-control operators:

```ml
local structure SR = Shift_and_Reset
(type intermediate_answer = tree list)
in val shift = SR.shift
val reset = SR.reset
end

(* depth_first_label'' : tree -> tree *)
fun depth_first_label'' t
  = let (* visit : tree * int -> tree list *)
      fun visit (LEAF _, i) = shift (fn k =>
          (LEAF i) :: (k (i+1)))
    | visit (NODE (t1, _, t2), i) = shift (fn k =>
        let val (t1', t2', rest) = first_two_and_after
          (reset (fn () => k (let val i' = visit (t1, i+1)
              => visit (t2, i'))) )
          in (NODE (t1', i, t2')) :: rest
        end)
      in hd (reset (fn () => let val i = visit (t, 1)
          in nil
          end))
  end
```

CPS-transforming visit yields the definition of Section 5.2.2.

5.3. Summary and conclusion

Okasaki’s solution relabels its input tree in breadth-first order and uses a queue. We have expressed it in direct style using control and prompt. In so doing, we have internalized the explicit data operations on the queue into implicit control operations. These control operations crucially involve delimited continuations whose extent is dynamic.

The stack-based counterpart of Okasaki’s solution relabels its input tree in depth-first order. We have mechanically refunctionalized this program into another one, which is continuation-based, and we have expressed this continuation-based program in direct style using \(\text{shift} \) and \(\text{reset} \). These control operators crucially involve delimited continuations whose extent is static.
6. Conclusion and issues

Over the last 15 years, it has been repeatedly claimed that control has more expressive power than shift. Even though this claim is now disproved [12,47,68], it is still unclear how to program with control-like dynamic delimited continuations. In fact, in 15 years, only toy examples have been advanced to illustrate the difference between static and dynamic delimited continuations, such as the one in Section 2.5.

In this article, we have filled this vacuum by using dynamic delimited continuations to program breadth-first traversal. We have accounted for the dynamic queuing mechanism inherent to breadth-first traversal with the dynamic concatenation of stack frames that is specific to control and that makes it go beyond what is traditionally agreed upon as being continuation-passing style (CPS). We have presented two examples of breadth-first traversal: the breadth-first counterpart of the traditional samefringe function and Okasaki’s breadth-first numbering pearl. We have recently proposed yet another example that exhibits the difference between shift and control [7, Section 4.6] [11, page 5].

One lesson we have learned here is how helpless one can feel when going beyond CPS. Unlike with shift and reset, there is no infrastructure for transforming programs that use control and prompt. We have therefore relied on CPS and on defunctionalization as guidelines, and we have built on the vision of data-structure continuations (stacks for depth-first traversals and queues for breadth-first traversals) proposed by Friedman 25 years ago [80, page 179] to infer the breadth-first traversals. We would have been hard pressed to come up with these examples only by groping for delimited continuations in direct style.²

Since control, even more dynamic delimited-control operators (some of which generate control delimiters dynamically) have been proposed [27,39,42,56,58,64], all of which go beyond CPS but only two of which, to the best of our knowledge, come with motivating examples illustrating their specificity:

- In his PhD thesis [2], Balat uses the extra expressive power of Gunter, Rémy, and Riecke’s control operators set and cup to over that of shift and reset to prototype a type-directed partial evaluator for the lambda-calculus with sums [3,4].
- In his PhD thesis [58], Nanevski introduces two new dynamic delimited-control operators, mark and recall, and illustrates them with a function partitioning a natural number into the lists of natural numbers that add to it. He considers both depth-first and breadth-first generation strategies, and conjectures that the latter cannot be written using shift and reset. As such, his is our closest related work.

These applications are rare and so far they tend to be daunting. Dynamic delimited continuations need simpler examples, more reasoning tools, and more program transformations.

Acknowledgments

We are grateful to Mads Sig Ager, Małgorzata Biernacka, Andrzej Filinski, Julia Lawall, Kevin Millikin, and the anonymous referees of Information Processing Letters and Science of Computer Programming for their comments.

The second author would also like to thank Andrzej Filinski, Mayer Goldberg, Julia Lawall, and Olin Shivers for participating in a one-week brain storm about continuations in August 2004, and to BRICS and DAIMI for hosting us during that week. Thanks are also due to Bernd Grobauer and Julia Lawall for sharing brain cycles about breadth-first numbering in Summer 2000.

The third author contributed to this work while at Harvard University.

This work is partially supported by the ESPRIT Working Group APPSEM II (http://www.appsem.org), the Danish Natural Science Research Council, Grant no. 21-03-0545, and the United States National Science Foundation Grant no. BCS-0236592.

Appendix A. An implementation of shift and reset

In his seminal article [34], Filinski has presented an ML implementation of shift and reset in terms of callcc and mutable state, along with its correctness proof. This implementation takes the form of a functor Shift and Reset, which maps a type of intermediate answers into a structure providing instances of shift and reset at that type:

² “You are not Superman”. – Aunt May (2002).
signature ESCAPE
= sig
 type void
 val coerce : void -> 'a
 val escape : ('a -> void) -> 'a
end

structure Escape : ESCAPE
= struct
 datatype void = VOID of void
 fun coerce (VOID v) = coerce v
 local open SMLofNJ.Cont
 in fun escape f
 = callcc (fn k => f (fn x => throw k x))
 end
end

signature SHIFT_AND_RESET
= sig
 type intermediate_answer
 val shift : ('a -> intermediate_answer) -> intermediate_answer
 val reset : (unit -> intermediate_answer)
 -> intermediate_answer
end

functor Shift_and_Reset (type intermediate_answer) : SHIFT_AND_RESET
= struct
 open Escape

 exception MISSING_RESET

 val mk : (intermediate_answer -> void) ref
 = ref (fn _ => raise MISSING_RESET)

 fun abort x
 = coerce (!mk x)

 type intermediate_answer = intermediate_answer

 fun reset thunk
 = escape (fn k => let val m = !mk
 in mk := (fn r => (mk := m; k r));
 abort (thunk ())
 end)

 fun shift function
 = escape
 (fn k => abort (function (fn v => reset
 (fn () => coerce (k v)))))
end

Appendix B. An implementation of control and prompt

The functor Control_and_Prompt maps a type of intermediate answers into a structure providing instances of control and prompt at that type:
signature CONTROL_AND_PROMPT = sig
 type intermediate_answer
 val control : ('a -> intermediate_answer) -> intermediate_answer
 val prompt : (unit -> intermediate_answer) -> intermediate_answer
end

functor Control_and_Prompt (type intermediate_answer) : CONTROL_AND_PROMPT = struct
datatype ('t, 'w) context' = CONTEXT of 't -> ('w, 'w) context' option -> 'w

fun send v NONE = v
| send v (SOME (CONTEXT mc)) = mc v NONE

fun compose' (CONTEXT c, NONE) = CONTEXT c
| compose' (CONTEXT c, SOME mc1) = CONTEXT (fn v => fn mc2 => c v (SOME (compose' (mc1, mc2))))

fun compose (CONTEXT c, NONE) = CONTEXT c
| compose (CONTEXT c, SOME mc1) = CONTEXT (fn v => fn mc2 => c v (SOME (compose' (mc1, mc2))))

structure SR = Shift_and_Reset (type intermediate_answer = intermediate_answer)
val shift = SR.shift
val reset = SR.reset

type intermediate_answer = intermediate_answer

fun prompt thunk
 = reset (fn () => send (thunk ())) NONE

exception MISSING_PROMPT

fun control function
 = shift
 (fn c1 =>
 fn mc1 =>
 let val k
 = fn x =>
 shift
 (fn c2 =>
 fn mc2 =>
 let val (CONTEXT c1') = compose (CONTEXT c1, mc1)
 in c1' x (SOME (compose (CONTEXT c2, mc2)))
 end)
 in reset (fn () => send (function k)) NONE
 end) handle MISSING_RESET => raise MISSING_PROMPT
end
A delimited continuation captured by \texttt{control} may capture the context in which it is subsequently activated. To simulate this dynamic extent, the captured continuation (of type \((\texttt{\texttt{t}}, \texttt{\texttt{w}}) \texttt{context'})\) takes as arguments not just the value (of type \(\texttt{\texttt{t}}\)) with which it is activated, but also the context (of type \((\texttt{\texttt{w}}, \texttt{\texttt{w}}) \texttt{context'} \texttt{option}\)) in which it is activated. Hence the recursive definition of \texttt{datatype \((\texttt{\texttt{t}}, \texttt{\texttt{w}}) \texttt{context'}\)}.

Such a captured continuation can no longer be activated by mere function application; instead we define \texttt{send \texttt{v} \texttt{c}} to activate the captured continuation \(\texttt{c}\) with the value \(\texttt{v}\). Such a captured continuation can also no longer be composed by mere function composition; instead we define \texttt{compose \texttt{c} \texttt{mc}} to concatenate the captured continuation \(\texttt{c}\) with the outer continuation (activation context) \(\texttt{mc}\).

A direct transliteration of Shan’s Scheme macros into ML results in an implementation with overly restrictive types. Due to the lack of polymorphic recursion in ML, the function \texttt{compose} would have the type:

\texttt{('w, 'w) context' * ('w, 'w) context' option -> ('w, 'w) context'}

and consequently, the inferred type of \texttt{control} would be:

\texttt{((intermediate_answer -> intermediate_answer) -> intermediate_answer) -> intermediate_answer}

The third author has therefore cloned the function \texttt{compose} so that it has the following type:

\texttt{('t, 'w) context' * ('w, 'w) context' option -> ('t, 'w) context'}

Consequently, the inferred type of \texttt{control} is the same as that of \texttt{shift} in Filinski’s implementation:

\texttt{(('a -> intermediate_answer) -> intermediate_answer) -> 'a}

References

