
Don't Trust Parallel Monte Carlo!

P. Hellekalek

Dept. of Mathematics

University of Salzburg

A-5020 Salzburg, AUSTRIA

Abstract

Parallel Monte Carlo simulation requires reliable
RNGs. For sequential machines, good generators ex-
ist. It is not at all trivial to �nd high-quality RNGs
for parallel machines. In this paper we present a short
review of the main concepts to produce random num-
bers on parallel processors and, further, we illustrate
some phenomena that occur with parallelization.

1 Introduction

The generation of random numbers is one of the
fundamental tasks of numerical practice. Isn't it also
one of the most simple tasks we have to deal with?
We just call the system random number generator and
obtain a �nite sequence of random numbers as long as
we want. If we want to do parallelization, we just take
as many di�erent generators as there are processors.

Alas, life is not that easy! The goal in random
number generation is to simulate a realization of a
sequence of independent, identically distributed ran-
dom variables, distributed uniformly in some given do-
main. The standard domain is the unit interval [0; 1[.
Non-uniform random variates are obtained by trans-
formation methods, see the monograph of Devroye[7]
and the software package CRAND of Stadlober and
Niederl[39]. Random number generators (RNGs) are
basic ingredients of any Monte Carlo simulation on
computers. Bad RNGs may ruin your simulation.
RNGs are deterministic algorithms that produce \ran-
dom" numbers in the unit interval [0; 1[or \random"
points in the d-dimensional unit cube [0; 1[d. Some-
times, we use the notion \pseudo"-RNG to underline
the deterministic background of these algorithms.

We will discuss now the main concepts to assess
RNGs, their relevance for numerical practice, and the
(still largely unsolved) question of reliable paralleliza-
tion techniques for RNGs.

2 Requirements for good RNGs

The numbers or points that are produced by a uni-
form RNG are supposed to ful�ll certain requirements.

They should be (i) uniformly distributed, (ii) uncor-
related, (iii) reproducible, in order to debug programs
and simulation models, and (iv) portable, in order to
get the same random numbers on various platforms.
Further, (v) their period should be several magnitudes
larger than the largest samples we use, (vi) the inner
structure of the output sequence should be analyzable,
(vii) parallelization should be possible, and (viii) in ar-
bitrary stochastic simulations, we should get the right
results.

Even Santa Claus cannot present us such a \dream"
RNG. We are dealing with deterministic algorithms
on �nite-state machines. Necessarily, the output se-
quence of an RNG will be periodic, there will exist
more or less hidden correlations between these num-
bers, and there will always be statistical tests or sim-
ulations where a given RNG will fail. In this section,
we will discuss which of the above conditions can be
satis�ed.

Reproducibility and portability of an RNG, see (iii)
and (iv) above, is a must. It is a question of clever sci-
enti�c programming, see Lendl[24] for an instructive
example. Points (i), (ii), (v), and (vi) are the main
tasks of the theory of RNGs. Condition (vii) is di�-
cult to satisfy, as we will see later in this paper, and
(viii) is an impossible dream.

Compagner[3], an experienced physicist and prac-
titioner, addressed simulation practice as follows:
\Monte Carlo results are misleading when correlations
hidden in the random numbers and in the simulated
system interfere constructively." This statement ex-
plains our dilemma. The RNGs we use are determ-
inistic algorithms. The numbers they produce will be
correlated, they are the output of an iteration of func-
tions. If the inner structure of the random numbers in-
terferes with our particular stochastic simulation, then
the simulation results may be useless.

The �rst consequence of these facts is the insight
that there exists nothing like a safe RNG. No gener-
ator will be appropriate for all tasks. There will always
be simulation problems where certain RNGs will fail.

A second consequence might be the wish to em-
ploy physical sources of randomness. This choice looks
more promising than it is. Such devices tend to be
slow and unreliable. We would have to carry out
extensive testing of their output to detect technical

aws. Further, it would be very inconvenient to re-
produce computations with exactly the same random
numbers or to apply parallelization techniques.

The third consequence will be the e�ort to analyze
the period length, the inner structure, and the cor-
relations between the numbers produced by the RNG
under study.

2.1 Theoretical Assessment of RNGs

Theoretical research on RNGs is concerned with
questions like �nding the maximal period length of a
particular type of generator, how to choose the para-
meters of an RNG to obtain maximal period length,
the search for algorithms that yield such parameters,
the intrinsic structures and regularities (for example
lattice structures, etc.) of a particular type of gener-
ator, and what can be said about correlations between
random numbers.

Nobody should trust an RNG where the designer
does not know the period length. The reason is simple.
All RNGs have their regularities. If we do simulation
with small samples produced by a good RNG, then
practically no statistical test will detect those hidden
regularities. Hence, these samples will be safe for most
simulations. If the sample size is large in relation to
the period length, then the regularities of the RNG
will begin to show up. Many tests will now be failed
and we should not trust our simulation results any
longer. As a rule of the thumb, for linear types of
RNGs the maximal usable sample size is at most the
square root of the period length. Beyond that sample
size, we should check our simulation results with great
care.

Correlation analysis is the central problem in the
empirical and theoretical assessment of RNGs.

2.2 Figures of Merit

The main idea to assess correlations between ran-
dom numbers by a theoretical �gure of merit is the
following.

If x0, x1, . . .2 [0; 1[is the output sequence of
an RNG, then the points (x0; x1), (x2; x3), . . . should
behave rather randomly in [0; 1[2: The same should
hold for the triples (x3n; x3n+1; x3n+2), n � 0, and,
in general, for the non-overlapping d-tuples xn :=
(xdn; xdn+1; xdn+d�1); n � 0, in [0; 1[d. Correlations
between consecutive random numbers should be de-
tected by measuring the equidistribution properties of
the point sequences (xn)n�0:

As an illustration, let us produce N = 215 such
random points in the unit square with the still widely
used linear congruential generator (LCG) Super-
Duper of Marsaglia[25], which has the parametrization
LCG(232, 69069, 0,1). (Sometimes, a combination of
this LCG and a shift-register generator is also called
Super-Duper.) We will have to zoom into the unit
interval to make these points visible.

0.46 0.48 0.5 0.52 0.54

0.46

0.48

0.5

0.52

0.54

Figure 1. 215 Points of Super-Duper in [0; 1[2

These points look randomly distributed. We now pro-
duce a larger sample.

0.496 0.498 0.5 0.502 0.504

0.496

0.498

0.5

0.502

0.504

Figure 2. 225 Points of Super-Duper in [0; 1[2

Finally, we produce all possible pairs of points in the
unit square.

0.4996 0.4998 0.5 0.5002 0.5004

0.4996

0.4998

0.5

0.5002

0.5004

Figure 3. All Points of Super-Duper in [0; 1[2

We observe that the regularities begin to shine
through in the large sample, see Figure 2. In the last
�gure, we notice a lattice structure in the full-period
point set. This is nothing to be worried about. As
we have said before, all RNGs have their inner struc-
ture. It is no surprise that a linear algorithm like the
LCG produces linear structures. These structures will
only show up for very large samples. They allow us to
introduce a powerful �gure of merit, the spectral test.

This example rises several questions. How to as-
sess such point structures? What will be the in
u-
ence of these visible correlations for numerical prac-
tice? What can happen in parallelization?

The �rst question has been treated extensively
in the literature. There are �gures of merit for
RNGs available to assess such �nite point sets ! =
(xn)

N�1
n=0 in [0; 1[d, even for high dimensions d (i.e.

d � 20). The best-known of these numerical
quantities are discrepancy, see Niederreiter[31, 33,
35] for details, and the spectral test of Coveyou
and MacPherson[4], see Knuth[17], L'Ecuyer and
Couture[23], and Hellekalek[13] for further informa-
tion.

What is important to know for a practitioner is
the fact that these �gures of merit require only the
parameters to assess a given RNG. If we obtain satis-
factory values for these �gures of merit, then the RNG
will perform well in many simulations. This statement
is based upon more than twenty years of numerical
evidence, but not upon some mathematical theorem.
Those �gures of merit act like a very reliable weather-
forecast. In most cases, the prediction will be correct.
Sometimes reality will defy prediction.

There is an important di�erence between discrep-
ancy and the spectral test. The spectral test can only
be computed if the points in [0; 1[d, d � 2, have a
lattice structure. It computes the maximal distance
between successive parallel hyperplanes covering all
possible points xn that the generator can produce.
This limits the spectral test to linear types of RNGs,
but those are by far the most popular and best un-
derstood class of generators. Discrepancy cannot be
computed for an RNG, we can only determine its or-
der of magnitude. This order will serve to compare
RNGs and to �nd promising ones. Discrepancy is
not limited to linear RNGs, discrepancy estimates are
known for almost all important types of RNGs, see
Niederreiter[35]. Both �gures of merit yield very reli-
able RNGs.

2.3 Empirical Tests for RNGs

The performance of RNGs in theoretical tests is
no guarantee for successful simulation. It is only a

prediction of what we may expect in practice.

The importance of empirical (statistical) testing of
RNGs is beyond question. If an empirical test is well-
designed, then it will cover a large class of practical
simulation problems.

Together with Marsaglia's[26] DIEHARD collec-
tion, Knuth's[17] statistical tests constitute the cur-
rent standard for empirical testing. Important ad-
ditions to this battery are under construction, see
L'Ecuyer et al. [21, 20, 18, 15].

If we want to parallelize an RNG, then, �rst of all,
this RNG should perform well on a single processor.

L'Ecuyer and Andres[19] have proposed a combined
LCG with period length near 2121. We will call it
\CLCG4". The authors present an implementation in
C in a package that provides for multiple virtual gen-
erators working in parallel. With its solid background
in theory, this RNG is certainly a very promising can-
didate for a parallel generator. We will now check the
distribution of the bits in its output stream.

The \load test" is a variant of the overlapping
serial test of Marsaglia[26] that has been studied by
Wegenkittl[40]. Wegenkittl constructs the test stat-
istics as follows. We consider overlapping d-tuples
(xn; xn+1; : : : ; xn+d�1) of random numbers, n � 0,
where the dimension d ranges between 1 and 5. For
every component of this vector, we consider the �rst
four digits. Each block represents a four-digit integer
in f0; : : : ; 15g. We apply Marsaglia's [26] M-tuple test
to these d-tuples of integers. This yields one value
of the test statistics for a given sample size N and a
given dimension d. In our setup, the sample size var-
ies between 218 and 226, and we compute 32 samples.
In the graphical presentation, the bar chart shows the
value of the two-sided KS-test statistics applied to the
empirical distribution of the upper-tail probabilities
of these 32 values. We plot the dimension d versus
the dyadic logarithm of the sample size N . At the
0.01 level of signi�cance we use here, the critical value
equals 1:59. The target distribution is U [0; 1], i.e. uni-
form distribution on [0; 1]. The pattern plot shows the
32 values of the upper-tail probabilities in a grey scale.
Irregular patterns should appear. If a box becomes all
white, then the samples approximate the target dis-
tribution too evenly. If a box becomes all black, then
the distance between the empirical distribution func-
tion and the cummulative distribution function of the
target distribution is too large. In both of these ex-
treme cases, the RNG fails the test. It produces the
wrong results. Its samples are unable to randomize
the test statistics in a proper way.

1

2

3

4

5

18
19

20
21

22
23

24
25

26

0

0.5

1

1.5

2

1

2

3

4

5

0

0.

1

1

2

Figure 4. CLCG4, KS Values

18 19 20 21 22 23 24 25 26

1

2

3

4

5

Figure 5. CLCG4, Upper Tail Probabilities

CLCG4 gives a
awless performance. In our dis-
cussion of the leap-frog technique below, we will en-
counter a totally di�erent behavior with Super-Duper.
Our empirical results will illustrate two facts, that
small RNGs like Super-Duper are now out-of-date,
and that the samples should not be chosen too large
compared to the period length of the generator we use.
The second conclusion holds in general.

3 Parallel RNGs: Requirements

Parallel random number generation requires great
care. Much less is known than in the single processor
case.

For parallel RNGs, we will have to enlarge our list
of properties of a good RNG, see Section 2. The addi-
tional requirements are (ix) that the RNG should be
usable for any (reasonable) number of processors, (x)
that the parallel streams of random numbers produced
on the di�erent processors should be uncorrelated, and
(xi) that they are generated independently, for reasons
of e�ciency.

We will now discuss how to meet all these criteria
and we will also indicate which phenomena may occur
in practice.

3.1 Parallelization Methods

There are two basic parallelization techniques to
produce random numbers. Method I assigns di�er-
ent RNGs to di�erent processors. Method II assigns
di�erent substreams of one large RNG to di�erent pro-
cessors. We will not talk about a third method to gen-
erate substreams of random numbers, so-called pseu-
dorandom trees, see Anderson[1] for a concise discus-
sion, because there is no information available about
the correlations we may get.

The danger with the �rst method is the follow-
ing. There might be unknown correlations between
the di�erent RNGs we use. If we happen to use
the same type of RNG but with di�erent parameters,
then we might encounter very unpleasant surprises.
There is one family of RNGs where theoretical sup-
port is available, explicit-inversive congruential gen-
erators (EICG), see Niederreiter[32, 34]. The EICG
was introduced by Eichenauer-Herrmann[9]. A very
e�cient implementation is due to Lendl[24], both the
code in C and the master's thesis are available from
the web-site http://random.mat.sbg.ac.at.

Method II can be controlled better, although its
risks should not be forgotten. There are two vari-
ations. Method II.a, the \leap-frog" technique, as-
signs the substream (xnL+j)n�0 to the j-th processor,
0 � j � L� 1. In other words, we use substreams of
lag L of the original sequence (xn)n�0.

Method II.b, the \splitting technique", partitions
the original sequence into L (very long) consecutive
blocks. Each of our L processors is assigned a di�erent
block, where every block is de�ned by a unique seed.
This approach is a very e�cient way to assign di�erent
streams of random numbers to di�erent processors.
Splitting is particularly easy for linear types of RNGs,
see L'Ecuyer[22, 19]. It has to be used with caution,
as we will exhibit below.

Matsumoto's[28, 29, 30] twisted feedback shift-
register generators (tGFSR) TT800 and MT19937
have the extremely long periods 2800�1 and 219937�1
and an extensive theoretical background. Due to their
long period, we could choose the initial values (in other
words, the seeds) randomly and obtain as many sub-
streams as we need. It is highly improbable that two
processors will use the same seeds or that two sub-
streams will overlap.

Not much is known about correlations between dis-
joint substreams of consecutive random numbers. One
thing is for sure, this subject is dangerous territory.
We refer to De Matteis and Pagnutti[5, 6] for further
information and cautionary tales.

3.2 Example I: Leap-Frog

As a �rst example of what can happen with
these parallelization techniques, we study lagged sub-
sequences of Super-Duper. As we have said before,
this RNG is out-of-date, but the results below exhibit
intrinsic problems of the parallelization method that
apply to any RNG, in particular to linear ones.

The original Super-Duper generator starts to fail
the load test if we increase the sample size or the di-
mension.

1

2

3

4

5

18
19

20
21

22
23

24
25

26

0

0.5

1

1.5

2

1

2

3

4

5

0

0.

1

1

2

Figure 6. Super-Duper, KS Values

18 19 20 21 22 23 24 25 26

1

2

3

4

5

Figure 7. Super-Duper, Upper Tail Probabilities

If we consider the leap-frog subsequence with lag
135, i.e. the sequence of random numbers (x135n)n�0,
then we observe a phenomenon that is common to lin-
ear RNGs: A marked decrease in the statistical qual-
ity. This unpleasant phenomenon occurs also for re-
liable long-period generators like the CRAY system
generator Ranf, which is LCG(248, 44485709377909,
0, 1). Here the subsequences with lag 128, as they
appear in recommended vectorization and paralleliza-
tion techniques, perform terribly. We refer the reader
to Entacher[11] for a whole collection of cautionary
tales of this sort.

1

2

3

4

5

18
19

20
21

22
23

24
25

26

0

0.5

1

1.5

2

1

2

3

4

5

0

0.

1

1

2

Figure 8. Super-Duper, Lag 135, KS Values

18 19 20 21 22 23 24 25 26

1

2

3

4

5

Figure 9. Super-Duper, Lag 135,
Upper Tail Probabilities

3.3 Example II: MC Integration

The test design is as follows. We work with a given
test function f in dimension d. We produce two sets
of integration nodes in [0; 1[d of roughly the same size.
The �rst set !1 stems from the original stream of ran-
dom numbers, the second set !�1 is produced by com-
bining L disjoint leap-frog substreams that have the
same lag L into one big �nite sequence. The exact pro-
cedure will be discussed below. For each of those two
sets of integration nodes, we compute the integration
errors �1 and ��1 i.e. the absolute value of the di�er-
ence between the integral of f and the mean over the
values of f at the nodes. Then we generate the next
two sets of integration nodes, with the same number
of elements as before. In total, we produce 64 set of
integration nodes of each type and obtain 64 integ-
ration errors �k and ��k, 1 � k � 64. We use disjoint
consecutive streams of random numbers for these com-
putations. Finally, we compute the sample mean �̂ (
�̂�) and variance �̂2 (�̂�2) of these 64 values �k and ��k.

As a test function, we choose the polynomial

f(x) :=

dY

i=1

g(xi); x = (x1; : : : ; xd) 2 [0; 1[d;

where g(x) := x20 � 1

21
; x 2 [0; 1[. The functions g

and f integrate to zero. We consider the mean errors
in dimension d = 6.

We then compute the 99% con�dence interval
for the true value zero of the integral over f by
Student's t-distribution. This interval is given by
]�̂� 0:331�̂; �̂+ 0:331�̂; [; where 0.331 = t63;0:995.
Here, the number t63;0:995 denotes the 0.005-quantile
of Student's t-distribution with 63 degrees of freedom.

The precise setup of our test follows Entacher, Uhl
and Wegenkittl[12]. With the Super-Duper generator,
we produce the �rst consecutive d�N random numbers
xn in [0; 1[and construct N nonoverlapping d-tuples
xn = (xnd; : : : ; xnd+d�1) in [0; 1[d, 0 � n < N . This
yields the �rst set !1 of integration nodes and the �rst
value �1 of the integration error. Then, we take the
next d � N random numbers xn, construct the asso-
ciated N points in the d-dimensional unit cube and
obtain the second integration error �2. In total, we
repeat this procedure 64 times to get the integration
errors �k, 1 � k � 64:

In Figure 10 below, the ticks on the abscissa repres-
ent the dual logarithm ofN . The sample sizeN ranges
between 218 and 224. The associated value of �̂N is
given on the ordinate by the dotted line. The shaded
area indicates the 99% con�dence interval. The hori-
zontal line at level 0 represents the expected value, i.e.
the value of the integral of f over [0; 1]d.

18 19 20 21 22 23 24

0

18 19 20 21 22 23 24

0

Figure 10. Integration Error, Dimension d=6.

We observe that the mean error is simulated cor-
rectly. The Super-Duper generator works as it may
be expected in such a harmless Monte Carlo integra-
tion.

As we have stated before, even in this simple Monte
Carlo application, leap-frogging must be done with
care. The Super-Duper generator is very sensible to
leap-frogging with lag L = 135, as we will show by
comparison to the performance of the original gener-
ator. In our example above, we have used 64 samples

!k, 1 � k � 64, each of size N . Every sample has con-
sumed d �N consecutive random numbers to produce
N points in dimension d. Now, we will again produce
64 samples !�k of a size ~N that is comparable to N ,
but each sample will be the union of 135 point sets
that stem from 135 leap-frog subsequences with lag
L = 135. We will see that these 64 samples perform
much worse than the original Super-Duper samples al-
though they do not stem from pure leap-frog sequences
but are just unions of such subsequences. Even in this
\diluted" leap-frog case, wrong simulation results ap-
pear. The situation would have been much worse if we
had compared the samples of the �rst setup to node
sets of similar size that were constructed from just one
leap-frog sequence and not from a union of 135 such
subsequences.

We proceed as follows. We produce the �rst block
of d �N random numbers xn in [0; 1[with the Super-
Duper generator as before. Now, in the �rst block, we
take the leap-frog random numbers with lag L = 135.
This yields x0, x135, x270, . . . , i.e. the numbers xn�135,
0 � n < N 0, N 0 := bd � N=135c: From these N 0

numbers, we construct N 00 := bN 0=dc nonoverlapping
points xn in [0; 1[d: In the next step, we use the leap-
frog sequence xn�135+1, 0 � n < N 0, in the same man-
ner to construct another N 00 points in [0; 1[d; then the
subsequence xn�135+2, 0 � n < N 0 and so on. Fi-
nally, we unite all these 135 point sets of size N 00 in
one big point set !�1 . This set will have ~N = 135 �N 00

elements with ~N � N . It is elementary to see that
N � ~N < 135� 135

d
: This di�erence can be neglected

in numerical computations if N is large in comparison
to the lag L = 135. The next sample !�2 is constructed
in the same way from the second block of d � N ran-
dom numbers and so on, until we have 64 node sets !�k,

each of size ~N . The simulation results for the mean
integration error are o� target, as is clearly visible in
Figure 11.

18 19 20 21 22 23 24

0

18 19 20 21 22 23 24

0

Figure 11. Integration Error, Lag 135, d=6.

4 Some Useful Links and References

For readers who are interested in the theoretical
analysis of RNGs, we recommend Niederreiter[33, 35],
and Hellekalek[13]. Eichenauer-Herrmann et al.[10]
contains a comprehensive theoretical discussion of in-
versive RNGs.

Useful survey papers on parallel RNGs
are Coddington[2], Srinivasan, Ceperley, and
Mascagni[38], Anderson[1], and Eddy[8]. Help-
ful web-sites are http://random.mat.sbg.ac.at

and http://www.ncsa.uiuc.edu/Apps/CMP/RNG/-

www-rng.html.

For parallel RNG libraries we refer to Masuda and
Zimmermann[27], Hennecke[16], and Pryor et al.[37].
The code of Matsumoto's TT800 and Mersenne
Twister MT19937, a tGFSR with the incredible period
length 219937 � 1, is available from the web-site
http://random.mat.sbg.ac.at. The combined LCG
of L'Ecuyer and Andres[19] is also a very promising
RNG for parallelization.

Acknowledgments

I would like to thank my research assistants Stefan
Wegenkittl and Karl Entacher, who have carried out
the computations for all �gures in this paper. This re-
search has been supported by the grants FWF{P11143
and FWF{P12654 from the Austrian Science Found-
ation.

References

[1] S.L. Anderson. Random number generation on
vector supercomputers and other advanced archi-
tectures. SIAM Review, 32:221{251, 1990.

[2] P. Coddington. Random number gener-
ators for parallel computers. NHSE Re-
view, 2nd issue, Northeast Parallel Ar-
chitectures Center, 1996. Available from
http://nhse.cs.rice.edu/NHSEreview/RNG/.

[3] A. Compagner. Operational conditions for
random-number generation. Phys. Review E,
52:5634{5645, 1995.

[4] R.R. Coveyou and R.D. MacPherson. Fourier
analysis of uniform random number generators.
J. Assoc. Comput. Mach., 14:100{119, 1967.

[5] A. De Matteis, J. Eichenauer-Herrmann, and
H. Grothe. Computation of critical distances
within multiplicative congruential pseudorandom
number sequences. J. Comp. Appl. Math., 39:49{
55, 1992.

[6] A. De Matteis and S. Pagnutti. Controlling cor-
relations in parallel Monte Carlo. Parallel Com-
put., 21:73{84, 1995.

[7] L. Devroye. Non-Uniform Random Variate Gen-
eration. Springer-Verlag, New York, 1986.

[8] W.F. Eddy. Random number generators for par-
allel processors. J. Comp. Appl. Math., 31:63{71,
1990.

[9] J. Eichenauer-Herrmann. Statistical independ-
ence of a new class of inversive congruential pseu-
dorandom numbers. Math. Comp., 60:375{384,
1993.

[10] J. Eichenauer-Herrmann, E. Herrmann, and
S. Wegenkittl. A survey of quadratic and in-
versive congruential pseudorandom numbers. In
Niederreiter et al. [36], pages 66{97.

[11] K. Entacher. A collection of selected pseudor-
andom number generators with linear structures.
Technical report series, ACPC - Austrian Center
for Parallel Computation, 1997.

[12] K. Entacher, A. Uhl, and S. Wegenkittl. Lin-
ear Congruential Generators for Parallel Monte-
Carlo: the Leap-Frog Case. Preprint, Depart-
ment of Mathematics, University of Salzburg,
Austria, submitted for publication.

[13] P. Hellekalek. On the assessment of random
and quasi-random point sets. In Hellekalek and
Larcher [14]. To appear.

[14] P. Hellekalek and G. Larcher, editors. Random
and Quasi-Random Point Sets, Springer Lecture
Notes in Statistics. Springer-Verlag, New York,
1998. To appear.

[15] P. Hellekalek and P. L'Ecuyer. Testing random
number generators. In Hellekalek and Larcher
[14]. To appear.

[16] M. Hennecke. Random number gen-
erators homepage. Available from
http://www.uni-karlsruhe.de/�RNG/.

[17] D.E. Knuth. The Art of Computer Programming,
Vol. 2. Addison-Wesley, Reading, Mass., second
edition, 1981.

[18] P. L'Ecuyer. Random number generators and em-
pirical tests. In Niederreiter et al. [36], pages 124{
138.

[19] P. L'Ecuyer and T.H. Andres. A random num-
ber generator based on the combination of four
LCGs. Mathematics and Computers in Simula-
tion, 44:99{107, 1997.

[20] P. L'Ecuyer, A. Compagner, and J.-F. Cordeau.
Entropy tests for random number generators.
Manuscript, 1996.

[21] P. L'Ecuyer, J.-F. Cordeau, and R. Simard.
Close-point spatial tests for random number gen-
erators. Submitted, 1996.

[22] P. L'Ecuyer and S. Cot�e. Implementing a random
number package with splitting facilities. ACM
Trans. Math. Software, 17:98{111, 1991.

[23] P. L'Ecuyer and R. Couture. An implementa-
tion of the lattice and spectral tests for multiple
recursive linear random number generators. IN-
FORMS J. on Comput., 9:206{217, 1997.

[24] O. Lendl. Explicit inversive pseudorandom num-
bers. Master's thesis, Institut f�ur Mathematik,
Universit�at Salzburg, Austria, 1996. Available
from http://random.mat.sbg.ac.at/.

[25] G. Marsaglia. The structure of linear congruen-
tial sequences. In S. K. Zaremba, editor, Applic-
ations of Number Theory to Numerical Analysis.
Academic Press, New York, 1972.

[26] G. Marsaglia. A current view of random num-
ber generators. In L. Brillard, editor, Computer
Science and Statistics: The Interface, pages 3{
10, Amsterdam, 1985. Elsevier Science Publishers
B.V. (North Holland).

[27] N. Masuda and F. Zimmermann. PRNGlib: a
parallel random number generator library. Tech-
nical report, Swiss Center for Scienti�c Comput-
ing, 1996. Available from http://www.cscs.ch

/Official/Publications.html.

[28] M. Matsumoto and Y. Kurita. Twisted GFSR
generators. ACM Trans. Model. Comput. Simul.,
2:179{194, 1992.

[29] M. Matsumoto and Y. Kurita. Twisted GFSR
generators II. ACM Trans. Model. Comput.
Simul., 4:254{266, 1994.

[30] M. Matsumoto and T. Nishimura. A new gener-
ation: 623-dimensionally equidistributed uniform
pseudorandom number generator. ACM Trans.
Model. Comput. Simul., to appear, 1998.

[31] H. Niederreiter. Quasi-Monte Carlo methods
and pseudo-random numbers. Bull. Amer. Math.
Soc., 84:957{1041, 1978.

[32] H. Niederreiter. New methods for pseudorandom
number and pseudorandom vector generation. In
J.J. Swain et al., editor, Proc. 1992 Winter Sim-
ulation Conference (Arlington, Va., 1992), pages
264{269. IEEE Press, Piscataway, N.J., 1992.

[33] H. Niederreiter. Random Number Generation
and Quasi-Monte Carlo Methods. SIAM, Phil-
adelphia, 1992.

[34] H. Niederreiter. On a new class of pseudorandom
numbers for simulation methods. J. Comp. Appl.
Math., 56:159{167, 1994.

[35] H. Niederreiter. New developments in uniform
pseudorandom number and vector generation. In
H. Niederreiter and P.J.-S. Shiue, editors, Monte
Carlo and Quasi-Monte Carlo Methods in Sci-
enti�c Computing, volume 106 of Lecture Notes
in Statistics, pages 87{120. Springer-Verlag, New
York, 1995.

[36] H. Niederreiter, P. Hellekalek, G. Larcher, and
P. Zinterhof, editors. Monte Carlo and Quasi-
Monte Carlo Methods 1996, volume 127 of
Springer Lecture Notes in Statistics. Springer-
Verlag, New York, 1997.

[37] D.V. Pryor, S.A. Cuccaro, M. Mascagni, and
M.L. Robinson. Implementation and usage of
a portable and reproducible parallel pseudoran-
dom number generator. Technical report, Super-
computing Research Center, Institute for Defense
Analyses, 1994.

[38] A. Srinivasan, D.M. Ceperley, and M. Mascagni.
Random Number Generators for Parallel Applic-
ations. In D. Ferguson, J.I. Siepmann, and D.G.
Truhlar, editors, Monte Carlo Methods in Chem-
ical Physics, Advances in Chemical Physics series.
Wiley, New York, 1998, to appear.

[39] E. Stadlober and F. Niederl. C-Rand: a package
for generating nonuniform random variates. In
Compstat '94, Software Descriptions, pages 63{
64, 1994.

[40] S. Wegenkittl. Empirical testing of pseu-
dorandom number generators. Master's
thesis, Institut f�ur Mathematik, Universit�at
Salzburg, Austria, 1995. Available from
http://random.mat.sbg.ac.at/.

