
Fast Breakpoints: Design and Implementation

Peter B. Kessler
Xerox PARC

3333 Coyote Hill Road
Palo Alto, CA 94304

Abstract

We have designed and implemented a fast breakpoint
facility. Breakpoints are usually thought of as a feature
of an interactive debugger, in which case the break-
points need not be particularly fast. In our environment
breakpoints are often used for non-interactive informa-
tion gathering: for example, procedure call count and
statement execution count profiling [Swinehart, et al.].
When used non-interactively, breakpoints should be as
fast as possible, so as to perturb the execution of the
program as little as possible. Even in interactive
debuggers, a conditional breakpoint facility would
benefit from breakpoints that could transfer to the
evaluation of the condition rapidly, and continue
expeditiously if the condition were not satisfied. Such
conditional breakpoints could be used to check
assertions, etc. Program advising could also make use of
fast breakpoints [Teitelman]. Examples of advising
include tracing, timing, and even animation, all of
which should be part of an advanced programming
environment.

We have ported the Cedar environment from a machine
with microcode support for breakpoints [Lampson and
Pier] to commercial platforms running C code
[Atkinson, et al.]. Most of our ports run under the
Unix* operating system, so one choice for implementing
breakpoints for Cedar was to use the breakpoint facility
provided by that system. The breakpoints provided by
the Unix operating system are several orders of
magnitude too slow (and also several process switches
too complicated) for the applications we have in mind.

* Unix is a trademark of AT&T Bell Laboratories.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct corn-
mercial advantage, the ACM copyright notice and the titie of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@1990 ACM 0-S9791-364-7/90/0006/0078 $1.50

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

So we designed . - a breakpoint system that was fast
enough for our purposes.

Breakpoints for uni-processors running single threads of
control used to be fast and simple to implement. This
paper shows that breakpoints can still be fast, even with
multiple threads of control on multi-processors, This
paper describes problems in the design of a breakpoint
package for modern computer architectures and pro-
gramming styles, and our solutions to them for a
particular architecture.

Previous Work

The original inspiration for the breakpoints presented
here is the primeval method of patching code to alter its
semantics [Gill]. This technique was apparently com-
pletely natural for programmers who were pro-
gramming in assembler (or machine) language, and
needed to modify their programs without m-assembling
or relocating a lot of their code. User inserted break-
points became a part of debugging systems early on
[Stockham and Dennis]. Breakpoints in one form or
another have been available in programming environ-
ments since that time [Evans and Darley] [Johnson].

Breakpoints are implemented by assembling the
replacement code at some convenient place in memory
and planting a branch to the replacement code in place
of the original code. The replacement code can perform
its operations and then either return to the main instruc-
tion stream after the breakpoint, or may completely
alter the program flow. For example. an interactive
debugger might be invoked from the breakpoint code to
allow program state to be examined or altered. Break-
points can also be used as assembler program editors in
synchrony with high-level language editors to keep a
running program up to date with source modifications
W-d.
At some point, self-modifying code became taboo. and
breakpoints came to be implemented by traps to the
operating system, that would then transfer control to a

78

debugger [Klensk and Larson]. Traps to the operating
system are unnecessarily expensive in our view, and we
have tried to avoid them wherever possible.

In many ways, this work is similar in scope to the “scan-
point” work in Parasight [Aral and Gertner]. That work
focused on breakpoints in a multiprocessor setting. A
main point for them was the off-loading of the code
executed by the breakpoint to another processor in their
multiprocessor. In contrast, though we are running a
system with multiple light-weight threads in each
address space, our concern is for speed and simplicity in
the breakpoint mechanism: starting up a separate
thread to execute the breakpoint code seemed like too
much mechanism. If the code for the breakpoint wants
to start up a separate thread, it can easily do that. For
many applications of fast breakpoints (cg., counting
procedure entries, etc.), the work of the breakpoint code
is less than the work of forking a separate thread. For
some applications, such as checking assertions, the
breakpoint code should run in the same thread, so it can
raise an error synchronously with respect to that thread.

This work should be contrasted with breakpoints that
contact an interactive debugger, like the breakpoints in
dbx [Sun Debugging]. In dbx, hitting a breakpoint
causes a trap to the operating system, which then
schedules the debugger to run. Examining the state of
the thread that hit the breakpoint from the debugger
goes through the operating system, and resuming
execution of the thread is another context switch. In
contrast, the breakpoints described here do not switch
threads to execute the code in the breakpoint and have
full access to the state of the computation that hit the
breakpoint. Hardware assisted breakpoints, which have
the advantage of being able to trap on memory accesses
as well as instruction execution, also usually transfer to
handlers inside the operating system [Pappas and
Murray].

Discussion

What we wanted was fast breakpoints, with little or no
intervention required from the operating system. We
wanted to be able to plant breakpoints in code from any
of our translators, without any special preparation of the
programs. The code to be executed in the breakpoint is
ordinarily already available, either supplied by the
programmer [Knuth], or referenced from a library of
such routines (cg., profiling tools, assertion checkers,
etc.). The purpose of the breakpoint is to transfer
control to this code. The interface we provide maintains
a registry of closures (each of which is a procedure and
some private data), to be called when execution of a
thread reaches a particular instruction. At the lowest
levels, the breakpoint address is specified by a program

counter value, though at higher levels one can request
breakpoints at source locations, procedure entry points,
etc.

Note that we are interested in breakpoints that execute
quickly once planted. The speed with which we can
plant (and clear) breakpoints is a secondary considera-
tion. If our only use of breakpoints were to contact an
interactive debugger, speed would not be an issue.
Instead, we use breakpoints to augment the normal
processing of a program, and so would like breakpoints
that execute as quickly as possible.

The basic technique for planting a breakpoint is to
assemble the code to call the registered closure and then
replace the instruction at the breakpoint address with a
branch to the newly assembled breakpoint code. But it
is not that easy. Since we are invoking a closure, we
must save any global state accessible to the closure
before invocation, and restore that state afterwards.
Since the code necessary to invoke the closure safely is
larger than the instruction at the breakpoint address, we
assemble the code elsewhere in memory and use a
sufficiently small branch instruction to transfer to the
breakpoint code. Since we are replacing an instruction
at the breakpoint address, we must arrange for a copy of
that instruction to be executed after the call to the
closure. Relocating the instruction from the breakpoint
address may involve some transformation of the instruc-
tion, e.g., if it is a PC-relative branch, or if it references
PC-relative data. After the execution of the displaced
instruction control must be returned to the instruction
stream following the breakpoint address. Figure 1
shows the instruction stream and the breakpoint code
when the breakpoint has been planted. By operating at
the machine language level we can plant breakpoints in
code produced from any source. The specifics of the
breakpoint (the closure and the breakpoint address) are
“compiled into” the breakpoint code, so there is no
need for auxiliary data structures.

First we discuss some restrictions on when this
technique is applicable. These conditions are the basic
requirements of the breakpoint package on the
underlying runtime system. Next, we discuss how
modem programming languages and computer archi-
tectures have complicated the task of producing a
breakpoint package. These difficulties are addressed in
general, and then the implementation of our breakpoint
package for a particular popular architecture is given.

Restrictions and Complications

Instruction memory must be writable. Since the basic
breakpoint operation is to replace an instruction at the
breakpoint address, we must be able to write instruction

79

instruction stream breakpoint code

.

.

.

breakpoint address: w
jnstructjo; branch _

+ instruction

+ allocate save area
save global state
invoke closure
restore global state
deallocate save area
instruction’
branch 3

Figure 1. General form of a fast breakpoint, in which code is assembled out of line to invoke a closure, and the
instruction at the breakpoint address is replaced by a branch to the auxiliary code.

memory. Since we are setting breakpoints in a multi-
processing environment, writing the new instruction
must be atomic, at least with respect to the other
processes executing at that address. We must also
allocate some writable instruction space in which to
assemble the breakpoint code, The space for the break-
point code must be within the branch distance of the
instruction written to the breakpoint address. These
restrictions might be a source of trouble in some
runtime systems or architectures.

The branch planted at the breakpoint address may not
be the same size as the instruction it is replacing. If the
branch is smaller than the instruction it is replacing, no-
op’s may be inserted along with the branch. If the
branch is larger than the instruction at the breakpoint
address, one might have to move the instruction at the
breakpoint address and some of the following instruc-
tions to have room for the branch instruction. One
might not be able to replace a shorter instruction, e.g., if
control transfers to any of the other instructions that
need to be moved (or if one cannot determine that no
such transfers occur). The branch instruction might
violate some scheduling constraints that were ensured
by the compiler, Any of these problems would disallow
the planting of a breakpoint at that address.

The breakpoint code must include code to save and
restore some amount of global state around the
invocation of the closure to ensure that the displaced
instruction executes with the registers, etc., in the same
state they would be in if the instruction were not
displaced by the breakpoint. Saving state involves
allocating space to hold the state and restoring state
includes deallocating that space, so the breakpoint code
must be able to allocate data space.

Many modern machine architectures do not transfer
control directly on executing a branch instruction but
delay the branch, executing the instruction after the

branch before the transfer takes effect [Sun SPARC]
[Kane]. The instruction after the branch is said to be in
the “delay slot” of the branch. Since we wish to replace
a single instruction with a branch, but not execute the
instruction which would be the delay slot of that
branch, this would be a problem on such architectures.
It might be possible to replace the instruction after the
inserted branch with a no-op to avoid the problem of
the delayed branch. However, that solution opens up
the problem, discussed above, of atomically writing the
replacement instructions, and also the problem of
transfers to the instruction after the breakpoint address,
as in the case of variable-sized branch instructions
discussed above.

One problem with branching to the breakpoint code is
that the branch instructions may not have sufficient
range to transfer control from the breakpoint address to
the breakpoint code. Similarly, if the instruction at the
breakpoint address has PC-relative operands, it may not
be possible to relocate the instruction into the break-
point code.

Once a breakpoint has served its purpose, it must be
removed. Disabling a breakpoint is easy. The branch
instruction that was planted at the breakpoint address is
replaced by the instruction that was displaced to plant
the branch. The same atomicity requirements apply to
the replacement as apply for planting the breakpoint in
the first place. Thereafter, no new threads of control
will branch to the breakpoint code. Then there is the
problem of freeing, or reusing, the space occupied by
the breakpoint code.

In a uni-processing environment, when the branch is
removed the space occupied by the breakpoint code can
be freed, because the program counter is obviously not
in the breakpoint code. In a multi-processing environ-
ment we have a garbage collection problem. Since
many threads may be executing in the breakpoint code

80

(or in the closure that is invoked from it) when we
replace the instruction at the breakpoint address we
cannot free the space occupied by the breakpoint code.
We need to trace all the threads to see if any of them
has a frame that is executing in, or expects to return to,
the breakpoint code. This is somewhat simpler than the
general garbage collection problem, since all we must
find are the program counters and return addresses in
the stacks of the threads. It should be possible to
present this problem to a general garbage collector
[Demers, et al.], though we have not done that yet.
Note that reference counting the breakpoint code space
is not possible, since program counters do not maintain
reference counts on the code they are causing to be
executed. We could have the first few instructions of
the breakpoint code increment a counter, and have the
last few instructions decrement the counter, but there
would still be a window of several instructions before
the counter was incremented, and after the counter was
decremented, where the reference count would be low.
Also there is a problem in that changes to the counter
have to be monitored, which might require even more
instructions in the breakpoint code, and might increase
the window in which the counts would be low.

Details of the implementation for the SPARC

Below we describe the details of an implementation of a
fast breakpoint package for the SPARC’ architecture.
We have implemented breakpoints in a multi-threaded,
shared address space, programming environment with
dynamically loaded program modules. However, we
could repackage our system to be a C library, with
breakpoint setting and clearing invoked either by the
program itself (e.g., for performance monitoring), or via
an interactive debugger (e.g., for assertion checking or
for conditional breakpoints).

We do not have trouble replacing the instruction at the
breakpoint address. Since, on the SPARC, all instruc-
tions are word-sized, we never have any problem with
branch instructions being larger than the instruction
they are replacing. All instructions are word-aligned,
and word-sized word-aligned writes are atomic, so the
atomicity constraint was a non-problem. The Cedar
programming environment dynamically loads code and
leaves that code writable. Branch distances and
relocation of displaced instructions are not problems for
us since the SPARC instructions have generous
displacement fields and our dynamic loader leaves
convenient holes between dynamically loaded modules.
Other runtime environments might not be so generous.

* SPARC is a trademark of Sun Microsystems, Inc.

If the loader did not leave holes between modules, we
could instead request space from the storage allocator at
convenient address intervals. (We do such allocations
anyway, since the loader does not leave large enough
holes for some breakpoint applications.) Most C
programs occupy a small enough amount of code space
that heap-allocated storage would be within reach of the
branches available in the SPARC instruction set.

The SPARC architecture has an unfortunate amount of
global state to save. (This amount of global state has
little or nothing to do with the overlapping register
windows. We are not saving any non-local register
windows. They are not accessible to the displaced
instruction, nor during the execution of the registered
closure, so they need not be saved or restored.) In the
worst case, we have to save the window of registers
visible to the displaced instruction. the global registers,
the floating point registers, and a small collection of
status registers (the condition codes, the Y register, and
the floating point status register). It seems reasonable to
allow a breakpoint closure to declare (at registration
time) that is does not alter certain parts of the global
state of the machine (e.g., the floating point registers).
If it is known that a closure does not affect some part of
the global state, the breakpoint code can be assembled
to avoid saving and restoring that state. Such
declarations make a substantial difference in the time to
execute the breakpoint. Similarly, if a breakpoint does
not require a full closure call, that can be arranged when
the breakpoint is planted, for an additional savings
during breakpoint execution.

Saving all the state on a SPARC takes a large number of
instructions. For this reason, we choose not to inline
expand the saves and restores, but rather encapsulate
them in procedures. (This is possible in our environ-
ment, since we have control over the runtime libraries.
An alternative would be to construct these procedures
in memory as the first breakpoint was planted.)
However, calling a procedure damages part of the
global state (the return address register in particular).
Before we can call the state-saving procedure, we have
to allocate space to save the state. These reasons, and
the desire to avoid saving and restoring the in and local
registers (as seen by the displaced instruction),
recommend the SPARC save and restore instruc-
tions. The save instruction acquires a new register
window and allocates a memory stack frame. The
restore instruction releases the register window and
deallocates the memory stack frame. (The extra frame
has a deleterious effect on programs that examine stack
traces, e.g., debuggers and profilers, since during the
execution of the breakpoint the supplementary register
window and memory stack frame have to be dealt with.
To avoid this difficulty, the breakpoint code can set up

81

save %sp, -sizeof(saveArea), %sp -- push window and allocate save area,
call saveRegisters -- saveRegistersf&saveArea.registers)
add %sp, registersoffset, %oO
sethi %hi(closureData), %oO -- closureProc(closureData)
call closureProc
or o/000, %lo(closureDataj, %oO
calt restoreRegisters -- restoreRegistersf8saveArea.register.s)
add %sp, registersoffset, %oO
restore %sp, + sizeof(saveArea), %sp -- pop window and deallocate save area.
instruction’ -- displaced (and relocated) instruction.
ba,a breako0intAddres-s + 4 -- return to instruction stream.

Figure 2. Patch for an ordinary SPARC instruction.

the return address register of the new window to point
back to the breakpoint address, so the frame holding the
global state looks as if it were called from the break-
point address. Saving the global state in an ordinary
memory frame also makes the saved state available to
debuggers during the execution of the breakpoint.)
Allocating a new frame also avoids some trouble with
transforming a leaf procedure (i.e., one that does not
call any procedures) into a procedure that does further
calls (e.g., to the register save and restore procedures,
and to the closure). Note that on the SPARC the
procedure call and return instructions are sufficiently
fast that calling procedures from the breakpoint code is
not a major part of the cost of executing a breakpoint.
The code for a SPARC breakpoint code is shown in
Figure 2 (except for the setting up of the return address
register for the debugger). Each breakpoint address has
its own corresponding breakpoint code.

We are expecting to develop several applications that
use self-modifying code with this style of assembling
patches to the main instruction stream. Therefore, it is
desirable that the patches identify what address they are
patching. Patches are identified simply by prefixing the
breakpoint code with a word containing the breakpoint
address. It is important to keep multiple breakpoints
(or other patches) from affecting the same instruction
address, because if the breakpoints were cleared other
than in a last-in first-out manner, the original intent of
the program would be lost.

All of the transfers of control on the SPARC are
delayed, so it would appear that we have a problem with
the instruction in the delay slot of the inserted branch to
the breakpoint code. However, the SPARC conditional
branch instructions include an “annul” bit that
suppresses the effect of the delay slot instruction. With
the annul bit set, the branch-always instruction (ba,a)
suppresses the execution of the instruction in the delay
slot. Thus, it is the perfect instruction for the branch to
the breakpoint code.

For instruction sets with only delayed branch instruc-
tion, we have investigated the use of trap instructions to
transfer control through the operating system. A
sufficiently flexible operating system would allow us to
register a handler for a particular trap. There are
several disadvantages to using traps. not the least of
which is that handling the trap through the operating
system will invariably take more time than a simple
transfer within a thread. In the instruction sets we have
examined, the trap instructions cannot carry enough
information to identify directly the breakpoint but will
instead involve some lookup of the breakpoint code
address, which will further delay the execution of the
breakpoint.

The SPARC instruction set does offer some other
problems generic to delayed transfers. Consider the
problem of setting a breakpoint on a delayed control
transfer instruction. We can use the usual branch to get
to the breakpoint code. When the displaced instruction
executes, the instruction from its delay slot must also be
in the displaced delay slot in the breakpoint code. This
is easily arranged, if the instruction can be relocated to
the breakpoint code. Now consider the problem of
setting a breakpoint on an instruction in a delay slot. It
would appear that we could just put the branch in the
delay slot, except that the SPARC architecture manual
says that a delayed branch may not appear in the delay
slot of a delayed conditional branch. We had designed
an approach that essentially plants two breakpoints: the
first is on the conditional branch, thus transforming it to
an unconditional branch: the second is for the break-
point we wanted to set originally, which is now legal
since it is not in the delay slot of a conditional branch.
That technique works on a uni-processor system, but on
a multi-processor there is a race where some of the
processors see the illegal instruction sequence in which
the conditional branch has a branch in its delay slot. In
the present system we do not allow breakpoints to be
planted in delay slots.

82

Machine Package Microseconds
SPARCstationl dbx 24300
Sun 41280 dbx 23300
Dorado Celtics 33.0
SPARCstationl Shepherd 24.4
Sun 41280 Shepherd 17.4
SPARCstationl Shepherd 11.2*
Sun 41280 Shepherd 9.7*

* not saving floating point registers

Table 1. A comparison of breakpoint times.

A special case of instructions with delay slots are call
instructions. If we used our usual technique for break-
points on delayed branches, the call instruction (and
thus the return address) would be in the breakpoint
code. For several reasons we want the return address to
be in the real instruction stream not the breakpoint
code. For example, profilers sometimes build dynamic
call graphs by tracing return addresses [Graham, et al.].
Some compilers also encode information about the call
(e.g., the number or address of expected return
arguments) at the return address. These are compiler
and runtime designs that we cannot hope to anticipate.
Our solution is to use a call instruction instead of a
branch instruction to get to the breakpoint code. The
call instruction correctly sets the return address. Then,
instead of executing the displaced call from the break-
point code we simply branch to the first instruction of
the called procedure. There are similar wrinkles for
indirect calls and indirect returns (where the transfer
address is in a register, as opposed to being a constant in
the instruction stream). Each of these cases is
distinguished as the breakpoint is planted, and distinct
breakpoint code is generated for each case.

Results and Applications

Our results are encouraging. We implement break-
points with only a few dozen instructions. These break-
points are 1000 times faster than the breakpoints
available in the conventional Unix debuggers [Sun
Debugging]. Most of the time outside of the invoked
closure is spent saving and restoring global state. We
have tried the experiment of declaring breakpoint
closures that do not affect parts of the global state, and
have been able to reduce the save and restore times by
more than one half. Further improvements are
possible, but the returns are diminishing. Table 1
compares our technique (identified as “Shepherd”
because it uses the ba,a instruction) with breakpoint

times on several machines and breakpoint packages.
We note that fast breakpoints have been in use in Cedar
on Dorados (3 MIPS personal workstations) for several
years and are fast enough for our applications. We have
given up microcode support by moving off Dorados and
yet the relative speed of breakpoints to processor speed
has remained relatively constant. So we have reason to
believe that our breakpoints will be fast enough on
commercially available processors.

We have already used this breakpoint package as the
basis for several different debugging tools, and feel that
the mechanism is suitable for several other applications.
Other members of our lab have used the breakpoint
facility to contact our interactive debugger for ordinary
program debugging. Another application of fast break-
points implements data breakpoints: e.g., by planting a
breakpoint on every store instruction in a procedure
and checking which of them writes to a particular
memory location. (Hardware assistance might be a
better solution for this application [Pappas and
Murray].) We have also discussed using breakpoints to
transfer control to a processor simulator, either for
debugging or to experiment with changes to the
semantics of a machine operation. This breakpoint
facility is fast enough to use for procedure call count
profiling (or statement execution count profiling)
without the need to recompile code. Algorithm
animation, again without the need to recompile code,
could make use of these breakpoints. These are
examples of procedure (or statement. or instruction)
advising, that, along with the traditional uses of advised
procedures, could be implemented using the techniques
described in this paper.

Future work includes building novel applications on top
of the breakpoint facility, and implementing break-
points on a variety of instruction sets.

83

Acknowledgments

I thank my colleagues in the Xerox PARC Computer
Science Laboratory who contributed ideas to the break-
point package presented here and who also built the rest
of the programming environment in which it runs.
Thanks especially to Andy Litman, who implemented
the data breakpoints based on these ideas while I was
putting the rest of the package together. Thanks also to
the program committee for their many good suggestions
for improving the presentation of the paper.

References

[Aral and Gertner]
Z. Aral, and I. Gertner, “High-Level Debugging in
Parasight”, in Proceedings of the Workshop on
Parallel and Distributed Debugging, SIGPLAN
Notices Volume 24, Number 1, January 1989.

[Atkinson, et al.]
R. Atkinson, A. Demers, C. Hauser, C. Jacobi, P.
Kessler, M. Weiser, “Experiences Creating a Portable
Cedar”, in Proceedings of the SIGPLANB9
Conference on Programming Design and
Implementation, SIGPLAN Notices Vol. 24, No. 7,
July 1989.

[Demers, et al.]
A. Demers, M. Weiser, B. Hayes, H. Boehm. D.
Bobrow, S. Shenker, “Combining Generational and
Conservative Garbage Collection: Framework and
Implementations”, in Proceedings of the 171h Annual
ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, January 1990.

[Evans and Darley]
T. G. Evans and D. L. Darley, “On-line Debugging
Techniques: A Survey”, in Proceedings of the Fail
Joint Computer Conference, 1966.

Fabwl
R. S. Fabry, “MADBUG - A MAD Debugging
System”, in The Compatible Time-Sharing System A
Programmer’s Guide. Second Edition, MIT Press,
Cambridge MA, 1965.

[Gill]
S. Gill, “The Diagnosis of Mistakes in Programmes
on the EDSAC”, in Proceedings of the Royal Society,
Series A, Vol. 206, pp. 538-554.

[Graham, et al.]
S. Graham, P. Kessler, M. McKusick, ‘&gprof: A Call
Graph Execution Profiler”, in Proceedings of the
SIGPLAN’82 Symposium on Compiler Construction,
SIGPLAN Notices Vol. 17, No. 2, June 1982.

[Johnson]
M. S. Johnson, An Annotated Software Debugging
Bibliography, Hewlett-Packard Laboratories, March
1982.

[Kane]
G. Kane, MIPS RISC Architecture, Prentice-Hall
Inc., Englewood Cliffs, NJ, 1988.

[Klensk and Larson]
T. J. Klensk and L. E. Larson, IBM Technical
Disclosure Bulletin, Vol. 15, No. 4, pp 1248-50,
September 1972.

[Knuth]
D. E. Knuth, The Art of Computer Programming, Vol.
1, p. 189, Addison-Wesley, 1968.

[Lampson and Pier]
B. Lampson and K. Pier, “A Processor for High-
Performance Personal Computer”, in
SIGARCHZEEE Proceedings of the 71h Symposium
on Computer Architecture, La Baule, May 1980.

[Pappas and Murray]
C. H. Pappas and W. H. Murray III, 80386
Microprocessor Handbook, Osborne McGraw-Hill,
Berkeley, CA, 1988.

[Stockham and Dennis]
T. G. Stockham and J. B. Dennis, “FLIT -
Flexowriter Interrogation Tape: A Symbolic Utility
Program for the TX-O”, Memo 5001-23. Department
of Electrical Engineering, MIT, July 1960.

[Sun Debugging]
Sun Microsystems, Inc., Debugging Tools, Part No.
800-1775-10, May 1988.

[Sun SPARC]
Sun Microsystems, Inc., The SPARC Architecture
Manual, Part No. 800-1399-03, June 1987.

[Swinehart, et al.]
D. Swinehart, P. Zellweger, R. Beach, R. Hagmann,
“A Structural View of the Cedar Programming
Environment”, Transactions on Programming
Languages and Systems, Vol. 8, No. 4, October 1986.

[Tei telman]
W. Teitelman, Inter-lisp Reference Manual, Xerox
Corporation, Palo Alto, CA, Oct. 1978.

84

