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Abstract. Type-directed partial evaluation uses a normalization func-

tion to achieve partial evaluation. These lecture notes review its back-

ground, foundations, practice, and applications. Of speci�c interest is the

modular technique of o�ine and online type-directed partial evaluation

in Standard ML of New Jersey.

1 Background and introduction

1.1 Partial evaluation by normalization

Partial evaluation is traditionally presented as follows [11, 40]. Given a program

processor `run', and a source program p with some input hs; di such that running
p on this input yields some output a,

run p hs; di = a

specializing p with respect to hs; i with a partial evaluator `PE' yields a residual
program phs; i such that running phs; i on the remaining input h ; di yields the
same output a, provided that the source program, the partial evaluator, and the

specialized program all terminate. Equationally:�
run PE hp; hs; ii = phs; i

run phs; i h ; di = a

The challenge of partial evaluation lies in writing a non-trivial partial evalua-

tor, i.e., one performing the operations in p that depend on s and yielding the

corresponding simpli�ed residual program.
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This requirement reminds one of the concept of normalization in the lambda-

calculus [4] and in rewriting systems [26]. Given three terms e0 : t1 ! t2 ! t3,

e1 : t1, and e2 : t2 such that applying e0 to e1 and e2 yields some result a,

e0 e1 e2 = a

normalizing the result of applying e0 to e1 yields a residual term r : t2 ! t3,

such that by construction, applying r to e2 yields the same result a, provided

that applying e0, normalization, and applying r all converge. Equationally:�
e0 e1 = r

r e2 = a

In these lecture notes, we show how to achieve partial evaluation using normal-

ization in the lambda-calculus. More precisely, we use a normalization function,

as developed in Section 2.

1.2 Prerequisites and notation

We assume a basic familiarity with partial evaluation, such as that which can

be gathered in the present volume. More speci�cally, we assume that the reader

knows that an o�ine partial evaluator is a two-stage processor with

1. a binding-time analysis that decorates a source program with static and

dynamic annotations, and
2. a static reducer that reduces all the static constructs away, yielding a residual

program.

We also assume that it is clear to the reader that a binding-time analysis should

produce a well-annotated \two-level" term, and that a two-level term is well-

annotated if static reduction \does not go wrong" and yields a completely dy-

namic term.

The canonical example of the power function: The power function, of type

int * int -> int

maps a integer x (the base parameter) and a natural number n (the exponent

parameter) into xn. It can be programmed in various ways. The version we

consider throughout these notes is written in ML [44] as follows.

fun power (x, 0) = 1

| power (x, n) = x * (power (x, n-1))

If we want to specialize it with respect to a static value for n, the recursive

calls, the conditional expression, and the decrement are classi�ed as static, and

the multiplication is classi�ed as dynamic. As a result, the power function is

completely unfolded at specialization time. (The multiplication by 1 may or

may not be simpli�ed away.) Specializing the power function with respect to

n = 3, for example, yields the following residual program:
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fun power_d3 x = x * x * x

where the multiplication by 1 was simpli�ed away.

If we want to specialize the power function with respect to a static value

for x, the recursive calls, the conditional expression, the decrement, and the

multiplication all are classi�ed as dynamic. As a result, the power function is

essentially reconstructed at specialization time. (The static value is inlined.)

Specializing the power function with respect to x = 8, for example, yields the

following residual program:

fun power_8d 0 = 1

| power_8d n = 8 * (power_8d (n-1))

Lambda-calculus, two-level lambda-calculus: The rest of Section 1 assumes the

following grammar for the pure simply typed lambda-calculus:

t ::= � j t1 ! t2 j t1 � t2

e ::= x j �x:e j e0@e1 j pair(e1; e2) j �1 e j �2 e

Applications are noted with an in�x \@", pairs are constructed with a pre�x op-

erator \pair" and projections are noted \�". As for �, it stands for an unspeci�ed

atomic type.

The corresponding two-level lambda-calculus is obtained by overlining static

syntax constructors and underlining dynamic syntax constructors:

e ::= x j �x:e j e0@e1 j pair(e1; e2) j �1 e j �2 e

j �x:e j e0@e1 j pair(e1; e2) j �1 e j �2 e

A \completely static expression" (resp. \completely dynamic expression")

is a two-level lambda-term where all syntax constructors are overlined (resp.

underlined).

1.3 Two-level programming in ML

We consider the two-level lambda-calculus implemented in ML by representing

overlines with ordinary syntax constructs and underlines with constructors of a

data type representing residual terms. Let us illustrate this implementation in

ML using the data type Exp.exp of Figure 1.

For example, the ML expressions

fn x => x

Exp.LAM ("x", Exp.VAR "x")

respectively represent the completely static expression �x:x and the completely

dynamic expression �x:x.
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structure Exp

= struct

datatype exp = VAR of string

| LAM of string * exp | APP of exp * exp

| PAIR of exp * exp | FST of exp | SND of exp

end

Fig. 1. Abstract syntax of residual expressions

Run time: Static reduction is achieved by ML evaluation. For example, the two-

level expression �x:(�v:v)@x is represented as

Exp.LAM ("x", (fn v => v) (Exp.VAR "x"))

This ML expression evaluates to

Exp.LAM ("x", Exp.VAR "x")

which represents the completely dynamic expression �x:x.

Compile time: What it means for a two-level expression to be \well-annotated"

can be non-trivial [40, 46, 48, 57]. These considerations reduce to the ML typing

discipline here. As already mentioned, well-annotatedness boils down to two

points:

1. static reduction should not go wrong, and

2. the result should be completely dynamic.

Each of these points is trivially satis�ed here:

1. the ML type system ensures that evaluation will not go wrong, and

2. the result is completely dynamic if it has type Exp.exp.

Assessment: Implementing the two-level lambda-calculus in ML simpli�es it

radically. Conceptually, well-annotatedness is reduced to ML typeability and

static reduction to ML evaluation. And practically, this implementation directly

bene�ts from existing programming-language technology rather than requiring

one to duplicate this technology with a two-level-language processor. It provides,

however, no guarantees that the residual program is well typed in any sense.

1.4 Binding-time coercions

The topic of binding-time coercions is already documented in Jens Palsberg's

contribution to this volume [47]. Brie
y put, a binding-time coercion maps an

expression into a new expression to ensure well-annotatedness between expres-

sions and their contexts during static reduction. In that, binding-time coercions

ful�ll the same task as, e.g., subtype coercions [37].
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#
�
e = e

#
t1!t2 e = �x1:#

t2
(e@("t1 x1)) where x1 is fresh.

#
t1�t2 e = pair(#

t1
(�1 e); #

t2
(�2 e))

"� e = e

"t1!t2
e = �x1:"t2 (e@(#

t1 x1)) where x1 is fresh.

"t1�t2 e = pair("t1 (�1 e); "t2 (�2 e))

Fig. 2. Type-directed binding-time coercions

We are only interested in one thing here: how to coerce a closed, completely

static expression into the corresponding dynamic expression. This coercion is

achieved using the type-directed translation displayed in Figure 2, which can be

seen to operate by \two-level eta expansion" [22, 23]. Given a closed, completely

static expression e of type t, #t e
coerces it into its dynamic counterpart. Notationally, the down arrow converts

overlines into underlines. We refer to it as \rei�cation."

To process the left-hand side of an arrow, rei�cation uses an auxiliary type-

directed translation, which we refer to as \re
ection." We write it with an up

arrow, to express the fact that it converts underlines into overlines.

In turn, to process the left-hand side of an arrow, re
ection uses rei�cation.

Rei�cation and re
ection are thus mutually recursive. They operate in a type-

directed way, independently of their argument.

Examples (of reifying a static expression):

#�!� e = �x1:e@x1

#((���!�)!�)!� e = �x1:e@(�x2:x1@(�x3:x2@pair(�1 x3; �2 x3)))

In ML, using the data type of Figure 1, these two type-indexed down arrows are

respectively expressed as follows:

fn e => LAM ("x1",e (VAR "x1"))

(* (Exp.exp -> Exp.exp) -> Exp.exp *)

fn e => LAM ("x1",

e (fn x2 => APP (VAR "x1",

LAM ("x3",

x2 (FST (VAR "x3"),

SND (VAR "x3"))))))

(* (((Exp.exp * Exp.exp -> Exp.exp) -> Exp.exp) -> Exp.exp) -> Exp.exp *)
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Examples (of re
ecting upon a dynamic expression):

"�!� e = �x1:e@x1

"((���!�)!�)!� e = �x1:e@(�x2:x1@(�x3:x2@pair(�1 x3; �2 x3)))

In ML, these two type-indexed up arrows are respectively expressed as follows:

fn e => fn x1 => APP (e,x1)

(* Exp.exp -> Exp.exp -> Exp.exp *)

fn e => fn x1 => APP (e,

LAM ("x2",

x1 (fn (x3_1, x3_2)

=> APP (VAR "x2", PAIR (x3_1, x3_2)))))

(* Exp.exp -> ((Exp.exp * Exp.exp -> Exp.exp) -> Exp.exp) -> Exp.exp *)

1.5 Summary and conclusion

We have reviewed the basic ideas of partial evaluation and more speci�cally of

Neil Jones's o�ine partial evaluation. We have settled on the particular brand

of two-level language that arises when one implements \dynamic" with an ML

data type representing the abstract syntax of residual programs and \static"

with the corresponding ML language constructs. And we have reviewed binding-

time coercions and how they are implemented in ML.

The type of each binding-time coercion matches the type of its input. There-

fore, a polymorphic value corresponding to a pure lambda-term is rei�ed into a

residual expression by (1) instantiating all its type variables with Exp.exp and

(2) plugging it in a two-level, code-generating context manufactured in a type-

directed way.

2 Normalization by evaluation

In one way or another, the translation displayed in Figure 2 is a familiar sight in

the o�ine-partial-evaluation community [8, 22, 23, 40]. It is, however, also known

in other areas of computer science, and we review how in Section 2.1. In Sec-

tion 2.2, we describe how rei�cation can \decompile" ML values corresponding

to pure lambda-terms in normal form. In Section 2.3, we illustrate normalization

by evaluation, i.e., how rei�cation can decompile values corresponding to pure

lambda-terms into the representation of their normal form. In Section 2.4, we

then turn to the implementation of rei�cation and re
ection in ML, which is not

obvious, since they are type-indexed. Thus equipped, we then consider how to

use normalization by evaluation to achieve partial evaluation, as outlined in Sec-

tion 1.1. However, as analyzed in Section 2.5, normalization by evaluation needs

to be adjusted to ML, which we do in Section 2.6. The result is type-directed

partial evaluation.

6



2.1 A normalization function

In logic, proof theory, and category theory, the contents of Figure 2 has been

discovered and studied as a normalization function [19]. There, the dynamic

parts of the two-level lambda-calculus live in a term model, and the static parts

live in a lambda-model with term constructors. The normalization function is

type-indexed and maps a closed, completely static lambda-term into a closed,

completely dynamic lambda-term in normal form:

�-term

overline
all constructors //

normalization

��

completely static
two-level �-term

rei�cation

��
two-level �-term

static reduction

��
�-term

in normal form
completely dynamic
two-level �-termerase

all underlines

oo

Ulrich Berger and Helmut Schwichtenberg, for example, discovered this nor-

malization function in the area of proof theory [5]. They also observed that this

function provides an eÆcient way to normalize lambda-terms if the overlines

are implemented with ordinary syntax constructs and the underlines are imple-

mented with constructors of residual terms, similarly to what is described in

Section 1.3, but in Scheme [42]. In e�ect, the Scheme evaluator carries out both

the normalization steps and the construction of the residual program.

Berger and Schwichtenberg present the normalization function as a left in-

verse of the evaluation function for the simply typed lambda-calculus; the idea

is that an evaluator maps a dynamic lambda-term (an abstract-syntax tree) into

its static counterpart (its value), while the normalizer has the inverse functional-

ity. The interested reader is kindly directed to the proceedings of the workshop

on \Normalization by Evaluation" for further independent discoveries of this

normalization function [1, 12, 13, 19].

In summary, if one implements the two-level lambda-calculus as in Sec-

tion 1.3, then reifying a simply typed, closed, and completely static higher-order

function into a dynamic expression automatically yields a representation of its

normal form. In the rest of this section, we illustrate this phenomenon with de-

compilation, before turning to the implementation of a normalization function

in ML.
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2.2 Application to decompilation

Rei�cation lets us \decompile" values into the text of a corresponding expression

{ an observation due to Mayer Goldberg [31, 32].

Analogy with a �rst-year Scheme exercise: To build an appreciation of programs

as data, beginners in Scheme are often asked to write a function constructing

a list that represents a Scheme program. One such function is reify-int-list

that maps a list of numbers into the Scheme list that, when evaluated, will yield

that list of numbers. Here is the transcript of an interactive Scheme session

illustrating the exercise (\>" is the interactive prompt):

> (reify-int-list (cons 1 (cons 2 '())))

(cons 1 (cons 2 '()))

> (cons 1 (cons 2 '()))

(1 2)

> '(1 2)

(1 2)

> (reify-int-list '(1 2))

(cons 1 (cons 2 '()))

>

There are two issues in this Scheme exercise:

1. algorithmically, reify-int-list performs a straightforward recursive descent

in the input list; and
2. conceptually, we can read the output list as a Scheme program.

In ML and in Haskell, it is more natural to output an abstract-syntax tree

(represented with an inductive data type) and then to unparse it into concrete

syntax (represented with a string) and possibly to pretty-print it.

Let us illustrate decompilation in ML without any unparser and pretty-

printer, using the data type of Figure 1. We consider several examples in turn,

reproducing transcripts of an interactive ML session (\-" is the interactive

prompt).

The identity combinator I at type �! �

The associated rei�er reads �v:�x:v@x.

- val I = fn x => x; (* the identity combinator *)

val I = fn : 'a -> 'a

- val reify_a2a (* the associated reifier *)

= fn v => Exp.LAM ("x",v (Exp.VAR "x"));

val reify_a2a = fn : (Exp.exp -> Exp.exp) -> Exp.exp

- reify_a2a I; (* decompilation *)

val it = LAM ("x",VAR "x") : Exp.exp

-

Compared to reify-int-list above, the striking thing here is that we do not

decompile �rst-order values, but higher-order ones, i.e., functions.
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The cancellation combinator K at type �! �! �

The associated rei�er reads �v:�x:�y:(v@x)@y.

- fun K x y = x; (* the K combinator *)

val K = fn : 'a -> 'b -> 'a

- local open Exp

in val reify_a2b2a (* the associated reifier *)

= fn v => LAM ("x",LAM ("y",v (VAR "x") (VAR "y")))

end;

val reify_a2b2a = fn : (Exp.exp -> Exp.exp -> Exp.exp) -> Exp.exp

- reify_a2b2a K; (* decompilation *)

val it = LAM ("x",LAM ("y",VAR "x")) : Exp.exp

-

A random higher-order function at type ((�! �) ! �) ! �

The associated rei�er reads �v:�f:v@(�v1:f@(�x:v1@x)).

- val foo = fn f => f (fn x => x);

val foo = fn : (('a -> 'a) -> 'b) -> 'b

- local open Exp

in val reify_foo (* the associated reifier *)

= fn v => LAM ("f",

v (fn v1 => APP (VAR "f",

LAM ("x",

v1 (VAR "x")))))

end;

val reify_foo

= fn : (((Exp.exp -> Exp.exp) -> Exp.exp) -> Exp.exp) -> Exp.exp

- reify_foo foo; (* decompilation *)

val it = LAM ("f",APP (VAR "f",LAM ("x",VAR "x"))) : Exp.exp

-

In each case we have decompiled a higher-order function corresponding to a pure

lambda-term by reifying it according to its type.

As these examples have just illustrated, decompilation is the inverse of the

evaluation function for normal forms [5, 14, 27].

2.3 Normalization by evaluation

Let us now illustrate normalization by evaluation. We consider two source terms

that are not in normal form, and how they are rei�ed into a representation

of their normal form. The two input values have the same type and thus we

normalize them with the same rei�er.

In the next interaction, we consider a source term with a beta-redex in the

body of a lambda-abstraction. Because of ML's evaluation strategy, the corre-

sponding beta-reduction takes place each time this source term is applied. This

reduction, however, can be performed \at normalization time."
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- reify_a2a (fn x => (fn y => y) x); (* a beta-redex *)

val it = LAM ("x",VAR "x") : Exp.exp

-

In the next interaction, we revisit the standard de�nition of the identity combi-

nator I in terms of the Hilbert combinators S and K.

- fun S f g x = f x (g x); (* the S combinator *)

val S = fn : ('a -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'c

- reify_a2a (S K K); (* reification of S K K into I *)

val it = LAM ("x",VAR "x") : Exp.exp

-

2.4 Naive normalization by evaluation in ML

In Sections 1.4, 2.2, and and 2.3, we have written one rei�er per type. Let us now

turn to implementing a type-indexed normalization function nbe, i.e., to writing

the contents of Figure 2 in ML. But how does one write a type-indexed function

in ML? In Figure 2, rei�cation and re
ection very obviously are dependently

typed { and ML does not provide any support for dependent types. Fortunately,

Andrzej Filinski and Zhe Yang have recently devised the technique of de�ning

rei�cation and re
ection pairwise, in a polymorphically typed way [17, 59].

Figure 3 displays an implementation of normalization by evaluation in Stan-

dard ML using the Filinski-Yang programming technique. The data type rr

embodies each reify/re
ect pair:

{ rra denotes the \type constructor" corresponding to the atomic type �

(noted a' in Figure 4);
{ rrf denotes the \type constructor" corresponding to functions (in�x and

noted --> in Figure 4); and
{ rrp denotes the \type constructor" corresponding to products (in�x and

noted ** in Figure 4).

Overall, given the representation of a type and a polymorphic value of the cor-

responding type, normalization by evaluation boils down to reifying the value.

For readability, the generator of fresh variables is also initialized in passing.

Examples: Thus equipped, we now revisit the rei�ers of Section 2.2.

- val reify_a2a = nbe (a' --> a');

val reify_a2a = fn : (Exp.exp -> Exp.exp) -> Exp.exp

- val reify_a2b2a = nbe (a' --> a' --> a');

val reify_a2b2a = fn : (Exp.exp -> Exp.exp -> Exp.exp) -> Exp.exp

- val reify_foo = nbe (((a' --> a') --> a') --> a');

val reify_foo

= fn : (((Exp.exp -> Exp.exp) -> Exp.exp) -> Exp.exp) -> Exp.exp

-

As can be noticed, we only use one atomic type: to repeat the last paragraph of

Section 1, all type variables are instantiated with Exp.exp.
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structure Naive_nbe

= struct

local open Exp

in datatype 'a rr = RR of ('a -> exp) * (exp -> 'a)

val rra

= RR (fn e => e, fn e => e)

fun rrf (RR (reify1, reflect1), RR (reify2, reflect2))

= RR (fn f => let val x = Gensym.new "x"

in LAM (x, reify2 (f (reflect1 (VAR x))))

end,

fn e => fn v => reflect2 (APP (e, reify1 v)))

fun rrp (RR (reify1, reflect1), RR (reify2, reflect2))

= RR (fn (v1, v2) => PAIR (reify1 v1, reify2 v2),

fn e => (reflect1 (FST e), reflect2 (SND e)))

fun nbe (RR (reify, reflect)) v

= (Gensym.init (); reify v)

end

end

Fig. 3. Naive normalization by evaluation in Standard ML (de�nition)

val a' = Naive_nbe.rra

infixr 5 -->

val op --> = Naive_nbe.rrf

infixr 6 **

val op ** = Naive_nbe.rrp

val nbe = Naive_nbe.nbe

Fig. 4. Naive normalization by evaluation in Standard ML (interface)
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Re�nement: We can also decompile a single polymorphic value with respect to

more re�ned types:

- nbe ((a' --> a') --> a' --> a') (fn x => x);

val it = LAM ("x1",LAM ("x2",APP (VAR "x1",VAR "x2"))) : Exp.exp

- nbe (a' ** a' --> a' ** a') (fn x => x);

val it = LAM ("x1",PAIR (FST (VAR "x1"),SND (VAR "x1"))) : Exp.exp

-

As Guy Steele and Gerry Sussman once said about the Y combinator, \That this

manages to work is truly remarkable." [55, page 70].

2.5 Towards type-directed partial evaluation

Now that we have coded normalization by evaluation in ML, we can go back to

our initial goal, as stated in Section 1.1: to achieve partial evaluation by partially

applying a source function to a static argument and normalizing the result. To

this end, we proceed with the following swift generalizations [14]:

1. We use more of ML in our source programs than what corresponds to the

pure lambda-calculus. For example, residualizing the open function

fn x => (fn i => if i >= 0 then x else x) 42

with reify a2a also yields the residual (closed) identity function.
Our extension, however, must stay reasonable in some sense. For example,

residualizing the open function

fn x => (print "hello world"; x)

with reify a2a also yields the residual identity function, but the string

"hello world" is output during residualization, which may or may not be

what we want.
2. Correspondingly, we can extend the residual syntax of Figure 1 with literals.

The rei�cation function at the type of each literal is then simply de�ned as

the corresponding syntax constructor. The re
ection function, however, is

unde�ned in general. Indeed, we could only determine an integer-expecting

context, for example, by feeding it with an in�nite number of integers. As a

consequence, we cannot residualize a function such as

fn x => x+1

This is in contrast with the pure simply typed lambda-calculus where a

term can be totally determined by observing the result of plugging it into

�nitely many contexts { a property which is at the root of normalization by

evaluation for the pure simply typed lambda-calculus [3, 19].
3. It is also tempting to use ML's recursion in a source program, even though

this introduces the risk of non-termination at partial-evaluation time.

4. Correspondingly, we can code residual recursive functions using �xed-point

operators.
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5. Finally, ML follows call-by-value, whereas naive normalization by evaluation

assumes call-by-name. For example, the possibly non-terminating function

fn f => fn x => (fn y => x) (f x)

is residualized into the term

fn f => fn x => x

which denotes a terminating function.
This phenomenon requires us to extend normalization by evaluation with

the partial-evaluation technique of dynamic let insertion [7, 35, 43], so that

the residual term reads as follows.
fn f => fn x => let val _ = f x

in x

end

Let insertion also solves the problem of computation duplication, which is sig-

ni�cant in the presence of residual functions with computational e�ects [35].

For example, a function such as
fn (f, g, h, x) => (fn y => g (y, h x, y)) (f x)

is naively residualized into the term
fn (f, g, h, x) => g (f x, h x, f x)

where the function denoted by f is applied twice and out of order with respect

to the function denoted by h. Let insertion maintains the proper sequencing

in the residual program:
fn (f, g, h, x) => let val y = f x

val z = h x

in g (y, z, y)

end

In his study of normalization by evaluation [29, 30], Andrzej Filinski scruti-

nizes the generalizations above:

{ Normalization by evaluation is de�ned in a fairly restricted setting { the pure

simply typed lambda-calculus. This formal setting needs to be extended to

account for base types and for the corresponding operations.
{ As soon as we introduce recursion, arguments based on strong normalization

cease to apply. The overall picture of partial evaluation by partial application

and normalization thus needs to be adjusted.
{ Normalization by evaluation is formally de�ned in a normal-order setting. It

needs to be adjusted to work in a call-by-value language, especially in the

presence of computational e�ects such as divergence.

In summary, normalization by evaluation was originally de�ned for the pure

lambda-calculus. It is not immediately clear whether it can be directly tran-

scribed in a richer functional language and still be claimed to work in some

sense. Filinski, however, has proven that it can be transcribed in call-by-name

PCF [29, 30].

Treating a full-
edged call-by-value functional language such as Scheme and

ML thus requires one to adapt normalization by evaluation. This is the goal of

Section 2.6.
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structure Exp

= struct

datatype exp = VAR of string

| LAM of string * exp

| APP of exp * exp

| PAIR of exp * exp

| FST of exp

| SND of exp

| LET of string * exp * exp

| INT of int

| BOOL of bool

| COND of exp * exp * exp

fun pp e = ... (* a pretty-printer *)

end

Fig. 5. Abstract syntax of residual expressions (extended)

2.6 Normalization by evaluation in ML

Because of call-by-value, the standard technique of dynamic let insertion has

to be adapted to avoid the computation mismatch illustrated in Item 5 of Sec-

tion 2.5; this extension makes it possible to handle observationally e�ectful func-

tions, as well as booleans and more generally disjoint sums [14, 15]. In the rest

of these lecture notes, we consider this version of normalization by evaluation,

displayed in Figure 6.

Figure 6 requires the extended residual syntax of Figure 5, i.e., let expres-

sions because of call-by-value, integer and boolean literals, and conditional ex-

pressions. The overall structure of rei�cation and re
ection is the same as in

Figure 3. Integers, in particular, are implemented as described in Item 2 of Sec-

tion 2.5, page 12: the integer rei�cation function is de�ned as the abstract-syntax

constructor for integers, and the integer re
ection function raises an uncaught

exception. In the rest of the �gure, the new parts involve the control operators

shift and reset [21].

Shift and reset are respectively used to abstract (delimited) control and to

delimit control. They are most tellingly used for booleans (rrb in Figure 6): the

challenge there is to implement the re
ection function, which must have the type

exp -> bool. Since there are only two booleans, we successively provide them to

the context, yielding two residual expressions that form the two branches of

a residual conditional expression. We lay our hands on the context using the

control operator shift, which provides us with a functional abstraction of the

current context. Supplying a value to this context then reduces to applying the

functional abstraction to this value, which we successively do with true and

false. This programming technique is illustrated in Figure 8 and also in the

literature [14, 15, 20, 21, 43].
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structure Nbe =

struct

local open Exp

in structure Ctrl = Control (type ans = exp)

datatype 'a rr = RR of ('a -> exp) * (exp -> 'a)

val rra = RR (fn e => e, fn e => e)

fun rrf (RR (reify1, reflect1), RR (reify2, reflect2))

= RR (fn f => let val x = Gensym.new "x"

in LAM (x, Ctrl.reset

(fn ()

=> reify2 (f (reflect1 (VAR x)))))

end,

fn e => fn v => let val r = Gensym.new "r"

in Ctrl.shift

(fn k

=> LET (r,

APP (e, reify1 v),

Ctrl.reset

(fn ()

=> k (reflect2 (VAR r)))))

end)

fun rrp (RR (reify1, reflect1), RR (reify2, reflect2))

= RR (fn (v1, v2) => PAIR (reify1 v1, reify2 v2),

fn e => (reflect1 (FST e), reflect2 (SND e)))

exception NoWay

val rri = (INT,

fn _ => raise NoWay)

val rrb

= RR (BOOL,

fn e => Ctrl.shift

(fn k => COND (e,

Ctrl.reset (fn () => k true),

Ctrl.reset (fn () => k false))))

fun nbe (RR (reify, reflect)) v

= (Gensym.init (); reify v)

fun nbe' (RR (reify, reflect)) e

= reflect e

end

end

Fig. 6. Normalization by evaluation in Standard ML (de�nition)
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val a' = Nbe.rra

val int' = Nbe.rra

val bool' = Nbe.rra

infixr 5 -->; val op --> = Nbe.rrf

infixr 6 **; val op ** = Nbe.rrp

val int = Nbe.rri

val bool = Nbe.rrb

val nbe = Nbe.nbe

val nbe' = Nbe.nbe'

Fig. 7. Normalization by evaluation in Standard ML (interface)

structure Example

= struct

structure Ctrl = Control (type ans = int)

val x1 = 10 + (Ctrl.reset

(fn () => 500 + Ctrl.shift

(fn k => (k 0) + (k 100))))

val x2 = 10 + let fun k v = 500 + v

in (k 0) + (k 100)

end

end

The two computations above declare an outer context 10 + [ ]. They also

declare a delimited context [500 + [ ]], which is abstracted as a function denoted

by k. This function is successively applied to 0, yielding 500, and to 100, yielding

600. The two results are added, yielding 1100 which is then plugged in the outer

context. The overall result is 1110.

In the �rst computation, the context is delimited by reset and the delimited

context is abstracted into a function with shift. The second computation is the

continuation-passing counterpart of the �rst one [21].

It should be noted that shift yields a control abstraction that behaves as a

function, i.e., that returns a result to the context of its invocation and thus can

be composed. In contrast, the Scheme control operator call/cc yields a control

abstraction that behaves as a goto, in the sense that invoking it does not return

any result to the context of its invocation.

Shift and reset are documented further in the literature [20, 21, 28].

Fig. 8. An example of using shift and reset
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signature ESCAPE

= sig

type void

val coerce : void -> 'a

val escape : (('a -> void) -> 'a) -> 'a

end

structure Escape : ESCAPE

= struct

datatype void = VOID of void

fun coerce (VOID v) = coerce v

fun escape f

= SMLofNJ.Cont.callcc (fn k => f (fn x => SMLofNJ.Cont.throw k x))

end

signature CONTROL

= sig

type ans

val shift : (('a -> ans) -> ans) -> 'a

val reset : (unit -> ans) -> ans

end

functor Control (type ans) : CONTROL =

struct

open Escape

exception MissingReset

val mk : (ans -> void) ref = ref (fn _ => raise MissingReset)

fun abort x = coerce (!mk x)

type ans = ans

fun reset t

= escape (fn k => let val m = !mk

in mk := (fn r => (mk := m; k r));

abort (t ())

end)

fun shift h

= escape (fn k => abort (h (fn v => reset (fn () => coerce (k v)))))

end

Fig. 9. Shift and reset in Standard ML of New Jersey [28]

We reproduce Filinski's implementation of shift and reset in Figure 9. This

implementation relies on the Scheme-like control operator callcc available in

Standard ML of New Jersey [28].
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Let insertion: Let us consider the following simple program, where two functions

are intertwined, and one is speci�ed to be the identity function:

structure Let_example

= struct

fun main f g x = g (f (g (f (g (f (g x))))))

fun spec f x = main f (fn a => a) x

end

We residualize Let example.spec according to its most general type as follows:

nbe ((a' --> a') --> a' --> a') Let_example.spec

The raw result is of type Exp.exp and reads as follows.

LAM ("x1", LAM ("x2", LET ("r3",

APP (VAR "x1",VAR "x2"),

LET ("r4",

APP (VAR "x1",VAR "r3"),

LET ("r5",

APP (VAR "x1",VAR "r4"),

VAR "r5")))))

The static function has been eliminated statically and let expressions have been

inserted to name each intermediate result.

Once unparsed and pretty-printed, the residual program reads as follows.

fn x1 => fn x2 => let val r3 = x1 x2

val r4 = x1 r3

in x1 r4

end

The attentive reader will have noticed that the output of the pretty-printer is

properly tail-recursive, i.e., it does not name the last call.

Booleans: Let us consider function composition:

structure Boolean_example

= struct

fun main f g x = f (g x)

fun spec f x g = main f g x

end

Residualizing Boolean example.spec with respect to the type

(bool' --> bool) --> bool' --> (bool' --> bool') --> bool

yields the following residual program:
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fn x1 => fn x2 => fn x3 => let val r4 = x3 x2

val r5 = x1 r4

in if r5

then true

else false

end

As above, residual let expressions have been inserted. In addition, the boolean

variable r5 has been \eta-expanded" into a conditional expression. This insertion

of conditional expressions also has the e�ect of duplicating boolean contexts, as

illustrated next.

Residualizing Boolean example.spec with respect to the type

(bool --> bool') --> bool' --> (bool' --> bool) --> bool'

yields the following residual program, where the application of x1 is duplicated

in the conditional branches.

fn x1 => fn x2 => fn x3 => let val r4 = x3 x2

in if r4

then x1 true

else x1 false

end

Similarly, residualizing Boolean example.spec with respect to the type

(bool' --> bool') --> bool --> (bool --> bool') --> bool'

yields the following residual program, where a function de�nition is cloned in

the conditional branches.

fn x1 => fn x2 => if x2

then fn x3 => let val r4 = x3 true

in x1 r4

end

else fn x6 => let val r7 = x6 false

in x1 r7

end

As an exercise, the reader might want to residualize Boolean example.spec

with respect to the type

(bool --> bool) --> bool --> (bool --> bool) --> bool.

Duplicating boolean contexts is usually justi�ed because of the static compu-

tations it may enable. If these are neglectable, one can avoid code duplication by

generalizing the static type bool into the dynamic type bool' de�ned in Figure 7.
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2.7 An alternative approach

Suppose one proscribes booleans and disjoint sums in residual programs. Could

one then implement let insertion in a simpler way than with shift and reset?

In June 1998, Eijiro Sumii answered positively to this question.1

And indeed what is the goal of shift and reset in the de�nition of rrf in

Figure 6? Essentially to name each intermediate result and to sequentialize its

computation. Let us capture this goal with the alternative data type for residual

expressions displayed in Figure 10. This data type accounts for lambda-calculus

terms, plus a sequential let expression.

Thus equipped, let us observe that each shift in rrf adds a let binding. But

we can obtain the same e�ect with state instead of with control, by keeping a

list of let bindings in a global hook and making the re
ect component of rrf

extend this list:

fn e => fn v => let val r = Gensym.new "r"

in hook := (r, APP (e, reify1 v)) :: !hook;

reflect2 (VAR r)

end

Conversely, in the reify component of rrf, we can initialize the global list when

creating a residual lambda-abstraction and package the list of bindings when

completing its residual body:

fn f => let val x = Gensym.new "x"

val previous_hook = !hook

val _ = hook := []

val body = reify2 (f (reflect1 (VAR x)))

val header = rev (!hook)

val _ = hook := previous_hook

in LAM (x, LET (header, body))

end

The complete speci�cation is displayed in Figure 11. In practice, it enables one

to implement type-directed partial evaluation in a call-by-value functional lan-

guage without control facilities such as Caml. Sumii's state-based technique also

applies for let insertion in traditional syntax-directed partial evaluation, which,

according to Peter Thiemann, is folklore.

2.8 Summary and conclusion

In this section, we have presented \normalization by evaluation" and we have

adapted it to the call-by-value setting corresponding to our encoding of the

two-level lambda-calculus in ML. Similarly, the proof techniques can be (non-

trivially) adapted from call-by-name to call-by-value with monadic e�ects to

show the correctness of this variant. Also, in the spring of 1999, Andrzej Filinski

has formalized the relation between control-based and state-based let insertion.

We are now ready to use normalization to perform partial evaluation.

1 Personal communication, Aarhus, Denmark, September 1998.
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structure Exp_alt

= struct

datatype exp = VAR of string

| LAM of string * exp

| APP of exp * exp

| LET of (string * exp) list * exp

end

Fig. 10. Alternative abstract syntax of residual expressions

structure Nbe_alt =

struct

local open Exp_alt

in val hook = ref [] : (string * Exp_alt.exp) list ref

datatype 'a rr = RR of ('a -> exp) * (exp -> 'a)

val rra = RR (fn e => e, fn e => e)

fun rrf (RR (reify1, reflect1), RR (reify2, reflect2))

= RR (fn f => let val x = Gensym.new "x"

val previous_hook = !hook

val _ = hook := []

val body = reify2 (f (reflect1 (VAR x)))

val header = rev (!hook)

val _ = hook := previous_hook

in LAM (x, LET (header, body))

end,

fn e => fn v => let val r = Gensym.new "r"

in hook := (r, APP (e, reify1 v)) :: !hook;

reflect2 (VAR r)

end)

fun nbe (RR (reify, reflect)) v

= (Gensym.init (); reify v)

fun nbe' (RR (reify, reflect)) e

= reflect e

end

end

Fig. 11. Alternative normalization by evaluation in ML
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3 O�ine type-directed partial evaluation

We de�ne type-directed partial evaluation as normalization by evaluation over

ML values, as de�ned in Figures 6 and 7, pages 15 and 16. Since normaliza-

tion by evaluation operates over closed terms, we close our source programs by

abstracting all their dynamic variables.

In practice, it is a simple matter to close source programs by abstracting all

their dynamic free variables. This is naturally achieved by lambda-abstraction

in Scheme [14, 25]. In ML, however, it is more natural to use parameterized

modules, i.e., functors [44], to abstract the dynamic primitive operators from a

source program.

Functors make it possible not only to parameterize a source program with its

primitive operators but also with their type, while ensuring a proper binding-

time division through the ML typing system.

{ Running a source program is achieved by instantiating the corresponding

functor with a \standard" interpretation of the domains and the operators

to perform evaluation.

{ Specializing a source program is achieved by instantiating the corresponding

functor with a \non-standard" interpretation to perform partial evaluation.

A residual program contains free variables, namely the primitive operators. We

thus unparse it and pretty-print it as a functor parameterized with these opera-

tors. We can then instantiate residual programs with the standard interpretation

to run them and with the non-standard interpretation to specialize them further,

incrementally.

The rest of this session illustrates the practice of o�ine type-directed partial

evaluation. We consider the traditional example of the power function, and we

proceed in two steps.

3.1 The power function, part 1/2

In this section, we specialize the power function with respect to its exponent

parameter. Therefore its multiplication is dynamic and we abstract it. Figure 12

displays the signature of the abstracted types and primitive operators: integers

and multiplication. For typing purposes, we also use a \quote" function to map

an actual integer into an abstracted integer. Figure 13 displays the standard

interpretation of this signature: it is the obvious one, and thus integers are ML's

integers, quoting is the identity function, and multiplication is ML's native multi-

plication. Figure 14 displays a non-standard interpretation: integers are residual

expressions, quoting is the integer constructor of expressions, and multiplication

constructs a (named) residual application of the identi�er "mul" to its two actual

parameters, using re
ection. Figure 15 displays the actual power function, which

is declared in a functor parameterized with the interpretation of integers and of

multiplication.
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signature PRIMITIVE_power_ds

= sig

type int_

val qint : int -> int_

val mul : int_ * int_ -> int_

end

Fig. 12. Signature for abstracted components

structure Primitive_power_ds_e : PRIMITIVE_power_ds

= struct

type int_ = int

fun qint i = i

val mul = op *

end

Fig. 13. Standard interpretation: evaluation

structure Primitive_power_ds_pe : PRIMITIVE_power_ds

= struct

local open Exp

in type int_ = exp

val qint = INT

fun mul (e1, e2)

= nbe' (int' ** int' --> int') (VAR "mul") (e1, e2)

end

end

Fig. 14. Non-standard interpretation: partial evaluation

functor mkPower_ds (structure P : PRIMITIVE_power_ds)

= struct

local open P

in fun power (x, n)

= let fun loop 0 = qint 1

| loop n = mul (x, loop (n-1))

in loop n

end

end

end

Fig. 15. Source program
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structure Power_ds_e

= mkPower_ds (structure P = Primitive_power_ds_e)

Fig. 16. Standard instantiation: evaluation

structure Power_ds_pe

= mkPower_ds (structure P = Primitive_power_ds_pe)

Fig. 17. Non-standard instantiation: partial evaluation

Evaluation: In Figure 16, we instantiate mkPower ds with the standard interpre-

tation of Figure 13. The result is a structure that we call Power ds e, and in

which the identi�er power denotes the usual power function.

Partial evaluation: In Figure 17, we instantiate mkPower ds with the non-standard

interpretation of Figure 14. The result is a structure that we call Power ds pe.

We specialize the power function with respect to the exponent 3 by partially

applying its non-standard version and residualizing the result:

nbe (int' --> int') (fn d => Power_ds_pe.power (d, 3))

The residual code has the type Exp.exp and reads as follows.

LAM ("x1",

LET ("r2",

APP (VAR "mul",PAIR (VAR "x1",INT 1)),

LET ("r3",

APP (VAR "mul",PAIR (VAR "x1",VAR "r2")),

LET ("r4",

APP (VAR "mul",PAIR (VAR "x1",VAR "r3")),

VAR "r4"))))

This residual code contains free variables. Pretty-printing it (providing the pa-

rameters "mkPower d3", "PRIMITIVE power ds", "power", "qint", and "mul") yields

a residual program that is closed, more readable, and also directly usable:

functor mkPower_d3 (structure P : PRIMITIVE_power_ds)

= struct

local open P

in fun power x1

= let val r2 = mul (x1, qint 1)

val r3 = mul (x1, r2)

in mul (x1, r3)

end

end

end
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This residual program is ready to be instantiated with Primitive power ds e

for evaluation or (hypothetically here) with Primitive power ds pe for further

partial evaluation. Compared to the source program, the recursive function loop

has been unfolded, as could be expected.

3.2 The power function, part 2/2

In this section, we specialize the power function with respect to its base parame-

ter. All the components of the de�nition are dynamic and thus we abstract them.

Figure 18 displays the signature of the abstracted types and primitive operators:

integers, booleans, and the corresponding operations. For typing purposes, we

still use a quote function for integers; we also use an \unquote" function for

booleans, in order to use ML's conditional expression. Besides the usual arith-

metic operators, we also use a call-by-value �xed-point operator to account for

the recursive de�nition of the power function. Figure 19 displays the standard

interpretation of this signature: it is the obvious one. Figure 20 displays a non-

standard interpretation: integers and booleans are residual expressions, quoting

is the integer constructor of expressions, and unquoting a boolean expression

re
ects upon it at boolean type. As for the primitive operators, they construct

residual applications of the corresponding identi�er to their actual parameters.

Figure 21 displays the actual power function, which is declared in a parameter-

ized functor.

Evaluation: In Figure 22, page 27, we instantiate mkPower sd with the standard

interpretation of Figure 19. The result is a structure that we call Power sd e, and

in which the identi�er power denotes the usual power function.

Partial evaluation: In Figure 23, page 27, we instantiate mkPower sd with the

non-standard interpretation of Figure 20. The result is a structure that we call

Power sd pe.

We specialize the power function with respect to the base 8 by partially

applying its non-standard version and residualizing the result:

nbe (int' --> int') (fn d => Power_sd_pe.power (8, d))

Pretty-printing the residual code yields the following residual program, which is

similar to the source program of Figure 21 except that the base parameter has

disappeared, 8 has been inlined in the induction case, and let expressions have

been inserted.
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signature PRIMITIVE_power_sd

= sig

type int_

type bool_

val qint : int -> int_

val ubool : bool_ -> bool

val dec : int_ -> int_

val mul : int_ * int_ -> int_

val eqi : int_ * int_ -> bool_

val fix : ((int_ -> int_) -> int_ -> int_) -> int_ -> int_

end

Fig. 18. Signature for abstracted components

structure Primitive_power_sd_e : PRIMITIVE_power_sd

= struct

type int_ = int

type bool_ = bool

fun qint i = i

fun ubool b = b

fun dec i = i-1

val mul = op *

val eqi = op =

fun fix f x = f (fix f) x (* fix is a CBV fixed-point operator *)

end

Fig. 19. Standard interpretation: evaluation

structure Primitive_power_sd_pe : PRIMITIVE_power_sd

= struct

local open Exp

in type int_ = exp

type bool_ = exp

val qint = INT

val ubool = nbe' bool

val dec = nbe' (int' --> int') (VAR "dec")

val mul = nbe' (int' ** int' --> int') (VAR "mul")

val eqi = nbe' (int' ** int' --> int') (VAR "eqi")

val fix = nbe' (((int' --> int') --> int' --> int')

--> int' --> int')

(VAR "fix")

end

end

Fig. 20. Non-standard interpretation: partial evaluation
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functor mkPower_sd (structure P : PRIMITIVE_power_sd)

= struct

local open P

in fun power (x, n)

= fix (fn loop => fn n => if ubool (eqi (n, qint 0))

then qint 1

else mul (qint x, loop (dec n)))

n

end

end

Fig. 21. Source program

structure Power_sd_e

= mkPower_sd (structure P = Primitive_power_sd_e)

Fig. 22. Standard instantiation: evaluation

structure Power_sd_pe

= mkPower_sd (structure P = Primitive_power_sd_pe)

Fig. 23. Non-standard instantiation: partial evaluation

functor mkPower_8d (structure P : POWER)

= struct

local open P

in fun power x1

= let val r2 = fix (fn x3

=> fn x4

=> let val r5 = eqi (x4, qint 0)

in if ubool r5

then qint 1

else let val r6 = dec x4

val r7 = x3 r6

in mul (qint 8, r7)

end)

in r2 x1

end

end

end

As in Section 3.1, this residual program is as could be expected.
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3.3 Summary and conclusion

To use o�ine type-directed partial evaluation, one thus

1. speci�es a signature for dynamic primitive operators and the corresponding

types;
2. speci�es their evaluation and their partial evaluation;
3. parameterizes a source program with these primitive operators and types;
4. instantiates the source program with the partial-evaluation operators and

types, and residualizes a value at an appropriate type; and
5. pretty-prints the result into a parameterized residual program.

The �rst results of o�ine type-directed partial evaluation have been very encour-

aging: it handles the standard examples of the trade (i.e., mostly, the �rst and

the second Futamura projections) with an impressive eÆciency. Its functionality

is otherwise essentially the same as Lambda-Mix's: higher-order monovariant

specialization over closed programs [39]. Its use, however, is considerably more

convenient since the binding-time separation of each source program is guided

and ensured by the ML type system. There is therefore no need for expert

binding-time improvements [40, Chapter 12]. In fact, we believe that this dis-

arming ease of use is probably the main factor that has let o�ine type-directed

partial evaluation scale up, as illustrated in the work of Vestergaard and the

author [25] and of Harrison and Kamin [34].

In practice, however, o�ine type-directed partial evaluation imposes a re-

striction on its user: the binding-time signatures of primitive operators must be

monovariant. This restriction forces the user to distinguish between \static" and

\dynamic" occurrences of primitive operators in each source program. Against

this backdrop, we have turned to the \online" 
avor of partial evaluation, where

one abstracts the source program completely and makes each primitive operator

probe its operands for possible simpli�cations. This is the topic of Section 4.

4 Online type-directed partial evaluation

A partial evaluator is online if its operators probe their operands dynamically to

decide whether to perform an operation at partial-evaluation time or to resid-

ualize it until run time [58]. In his PhD thesis [52], Erik Ruf described how to

obtain the best of both o�ine and online worlds:

{ on the one hand, one can trust the static information of the binding-time

analysis since it is safe; and
{ on the other hand, one should make dynamic operators online because a

binding-time analysis is conservative.

The idea applies directly here: in Figure 14, page 14, if we de�ne multiplication

to probe its operands, we can naturally look for obvious simpli�cations, as in

Figure 24. (NB: the simpli�cations by zero are safe because of let insertion.)

Specializing Power ds pe.power (in Figure 15, page 23 and in Figure 17, page

24) with respect to 3 then yields the following simpler residual program.
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structure Primitive_power_ds_pe : PRIMITIVE_power_ds

= struct

local open Exp

in type int_ = exp

val qint = INT

fun mul (INT i1, INT i2) = INT (i1 * i2)

| mul (INT 0, _) = INT 0

| mul (_, INT 0) = INT 0

| mul (INT 1, e2) = e2

| mul (e1, INT 1) = e1

| mul e = nbe' (int' ** int' --> int') (VAR "mul") e

end

end

Fig. 24. Online version of Figure 14, page 23

functor mkPower_d3 (structure P : POWER)

= struct

local open P

in fun power x1 = let val r2 = mul (x1, x1)

in mul (x1, r2)

end

end

end

Compared with the earlier de�nition of mkPower d3, page 25, the vacuous multi-

plication of x1 by 1 has been simpli�ed away.

In the rest of this section, we illustrate online type-directed partial evaluation

with two case studies. In Section 4.1, we consider a very simple example where the

uses of a primitive operator need not be split into static and dynamic occurrences,

which is more practical. And in Section 4.2, we revisit the power function: this

time, we abstract all of its operators and we make them online. This makes

it possible to specialize the same source program with respect to either the

base parameter or the exponent parameter. On the way, we come across the

familiar tension between unfolding and residualizing recursive function calls, as

epitomized by Schism's �lters [10].

4.1 Online simpli�cation for integers

Figure 25 displays the signature of a minimal implementation of integers: a type

int , a quote function for integer literals, and an addition function.

Figure 26 displays the obvious standard interpretation of integers: int is

instantiated to be the type of integers, qint is de�ned as the identity function,

and add is de�ned as addition.

Figure 27 displays a non-standard interpretation of integers where int is

instantiated to be the type of residual expressions, qint is de�ned as the integer
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signature PRIMITIVE1

= sig

type int_

val qint : int -> int_

val add : int_ * int_ -> int_

end

Fig. 25. Signature for integers

structure Primitive1_e : PRIMITIVE1

= struct

type int_ = int

fun qint x = x

val add = op +

end

Fig. 26. Standard interpretation for integers: evaluation

structure Primitive1_pe : PRIMITIVE1

= struct

local open Exp

in type int_ = exp

val qint = INT

fun add (INT i1, INT i2)

= INT (i1+i2)

| add (INT 0, e2)

= e2

| add (e1, INT 0)

= e1

| add e

= nbe' (int' ** int' --> int') (VAR "add") e

end

end

Fig. 27. Non-standard interpretation for integers: partial evaluation

functor mkEx1 (structure P : PRIMITIVE1)

= struct

local open P

in fun main x y = add (add (x, qint 10), y)

val spec = main (qint 100)

end

end

Fig. 28. Sample source program
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constructor, and add is de�ned as a mapping of two integer-typed expressions

into a simpli�ed integer-typed expression. If there is nothing to simplify, then the

variable \add" is re
ected upon at type int' ** int' --> int' and the result is

applied to the argument of add, which is a pair of expressions. The result is an

expression.

Thus equipped, let us consider the source program of Figure 28. It is param-

eterized by the implementation of integers speci�ed in Figure 25. It involves two

literals, 10 and 100, both of which are quoted. Our goal is to residualize the value

of spec. It thus should appear clearly that the inner occurrence of add is applied

to two static integers and that the outer occurrence is applied to a static integer

and a dynamic one.

Evaluation: Instantiating mkEx1 with Prim1 e for P yields a structure that we call

Ex1 e. Applying Ex1 e.spec to 1000 yields 1110, which has the type Prim1 e.int .

Partial evaluation: Instantiating mkEx1 with Prim1 pe for P yields a structure

that we call Ex1 pe. Residualizing Ex1 pe.spec at type int' --> int' yields

LAM ("x1", APP (VAR "add", PAIR (INT 110,VAR "x1")))

which has the type Exp.exp.

Pretty-printing this residual code (providing "mkEx1'", "PRIMITIVE1", "spec",

and "qint") yields the following more readable residual program:

functor mkEx1' (structure P : PRIMITIVE1)

= struct

local open P

in fun spec x1

= add (qint 110, x1)

end

end

Compared to the source program, the inner addition has been simpli�ed.

4.2 The power function, revisited

We now reconsider the canonical example of the power function. To this end,

we need integers, booleans, decrement, multiplication, integer equality, and a

recursion facility. Again, we use a quote function for integers, an unquote function

for booleans, and a call-by-value �xed-point operator over functions of type

int -> int for recursion. This paraphernalia is summarized in the signature of

Figure 29.

The standard interpretation for evaluation is the obvious one and thus we

omit it.

Figure 30 displays the non-standard interpretation for partial evaluation. The

only remarkable point is the de�nition of fix, which embodies our unfolding

strategy: if the exponent is known, then the call to fix should be unfolded;

otherwise, it should be residualized.

The (parameterized) source program is displayed in Figure 31.
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signature POWER

= sig

type int_

type bool_

val qint : int -> int_

val ubool : bool_ -> bool

val dec : int_ -> int_

val mul : int_ * int_ -> int_

val eqi : int_ * int_ -> bool_

val fix : ((int_ -> int_) -> int_ -> int_) -> int_ -> int_

end

Fig. 29. Signature of primitive operations for the power function

structure Primitive_power_pe : POWER

= struct

local open Exp

in type int_ = exp

type bool_ = exp

val qint = INT

fun ubool (BOOL true) = true

| ubool (BOOL false) = false

| ubool e = nbe' bool e

fun dec (INT i) = INT (i-1)

| dec e = nbe' (int' --> int') (VAR "dec") e

fun mul (INT i1, INT i2) = INT (i1 * i2)

| mul (INT 0, _) = INT 0

| mul (_, INT 0) = INT 0

| mul (INT 1, e) = e

| mul (e, INT 1) = e

| mul e = nbe' (int' ** int' --> int') (VAR "mul") e

fun eqi (INT i1, INT i2) = BOOL (i1=i2)

| eqi e = nbe' (int' ** int' --> bool') (VAR "eqi") e

fun fix f (x as (INT _))

= Fix.fix f x (* Fix.fix is a CBV fixed-point operator *)

| fix f x

= nbe' (((int' --> int') --> int' --> int')

--> int' --> int')

(VAR "fix") f x

end

end

Fig. 30. Non-standard interpretation for the power function: partial evaluation
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functor mkPower (structure P : POWER)

= struct

local open P

in fun power (x, n)

= fix (fn loop => fn n => if ubool (eqi (n, qint 0))

then qint 1

else mul (x, loop (dec n))) n

end

end

Fig. 31. Source program

Evaluation: Instantiating mkPower with a standard interpretation for P yields the

usual power function.

Partial evaluation: Instantiating mkPower with Primitive power pe for P yields a

structure that we call Power pe.

structure Power_pe

= mkPower (structure P = Primitive_power_pe)

Let us specialize Power pe.power with respect to its second parameter:

val power_d3 = let val power = Power_pe.power

val qint = Primitive_power_pe.qint

in nbe (int' --> int') (fn x => power (x, qint 3))

end

The exponent is static and thus all the calls to loop are unfolded. Also, to account

for call-by-value, let expressions are inserted to name all intermediate function

calls. Finally, in the base case, the primitive operator mul is given the opportunity

to simplify a multiplication by 1. The result is identical to that obtained in the

introduction to Section 4, page 29.

Let us specialize Power pe.power with respect to its �rst parameter:

val power_8d = let val power = Power_pe.power

val qint = Primitive_power_pe.qint

in nbe (int' --> int') (fn n => power (qint 8, n))

end

The exponent is dynamic and thus the calls to loop are residualized. The residual

code is thus essentially the same as the source code, modulo the facts that (1)

let expressions are inserted to name all intermediate function calls, and (2) the

literal 8 is inlined. The result is identical to that obtained in Section 3.2, page 27.

From the same source program, we thus have obtained the same results as

in Section 3, where we considered two distinct binding-time annotated versions

of power.
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4.3 Summary and conclusion

Online type-directed partial evaluation extends o�ine type-directed partial eval-

uation by making the abstracted operators probe their operands for possible

simpli�cations. As we pointed out elsewhere [16], this probing idea is partial-

evaluation folklore.

In this section, we have pushed the online idea to its natural limit by making

source programs completely closed: all variables are either local to the source pro-

gram or they are declared through its parameters. Declaring recursive functions

through �xed points has forced us to address their unfolding policy by guarding

the call to each �xed-point operator, in a manner reminiscent of Schism's �lters.

(Of course, the same could be said of all the primitive operators that pattern

match their operands.) More stylistically, specifying a programming-language

interpreter as a functor parameterized by structures nicely matches the format

of denotational semantics, i.e., domains, semantic algebras, and valuation func-

tions [53], making type-directed partial evaluation a convenient and e�ective

\semantic back-end."

In practice, divergence and code duplication are the main problems one must

address when using type-directed partial evaluation:

{ divergence is dealt with by guarding each �xed-point operator and possibly

by using several distinct instances; and

{ code duplication arises from conditional expressions and is dealt with by

generalizing boolean types into the dynamic type bool'.

Turning to performance, one might wonder how much the online overhead

penalizes type-directed partial evaluation. The answer is: less than one might

think, since in our experience, an online type-directed partial evaluator is no-

ticeably more eÆcient than an o�ine syntax-directed partial evaluator such as

Similix [24].

5 Incremental type-directed partial evaluation

The goal of this section is to spell out the mechanics of incremental type-directed

partial evaluation. We consider the following function super power.

fun super_power (s3, s2, s1)

= power (s3, power (s2, s1))

We specialize super power with respect to s1 = 3. Then we specialize the result

with respect to s2 = 2, obtaining the same result as if we had directly specialized

super power with respect to s1 = 3 and s2 = 2.

The source program: The source program is displayed in Figure 32. It uses the

functor mkPower of Figure 31, page 33.
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functor mkSuperPower_ddd (structure P : POWER)

= struct

local structure Power = mkPower (structure P = P)

in fun main (s3, s2, s1)

= Power.power (s3, Power.power (s2, s1))

end

end

Fig. 32. Source program: mkSuperPower ddd

structure SuperPower_ddd_pe

= mkSuperPower_ddd (structure P = Primitive_power_pe)

Fig. 33. Instantiation of mkSuperPower ddd

functor mkSuperPower_dd3 (structure P : POWER)

= struct

local open P

in fun main (x0, x1)

= let val r2 = mul (x1, x1)

val r3 = mul (x1, r2)

val r4 = fix (fn x5

=> fn x6

=> let val r7 = eqi (x6, qint 0)

in if ubool r7

then qint 1

else let val r8 = dec x6

val r9 = x5 r8

in mul (x0, r9)

end

end)

in r4 r3

end

end

end

Fig. 34. Residual program: mkSuperPower dd3

structure SuperPower_dd3_pe

= mkSuperPower_dd3 (structure P = Primitive_power_pe)

Fig. 35. Instantiation of mkSuperPower dd3
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functor mkSuperPower_d23 (structure P : POWER)

= struct

local open P

in fun main x1

= let val r2 = mul (x1, x1)

val r3 = mul (x1, r2)

val r4 = mul (x1, r3)

val r5 = mul (x1, r4)

val r6 = mul (x1, r5)

val r7 = mul (x1, r6)

in mul (x1, r7)

end

end

end

Fig. 36. Residual program: mkSuperPower d23

First degree of specialization: In Figure 33, we instantiate mkSuperPower ddd for

partial evaluation. We then specialize the main function with respect to its third

argument:

let val main = SuperPower_ddd_pe.main

val qint = Primitive_power_pe.qint

in nbe (int' ** int' --> int') (fn (x, y) => main (x, y, qint 3))

end

The residual program is displayed in Figure 34. The inner occurrence of power

has been specialized away, and the outer occurrence has been inlined in the

residual program.

Second degree of specialization: In Figure 35, we instantiate mkSuperPower dd3

for further partial evaluation. We then specialize the main function with respect

to its second argument:

let val main = SuperPower_dd3_pe.main

val qint = Primitive_power_pe.qint

in nbe (int' --> int') (fn x => main (x, qint 2))

end

The residual program is displayed in Figure 36. The remaining occurrence of

power has been specialized away.

Both degrees of specialization at once: We would have obtained textually the

same residual program as in Figure 36 by specializing the original main function

with respect to both its static arguments:

let val main = SuperPower_ddd_pe.main

val qint = Primitive_power_pe.qint

in nbe (int' --> int') (fn x => main (x, qint 2, qint 3))

end
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6 Type-directed partial evaluation and the cogen

approach

The question often arises how type-directed partial evaluation and the cogen

approach compare. In this section, we situate type-directed partial evaluation

within the cogen approach.

6.1 On normalization by evaluation

At the core of type-directed partial evaluation, the notion of static reduction

matches the notion of evaluation in a functional language. This match also holds

in a simply typed system, making it possible for it to ensure that static reduction

will not go wrong.

Such a correspondence, however, does not hold in general. For example, it

does not in the two-level functional languages Flemming and Hanne Nielson

consider in their book [46]. These two-level languages have their own notions of

binding times and of static reduction. For each of them, a dedicated binding-time

analysis and the corresponding static reducer need to be studied [45, 48, 57].

In contrast, type-directed partial evaluation results from a deliberate e�ort

to make static reduction and evaluation coincide. In a type-directed partial eval-

uator, static expressions are thus represented as native code (see Section 1.3).

Therefore, static reduction takes place at native speed, and specialization using

a type-directed partial evaluator can be quite eÆcient.

6.2 On type-directed partial evaluation

Type-directed partial evaluation builds on normalization by evaluation by in-

troducing primitive operations, thus staging source programs into user-de�ned

functions and primitive operators, as in Schism and Similix. Primitive operations

are then instantiated either for evaluation or for partial evaluation. Specializa-

tion is still carried out by evaluation, with a binding-time discipline that still

corresponds to the simply typed �-calculus: static or dynamic base types, and

static (but no dynamic) compound type constructors.

6.3 From traditional partial evaluation to the cogen approach

In a traditional partial evaluator, static values are represented symbolically and

static reduction is carried out by symbolic evaluation. Therefore, specialization

takes place with a certain interpretive overhead. Against this backdrop, the

\cogen approach" was developed to represent static values natively.

Let us reconsider the partial-evaluation equation of Section 1.1.

run PE hp; hs; ii = phs; i

Traditionally [40], a partial evaluator operates as an interpreter. However, both

for expressiveness and for eÆciency, modern partial evaluators such as ML-

Mix [6], pgg [56], and Tempo [9] specialize any program p by �rst constructing
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a dedicated partial evaluator PEhp; i and then running PEhp; i on the static

input.

run PEhp; i hs; i = phs; i

Such dedicated partial evaluators are called \generating extensions." Generating

extensions are constructed by a program traditionally named \cogen," and the

overall approach is thus called \the cogen approach."

The cogen approach was developed for o�ine partial evaluators, and thus co-

gen usually operates on binding-time analyzed (i.e., two-level) source programs.

Let us assume a binding-time analysis that makes it possible to implement

two-level terms as we have done in Section 1.3:

{ static expressions are translated into syntactic constructs (� into fn, etc.),

giving rise to native values; and

{ dynamic expressions are translated into constructors of residual syntax (�

into LAM, etc.).

The resulting two-level programs can then be compiled and run at native speed,

just as with type-directed partial evaluation. Furthermore, if the binding-time

analysis inserts binding-time coercions [36, 47], generating extensions have the

same performance and produce the same residual programs as type-directed

partial evaluation. This property has been veri�ed in practice by Morten Rhiger

and the author for Action Semantics [24] and also, independently, by Simon

Helsen and Peter Thiemann [36].

6.4 A �rst example

Let us compare the cogen approach and type-directed partial evaluation on an

example that does not require any binding-time coercion. Applying the cogen

approach to the (static) identity function �x:x yields the following generating

extension.

let val x = Gensym.new "x"

in Exp.LAM (x, Exp.VAR x)

end

In comparison, residualizing the identity function at type � ! � amounts to

plugging it into a context induced by its type, i.e., passing it to the following

function (that implements #�!�).

fn f => let val x = Gensym.new "x"

in Exp.LAM (x, f (Exp.VAR x))

end

Modulo some administrative reductions, the two approaches work identically

here.

38



6.5 A second example

Let us compare the cogen approach and type-directed partial evaluation on an

example that does require a binding-time coercion:

(�f:�g:f@(g@f))@(�a:a)

g is dynamic, and therefore the context g@[�] has to be dynamic. �a:a 
ows

both to the evaluation context [�]@(g@f) where it can be considered static, and

to the context g@[�], where it must be considered dynamic. As illustrated in

Jens Palsberg's chapter [47], the binding-time analysis can either classify �a:a

as dynamic, since it will 
ow into a dynamic context, or classify it as static

and coerce the dynamic context into a static one with the two-level eta-redex

�x:[�]@x.
Below, we can see that binding-time coercion by two-level eta-expansion is

immaterial in type-directed partial evaluation, whereas it is an issue in the cogen

approach.

Type-directed partial evaluation: Residualizing the term above at type

((�! �) ! �) ! � yields the following optimal residual term.

�g:g@(�x:x)

Cogen without binding-time improvement: Binding-time analysis without

any coercion yields the following two-level term, where �a:a is dynamic.

(�f:�g:f@(g@f))@(�a:a)

And static reduction yields the following sub-optimal residual term.

�g:(�a:a)@(g@(�a:a))

Cogen with binding-time improvement: Binding-time analysis with a co-

ercion yields the following two-level term, where �a:a is static. (The coercion is

put in a box, as an aid to the eye.)

(�f:�g:f@(g@( �x:f@x )))@(�a:a)

And static reduction yields the same optimal result as type-directed partial

evaluation:

�g:g@(�x:x)

Modulo binding-time coercions, the two approaches thus work identically here.
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6.6 Summary and conclusion

In their independent comparison between type-directed partial evaluation and

the cogen approach [36], Simon Helsen and Peter Thiemann observe that both

specializers yield equivalent results in comparable time in the presence of binding-

time coercions. Now unlike in the cogen approach, type-directed partial evalu-

ation does not involve creating a textual two-level program and compiling it.

Nevertheless we believe that type-directed partial evaluation can be viewed as

an instance of the cogen approach, where static reduction is carried out by

evaluation. This instance is very simple, using a binding-time discipline that

corresponds to the simply typed �-calculus and does not necessitate explicit

binding-time coercions.

This relationship between type-directed partial evaluation and the cogen ap-

proach is not accidental, as type-directed partial evaluation grew out of binding-

time improvements [22, 23]. And indeed, as the reader can see, the equations

de�ning binding-time coercions are the same ones as the equations de�ning

type-directed partial evaluation (see Figure 2). These coercions can serve as an

independent specialization mechanism because they implement a normalization

function.

7 Conclusion and issues

Type-directed partial evaluation is still largely a topic under exploration. It

stems from a normalization function operating on values instead of on symbolic

expressions (i.e., annotated abstract-syntax trees), as is usual in traditional,

syntax-directed partial evaluation. This normalization function in e�ect prop-

agates constants and unfolds function calls. The user is left with deciding the

policy of unfolding recursive function calls through the corresponding �xed-point

operators. Otherwise, a type-directed partial evaluator provides essentially the

same functionality as Lambda-Mix [39], though in a statically typed setting

which makes much for its ease of use.

Type-directed partial evaluation was �rst developed in Scheme, and amounted

to achieving specialization by Scheme evaluation [14{16]. Andrzej Filinski, and

then Zhe Yang [59] and Morten Rhiger [49, 50] found how to express it in a

Hindley-Milner type setting, i.e., in ML and in Haskell, thus achieving special-

ization by ML and Haskell evaluation. In addition, the Hindley-Milner typing

system ensures that specialization will not go wrong. Then Kristo�er Rose ex-

pressed type-directed partial evaluation in Haskell using type classes [51] and

Belmina Dza�c formalized it in Elf [27]. Andrzej Filinski, Zhe Yang, and Morten

Rhiger also noticed that type-directed partial evaluation in ML could be made

online by pattern matching over the residual abstract syntax. A more compre-

hensive review of related work is available elsewhere [16]. There, we distinguish

between native and meta-level type-directed partial evaluation: a native imple-

mentation, such as the one presented here, uses an underlying evaluator, whereas

a meta-level implementation uses an interpreter [1, 54]. This choice entails the

usual tradeo� between 
exibility and eÆciency.
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The most sizeable applications of type-directed partial evaluation so far in-

volve the Futamura projections, type specialization, and run-time code gener-

ation [2, 17, 24, 25, 33, 34]. Having made type-directed partial evaluation online

has improved its usability, but it is still limited because it only provides mono-

variant program-point specialization (as opposed to polyvariant program-point

specialization as in Similix [41]) and does not handle inductive types very nat-

urally.

An extended version of this chapter is available in the BRICS series [18].
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