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Abstract 

We have designed and implemented a fast breakpoint 
facility. Breakpoints are usually thought of as a feature 
of an interactive debugger, in which case the break- 
points need not be particularly fast. In our environment 
breakpoints are often used for non-interactive informa- 
tion gathering: for example, procedure call count and 
statement execution count profiling [Swinehart, et al.]. 
When used non-interactively, breakpoints should be as 
fast as possible, so as to perturb the execution of the 
program as little as possible. Even in interactive 
debuggers, a conditional breakpoint facility would 
benefit from breakpoints that could transfer to the 
evaluation of the condition rapidly, and continue 
expeditiously if the condition were not satisfied. Such 
conditional breakpoints could be used to check 
assertions, etc. Program advising could also make use of 
fast breakpoints [Teitelman]. Examples of advising 
include tracing, timing, and even animation, all of 
which should be part of an advanced programming 
environment. 

We have ported the Cedar environment from a machine 
with microcode support for breakpoints [Lampson and 
Pier] to commercial platforms running C code 
[Atkinson, et al.]. Most of our ports run under the 
Unix* operating system, so one choice for implementing 
breakpoints for Cedar was to use the breakpoint facility 
provided by that system. The breakpoints provided by 
the Unix operating system are several orders of 
magnitude too slow (and also several process switches 
too complicated) for the applications we have in mind. 

* Unix is a trademark of AT&T Bell Laboratories. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct corn- 
mercial advantage, the ACM copyright notice and the titie of the 
publication and its date appear, and notice is given that copying is 
by permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

@1990 ACM 0-S9791-364-7/90/0006/0078 $1.50 

Proceedings of the ACM SIGPLAN’SO Conference on 
Programming Language Design and Implementation. 
White Plains, New York, June 20-22, 1990. 

So we designed . - a breakpoint system that was fast 
enough for our purposes. 

Breakpoints for uni-processors running single threads of 
control used to be fast and simple to implement. This 
paper shows that breakpoints can still be fast, even with 
multiple threads of control on multi-processors, This 
paper describes problems in the design of a breakpoint 
package for modern computer architectures and pro- 
gramming styles, and our solutions to them for a 
particular architecture. 

Previous Work 

The original inspiration for the breakpoints presented 
here is the primeval method of patching code to alter its 
semantics [Gill]. This technique was apparently com- 
pletely natural for programmers who were pro- 
gramming in assembler (or machine) language, and 
needed to modify their programs without m-assembling 
or relocating a lot of their code. User inserted break- 
points became a part of debugging systems early on 
[Stockham and Dennis]. Breakpoints in one form or 
another have been available in programming environ- 
ments since that time [Evans and Darley] [Johnson]. 

Breakpoints are implemented by assembling the 
replacement code at some convenient place in memory 
and planting a branch to the replacement code in place 
of the original code. The replacement code can perform 
its operations and then either return to the main instruc- 
tion stream after the breakpoint, or may completely 
alter the program flow. For example. an interactive 
debugger might be invoked from the breakpoint code to 
allow program state to be examined or altered. Break- 
points can also be used as assembler program editors in 
synchrony with high-level language editors to keep a 
running program up to date with source modifications 
W-d. 
At some point, self-modifying code became taboo. and 
breakpoints came to be implemented by traps to the 
operating system, that would then transfer control to a 
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debugger [Klensk and Larson]. Traps to the operating 
system are unnecessarily expensive in our view, and we 
have tried to avoid them wherever possible. 

In many ways, this work is similar in scope to the “scan- 
point” work in Parasight [Aral and Gertner]. That work 
focused on breakpoints in a multiprocessor setting. A 
main point for them was the off-loading of the code 
executed by the breakpoint to another processor in their 
multiprocessor. In contrast, though we are running a 
system with multiple light-weight threads in each 
address space, our concern is for speed and simplicity in 
the breakpoint mechanism: starting up a separate 
thread to execute the breakpoint code seemed like too 
much mechanism. If the code for the breakpoint wants 
to start up a separate thread, it can easily do that. For 
many applications of fast breakpoints (cg., counting 
procedure entries, etc.), the work of the breakpoint code 
is less than the work of forking a separate thread. For 
some applications, such as checking assertions, the 
breakpoint code should run in the same thread, so it can 
raise an error synchronously with respect to that thread. 

This work should be contrasted with breakpoints that 
contact an interactive debugger, like the breakpoints in 
dbx [Sun Debugging]. In dbx, hitting a breakpoint 
causes a trap to the operating system, which then 
schedules the debugger to run. Examining the state of 
the thread that hit the breakpoint from the debugger 
goes through the operating system, and resuming 
execution of the thread is another context switch. In 
contrast, the breakpoints described here do not switch 
threads to execute the code in the breakpoint and have 
full access to the state of the computation that hit the 
breakpoint. Hardware assisted breakpoints, which have 
the advantage of being able to trap on memory accesses 
as well as instruction execution, also usually transfer to 
handlers inside the operating system [Pappas and 
Murray]. 

Discussion 

What we wanted was fast breakpoints, with little or no 
intervention required from the operating system. We 
wanted to be able to plant breakpoints in code from any 
of our translators, without any special preparation of the 
programs. The code to be executed in the breakpoint is 
ordinarily already available, either supplied by the 
programmer [Knuth], or referenced from a library of 
such routines (cg., profiling tools, assertion checkers, 
etc.). The purpose of the breakpoint is to transfer 
control to this code. The interface we provide maintains 
a registry of closures (each of which is a procedure and 
some private data), to be called when execution of a 
thread reaches a particular instruction. At the lowest 
levels, the breakpoint address is specified by a program 

counter value, though at higher levels one can request 
breakpoints at source locations, procedure entry points, 
etc. 

Note that we are interested in breakpoints that execute 
quickly once planted. The speed with which we can 
plant (and clear) breakpoints is a secondary considera- 
tion. If our only use of breakpoints were to contact an 
interactive debugger, speed would not be an issue. 
Instead, we use breakpoints to augment the normal 
processing of a program, and so would like breakpoints 
that execute as quickly as possible. 

The basic technique for planting a breakpoint is to 
assemble the code to call the registered closure and then 
replace the instruction at the breakpoint address with a 
branch to the newly assembled breakpoint code. But it 
is not that easy. Since we are invoking a closure, we 
must save any global state accessible to the closure 
before invocation, and restore that state afterwards. 
Since the code necessary to invoke the closure safely is 
larger than the instruction at the breakpoint address, we 
assemble the code elsewhere in memory and use a 
sufficiently small branch instruction to transfer to the 
breakpoint code. Since we are replacing an instruction 
at the breakpoint address, we must arrange for a copy of 
that instruction to be executed after the call to the 
closure. Relocating the instruction from the breakpoint 
address may involve some transformation of the instruc- 
tion, e.g., if it is a PC-relative branch, or if it references 
PC-relative data. After the execution of the displaced 
instruction control must be returned to the instruction 
stream following the breakpoint address. Figure 1 
shows the instruction stream and the breakpoint code 
when the breakpoint has been planted. By operating at 
the machine language level we can plant breakpoints in 
code produced from any source. The specifics of the 
breakpoint (the closure and the breakpoint address) are 
“compiled into” the breakpoint code, so there is no 
need for auxiliary data structures. 

First we discuss some restrictions on when this 
technique is applicable. These conditions are the basic 
requirements of the breakpoint package on the 
underlying runtime system. Next, we discuss how 
modem programming languages and computer archi- 
tectures have complicated the task of producing a 
breakpoint package. These difficulties are addressed in 
general, and then the implementation of our breakpoint 
package for a particular popular architecture is given. 

Restrictions and Complications 

Instruction memory must be writable. Since the basic 
breakpoint operation is to replace an instruction at the 
breakpoint address, we must be able to write instruction 
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instruction stream breakpoint code 

. 
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breakpoint address: w 
jnstructjo; branch _ 

+ instruction 

+ allocate save area 
save global state 
invoke closure 
restore global state 
deallocate save area 
instruction’ 
branch 3 

Figure 1. General form of a fast breakpoint, in which code is assembled out of line to invoke a closure, and the 
instruction at the breakpoint address is replaced by a branch to the auxiliary code. 

memory. Since we are setting breakpoints in a multi- 
processing environment, writing the new instruction 
must be atomic, at least with respect to the other 
processes executing at that address. We must also 
allocate some writable instruction space in which to 
assemble the breakpoint code, The space for the break- 
point code must be within the branch distance of the 
instruction written to the breakpoint address. These 
restrictions might be a source of trouble in some 
runtime systems or architectures. 

The branch planted at the breakpoint address may not 
be the same size as the instruction it is replacing. If the 
branch is smaller than the instruction it is replacing, no- 
op’s may be inserted along with the branch. If the 
branch is larger than the instruction at the breakpoint 
address, one might have to move the instruction at the 
breakpoint address and some of the following instruc- 
tions to have room for the branch instruction. One 
might not be able to replace a shorter instruction, e.g., if 
control transfers to any of the other instructions that 
need to be moved (or if one cannot determine that no 
such transfers occur). The branch instruction might 
violate some scheduling constraints that were ensured 
by the compiler, Any of these problems would disallow 
the planting of a breakpoint at that address. 

The breakpoint code must include code to save and 
restore some amount of global state around the 
invocation of the closure to ensure that the displaced 
instruction executes with the registers, etc., in the same 
state they would be in if the instruction were not 
displaced by the breakpoint. Saving state involves 
allocating space to hold the state and restoring state 
includes deallocating that space, so the breakpoint code 
must be able to allocate data space. 

Many modern machine architectures do not transfer 
control directly on executing a branch instruction but 
delay the branch, executing the instruction after the 

branch before the transfer takes effect [Sun SPARC] 
[Kane]. The instruction after the branch is said to be in 
the “delay slot” of the branch. Since we wish to replace 
a single instruction with a branch, but not execute the 
instruction which would be the delay slot of that 
branch, this would be a problem on such architectures. 
It might be possible to replace the instruction after the 
inserted branch with a no-op to avoid the problem of 
the delayed branch. However, that solution opens up 
the problem, discussed above, of atomically writing the 
replacement instructions, and also the problem of 
transfers to the instruction after the breakpoint address, 
as in the case of variable-sized branch instructions 
discussed above. 

One problem with branching to the breakpoint code is 
that the branch instructions may not have sufficient 
range to transfer control from the breakpoint address to 
the breakpoint code. Similarly, if the instruction at the 
breakpoint address has PC-relative operands, it may not 
be possible to relocate the instruction into the break- 
point code. 

Once a breakpoint has served its purpose, it must be 
removed. Disabling a breakpoint is easy. The branch 
instruction that was planted at the breakpoint address is 
replaced by the instruction that was displaced to plant 
the branch. The same atomicity requirements apply to 
the replacement as apply for planting the breakpoint in 
the first place. Thereafter, no new threads of control 
will branch to the breakpoint code. Then there is the 
problem of freeing, or reusing, the space occupied by 
the breakpoint code. 

In a uni-processing environment, when the branch is 
removed the space occupied by the breakpoint code can 
be freed, because the program counter is obviously not 
in the breakpoint code. In a multi-processing environ- 
ment we have a garbage collection problem. Since 
many threads may be executing in the breakpoint code 
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(or in the closure that is invoked from it) when we 
replace the instruction at the breakpoint address we 
cannot free the space occupied by the breakpoint code. 
We need to trace all the threads to see if any of them 
has a frame that is executing in, or expects to return to, 
the breakpoint code. This is somewhat simpler than the 
general garbage collection problem, since all we must 
find are the program counters and return addresses in 
the stacks of the threads. It should be possible to 
present this problem to a general garbage collector 
[Demers, et al.], though we have not done that yet. 
Note that reference counting the breakpoint code space 
is not possible, since program counters do not maintain 
reference counts on the code they are causing to be 
executed. We could have the first few instructions of 
the breakpoint code increment a counter, and have the 
last few instructions decrement the counter, but there 
would still be a window of several instructions before 
the counter was incremented, and after the counter was 
decremented, where the reference count would be low. 
Also there is a problem in that changes to the counter 
have to be monitored, which might require even more 
instructions in the breakpoint code, and might increase 
the window in which the counts would be low. 

Details of the implementation for the SPARC 

Below we describe the details of an implementation of a 
fast breakpoint package for the SPARC’ architecture. 
We have implemented breakpoints in a multi-threaded, 
shared address space, programming environment with 
dynamically loaded program modules. However, we 
could repackage our system to be a C library, with 
breakpoint setting and clearing invoked either by the 
program itself (e.g., for performance monitoring), or via 
an interactive debugger (e.g., for assertion checking or 
for conditional breakpoints). 

We do not have trouble replacing the instruction at the 
breakpoint address. Since, on the SPARC, all instruc- 
tions are word-sized, we never have any problem with 
branch instructions being larger than the instruction 
they are replacing. All instructions are word-aligned, 
and word-sized word-aligned writes are atomic, so the 
atomicity constraint was a non-problem. The Cedar 
programming environment dynamically loads code and 
leaves that code writable. Branch distances and 
relocation of displaced instructions are not problems for 
us since the SPARC instructions have generous 
displacement fields and our dynamic loader leaves 
convenient holes between dynamically loaded modules. 
Other runtime environments might not be so generous. 

* SPARC is a trademark of Sun Microsystems, Inc. 

If the loader did not leave holes between modules, we 
could instead request space from the storage allocator at 
convenient address intervals. (We do such allocations 
anyway, since the loader does not leave large enough 
holes for some breakpoint applications.) Most C 
programs occupy a small enough amount of code space 
that heap-allocated storage would be within reach of the 
branches available in the SPARC instruction set. 

The SPARC architecture has an unfortunate amount of 
global state to save. (This amount of global state has 
little or nothing to do with the overlapping register 
windows. We are not saving any non-local register 
windows. They are not accessible to the displaced 
instruction, nor during the execution of the registered 
closure, so they need not be saved or restored.) In the 
worst case, we have to save the window of registers 
visible to the displaced instruction. the global registers, 
the floating point registers, and a small collection of 
status registers (the condition codes, the Y register, and 
the floating point status register). It seems reasonable to 
allow a breakpoint closure to declare (at registration 
time) that is does not alter certain parts of the global 
state of the machine (e.g., the floating point registers). 
If it is known that a closure does not affect some part of 
the global state, the breakpoint code can be assembled 
to avoid saving and restoring that state. Such 
declarations make a substantial difference in the time to 
execute the breakpoint. Similarly, if a breakpoint does 
not require a full closure call, that can be arranged when 
the breakpoint is planted, for an additional savings 
during breakpoint execution. 

Saving all the state on a SPARC takes a large number of 
instructions. For this reason, we choose not to inline 
expand the saves and restores, but rather encapsulate 
them in procedures. (This is possible in our environ- 
ment, since we have control over the runtime libraries. 
An alternative would be to construct these procedures 
in memory as the first breakpoint was planted.) 
However, calling a procedure damages part of the 
global state (the return address register in particular). 
Before we can call the state-saving procedure, we have 
to allocate space to save the state. These reasons, and 
the desire to avoid saving and restoring the in and local 
registers (as seen by the displaced instruction), 
recommend the SPARC save and restore instruc- 
tions. The save instruction acquires a new register 
window and allocates a memory stack frame. The 
restore instruction releases the register window and 
deallocates the memory stack frame. (The extra frame 
has a deleterious effect on programs that examine stack 
traces, e.g., debuggers and profilers, since during the 
execution of the breakpoint the supplementary register 
window and memory stack frame have to be dealt with. 
To avoid this difficulty, the breakpoint code can set up 
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save %sp, -sizeof(saveArea), %sp -- push window and allocate save area, 
call saveRegisters -- saveRegistersf&saveArea.registers) 
add %sp, registersoffset, %oO 
sethi %hi(closureData), %oO -- closureProc(closureData) 
call closureProc 
or o/000, %lo(closureDataj, %oO 
calt restoreRegisters -- restoreRegistersf8saveArea.register.s) 
add %sp, registersoffset, %oO 
restore %sp, + sizeof(saveArea), %sp -- pop window and deallocate save area. 
instruction’ -- displaced (and relocated) instruction. 
ba,a breako0intAddres-s + 4 -- return to instruction stream. 

Figure 2. Patch for an ordinary SPARC instruction. 

the return address register of the new window to point 
back to the breakpoint address, so the frame holding the 
global state looks as if it were called from the break- 
point address. Saving the global state in an ordinary 
memory frame also makes the saved state available to 
debuggers during the execution of the breakpoint.) 
Allocating a new frame also avoids some trouble with 
transforming a leaf procedure (i.e., one that does not 
call any procedures) into a procedure that does further 
calls (e.g., to the register save and restore procedures, 
and to the closure). Note that on the SPARC the 
procedure call and return instructions are sufficiently 
fast that calling procedures from the breakpoint code is 
not a major part of the cost of executing a breakpoint. 
The code for a SPARC breakpoint code is shown in 
Figure 2 (except for the setting up of the return address 
register for the debugger). Each breakpoint address has 
its own corresponding breakpoint code. 

We are expecting to develop several applications that 
use self-modifying code with this style of assembling 
patches to the main instruction stream. Therefore, it is 
desirable that the patches identify what address they are 
patching. Patches are identified simply by prefixing the 
breakpoint code with a word containing the breakpoint 
address. It is important to keep multiple breakpoints 
(or other patches) from affecting the same instruction 
address, because if the breakpoints were cleared other 
than in a last-in first-out manner, the original intent of 
the program would be lost. 

All of the transfers of control on the SPARC are 
delayed, so it would appear that we have a problem with 
the instruction in the delay slot of the inserted branch to 
the breakpoint code. However, the SPARC conditional 
branch instructions include an “annul” bit that 
suppresses the effect of the delay slot instruction. With 
the annul bit set, the branch-always instruction (ba,a) 
suppresses the execution of the instruction in the delay 
slot. Thus, it is the perfect instruction for the branch to 
the breakpoint code. 

For instruction sets with only delayed branch instruc- 
tion, we have investigated the use of trap instructions to 
transfer control through the operating system. A 
sufficiently flexible operating system would allow us to 
register a handler for a particular trap. There are 
several disadvantages to using traps. not the least of 
which is that handling the trap through the operating 
system will invariably take more time than a simple 
transfer within a thread. In the instruction sets we have 
examined, the trap instructions cannot carry enough 
information to identify directly the breakpoint but will 
instead involve some lookup of the breakpoint code 
address, which will further delay the execution of the 
breakpoint. 

The SPARC instruction set does offer some other 
problems generic to delayed transfers. Consider the 
problem of setting a breakpoint on a delayed control 
transfer instruction. We can use the usual branch to get 
to the breakpoint code. When the displaced instruction 
executes, the instruction from its delay slot must also be 
in the displaced delay slot in the breakpoint code. This 
is easily arranged, if the instruction can be relocated to 
the breakpoint code. Now consider the problem of 
setting a breakpoint on an instruction in a delay slot. It 
would appear that we could just put the branch in the 
delay slot, except that the SPARC architecture manual 
says that a delayed branch may not appear in the delay 
slot of a delayed conditional branch. We had designed 
an approach that essentially plants two breakpoints: the 
first is on the conditional branch, thus transforming it to 
an unconditional branch: the second is for the break- 
point we wanted to set originally, which is now legal 
since it is not in the delay slot of a conditional branch. 
That technique works on a uni-processor system, but on 
a multi-processor there is a race where some of the 
processors see the illegal instruction sequence in which 
the conditional branch has a branch in its delay slot. In 
the present system we do not allow breakpoints to be 
planted in delay slots. 
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Machine Package Microseconds 
SPARCstationl dbx 24300 
Sun 41280 dbx 23300 
Dorado Celtics 33.0 
SPARCstationl Shepherd 24.4 
Sun 41280 Shepherd 17.4 
SPARCstationl Shepherd 11.2* 
Sun 41280 Shepherd 9.7* 

* not saving floating point registers 

Table 1. A comparison of breakpoint times. 

A special case of instructions with delay slots are call 
instructions. If we used our usual technique for break- 
points on delayed branches, the call instruction (and 
thus the return address) would be in the breakpoint 
code. For several reasons we want the return address to 
be in the real instruction stream not the breakpoint 
code. For example, profilers sometimes build dynamic 
call graphs by tracing return addresses [Graham, et al.]. 
Some compilers also encode information about the call 
(e.g., the number or address of expected return 
arguments) at the return address. These are compiler 
and runtime designs that we cannot hope to anticipate. 
Our solution is to use a call instruction instead of a 
branch instruction to get to the breakpoint code. The 
call instruction correctly sets the return address. Then, 
instead of executing the displaced call from the break- 
point code we simply branch to the first instruction of 
the called procedure. There are similar wrinkles for 
indirect calls and indirect returns (where the transfer 
address is in a register, as opposed to being a constant in 
the instruction stream). Each of these cases is 
distinguished as the breakpoint is planted, and distinct 
breakpoint code is generated for each case. 

Results and Applications 

Our results are encouraging. We implement break- 
points with only a few dozen instructions. These break- 
points are 1000 times faster than the breakpoints 
available in the conventional Unix debuggers [Sun 
Debugging]. Most of the time outside of the invoked 
closure is spent saving and restoring global state. We 
have tried the experiment of declaring breakpoint 
closures that do not affect parts of the global state, and 
have been able to reduce the save and restore times by 
more than one half. Further improvements are 
possible, but the returns are diminishing. Table 1 
compares our technique (identified as “Shepherd” 
because it uses the ba,a instruction) with breakpoint 

times on several machines and breakpoint packages. 
We note that fast breakpoints have been in use in Cedar 
on Dorados (3 MIPS personal workstations) for several 
years and are fast enough for our applications. We have 
given up microcode support by moving off Dorados and 
yet the relative speed of breakpoints to processor speed 
has remained relatively constant. So we have reason to 
believe that our breakpoints will be fast enough on 
commercially available processors. 

We have already used this breakpoint package as the 
basis for several different debugging tools, and feel that 
the mechanism is suitable for several other applications. 
Other members of our lab have used the breakpoint 
facility to contact our interactive debugger for ordinary 
program debugging. Another application of fast break- 
points implements data breakpoints: e.g., by planting a 
breakpoint on every store instruction in a procedure 
and checking which of them writes to a particular 
memory location. (Hardware assistance might be a 
better solution for this application [Pappas and 
Murray].) We have also discussed using breakpoints to 
transfer control to a processor simulator, either for 
debugging or to experiment with changes to the 
semantics of a machine operation. This breakpoint 
facility is fast enough to use for procedure call count 
profiling (or statement execution count profiling) 
without the need to recompile code. Algorithm 
animation, again without the need to recompile code, 
could make use of these breakpoints. These are 
examples of procedure (or statement. or instruction) 
advising, that, along with the traditional uses of advised 
procedures, could be implemented using the techniques 
described in this paper. 

Future work includes building novel applications on top 
of the breakpoint facility, and implementing break- 
points on a variety of instruction sets. 
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