
Beating the Averagespaul grahamThis article is based on a talk given at the Franz Developer Symposium in Cambridge,MA, on March 25, 2001. Copyright 2001 by Paul Graham. Draft, April 17, 2001.In the summer of 1995, my friend Robert Morris and I started a startup calledViaweb. Our plan was to write software that would let end users build onlinestores. What was novel about this software, at the time, was that it ran on ourserver, using ordinary Web pages as the interface.A lot of people could have been having this idea at the same time, of course,but as far as I know, Viaweb was the �rst Web-based application. It seemedsuch a novel idea to us that we named the company after it: Viaweb, becauseour software worked via the Web, instead of running on your desktop computer.Another unusual thing about this software was that it was written primarilyin a programming language called Lisp.1 It was in fact the �rst big end-userapplication to be written in Lisp, which up till then had been used mostly inuniversities and research labs. Lisp gave us a great advantage over competitorsusing less powerful languages.The Secret WeaponEric Raymond has written an essay called \How to Become a Hacker," and init, among other things, he tells would-be hackers what languages they shouldlearn. He suggests starting with Python and Java, because they are easy tolearn. The serious hacker will also want to learn C, in order to hack Unix, andPerl for system administration and cgi scripts. Finally, the truly serious hackershould consider learning Lisp:Lisp is worth learning for the profound enlightenment experienceyou will have when you �nally get it; that experience will make youa better programmer for the rest of your days, even if you neveractually use Lisp itself a lot.This is the same argument you tend to hear for learning Latin. It won't get youa job, except perhaps as a classics professor, but it will improve your mind, andmake you a better writer in languages you do want to use, like English.But wait a minute. This metaphor doesn't stretch that far. The reasonLatin won't get you a job is that no one speaks it. If you write in Latin, no onecan understand you. But Lisp is a computer language, and computers speakwhatever language you, the programmer, tell them to.1Viaweb at �rst had two parts: the editor, written in Lisp, which people used to buildtheir sites, and the ordering system, written in C, which handled orders. The �rst version wasmostly Lisp, because the ordering system was small. Later we added two more modules, animage generator written in C, and a back-o�ce manager written mostly in Perl.1



So if Lisp makes you a better programmer, like he says, why wouldn't youwant to use it? If a painter were o�ered a brush that would make him a betterpainter, it seems to me that he would want to use it in all his paintings, wouldn'the? I'm not trying to make fun of Eric Raymond here. On the whole, his adviceis good. What he says about Lisp is pretty much the conventional wisdom. Butthere is a contradiction in the conventional wisdom: Lisp will make you a betterprogrammer, and yet you won't use it.Why not? Programming languages are just tools, after all. If Lisp reallydoes yield better programs, you should use it. And if it doesn't, then who needsit? This is not just a theoretical question. Software is a very competitive busi-ness, prone to natural monopolies. A company that gets software written fasterand better will, all other things being equal, put its competitors out of business.And when you're starting a startup, you feel this very keenly. Startups tend tobe an all or nothing proposition. You either get rich, or you get nothing. In astartup, if you bet on the wrong technology, your competitors will crush you.Robert and I both knew Lisp well, and we couldn't see any reason not totrust our instincts and go with Lisp. We knew that everyone else was writingtheir software in C++ or Perl. But we also knew that that didn't mean anything.If you chose technology that way, you'd be running Windows. When you choosetechnology, you have ignore what other people are doing, and consider onlywhat will work the best.This is especially true in a startup. In a big company, you can do what allthe other big companies are doing. But a startup can't do what all the otherstartups do. I don't think a lot of people realize this, even in startups.The average big company grows at about ten percent a year. So if you'rerunning a big company and you do everything the way the average big companydoes it, you can expect to do as well as the average big company|that is, togrow about ten percent a year.The same thing will happen if you're running a startup, of course. If youdo everything the way the average startup does it, you should expect averageperformance. The problem here is, average performance means that you'll goout of business. The survival rate for startups is way less than �fty percent.So if you're running a startup, you had better be doing something odd. If not,you're in trouble.Back in 1995, we knew something that I don't think our competitors under-stood, and few understand even now: when you're writing software that only hasto run our your own servers, you can use any language you want. When you'rewriting desktop software, there's a strong bias toward writing applications inthe same language as the operating system. Ten years ago, writing applicationsmeant writing applications in C. But with Web-based software, especially whenyou have the source code of both the language and the operating system, youcan use whatever language you want.This new freedom is a double-edged sword, however. Now that you can useany language, you have to think about which one to use. Companies that try2



to pretend nothing has changed risk �nding that their competitors do not.If you can use any language, which do you use? We chose Lisp. For onething, it was obvious that rapid development would be important in this market.We were all starting from scratch, so a company that could get new featuresdone before its competitors would have a big advantage. We knew Lisp was areally good language for writing software quickly, and server-based applicationsmagnify the e�ect of rapid development, because you can release software theminute it's done.If other companies didn't want to use Lisp, so much the better. It mightgive us a technological edge, and we needed all the help we could get. Whenwe started Viaweb, we had no experience in business. We didn't know anythingabout marketing, or hiring people, or raising money, or getting customers. Nei-ther of us had ever even had what you would call a real job. The only thingwe were good at was writing software. We hoped that would save us. Anyadvantage we could get in the software department, we would take.So you could say that using Lisp was an experiment. Our hypothesis wasthat if we wrote our software in Lisp, we'd be able to get features done fasterthan our competitors, and also to do things in our software that they couldn'tdo. And because Lisp was so high-level, we wouldn't need a big developmentteam, so our costs would be lower. If this were so, we could o�er a betterproduct for less money, and still make a pro�t. We would end up getting all theusers, and our competitors would get none, and eventually go out of business.That was what we hoped would happen, anyway.What were the results of this experiment? Somewhat surprisingly, it worked.We eventually had many competitors, on the order of twenty to thirty of them,but none of their software could compete with ours. We had a wysiwyg onlinestore builder that ran on the server and yet felt like a desktop application. Ourcompetitors had cgi scripts. And we were always far ahead of them in features.Sometimes, in desperation, competitors would try to introduce features thatwe didn't have. But with Lisp our development cycle was so fast that wecould sometimes duplicate a new feature within a day or two of a competitorannouncing it in a press release. By the time journalists covering the pressrelease got round to calling us, we would have the new feature too.It must have seemed to our competitors that we had some kind of secretweapon|that we were decoding their Enigma tra�c or something. In fact wedid have a secret weapon, but it was simpler than they realized. No one wasleaking news of their features to us. We were just able to develop software fasterthan anyone thought possible.When I was about nine I happened to get hold of a copy of The Day of theJackal, by Frederick Forsyth. The main character is an assassin who is hired tokill the president of France. The assassin has to get past the police to get upto an apartment that overlooks the president's route. He walks right by them,dressed up as an old man on crutches, and they never suspect him.Our secret weapon was similar. We wrote our software in a weird AI lan-guage, with a bizarre syntax full of parentheses. For years it had annoyed me to3



hear Lisp described that way. But now it worked to our advantage. In business,there is nothing more valuable than a technical advantage your competitorsdon't understand. In business, as in war, surprise is worth as much as force.And so, I'm a little embarrassed to say, I never said anything publicly aboutLisp while we were working on Viaweb. We never mentioned it to the press, andif you searched for Lisp on our Web site, all you'd �nd were the titles of twobooks in my bio. This was no accident. A startup should give its competitors aslittle information as possible. If they didn't know what language our softwarewas written in, or didn't care, I wanted to keep it that way.2The people who understood our technology best were the customers. Theydidn't care what language Viaweb was written in either, but they noticed thatit worked really well. It let them build great looking online stores literally inminutes. And so, by word of mouth mostly, we got more and more users. Bythe end of 1996 we had about 70 stores online. At the end of 1997 we had500. Six months later, when Yahoo bought us, we had 1070 users. Today, asYahoo Store, this software continues to dominate its market. It's one of themore pro�table pieces of Yahoo, and the stores built with it are the foundationof Yahoo Shopping. I left Yahoo in 1999, so I don't know exactly how manyusers they have now, but the last I heard there were about 14,000.People sometimes ask me if Yahoo Store still uses Lisp. Yes, all the Lispcode is still there. Yahoo has server-side software written in all the languagesEric Raymond recommends to hackers, except Java.The Blub ParadoxWhat's so great about Lisp? And if Lisp is so great, why doesn't everyone useit? These sound like rhetorical questions, but actually they have straightforwardanswers. Lisp is so great not because of some magic quality visible only todevotees, but because it is simply the most powerful language available. Andthe reason everyone doesn't use it is that programming languages are not merelytechnologies, but habits of mind as well, and nothing changes slower. Of course,both these answers need explaining.I'll begin with a shockingly controversial statement: programming languagesvary in power.Few would dispute, at least, that high level languages are more powerfulthan machine language. Most programmers today would agree that you donot, ordinarily, want to program in machine language. Instead, you shouldprogram in a high-level language, and have a compiler translate it into machinelanguage for you. This idea is even built into the hardware now: since the1980s, instruction sets have been designed for compilers rather than humanprogrammers.2Robert Morris says that I didn't need to be secretive, because even if our competitorshad known we were using Lisp, they wouldn't have understood why: \If they were that smartthey'd already be programming in Lisp." 4



Everyone knows it's a mistake to write your whole program by hand inmachine language. What's less often understood is that there is a more generalprinciple here: that if you have a choice of several languages, it is, all otherthings being equal, a mistake to program in anything but the most powerfulone.3There are many exceptions to this rule. If you're writing a program that hasto work very closely with a program written in a certain language, it might bea good idea to write the new program in the same language. If you're writing aprogram that only has to do something very simple, like number crunching orbit manipulation, you may as well use a less abstract language, especially sinceit may be slightly faster. And if you're writing a short, throwaway program, youmay be better o� just using whatever language has the best library functionsfor the task. But in general, for application software, you want to be using themost powerful (reasonably e�cient) language you can get, and using anythingelse is a mistake, of exactly the same kind, though possibly in a lesser degree,as programming in machine language.You can see that machine language is very low level. But, at least as a kindof social convention, high-level languages are often all treated as equivalent.They're not. Technically the term \high-level language" doesn't mean anythingvery de�nite. There's no dividing line with machine languages on one side andall the high-level languages on the other. Languages fall along a continuum4 ofabstractness, from the most powerful all the way down to machine languages,which themselves vary in power.Consider Cobol. Cobol is a high-level language, in the sense that it getscompiled into machine language. Would anyone seriously argue that Cobol isequivalent in power to, say, Python? It's probably closer to machine languagethan Python.Or how about Perl 4? Between Perl 4 and Perl 5, lexical closures got addedto the language. Most Perl hackers would agree that Perl 5 is more powerfulthan Perl 4. But once you've admitted that, you've admitted that one high levellanguage can be more powerful than another. And it follows inexorably that,except in special cases, you ought to use the most powerful you can get.This idea is rarely followed to its conclusion, though. After a certain age,programmers rarely switch languages voluntarily. Whatever language peoplehappen to be used to, they tend to consider just good enough.3All languages are equally powerful in the sense of being Turing equivalent, but that's notthe sense of the word programmers care about. (No one wants to program a Turing machine.)The kind of power programmers care about may not be formally de�nable, but one way toexplain it would be to say that it refers to features you could only get in the less powerfullanguage by writing an interpreter for the more powerful language in it. If language A hasan operator for removing spaces from strings and language B doesn't, that probably doesn'tmake A more powerful, because you can probably write a subroutine to do it in B. But ifA supports, say, recursion, and B doesn't, that's not likely to be something you can �x bywriting library functions.4Note to nerds: or possibly a lattice, narrowing toward the top; it's not the shape thatmatters here but the idea that there is at least a partial order.5



Programmers get very attached to their favorite languages, and I don't wantto hurt anyone's feelings, so to explain this point I'm going to use a hypotheticallanguage called Blub. Blub falls right in the middle of the abtractness contin-uum. It is not the most powerful language, but it is more powerful than Cobolor machine language.And in fact, our hypothetical Blub programmer wouldn't use either of them.Of course he wouldn't program in machine language. That's what compilers arefor. And as for Cobol, he doesn't know how anyone can get anything done withit. It doesn't even have x (Blub feature of your choice).As long as our hypothetical Blub programmer is looking down the powercontinuum, he knows he's looking down. Languages less powerful than Blub areobviously less powerful, because they're missing some feature he's used to. Butwhen our hypothetical Blub programmer looks in the other direction, up thepower continuum, he doesn't realize he's looking up. What he sees are merelyweird languages. He probably considers them about equivalent in power to Blub,but with all this other hairy stu� thrown in as well. Blub is good enough forhim, because he thinks in Blub.When we switch to the point of view of a programmer using any of thelanguages higher up the power continuum, however, we �nd that he in turnlooks down upon Blub. How can you get anything done in Blub? It doesn'teven have y.By induction, the only programmers in a position to see all the di�erencesin power between the various languages are those who understand the mostpowerful one. (This is probably what Eric Raymond meant about Lisp makingyou a better programmer.) You can't trust the opinions of the others, becauseof the Blub paradox: they're satis�ed with whatever language they happen touse, because it dictates the way they think about programs.I know this from my own experience, as a high school kid writing programsin Basic. That language didn't even support recursion. It's hard to imaginewriting programs without using recursion, but I didn't miss it at the time. Ithought in Basic. And I was a whiz at it. Master of all I surveyed.The �ve languages that Eric Raymond recommends to hackers fall at variouspoints on the power continuum. Where they fall relative to one another is asensitive topic. What I will say is that I think Lisp is at the top. And to supportthis claim I'll tell you about one of the things I �nd missing when I look at theother four languages. How can you get anything done in them, I think, withoutz? And one of the biggest z s, for me, is macros.5Many languages have something called a macro. But Lisp macros are unique.And believe it or not, what they do is related to the parentheses. The designersof Lisp didn't put all those parentheses in the language just to be di�erent.To the Blub programmer, Lisp code looks weird. But those parentheses arethere for a reason. They are the outward evidence of a fundamental di�erencebetween Lisp and other languages.5It is a bit misleading to treat macros as a separate feature. In practice their usefulness isgreatly enhanced by other Lisp features like lexical closures and rest parameters.6



Lisp code is made out of Lisp data objects. And not in the trivial sensethat the source �les contain characters, and strings are one of the data typessupported by the language. Lisp code, after it's read by the parser, is made ofdata structures that you can traverse.If you understand how compilers work, what's really going on is not so muchthat Lisp has a strange syntax as that Lisp has no syntax. You write programsin the parse trees that get generated within the compiler when other languagesare parsed. But these parse trees are fully accessible to your programs. Youcan write programs that manipulate them. In Lisp, these programs are calledmacros. They are programs that write programs.Programs that write programs? When would you ever want to do that? Notvery often, if you think in Cobol. All the time, if you think in Lisp. It would beconvenient here if I could give an example of a powerful macro, and say there!how about that? But if I did, it would just look like gibberish to someone whodidn't know Lisp; there isn't room here to explain everything you'd need toknow to understand what it meant. In Ansi Common Lisp I tried to movethings along as fast as I could, and even so I didn't get to macros until page160.But I think I can give a kind of argument that might be convincing. Thesource code of the Viaweb editor was probably about 20-25% macros. Macrosare harder to write than ordinary Lisp functions, and it's considered to be badstyle to use them when they're not necessary. So every macro in that code isthere because it has to be. What that means is that at least 20-25% of the codein this program is doing things that you can't easily do in any other language.However skeptical the Blub programmer might be about my claims for themysterious powers of Lisp, this ought to make him curious. We weren't writingthis code for our own amusement. We were a tiny startup, programming as hardas we could in order to put technical barriers between us and our competitors.A suspicious person might begin to wonder if there was some correlationhere. A big chunk of our code was doing things that are very hard to do inother languages. The resulting software did things our competitors' softwarecouldn't do. Maybe there was some kind of connection. I encourage you tofollow that thread. There may be more to that old man hobbling along on hiscrutches than meets the eye.Aikido for StartupsBut I don't expect to convince anyone (over 25) to go out and learn Lisp.The purpose of this article is not to change anyone's mind, but to reassurepeople already interested in using Lisp|people who know that Lisp is a powerfullanguage, but worry because it isn't widely used. In a competitive situation,that's an advantage. Lisp's power is multiplied by the fact that your competitorsdon't get it.If you think of using Lisp in a startup, you shouldn't worry that it isn't7



widely understood. You should hope that it stays that way. And it's likelyto. It's the nature of programming languages to make most people satis�edwith whatever they currently use. Computer hardware changes so much fasterthan personal habits that programming practice is usually ten to twenty yearsbehind the processor. At places like MIT they were writing programs in high-level languages in the early 1960s, but many companies continued to write codein machine language well into the 1980s. I bet a lot of people continued to writemachine language until the processor, like a bartender eager to close up and gohome, �nally kicked them out by switching to a risc instruction set.Ordinarily technology changes fast. But programming languages are di�er-ent: programming languages are not just technology, but what programmersthink in. They're half technology and half religion.6 And so the median lan-guage, meaning whatever language the median programmer uses, moves as slowas an iceberg. Garbage collection, introduced by Lisp in about 1960, is nowwidely considered to be a good thing. Runtime typing, ditto, is growing in pop-ularity. Lexical closures, introduced by Lisp in the early 1970s, are now, justbarely, on the radar screen. Macros, introduced by Lisp the mid 1960s, are stillterra incognita.Obviously, the median language has enormous momentum. I'm not propos-ing that you can �ght this powerful force. What I'm proposing is exactly theopposite: that, like a practitioner of Aikido, you can use it against your oppo-nents.If you work for a big company, this may not be easy. You will have a hardtime convincing the pointy-haired boss to let you build things in Lisp, whenhe has just read in the paper that some other language is poised, like Adawas twenty years ago, to take over the world. But if you work for a startupthat doesn't have pointy-haired bosses yet, you can, like we did, turn the Blubparadox to your advantage: you can use technology that your competitors, gluedimmovably to the median language, will never be able to match.If you ever do �nd yourself working for a startup, here's a handy tip forevaluating competitors. Read their job listings. Everything else on their sitemay be stock photos or the prose equivalent, but the job listings have to bespeci�c about what they want, or they'll get the wrong candidates.During the years we worked on Viaweb I read a lot of job descriptions. A newcompetitor seemed to emerge out of the woodwork every month or so. The �rstthing I would do, after checking to see if they had a live online demo, was lookat their job listings. After a couple years of this I could tell which companies toworry about and which not to. The more of an IT avor the job descriptionshad, the less dangerous the company was. The safest kind were the ones thatwanted Oracle experience. You never had to worry about those. You were also6As a result, comparisons of programming languages either take the form of religious warsor undergraduate textbooks so determinedly neutral that they're really works of anthropology.People who value their peace, or want tenure, avoid the topic. But the question is only halfa religious one; there is something there worth studying, especially if you want to design newlanguages. 8



safe if they said they wanted C++ or Java developers. If they wanted Perl orPython programmers, that would be a bit frightening|that's starting to soundlike a company where the technical side, at least, is run by real hackers. If Ihad ever seen a job posting looking for Lisp hackers, I would have been reallyworried.Back when I was writing books about Lisp, I used to wish everyone under-stood it. But when we started Viaweb I found that changed: I wanted everyoneto understand Lisp except our competitors.

9


