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During the period of a bit more than thirty years that has elapsed since 
the first electronic computers were built, programming languages have 
developed from various machine codes and assembly languages, now re- 
ferred to as low level languages, to high level languages, like FORTRAN, 
ALGOL 60 and 68, LISP and PASCAL. The virtue of a machine code is 
that a program written in it can be directly read and executed by the 
machine. Its weakness is that the structure of the code reflects the structure 
of the machine so closely as to make it unusable for the instruction of any 
other machine and, what is more serious, very difficult to understand for 
a human reader, and therefore error prone. With a high level language, 
it is the other way round. Its weakness is that a program written in it has 
to be compiled, that is, translated into the code of a particular machine, 
before it can be executed by it. But one is amply compensated for this by 
having a language in which the thought of the programmer can be expressed 
without too much distortion and understood by someone who knows next 
to nothing about the structure of the hardware, but does know some 
English and mathematics. The distinction between low and high level 
programming languages is of course relative to available hardware. It may 
well be possible to turn what is now regarded as a high level programming 
language into machine code by the invention of new hardware. 

Parallel to the development from low to high level programming 
languages, there has been a change in one’s understanding of the program- 
ming activity itself. It used to be looked (down) upon as the rather messy 
job of instructing this or that physically existing machine, by cunning tricks, 
to perform computational tasks widely surpassing our own physical powers, 
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something that might appeal to people with a liking for crossword puzzles 
or chess problems. But it has grown into the discipline of designing programs 
for various (numerical as well as nonnunierical) computational tasks, 
programs that have to be written in a formally precise notation so as to 
admit of automatic execution. Whether or not machines have been built 
or compilers have been written by means of which they can be physically 
implemented is of no importance as long as questions of efficiency are 
ignored. What matters is merely that it has been laid down precisely how 
the programs are to be executed or, what amounts to the same, that it 
has been specified how a machine for the execution of the programs would 
have to function. This change of programming, which DIJKSTRA (1976, 
p. 201) has suggested to  fix terminologically by switching from computer 
science to computing science, would not have been possible without the 
creation of high level languages of a sufficiently clean logical structure. 
It has made programming an activity akin in rigour and beauty to that 
of proving mathematical theorems. (This analogy is actually exact in 
a sense which will become clear below.) 

While maturing into a science, programming has developed a conceptual 
machinery of its own in which, besides the notion of program itself, the 
notions of data structure and data type occupy central positions. Even 
in FORTRAN, there were two types of variables, namely integer and 
floating point variables, the type of a variable being determined by its 
initial letter. In ALGOL 60, there was added to the two types integer and 
real the third type Boolean, and the association of the types with the 
variables was made both more practical and logical by means of type 
declarations. However, it was only through HOARE (1972) that the 
notion of type was introduced into programming in a systematic way. 
In addition to the three types of ALGOL 60, there now appeared types 
defined by enumeration, Cartesian products, discriminated unions, array 
types, power types and various recursively defined types. All these new 
forms of data types were subsequently incorporated into the programming 
language PASCAL by WIRTH (1971). The left column of the table on the 
next page, which shows some of the key notions of programming and their 
mathematical counterparts, uses notation from ALGOL 60 and PASCAL. 

As can be seen from this table, or from recent programming texts with 
their little snippets of set theory prefaced to the corresponding programming 
language constructions, the whole conceptual apparatus of programming 
mirrors that of modern mathematics (set theory, that is, not geometry) 
and yet is supposed to be different from it. How come? The reason for this 
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Programming 

program, procedure, algorithm 

input 

output, result 

x := e 

si; Sa 
if B then Sl else Sa 

while B do S 

data structure 

data type 

value of a data type 

a : A  

integer 

real 

Boolean 

(cis ..., cn) 

array [ I ]  of T 

record sl:Tl; so :TB end 

record case s : (cl, c,) of 

set of T 

cl:(sl:Tl); Ca:(sa:Tz) end 

Mathematics 

function 

argument 

value 

x = e  

composition of functions 

definition by cases 

definition by recursion 

element, object 

set, type 

element of a set, object of a type 

a E A  

Z 

R 

{0,1) 

{ci, -, 4 
TI,  I+T 

TlX To 

Ti+ Ta 

curious situation is, I think, that the mathematical notions have gradually 
received an interpretation, the interpretation which we refer to as classical, 
which makes them unusable for programming. Fortunately, I do not need 
to enter the philosophical debate as to whether the classical interpretation 
of the primitive logical and mathematical notions (proposition, truth, 
set, element, function, etc.) is sufficiently clear, because so much is at least 
clear, that if a function is defined as a binary relation satisfying the usual 
existence and unicity conditions, whereby classical reasoning is allowed 
in the existence proof, or a set of ordered pairs satisfying the corresponding 
conditions, then a function cannot be the same kind of thing as a computer 
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program. Similarly, if a set is understood in Zermelo’s way as a member 
of the cumulative hierarchy, then a set cannot be the same kind of thing 
as a data type. 

Now, it is the contention of the intuitionists (or constructivists, I shall 
use these terms synonymously) that the basic mathematical notions, above 
all the notion of function, ought to be interpreted in such a way that the 
cleavage between mathematics, classical mathematics, that is, and program- 
ming that we are witnessing at present disappears. In the case of the mathe- 
matical notions of function and set, it is not so much a question of providing 
them with new meanings as of restoring old ones, whereas the logical 
notions of proposition, proof, truth etc. are given genuinely new inter- 
pretations. It was Brouwer who realized the necessity of so doing: the true 
source of the uncomputable functions of classical mathematics is not the 
axiom of choice (which is valid intuitionistically) but the law of excluded 
middle and the law of indirect proof, Had it not been possible to interpret 
the logical notions in such a way as to validate the axiom of choice, the 
prospects of constructive mathematics would have been dismal. 

The difference, then, between constructive mathematics and programming 
does not concern the primitive notions of the one or the other, because 
they are essentially the same, but lies in the programmer’s insistence that 
his programs be written in a formal notation so that they can be read and 
executed by a machine, whereas, in constructive mathematics as prac- 
tised by BISHOP (1 967), for example, the computational procedures 
(programs) are normally left implicit in the proofs, so that considerable 
further work is needed to bring them into a form which makes them fit 
for mechanical execution 

What I have just said about the close connection between constructive 
mathematics and programming explains why the intuitionistic type theory 
(MARTIN-L&, 1975), which I began to develop solely with the philosophical 
motive of clarifying the syntax and semantics of intuitionistic mathematics, 
may equally well be viewed as a programming language. But for a few 
concluding remarks, the rest of my talk will be devoted to a fairly complete, 
albeit condensed, description of this language, emphasizing its character 
of programming language. As such, it resembles ALGOL 68 and PASCAL 
in its typing facilities, whereas the way the programs are written and ex- 
ecuted makes it more reminiscent of LISP. 

The expressions of the theory of types are formed out of variables 
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by means of various forms of expression 

(Fx,, . * * Y  x,)(a,, ..-,am) 

In an expression of such a form, not all of the variables x, ,  ..., x, need 
become bound in all of the parts a,,  ..., a,,,. Thus, for each form of ex- 
pression, it must be laid down what variables become bound in what parts. 
For example, 

b 

a 

is a form of expression (Zx)(a, b , f )  with m = 3 and n = 1 which binds 
all free occurrences of the single variable x in the third part f. And 

df (a) 
dx 

is a form of expression (Dx)(a,  f) with m = 2 and n = 1 which binds all 
free occurrences of the variable x in the second part f. 

I shall call an expression, in whatever notation, canonical or normal 
if it is already fully evaluated, which is the same as to say that it has itself 
as value. Thus, in decimal arithmetic, 

0, 1, ..., 9, 10, 11, ... 
are canonical (normal) expressions, whereas 

2+2,2*2,22, 3!, ... 
are not. An arbitrarily formed expression need not have a value, but, if an 
expression has a value, then that value is necessarily canonical. This may be 
expressed by saying that evaluation is idempotent. When you evaluate 
the value of an expression, you get that value back. 

In the theory of types, it depends only on the outermost form of an ex- 
pression whether it is canonical or not. Thus there are certain forms of 
expression, which I shall call canonical forms, such that an expression of 
one of those forms has itself as value, and there are other, noncanonical 
forms for which it is laid down in some other way how an expression of 
such a form is evaluated. What I call canonical and noncanonical forms of 
expression correspond to the constructors and selectors, respectively, of 
LANDIN (1964). In the context of programming, they might also aptly be 
called data and program forms, respectively. The table 
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Noncanonical 

displays the primitive forms of expression used in the theory of types, the 
canonical ones to the left and the noncanonical ones to the right. New 
primitive forms of expression may of course be added when there is need 
of them. 

The conventions as to what variables become bound in what parts are 
as follows. Free occurrences of x in B become bound in (nx E A)B,  
(Cx E A ) B  and (Wx E A)B.  Free occurrences of x in b become bound 
in (1x)b.  Free occurrences of x and y in d become bound in (Ex,  y ) ( c ,  d). 
Free occurrences of x in d and y in e become bound in ( D x ,  y)(c, d,  e). 
Free occurrences of x and y in e become bound in (Rx, y)(c,  d ,  e). And, 
finally, free occurrences of x, y and z in d become bound in (Tx, y ,  z)(c, d) .  

Expressions of the various forms displayed in the table are evaluated 
according to the following rules. I use 

w,, * * - ,  U,/Xl, * * a ,  x,) 

to denote the result of simultaneously substituting the expressions a, ,  ... , a, 
for the variables xl, ..., x, in the expression b. Substitution is the process 
whereby a program is supplied with its input data, which need not necessarily 
be in evaluated form. 

An expression of canonical form has itself as value. This has already 
been intimated. 

To execute c(u), first execute c. If you get ( k ) b  as result, then continue 
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by executing b(a/x).  Thus c(a) has value d if c has value ( h ) b  and b(a/x) 
has value d. 

To execute (Ex,  y ) ( c ,  d) ,  first execute c. If you get (a, b) as result, then 
continue by executing d(a, b / x ,  y). Thus (Ex,  y ) (c ,  d )  has value e if c has 
value (a, b) and d(a,  b /x ,  y )  has value e. 

To execute ( D x ,  y ) ( c ,  d ,  e), first execute c. If you get i(a) as result, then 
continue by executing d(a/x).  If, on the other hand, you get j (b)  as result 
of executing c, then continue by executing e(b/y) instead. Thus 
( D x ,  y ) ( c ,  d ,  e)  has valuef’if either c has value i(a) and d(a/x) has valuef, 
or c has value j (b )  and e(b/y)  has value f. 

To execute J ( c ,  d), first execute c. If you get r as result, then continue by 
executing d. Thus J ( c ,  d) has value e if c has value r and d has value e. 

To execute R,(c, co, ..., c,-,), first execute c. If you get m, as result 
for some m = 0, ..., n-1, then continue by executing c,. Thus 
R,(c, co,  ..., c,,-,) has value d if c has value m, and c, has value d for 
some m = 0, ... , n- 1. In particular, Ro(c) has no value. It corresponds to 
the statement 

abort 

introduced by DIJKSTRA (1976, p. 26). The pair of forms 0, and R,(c,  co) 
together operate in exactly the same way as the pair of forms r and J ( c ,  d). 
To have them both in the language constitutes a redundancy. R,(c, co, cl) 
corresponds to the usual conditional statement 

if B then S,  else S,  

and R,(c, co, ..., c,,-J for arbitrary n = 0, 1, ... to the statement 
with e do {c, : S , ,  ..., c,, : S,};  

introduced by HOARE (1972, p. 113) and realized by Wirth in PASCAL 
as the case statement 

case e of c, : S , ;  ...; c,, : S,, end. 

To execute (Rx, y ) ( c ,  d, e), first execute c. If you get 0 as result, then 
continue by executing d. If, on the other hand, you get a’ as result, 
then continue by executing e(a ,  (Rx, y)(a, d ,  e ) /x ,  y )  instead. Thus 
(h, y ) ( c ,  d ,  e)  has valuefif either c has value 0 and d has valuef, or c has 
value a’ and e(u,  ( R x ,  y ) (u ,  d ,  e ) / x ,  y )  has value f. The closest analogue 
of the recursion form (Rx, y ) ( c ,  d, e) in traditional programming languages 
is the repetitive statement form 

while B do S .  
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To execute ( T x , ~ ,  z)(c,d), first execute c. If you get sup(a,b) as 
result, then continue by executing d(a,  b, ( h ) ( T x ,  y ,  z ) ( b ( ~ ) ,  d)/x,  y ,  z). 
Thus ( T x , ~ ,  z)(c,d) has value e if c has value sup(a, b) and 
d(a, by ( b ) ( T x ,  y ,  z)(b(v) ,  d)/x,  y ,  z) has value e. The transfinite recursion 
form (Tx, y ,  z)(c, d) has not yet found any applications in programming. 
It has, as far as I know, no counterpart in other programming languages. 

The traditional way of evaluating an arithmetical expression is to evaluate 
the parts of the expression before the expression itself is evaluated, as 
in the computation 

(3+2)!*4. - 
5 

1 20 
- 

480 

Thus, traditionally, expressions are evaluated from within, which in pro- 
gramming has come to be known as the applicative order of evaluation. 
When expressions are evaluated in this way, it is obvious that an expression 
cannot have a value unless all its parts have values. Moreover, as was 
explicitly stated as a principle by Frege, the value (Ger. Bedeutung) of an 
expression depends only on the values of its parts. In other words, if a part 
of an expression is replaced by one which has the same value, the value 
of the whole expression is left unaffected. 

When variable binding forms of expression are introduced, as they are 
in the theory of types, it is no longer possible, in general, to evaluate the 
expressions from within. To evaluate ( k ) b ,  for example, we would first 
have to evaluate b. But b cannot be evaluated, in general, until a value 
has been assigned to the variable x. In the theory of types, this difficulty 
has been overcome by reversing the order of evaluation: instead of evaluating 
the expressions from within, they are evaluated from without. This is known 
as head reduction in combinatory logic and normal order or lazy evaluation 
in programming. For example, ( h ) b  is simply assigned itself as value. 
The term lazy is appropriate since only as few computation steps are per- 
formed as are abolutely necessary to bring an expression into canonical 
form. However, what turns out to be of no significance, it is no longer 
the case that an expression cannot have a value unless all its parts have 
values. For example, a’ has itself as value even if a has no value. What 
is significant, though, is that the principle of Frege’s referred to above, 
namely that the value of an expression depends only on the values of its 
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parts, is irretrievably lost. To make the language work in spite of this loss 
has been one of the most serious difficulties in the design of the theory 
of types. 

So far, I have merely displayed the various forms of expression used 
in the theory of types and explained how expressions composed out of those 
forms are evaluated. The inferential or, as one says in combinatory logic, 
illative part of the language consists of rules for making judgments of the 
four forms 

A is a type, 
A and B are equal types, 
a is an object of type A, 
a and b are equal objects of type A, 

abbreviated 
A type 
A = B, 

U E A ,  
a = b E A ,  

respectively. A judgment of any one of these forms is in general hypothetical, 
that is, made under assumptions or, to use the terminology of AUTOMATH 
(DE BRUIJN, 1970), in a context 

X1EA1, ..., x,EA, .  

In such a context, it is always the case that A ,  is a type, ..., A, is a type 
under the preceding assumptions X ,  E A , ,  ..., x,-, E A,-, .  When there 
is need to indicate explicitly the assumptions of a hypothetical judgment, 
it will be written 

A type (xi . * . , x n ~ A n )  3 

A = B(x,  E A , ,  ..., X, E A,,) ,  

a E A ( x l E A l ,  ..., x , E A , ) ,  

u = b E A ( x ,  E A , ,  ..., X,  E A , ) .  

These, then, are the full forms of judgment of the theory of types. 
The first form of judgment admits not only the readings 

A is a type (set), 
A is a proposition, 
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but also, and this is the reading which is most natural when the language is 
thought of as a programming language, 

A is a problem (task). 

Correlatively, the third form of judgment may be read not only 

u is an object of type (element of the set) A ,  

a is a proof of the proposition A ,  

but also 
u is a program for the problem (task) A .  

The equivalence of the first two readings is the by now well-known cor- 
respondence between propositions and types discovered by CURRY (1 958, 
pp. 312-315) and HOWARD (1969), whereas the transition from the second 
to the third is the KOLMOGOROV (1932) interpretation of propositions as 
problems or tasks (Ger. Aufgube). 

The four forms of judgment used in the theory of types should be com- 
pared with the three forms of judgment used (although usually not so called) 
in standard presentations of first order predicate calculus, whether classical 
or intuitionistic, namely 

A is a formula , 
A is true , 
a is an individual term, 

The first of these corresponds to the form A is a type (proposition), 
the second is obtained from the form u is an object of type (a proof of the 
proposition) A by suppressing a, and the third is again obtained from the 
form a is an object of type A,  this time by choosing for A the type of 
individuals. 

In  explaining what a judgment of one of the above four forms means, 
I shall first limit myself to assumption free judgments. Once it has been 
explained what meanings they carry, the explanations can readily be 
extended so as to cover hypothetical judgments as well. 

A canonical type A is defined by prescribing how a canonical object of 
type A is formed as well as how two equal canonical objects of type A are 
formed. There is no limitation on this prescription except that the relation 
of equality which it defines between canonical objects of type A must be 
reflexive, symmetric and transitive. If the rules for forming canonical objects 
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as well as equal canonical objects of a certain type are called the introduction 
rules for that type, we may thus say with GENTZEN (1934) that a canonical 
type (proposition) is defined by its introduction rules. For noncanonical A, 
a judgment of the form 

A is a type 

means that A has a canonical type as value. 
Two canonical types A and B are equal if a canonical object of type A is 

also a canonical object of type B and, moreover, equal canonical objects 
of type A are also equal canonical objects of type B, and vice versa. For 
arbitrary (not necessarily canonical) types A and B, a judgment of the 
form 

A = B  

means that A and B have equal canonical types as values. This finishes 
the explanations of what a type is and what it means for two types to 
be equal. 

Let A be a type. Remember that this means that A denotes a canonical 
type, that is, has a canonical type as value. Then a judgment of the form 

a E A  

means that a has a canonical object of the canonical type denoted bv A as 
value. Of course, this explanation is not comprehensible unless we know 
that A has a canonical type as value as well as what a canonical object of 
that type is. But we do know this because of the presupposition that A is 
a type: it is part of the definition of a canonical type how a canonical 
object of that type is formed, and hence we cannot know a canonical type 
without knowing what a canonical object of that type is. 

Let A be a type and a and b objects of type A .  Then a judgment of the 
form 

a = b E A  

means that a and b have equal canonical objects of the canonical type de- 
noted by A as values. This explanation makes sense since A was presupposed 
to be a type, that is, to have a canonical type as value, and it is a part of 
the definition of a canonical type how equal canonical objects of that type 
are formed. 

These meaning explanations are extended to hypothetical judgments 
by an induction on the number of assumptions. Let it be given as premises 
for all of the following four explanations that x, E A , ,  ... , x, E A,  is a con- 
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text, that is, that A ,  is a type, ..., A,, is a type under the assumptions 
x1 E A ,  , ..., x,-, E A,,-,. By induction hypothesis, we know what this 
means. 

A judgment of the form 

A type (x ,  E A,, ... , x,, E A,,) 

A @ , ,  ..., a,,/xl, ..., x,,) type 
means that 

provided 
01 

an = b,, E A , ( o ~ ,  ..., U , , - ~ / X , ,  ..., ~ ~ - 1 ) .  

Thus it is in the nature of a family of types (propositional function) to be 
extensional in the sense just described. 

Suppose that A and Bare types under the assumptions x1 E A, , ... , x,, E A,,. 
Then 

means that 
A = B ( x , e A l ,  ..., X,€A, , )  

A ( u ~ ,  ..., a,,/xi, ..., x,,) = B ( u ~ ,  ..., a,,/Xi, ..., x,,) 

provided 
a1 € 4  , 

anEAn(a1, *.-> Un-JXi, -**$xn- i )  0 

From this definition, the extensionality of a family of types and the evident 
transitivity of equality between types, it follows as well that 

A(Q, ..., a,,/x1, ..., x,,) = B(b1, ..., b,,/X,, ..., x,,) 

provided 
a1 = b l E A 1 ,  

U, = b,, E A , ( u ~ ,  ..., u, , -~ /x , ,  ..., ~ ~ - 1 )  . 
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Let A be a type under the assumptions x1 E Al , ..., x, E A,,. Then 

a E A ( X 1  E A,, ..., x,, E AJ 
means that 

a(a,, ... , UJX, , ... y x,,) E A (a, , ... y UJX, , ... y x,,) 

provided 
01 € 4  Y 

an E An(a1s * * a  9 aM-,/xl> ... xn- 1) 9 

and, moreover, 

a(u1, ... y UJX,,  ... y xn) = u(b,, ... ) bJx,, ... ) X") E A(u,, ...) UJX,, ..., XJ 

provided 
a, = b l E A 1 ,  

an = b n E A , ( ~ , , . . . y U n - , / x i y  . - * y ~ n - 1 ) .  

Thus, just as in the case of a family of types, it is in the nature of a function 
to be extensional in the sense of yielding equal objects of the range type 
when equal objects of the domain types are substituted for the variables 
of which it is a function. 

Let A be a type and a and b objects of type A under the assumptions 
xi E A,, ..., X,,E An. Then 

a = b E A(x, E A , ,  ..., x,, E A,,) 

means that 

Q(Q1, ..., U J X i ,  ..., x,,) = b ( ~ ,  ,... , a J X l  ,... , x J ~ A ( a l , . . . , a J x , , . . . , x ~  

provided 
a, € 4  Y 

a n E A n ( a l ,  . * . , a n - i / x l ,  ...s Xn-1) 

Again, from this definition, the extensionality of a function and the tran- 
sitivity of equality between objects of whatever type, there follows the 
stronger property that 
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provided 

a, = b, E A ,  , 

a, = b, E A,(a, , ... , a,-l/xl, ... , x,- . 
This finishes my explanations of what judgments of the four forms used 
in the theory of types mean in the presence of assumptions. 

Now to the rules of inference or proof rules, as they are called in pro- 
gramming. They will be presented in natural deduction style, suppressing 
as usual all assumptions other than those that are discharged by an inference 
of the particular form under consideration. Moreover, in those rules whose 
conclusion has one of the forms u E A and a = b E A, only those premises 
will be explicitly shown which have these very Same forms. This is in 
agreement with the practice of writing, say, the rules of disjunction intro- 
duction in predicate calculus simply 

A true B true 
A v B  true A v B  true 

without showing explicitly the premises that A and B are formulas. For 
each of the rules of inference, the reader is asked to try to make the con- 
clusion evident to himself on the presupposition that he knows the premises. 
This does not mean that further verbal explanations are of no help in 
bringing about an understanding of the rules, only that this is not the place 
for such detailed explanations. But there are also certain limits to what 
verbal explanations can do when it comes to justifying axioms and rules of 
inference. In the end, everbody must understand for himself. 

GENERAL RULES 

Reflexivity 

a E A  

a = a E A  
A type 
A = A  

Symmetry 

a = b e A  A = 3  

b = ae\A B = A  
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Pransitivity 

a = b E A  b = c E A  A = B  B = C  

a = c E A  

Equality of types 

~ E A  A = B  

A = C  

a = b E A  A = B  

a E B  

Substitution 

a = b E B  

( X E  A)  
a = c E A  B = D  

B(u/x) = D(c/x) 

(x E A)  
a = C E  A b = dE B 

b(a/x) = d(c/x) E R(a/x) 

Assumption 

X E A  

CARTESIAN PRODUCT OF A FAMILY OF TYPES 

il -formation 

(X E A)  
A type B type 

(nx E A ) B  type 

ll - introduction 

( n x  E A ) B  = ( I Z X  E C )  D 

(x E A )  (X E A)  
b E B  b = d E B  

( k ) b  E ( n x  E A ) B  ( k ) b  = ( k ) d  E (L'x E A )  B 

ll -elimination 

c e ( n x ~ A ) B  ~ E A  c = ~ E ( ~ x E A ) B  u = ~ E A  - - 
c ( 4  E H a l 4  c(a) = . f (d )  E B(u/x) 
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R - equality 

(x  E A )  
a e A  b e B  c E (Z7x E A ) B  

((Rx)b)(a) = b ( 4 x )  E B(u/x) (Ax)(c(x)) = c E ( a x  E A ) B  

DIsJOINT UNION OF A FAMILY OF TYPES 

C- formation 

(x E A )  ( X  E A )  
A type B type A = C  B = D  

( Z X E  A)B = ( Z X E  C)D (Ex E A )  B type 

X- introduction 

a s  A b s  B(a/x) a = c E A b = d E B(a/x) 
(a, b) E (Zx E A ) B  (a,  b) = (c, d) E (ZX E A ) B  

C- elimination 

C - eqwlity 

DISJOINT UNION OF TWO TYPES 

+ - formution 

A = C  B - D  - A type B type 

A + B  type A + B  = C + D  
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+ -introduction 

a e A  U = C E A  
i(a)E A + B  

b E B  

j (b )  E A + B  

i(a) = i(c) E A + B  

b = d E B  
j(b)  = j ( d ) e  A + B  

+ -elimination 

(x  E A )  (Y E B)  
C E  A + B  d e  C(i(x) /z)  e e  C( j (y ) / z )  

(x  A )  (Y B)  
b E B d E C(i(x)/z)  e E C( j (y ) / z )  

IDENTITY RELATION 

I-  formation 

A type a e A  b E A  A = C  a = c e A  b = d E A  

I (A  , a, 4 type I ( A ,  a ,  b )  = I(C, c, 4 
I-introduction 

a = b e A  
r E I ( A ,  ay b) 

a = b e A  
r = r e I(A,  a, b) 

I-elimination 
c E I ( A  , a ,  b) 



170 

I-equality 

N,- formation 

Nn type 
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a = b E A d E C(r/z) 

J ( r ,  d )  = d E C(r/z) 

FINITE TYPES 

N, = N, 

N,- introduction 

m,EN, ( m = O  ,..., n-1) m , = m , E N ,  ( m = O  ,..., n-1)  

N,- elimination 

C E N ,  c,EC(m,/z) (m = 0, ..., n - 1 )  

Rn(c, ~ 0 ,  ...s cn-1) E C ( C / Z )  

c = d ~ N ,  c , = d , ~ C ( m , / z )  ( m = O ,  ..., n - I )  

Rn(c, ~ 0 ,  cn-1)  = Rn(d, do, .**s dn-1) E C(C/Z)  

N,- equality 

C,E C(m,/z) (m = 0 ,  ..., n - I )  
(m = 0 ,  ..., n-1) 

R,(m,, co, ..., Cn-1) = C,E C(m,,/z) 

NATURAL NUMBERS 

N -  formation 

N -  introduction 

O E N  

a €  N 

a' E N 

O = O E N  

a = b e N  

a' = b' E N 
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N- elimination 

( x  E N, Y E C(x/z))  

c E N d E C(O/z) e E C(x’/z) 

N- equality 

WELLORDERINGS 

W- formation 

A type B type 

( Wx E A ) B  type 
A = C  B =  D 

( W X E A ) B  = ( W X E C ) D  

W- introduction 

a E A b E B(a/x) + (Wx E A)B 

sup(u, b) E ( W x  E A ) B  

 sup(^, b) = sup(c, d )  E ( Wx E A )  B 
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W- equality 

UNIVERSES 

Un- formation 

u,, type 

U,,- introduction 

u, = u,, 

( ~ x E A ) B  = ( ~ x E C ) D E  U,, 

(x E A) 

A = C E U ,  B =  D E U ,  
(CXE A ) B E  U,, 

A E  U,, B E  U, 

(ZX f A )  B = (ZXE C )  D E U,, 

A = C E U , ,  B = D E U ,  
A + B E  U,, 

A = C E U , ,  a = c E A  b = d E A  
l ( A ,  a ,  6 )  = I (C,  c, d) B U,, 
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&-I E Un 

Urn- elimination 

A E U, 

N = N E U , ,  

(x  A )  
A = C E U , ,  B =  D E U , ,  
( W X E A ) B =  ( W X E C ) D E U ,  

A = B E U ,  
A = B  

A = B E U , ,  
A = B E  U,+, 

An example will demonstrate how the language works. Let the premises 

A type, 
B type (x  E A) , 
C type ( x e A , y ~ B )  

be given. Make the abbreviation 

(nx E A ) B  

A - B  

provided the variable x does not occur free in B. Then 

( n x  E A)(Cy E B)  C + (CJe  (nx E A)B)(l?x E A )  C( f (x ) / y )  

is a type which, when read as a proposition, expresses the axiom of choice. 
I shall construct an object of this type, an object which may at the same time 
be interpreted as a proof of the axiom of choice. Assume 

x E A ,  z E (Ux E A)(Zy E B)C . 

z ( x ) E ( C ~ E B ) C .  
By D-elimination, 
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Make the abbreviations 

(Ex,  m, x )  9 (Ex,  Y ) ( C ,  v) . 
P 

P (4 4 (4 
By Z-elimination, 

P M 4 )  E B 9 

4(z(x))  E C(P(Z(X))/Y) * 

( W P ( Z ( 4 )  E ( n x  E 0 9 

( ( W P ( Z ( X ) ) ) ( X )  = P ( Z ( 4 )  E B * 

P ( Z ( X ) )  = ( ( W P ( Z ( X ) ) ) ( X )  E B 9 

C(P(Z(X))/Y) = c( ( ( W P ( Z ( X ) ) ) ( X ) / Y )  - 

4(z(x)) E C(((llX)P(Z(X)))(X)/Y) 9 

(Jx)q(z ( .4)  E ( n x  6 4 C(((lX)P(Z(X)))(X)/Y) * 

By ll-introduction, 

and, by lZ-equality, 

BY symmetry, 

and, by substitution, 

By equality of types, 

and, by ll- introduction, 

By Z-introduction, 

( ( W P ( Z ( X ) ) ,  ( W 4 ( z ( x ) ) )  (ZfE ( n x  E 4” E - W ( f ( X ) / Y )  ’ 

( ~ Z ) ( ( W P ( Z ( X > )  , (2.4 4(z(x)))  

Finally, by ll-introduction, 

E ( l l x  E A ) ( Z y  E B )  c + (Zf€ ( l l x  E A ) B ) ( n x  E A )  C ( f ( x ) / y )  . 
Thus 

( W ( ( , W P ( Z ( X ) )  I ( W q ( z ( x ) ) )  

is the sought for proof of the axiom of choice. 
To conclude, relating constructive mathematics to computer programming 

seems to me to have a beneficial influence on both parties. Among the 
benefits to be derived by constructive mathematics from its association 
with computer programming, one is that you see immediately why YOU 

cannot rely upon the law of excluded middle: its uninhibited use would 
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lead to programs which you did not know how to execute. Another is that 
you see the point of introducing a formal notation not only for propositions, 
as in propositional and predicate logic, but also for their proofs: this is 
necessary in order to make the methods of computation implicit in intui- 
tionistic (constructive) proofs fit for automatic execution. And a third is 
that you see the point of formalizing the process of reasoning: this is ne- 
cessary in order to have the possibility of automatically verifying the pro- 
grams’ correctness. In fact, if the AUTOMATH proof checker had been 
written for the theory of types instead of the language AUTOMATH, 
we would already have a language with the facility of automatic checking 
of the correctness of the programs formed according to its rules. 

In the other direction, by choosing to program in a formal language for 
constructive mathematics, like the theory of types, one gets access to the 
whole conceptual apparatus of pure mathematics, neglecting those parts 
that depend critically on the law of excluded middle, whereas even the best 
high level programming languages so far designed are wholly inadequate 
as mathematical languages (and, of course, nobody has claimed them to 
be so). In fact, I do not think that the search for logically ever more satis- 
factory high level programming languages can stop short of anything but 
a language in which (constructive) mathematics can be adequately expressed. 
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