A Modular Implementation
of Partial Evaluation

Christopher Colby Peter Lee

March 1992
CMU-CS-92-123

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Charles Consel and Siau Cheng Khoo have devel oped atechnique for parameterizing partial eval-
uation and binding-time analysis with respect to abstract domains[5]. We have found the modules
system of Standard ML [12, 15] to be a useful vehicle for implementing a sSimilar parameteriza-
tion technique. Furthermore, the ability to parameterize binding-time analysis indicates that the
technique may be useful for implementations of collecting interpretationsin general. This paper
describes our implementation of parameterized partial evaluation, with a particular focus on the
use of the Standard ML modules system.

Thisresearch was partially supported by the National Science Foundation under grant #CCR-9057567 and in part
by the NSF Graduate Research Fellowship Program. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the officia policies, either expressed or implied, of the
National Science Foundation or the US Government.

A Modular Implementation of Partial Evaluation 1

Source program:
factiter(n,r) = if eq(n,O0)
flactiter(m' nus(n, 1), tines(n,r))
Input (5, 1) yieldsthe residual program:
factiter7() = 120
Input (5, T) yields the residual program:

factiter7(r) = tinmes(1l,tinmes(2,tines(3,tinmes(4,tinmes(5,r)))))

Figure 1: Examples of partial evaluation.

1. Introduction

A partia evaluator, when given a program and a partial specification of the program’s input data,
producesaresidual program that takestheremainder of theinput and computesthe proper result. As
an example of partia evaluation, seeFigure 1. Several pragmatic considerationslead to difficulties
in the development of a partial evaluator. The first consideration is the efficiency of the residual
programs. |deally, theavailability of the partial input should enable many optimizations. However,
thisiscomplicated by the desireto handle programsthat use higher-order functions[8] and complex
data structures [13]. A second consideration is self-application—the ability to partially evaluate
the partial evaluator [10]. Self-applicable partial evaluators can be useful in compiler generation
[7] aswell as other areas, but in practice they require atwo-pass strategy involving a binding-time
analysis [11]. Despite these difficulties, self-applicable partial evaluators such as Similix [2] and
Schism [3] have been devel oped and used in nontrivia applications.

A third consideration that hasreceived far |ess attention hasto do with the method for specifying
the partial inputs. The simplest approach allows individual inputs to be completely specified or
unspecified. But a more general notion of partial input can also be useful. For instance, one may
want to specify that an input is an unknown, but positive, integer; another possibility might be to
specify that an input is alist containing three (unknown) elements; and so on. Such flexibility in
the specification of partial input allows more information to be provided to the partial evaluator,
thereby leading to more efficient residual programs. For some examples, see Figure 12.

In order to achieve such generality in the specification of partial input, Charles Consel and
Siau Cheng Khoo have devel oped a method for parameterizing partial evaluation and binding-time
analysis with respect to abstract domains [5]. Using their method as a general guide, we have
used the modules system of Standard ML [12, 15] to implement a Smple partial evaluator that
is parameterized by modular implementations of abstract interpretations. The parameterization
allows a standard implementation of a partial evaluator to be extended in a modular fashion, by
abstract domains, thereby leading to flexibility in the specification of the partia input. We have
also implemented a binding-time analyzer that is parameterized in the same manner. This leads us
to believe that collecting interpretationsin general might benefit from this modul arity.

2 A Modular Implementation of Partial Evaluation

We begin this paper with some background about the technique devel oped by Consel and Khoo,
and discuss simple (i.e., not parameterized) partial evaluation. Then, we present a description
and an implementation in Standard ML of our system for specifying and combining abstract
interpretations. We then describe a partial evaluator written in Standard ML that is parameterized
with respect to such abstract interpretations. Finally, we describe an implementation of a binding-
time analyzer parameterized in the same way and conclude with future directions of this research.

2. Background

One of the key notions used by Consel and Khoo is the facet. Given a semantic algebra, a facet
defines an abstraction (or approximation) of that algebra. A semantic algebra [D; O] consists of a
semantic domain D and a set of primitive operations O on thisdomain. A facet for that algebrais
an algebra [D; O] defined by an abstraction funtion & : D — D, where

1. Disan algebraic lattice of finite height.

2. If p € O isaclosed operator (i.e, p : D* — D), then j : D” — D isits corresponding
abstract versoninO,and aé o p C po &*.

3. If p € O isan open operator with functionality D* — D', where D’ is some domain different
fromD, thenp : D* — Const isits corresponding abstract versionin O, and # o p C jp o &%,
where 7 : D' — Consgt is a function that maps domain elements into the lifted domain of
basic values.

An example facet isthe rule-of-signs abstraction for the semantic algebra[Int . ; {+, <}] where

= {L,Pos,ZERO,NEG, T}, : D x D — D isthe closed + _operator defined over signs and
yleldlng signs (eg., +<Pos Pos) = Pos), and < : D x D — Const is the open < operator that
may yield concrete values (e.g., <(NEG, Pos) = [true]).

Consel and Khoo furthermore define the product of facets, which combines a set of facets
defined for a given semantic algebra. Given facets [D;; O,] for i € {1...m} defined for the
semantic algebra [D; O], one can define the product of facets, denoted [D; 1], where D i, roughly
speaking, akind of product of the domains D;, and where there is a product operator w, € 0 for
each operator p € D. If p isaclosed operator, then w, : : D* — D. If p isan open operator, then
wy D* — Const. Intuitively, w, triggers each facet operator p; with its corresponding abstract
values from the products.

Further details of thisframework are presented in [5], which demonstrates as examplesasimple
online partial evaluator and a binding-time analyzer for a first-order functiona language, both of
which are parameterized with respect to a product of facets. The binding-time analysisinvolvesa
notion of facet analysis and abstract facets to express the collecting interpretation.

We have devel oped asystem embodying notions similar in spirit to the facets, product of facets,
and abstract facets of Consel and Khoo. Furthermore, we have implemented this system in the
language Standard ML in away that makes good use of ML’'s modules system. We describe this
implementation in Section 4.

A Modular Implementation of Partial Evaluation 3

3. A SimpleOnlinePartial Evaluator

Before we present our system of parameterization, we shall first describe a semantics of asimple
online partial evaluator. Figure 2 is a semantics of a partial evaluator for a strict first-order
functional language similar to the one presented in [5] and other papers. The APP function, which
isnot shown in Figure 2, makes decisions about when to specialize functions. When afunctionis
speciaized, either theresult isinlined or acall to anew specialized function (which isadded to the
program returned by APP) isreturned.

Inthissimpleonlineevaluator, the programissymbolically evaluated. Applicationsof primitive
operations are checked to see if all of the arguments are constant, and if so the entire application
is “constant-folded” away. Hence, constant folding is built into the partial evaluator. It is“hard-
coded” into the K, function. As described in Section 1, however, we would like to have more
flexibility in expressing the values of an expression during partial evaluation (e.g., POSrepresenting
apositive integer). We will thus see that primitive operationswill have to be handled differently.

Inour system, instead of buildingax’,, functionin the semantics, we supply the partial evalutator
with afacet, which defines the abstract domains over which values are taken and the definitions of
the primitive operations over these domains. A facet isthusa collection of abstract interpretations.
One defines a single such abstract interpretation by a facet specification, and one may combine
multiple facets into a single facet. The standard notion of constant folding can be encapsulated
in a facet, as well; as we shall describe in Section 5, one may achieve this by writing a facet
specification similar to the X, function of Figure 2. But facet specifications are expressive enough
to encapsulate many different abstract interpretations. Later, we shall present a semantics for a
partial evaluator for our first-order functional language that is parameterized with respect to afacet.
But first, we shall explain facets themselves.

4. Facet Specifications, Facets, and the Combinationsof Facets

First we shall present some preliminaries. The usual notion of the lift operation involves adding a
1 element to a set of values. Our “lift”, however, adds T aswell. In Standard ML code, we have
the LI FTED signature in Figure 3 which specifies alifted domain. Type T represents the domain
to be lifted. The signature provides equality, join, and meet operations for the lifted domain. (The
equality operationisprovided by Standard ML’s polymorphic equality and enforced by theeqt ype
requirement for T.) The signatureitself does not enforce the ordering shown in the lattice diagram,
but it isassumed that functionsj oi n and neet will be defined appropriately.

ThelLi f t functor in Figure 3 takes atype representing a set of values and produces aflat lifted
domain of that type. Also shown isthe result of applying the functor to the set of constants of our
first-order language. We denote the resulting lattice Const. As we shall see, Const will play a
major rolein our parameterized partial evaluator.

Now, we are ready to present facets as encapsulations of abstract interpretations. One specifies
afacet with a facet specification. The components of a facet specification and the associated ML
signature FACET _SPECI FI CATI ON are shown in Figure 4. Notice that « and ¢, while monotonic,

A Modular Implementation of Partial Evaluation

¢ Syntactic Domains

o € Prog Programs
e € Exp Expressions
¢ € Const Constants
r € Var Variables
p € Primop PrimitiveOperators
f € Fn Function Names
e cla|pler,....en) | fle1,...,en) | iferezes

{file, ..., xpn,) = e;} (f1isthemain function)

e Semantic Domains
p € Env = Var — EXp

e Valuation Functions

P : Prog— Exp* — Prog
£ . Exp— Env— Prog — Exp x Prog
K, : Primop — Const® — Const
APP : Fn — Exp* — Env — Program — Exp x Program

Poler,....en,) = (ELfu(xr, ..., zn)](L]er/zr]))o) |2
where o = [{fi(21,...,2n,) = € }]

Ele)po = ([e], o)

Elelpe = (plz], o)
Elpler,...,en)]po = /\(e;»ECOnS)—>(1Cp[[p]](e/l,...,e;),an), (Ip(ey, - e)], on)
i=1
where (ef,01) = Eei]po
(eh02) = Elenlorns
Eliferezes] po = (e € Const) —

(¢] — Elealpor, Eles]por),

([if e €5 €3], 03)

where (e, 02) = E[er]por
(e5,03) = ¢Eles]po
where (¢, 01) = E[ei]po
Elfler,...,en)lpo = APP[fl{el,... e)pon
where (ef,01) = Eei]po
<6;m0'n> = Elen]pon-1
Ky [+]1{c1,c2) = eate
Kp[-1{c1,e2) = c1—e2

Figure2: A ssimple online partial evaluator for a strict first-order functional language.

A Modular Implementation of Partial Evaluation

signature LIFTED =

Caﬁﬁ = EXACT(c1) EXACT(c2) . . .

L

sig
eqtype T
dat atype Lifted = Top
| Exact of T
| Bottom
val join: Lifted -> Lifted -> Lifted
val neet: Lifted -> Lifted -> Lifted
end
T

functor Lift(eqtype T): LIFTED =
struct
type T =T
dat atype Lifted = Top
| Exact of T
| Bottom
fun join Bottomx = x
| join x Bottom = Xx
| join xy =if x=y then x
el se Top
fun neet Top x = x
| meet x Top = X
| meet x y = if x=y then x
el se Bottom
end

Figure 3: A functor to produce aflat lifted domain and the result of lifting the set of constants.

2. An abstract domain D.

3. A monotonic abstraction function « :

D — D.

D" — D.

si gnat ure FACET_SPECI FI CATI ON =
sig

structure Op: PRIM

structure D: LIFTED

eqt ype Dhat

val join: Dhat -> Dhat -> Dhat

val abs: D.Lifted -> Dhat

val inj: Dhat -> D.Lifted

val closedOp: Op.Prim-> bool

val openQp: Op.Prim-> bool

val Cc: p.Prim-> Dhat |ist -> Dhat

val Co: Op.Prim-> Dhat list -> D.Lifted
end

1. A concrete domain D that must be lifted (as shown in Figure 3).

iC D — D and an associated monotonic injection
function . : D — D satisfying the safety condition that idp C ¢ o a.
4. A set O. of closed abstract primitive operations; an operation p € O. has functionality

5. A set O, of open abstract primitive operations; an operation p € O, has functionality

Figure 4: Components of a facet specification and the associated Standard ML signature.

6 A Modular Implementation of Partial Evaluation

do not define aretraction.

Asan exampleof afacet specification, Figure5 shows exerpts(Qc and Co areincomplete) froma
Standard ML functor Si gnSpec that implementsthe specification for the rule-of-signsabstraction
of integers. The functor takes as arguments a structure Absyn matching signature ABSYN that
specifies the abstract syntax of our first-order language and a structure Const representing alifted
domain. It yields a structure matching the FACET _SPECI FI CATI ON signature of Figure 4. In
addition, thereis a sharing constraint that requiresthat the “non-lifted” elements of the domain that
Const represents be the elements of type Absyn. Const . In other words, Const represents the
Const of Figure 3.

Finally, we can consider combining a set of such abstract interpretations into a single facet.
The form of a facet specification does not lend itself to such combinations. Hence, we introduce
a dightly different kind of structure, called a facet. The components of a facet, aong with the
associated signature FACET, are shown in Figure 6. Note that, except for aname change from D to
Facet Val ue, the only difference between the definition of afacet specification and the definition
of afacet is that there are no open primitive operations in a facet. This will make it possible to
combine two facets into one, as we shall see below.

Figure 7 shows a mechanical process, implemented by the functor MakeFacet , to convert a
facet specification to afacet. Note the definition of the FacetValuedomainasDs x Ds. Intuitively,
the idea behind this is that the FacetValue domain is expressive enough to alleviate the need to
differentiate between open and closed primitive operations.

Now, we may combine facets. Figure 8 shows amechanical processto combinetwo facetswith
the same concrete domain and corresponding primitiveoperationsto asinglefacet. TheFacetValue
domainisthe domain cross-product of the two components FacetValue domains. The abstraction
function is the pairwise composition of the components' abstractions functions, and the injection
function returns the best approximation to the results of both components’ injection function.

Notice the definition of the abstract primitive operations O. First, the pairwise application of
the component facets corresponding operationsis done to yield a compound facet value f. Next,
f isinjected into D with . Then, if the result of the injection is | p, we return the abstraction
of 1p, whichis | racetvaier Otherwise, if the result of the injection is Tp, then we simply return
f, since it is the most accurate facet value information available. Otherwise, f has injected into
a “concrete” value, and we return the abstraction of that value, which is the most accurate facet
value possible of such aconcrete value. Theintuitiveresult isthat when many facets are combined
into one, if some abstract interpretation yields a concrete value as a result of a primitive operation
(e.g., <(NEG, Pos)), that value is “propagated” down to the other facets to be abstracted viatheir
respective o functions.

We now have the machinery to capture an arbitrary number of abstract interpretations in a
single facet. First, we define each abstract interpretation by writing specifications matching the
FACET _SPECI FI CATI ON signatureof Figure4. Then, we apply theMakeFacet functor of Figure7
to each facet specification in order to obtain afacet. Finally, we combineall the facetsinto asingle
facet with multiple applications of the Conbi neFacet s functor of Figure 8.

A Modular Implementation of Partial Evaluation

functor SignSpec(structure Absyn: ABSYN
structure Const: LIFTED
sharing type Absyn. Const = Const.T): FACET_SPECI FI CATI ON =
struct
exception SignSpec
structure Op = Absyn. Op
structure D = Const o
D = Const
dat at ype Dhat = Top T
| Neg | Zero | Pos /‘\
| Bottom N
D = Nec ZERO Pos
fun join Bottomx = x
| join x Bottom = x \‘/
| join xy =if (x=y) then x else Top L
Pos iféoe{l2,...}
fun abs D.Bottom = Bottom ZERO ifé=0
| abs (D.Exact (Absyn.Int n)) = .
if n=0 then Zero ad = NEG ifé € {—1,—2,...}
| abs _eITie if n>0 then Pos el se Neg J‘ﬁ if § = 1p
_ = lop .
Tg otherwise
fun inj Zero = D.Exact (Absyn.Int 0) Tp ifé e {Ta,POS, NEG}
inj = D. To 2 e p
Iinj _ P b = 0 ifé=2ZErRO
1lp ifé= J_a
fun closedOp Op. PLUS = true 0. = T
| closedOp Op. M NUS = true ¢ {—I_’ ’ A}
| closedOp Op. TIMES = true where +(Pos,Pos) = Pos
cl osed = fal se ~
' > - F(Pos,NEG) = Tg
fun openCp Op. GT = true
| openOp Op.EQ = true . -
| openOp _ = false OO - {>7"'}
where >(Pos,NEG) = [trug]
val True = D. Exact (Absyn.Tr true) §<NEG,NEG> = Tp
val Fal se = D. Exact (Absyn.Tr fal se)
fun Cc _ [Bottom _] = Bottom fun G0 _ [Bottom _] = D.Bottom
| G _ [_,Botton] = Bottom | Co _ [_,Botton] = D.Bottom
| Oc Op.PLUS [Zero, dhat2] = dhat2 | OCo Op.GT [Pos, Neg] = True
| Oc Op.PLUS [dhat1, Zero] = dhatl | OCo Op.GT [Pos, Zero] = True
| Oc Op.PLUS [Pos, Pos] = Pos | OCo Op.GT [Zero, Pos] = Fal se
| Oc Op.PLUS [Neg, Neg] = Neg | OCo Op.GT [Zero, Zero] = Fal se
| O Op.PLUS _ = Top | OCo Op.GT [Zero, Neg] = True
| OCo Op.GT [Neg, Zero] = Fal se
| O Op. MNUS ... | OCo Op.GT [Neg, Pos] = Fal se
| Co Op.GT _ = D.Top
| Oc Op. TIMES ...
| Co Op.EQ ...
| O _ _ = raise SignSpec
| Co _ _ = raise SignSpec
end
Figure5: An example: excerpts from asign FACET_SPECI FI CATI ON.

8 A Modular Implementation of Partial Evaluation

1. A concrete domain D that must be lifted (as shown in Figure 3).
2. A facet-value domain FacetValue of finite height.

3. A monotonic abstraction function o : D — FacetValue and an associated monotonic
injection function « : FacetValue — D satisfying the safety condition that idp C ¢ o a.

4. A set O of abstract primitive operations, an operation p € O has functionality
FacetValue® — FacetValue.

si gnature FACET =
sig
structure Op: PRIM
structure D: LIFTED
eqt ype Facet Val ue
val join: FacetVal ue -> FacetVal ue -> Facet Val ue
val abs: D.Lifted -> Facet Val ue
val inj: FacetValue -> D.Lifted
val O Op.PRIM-> FacetValue list -> Facet Val ue
end

Figure 6: Components of afacet and the associated Standard ML signature.

5. A Partial-Evaluation Facet

Besides standard abstract interpretationssuch astherul e-of -signsabstraction, many useful semantic
definitions can be captured in a facet specification. Particularly worthy of mention is the “partial-
evaluation facet” proposed in [5]. One can create a facet to do constant folding by defining the
abstract domain D to be the same as D. The abstraction and injection functions are then merely
identity functions, and the abstract primitive operations, all closed, perform constant folding. In
thisway, the partial evaluation facet isitself exactly the semantic definition of the primitivesof the
language. 1t essentially encapsulates the primitive application clause of asimple partial evaluator
(e.g., the K, function of Figure 2); hence, the name. However, it works just like any other facet
and can be combined with other facets to integrate constant folding into the partial evaluation
semantics.

6. Facetsfor Compound Data Types

Our first-order language haslists as adatatype, but such compound types present difficult problems
for abstract interpretations [14]. Given an abstraction, we would like to be able to “lift” that
abstraction over lists. We have written afunctor Li st Spec, shown in Figure 9, for one possible
way to provide this operation. It takes as arguments the abstract syntax and a facet specification
defining some abstract interpretation. It returns a facet specification that is the result of “lifting”
this abstract interpretation over lists. For example, Li st Spec(Absyn, Si gnSpec) produces an
abstract interpretation that maintains not only signs of integers, but lists of signs of integers, lists
of lists of signs of integers, and so on. The code of Li st Spec handlesthe list operations—cons,

A Modular Implementation of Partial Evaluation

D = Dgs
FacetValue = Dy x Dy
ab = (agd,d)

W6,8) = 6

Vps € Ops Ip€ O st p{(d1,81), ..., (60,8,)) = (8, 150)
where 6 = }55<51, cee 5n>
Vps € Oos Fp € O st p((61,61), .- (00, 6n))
6

N

where 6 = }55<51, cee n>

funct or MakeFacet (structure S: FACET_SPECI FI CATI ON): FACET =
struct
structure Op = S. O
structure D= S. D
type FacetValue = S.Dhat * D.Lifted
fun join (dhat,d) (dhat’,d") = (S.join dhat dhat’, D.join d d)
fun abs d = (S.abs d, d)
funinj (_,d) =d
fun O po args =
let val dhats = map (fn (dhat,_) => dhat) args
inif (S .closedOp po) then
I et val dhat = (S.Cc po dhats)
in (dhat, S.inj dhat)
end
else if (S.openQp po) then abs (S.OCo po dhats)
el se abs D. Top
end
end

Figure 7: From facet specification S to facet.

10 A Modular Implementation of Partial Evaluation

D = DFl(: DFZ)
FacetValue = FacetValuer, x FacetValuer,
Oé<f1,f2> = <OéFlf1,OéF2f2>
6 = tp6MNupd
p € O isdefined such that

DU Srg fo)s oo (s f2,)) = {f if .f = Tp

a(cf) otherwise

where f = <}5F1<f117"'7f1n>7}5F2<f217"'

funct or Combi neFacets(structure F1: FACET
structure F2: FACET
sharing F1.Op = F2. Op
and F1.D = F2.D): FACET =
struct
structure Op = F1. Op
structure D= F1.D
type FacetVal ue = F1. Facet Val ue * F2. Facet Val ue
fun join (f1,f2) (f1',f2") = (Fl.join f1 f1', F2.join f2 f2")
fun abs d = (F1.abs d, F2.abs d)
funinj (f1,f2) = D.neet (Fl.inj f1) (F2.inj f2)
fun O po args =
let val f

(F1.O po (map (fn (f1,_) => f1) args),
F2.0 po (map (fn (_,f2) => f2) args))
in case (inj f) of
D. Top => f
| => abs d
end
end

Figure 8: From two facets F; and F5 to one facet.

7f2n>>

A Modular Implementation of Partial Evaluation 11

car, cdr, andi snul | —and any other operation appropriate for the underlying abstraction (e.g.,
pl us or gt for Si gnSpec) is*“passed down” to the underlying facet specification.

However, our Li st Spec functor hasaserious limitation. The definition of the abstract domain
is
datatype Dhat = Top | Abs of S.Dhat | List of Dhat list | Bottom

where S is the underlying facet specification given as the argument. But since abstract lists are
represented as SML lists, they cannot represent listswith an unknown (T) tail. Essentially, applying
Li st Spec to afacet specification with abstract domain D produces a facet specification whose

abstract domain is the separated sum 3°72, D', which cannot represent a tail of T but is of finite
height (given that D is of finite height).

Onecanimagineother approachesto handlinglists. For instance, changingtheLi st constructor
of the above datatype to Dhat * Dhat would alow aricher specification of the tail of thelist. But
this of course would produce a domain of infinite height. An online partial-evaluator, since it
subsumes evaluation and thus has no termination property, actually need not be constrained to
operate only on finite-height domains. But, aswe shall seein Section 8, we are interested in using
facets for program analyses in general; hence our concern for finite-height representation of lists.

7. A Parameterized Online Partial Evaluator

We now have the machinery we need for an online partial evaluator that is parameterized with
respect to any number of abstract interpretations. Figure 10 shows a semantics for a partia
evaluator that is parameterized with respect to afacet /. The facet is not shown explicitly as an
argument, but is assumed to be a“global variable’ of the semantics. This parameterized semantics
differsin several waysfrom the ssimple semantics shown in Figure 2:

e & now returnsafacet valueinadditionto aresidual expression. Thisallowsusto keep abstract
values, even for non-constant expressions, that might be useful in later computations.

e Theinput to the partial evaluator isnow alist of facet valuesrather than alist of expressions.
The facet thus gives us greater expressiveness with partial input, since we may input abstract
values from the abstract domains that we have defined in the parameter facet’s individual
component facets.

¢ We no longer need the X, function. All semantic definitions of primitive operations are in
the facet and thus are parameterized.

e The & [¢] clause has changed; it now returnsthe abstraction of ¢ aswell as ¢ itself.

e The& [p(e,...,e,)] clause has changed. It no longer performs constant folding explicitely.
Instead, it usesthe abstract operators defined by the facet to perform the operation, and it uses
the facet’s injection function on the result to determine if any abstract interpretation yielded
a constant. Constant folding can be integrated into this scheme with the partial-evaluation
facet, as described in Section 5.

12 A Modular Implementation of Partial Evaluation

functor ListSpec(structure Absyn: ABSYN
structure S: FACET_SPECI FI CATI ON
sharing Absyn.p = S.Op
and type Absyn. Const = S.D.T): FACET_SPECI FI CATI ON =
struct
exception Li st Spec
structure Op = Absyn. Op
structure D= S. D
dat atype Dhat = Top | Abs of S.Dhat | List of Dhat list | Bottom

fun join d Bottom= d

| join Bottomd = d

| join (Abs sd) (Abs sd') = Abs (S.join sd sd')
| join (List nil) (List nil) = List nil
I

join (List (d::1)) (List (d::1")) =
(case (join (List I) (List 1")) of
List 1" =>List ((joindd) :: 1"")
| _ => Top)
| join _ _ = Top

fun abs D. Top = Top
| abs (D.Exact (Absyn.List 1)) = List (map (abs o D. Exact) I)
| abs (c as D.Exact _) = Abs (S.abs c)
| abs D.Bottom = Bottom

fun inj Top = D. Top

| inj (Abs sd) = S.inj sd

| inj (List nil) = D. Exact (Absyn.List nil)

| inj (List (d::1)) =

(case ((inj d),(inj (List 1))) of
(D. Exact c, D.Exact (Absyn.List 1)) => D Exact (Absyn.List (c::1))

| (D.Bottom _) => D.Bottom
| (_,D.Bottom) => D.Bottom
| _ => D. Top)

| inj Bottom = D.Bottom

fun inject (Abs sd) = sd
| inject d = S.abs (inj d)

fun cl osedOp Op. CONS = true
| closedOp Op.CAR = true
| closedOp Op.CDR = true
| closedOp po = S.closedOp po

fun openOp Op. I SNULL = true
| openOp po = S.openOp po

fun Oc Op. CONS [Bottom _] = Bottom | OCc Op.CDR [Top] = Top
| Oc Op.CONS [_, Top] = Top | O Op.CDR [List (_::1)] = List |
| Oc Op.CONS [d,List I] =List (d::1) | Oc Op.CDR _ = Bottom
| Oc Op.CONS _ = Bottom
| G po args =
| O Op.CAR [Top] = Top if (S.closedOp po)
| O Op.CAR [List (d::_)] =d then Abs (S.Cc po (map inject args)
| O Op.CAR _ = Bottom el se raise ListSpec
fun Co Op.ISNULL [Top] = D. Top
| OCo Op.ISNULL [List nil] = D. Exact (Absyn.Tr true)
| OCo Op.ISNULL [List _] = D.Exact (Absyn.Tr false)
| Co Op.ISNULL _ = D.Bottom
| OCo po args =
if (S.openOp po) then S.Co po (map inject args)

el se rai se ListSpec
end

Figure9: Making facet specificationsfor lists.

A Modular Implementation of Partial Evaluation 13

e The E[if e1eze3] clause has changed in the case where the branch cannot be selected and
aresidua [if...] expression is constructed. In that case, the join of the facet values of the
partial evaluations of ¢; and e, is returned as the facet value of the result. In this way, we
keep the most accurate information consistent with both branches.

Figure 11 shows the signature ONLI NE and most of the code of the Onl i ne functor that
implements the partial evaluator defined in Figure 10. The functor takes as a parameter a facet
whose concrete domain must be (viaa sharing constraint) Const, the lifted domain of constants of
the language, as shown in Figure 3.

The functor returns a structure that matches the ONLI NE signature. This structure contains a
function onl i ne which maps a program and a list of facet values to a residua program. The
i nt argument to onl i ne specifies the maximum depth of conditional branching that may precede
an unfolding of a function call. The list of facet values provide partia input to the program.
The facet parameter defines the expressiveness of this partial input; by adding more facets with
Conbi neFacet s, one can increase power and expressiveness.

Figure 12 shows some actual runs of the online evaluator. The evaluator was given a facet
formed from the following facet specifications:

Si gnSpec The sign abstraction of integers shown in Figure 5.
PESpec The constant-folding facet described in Section 5.
Lengt hSpec A length abstraction of lists.

Li st Spec(Absyn, Si gnSpec) | Signs mapped over lists.

Li st Spec(Absyn, PESpec) Constants mapped over lists.

8. Other Examplesand Further Work

Binding-time analysis can be parameterized in a similar fashion. As mentioned in Section 2, [5]
presents the idea of abstract facets with values StaTic and DYNAMIC and a facet analysis to map
facets to abstract facets. We instead merely add a binding-time facet to the facets that we already
have defined. A binding-time facet is one that implements the standard binding-time abstraction.
|.e., the abstract domainis L T STATIC = DYNAMIC, and jp(dy, ..., d,) = STATICIff V(1< i < n)
d; = StaTiC. The advantage hereisthat we can combine this binding-timefacet with the facetswe
already used for the online partial evaluator, resulting in a potentially more powerful domain for
the binding-time analysis. Thisadvantageisillustratedinthelast f acti t er andthef act f unny
examples of Figure 13. In the f act f unny example, the partial evaluation facet is allowed to
actually do the constant folding to produce O for the mi nus operation. Then the sign facet, after
picking up the O, returns O for the operationt i mes(T, ZERO) . Theresult isthat the binding-time
analysis returns STATIC for ther parameter.

Future work includes:

¢ Extension to a CPS-based language, such as the intermediate language of the SML of New
Jersey compiler.

14 A Modular Implementation of Partial Evaluation

¢ Syntactic Domains
(Sameasin Figure2.)

e Semantic Domains
FacetValuep

FacetValue x Exp
Var — Residual

f € FacetValue
r € Residual
p € Env

o Valuation Functions

P . Prog— FacetValug' — Int — Prog
£ Exp— Env — Prog — Residual x Prog
APP : Fn — Residual®* — Env — Program — Residual x Program

Polfr,- far) = (ElAlzr, o zn))(Lfr/z])o) |2

where o = [{fi(z1,...,zn,) = e }]

Elelpo = ({arc[c]), o)

Elxlpe = (plz], o)
Elpler,...,en)lpo = (rfeConst) — ((ferf),on), ({f,[p(eh,. .. en)]), on)
where {(f1,¢}),01) = E[ea]po
{(fa eh) on) = Elenlpon-1
o= prift,.... [a) (pr € OF)
Eliferezes]po = (e} € Const) —

(€1 — Ele2]por, E[es]par),

{((f2U f3, [if e e5e3]), 03)

where ((f2,¢5),02) = E[ea]por
<<f3,6é>,0’3> = g[[e3]]p0'2

where ((f1,€1),01) = E[ei]po
Elfler,...,en)lpo = APP[fI{r1,..., n)pon
where (ri,01) = Elei]po

(rn,on) = Elen]pon-1

Figure 10: A parameterized online partial evaluator for a strict first-order functional language.

A Modular Implementation of Partial Evaluation 15

signature ONLINE = sig

structure Absyn: ABSYN

structure F: FACET

val online: int -> Absyn.Prog -> F. FacetVal ue |ist -> Absyn. Prog
end

functor Online(structure Absyn: ABSYN
structure F: FACET
sharing Absyn.p = F. Op
and type Absyn.Const = F.D. T): ONLINE = struct
structure Absyn = Absyn
structure F = F

fun getf (f,_) =f fun getexp (_, exp) exp

fun P (Absyn.Programprog) input ud = ..

and E (exp as (Absyn. Constexp c)) _ prog _ =
((F.abs (F.D. Exact c), exp), prog)

| E (Absyn.Varexp var) env prog _ = (env var, prog)

| E (Absyn. Pexp (po, explst)) env prog ud =
let val (residlst,prog’) = Elist explst env prog ud
val f = F.O po (map getf residlst)
in case (F.inj f) of
F.D. Exact ¢ => ((f, Absyn.Constexp c), prog’)
| _ => ((f, Absyn.Pexp (po, (map getexp residlst))), prog’)
end

| E (Absyn. Fexp (name, explst)) env prog ud =
let val (residlst,prog’) = Elist explst env prog ud
in APP nanme residlst env prog’ ud
end

| E (Absyn.Ifexp (expl, exp2,exp3)) env prog ud =
let val ((_,el),progl) = E expl env prog ud
in case el of
Absyn. Const exp (Absyn.Tr true) => E exp2 env progl ud
| Absyn. Constexp (Absyn.Tr false) => E exp3 env progl ud
| _ =>1let val ((f2,e2),prog2) = E exp2 env progl (ud-1)
val ((f3,e3),prog3) = E exp3 env prog2 (ud-1)
in ((F.join f2 f3, Absyn.Ifexp (el,e2,e3)), prog3)
end
end

and Elist (exp::rest) env prog ud =
let val (resid,prog’) = E exp env prog ud
inlet val (rest’,prog’’) = Elist rest env prog’ ud
in ((resid::rest’),prog’ ')
end
end
| Elist _ _ prog _ = (nil, prog)

and APP nane residlst env prog ud = ..
(* deci des whether or not to specialize based on the unwi nd depth *)
fun online ud (programas (Absyn.Program _)) input = ..
(* adds an expression to each facet value in input and calls P *)
end

Figure 11: The parameterized online partial evaluator.

A Modular Implementation of Partial Evaluation

16
Input [t op, 2, 1] Yyieldsthe residual program:
Source program:
sort1(lst) = insert8(car(lst))
sort(lst) = insert8(n) = if gt(n,1)
if isnull(lst) cons(1,if gt(n,2)

[]

i nsert(car(lst),
sort(cdr(lst)))

insert(n,lst) =
if isnull(lst)
cons(n,[])
if gt(n,car(lst))
cons(car (Ist),
insert(n,cdr(lst)))
cons(n,|Ist)

cons(2,cons(n,[]))
cons(n,[2]))
cons(n,[1,2])

Input [neg, 3, 1, 2] yieldsthe residual program:
sort12(lst) = cons(car(lst),[1,2,3])
Input [pos, neg] Yyieldsthe residual program:

sort7(lst) = cons(car(cons(car(car(lst)),

(1),

cons(car(Ist),[]))

Figure 12: Example runs of the online evaluator.

factiter(n,r) =
if eq(n,0)
r
factiter(m nus(n, 1),
times(n,r))

input output

[3,1] [static,static]
[3,top] | [static,top]
[top,1] | [top,top]
[top, O] | [top,O]

factfunny(n,i,j,r) =
if eq(n,0)
1
factfunny(m nus(n,1),i,j,
times(n,times(r,mnus(i,j))))

input output

[top, 3,3,static] |[top, 3,3,static]

Figure 13: Examples of the binding-time analyzer.

A Modular Implementation of Partial Evaluation 17

0.

e Other collecting interpretations (e.g., strictness analysis). The success of the parameterized
binding-time analyzer lends promise to this line of research.

e A specializer to work with the binding-time analyzer.

e Development of mathematical foundations to account for the differences from the original
framework of [5].

Conclusions

The notion of facet parameterization provides a nice way to combine abstract interpretation with
partial evaluation. We have used the modules system of Standard ML to develop an implementa-
tion that makes facet specification easy, and we have successfully implemented an online partial
evaluator based on this scheme. Furthermore, we have implemented a binding-time analyzer that
can use the exact same facet parameter. This indicates that this specification of facets may be
useful for collecting interpretationsin general.

References

(1]

[2]

(3]

[4]

(3]

6]

[7]

(8]

(9]

S. Abramsky and C. Hankin. Abstract Interpretation of Declarative Languages. Ellis Horwood, Chich-
ester, England, 1987.

A. Bondorf and O. Danvy. Automatic Autoprojection of Recursive Equationswith Global Variablesand
Abstract Data Types. Technical Report 904, DIKU, University of Copenhagen, Denmark, 1990.

C. Consdl. New insightsinto partial eval uation: the Schism experiment. In H. Ganzinger (Ed.), Proceed-
ings of the Second European Symposium on Programming ' 88, Nancy, France (March 1988), Lecture
Notesin Computer Science, Vol. 300, Springer-Verlag, 1988, 236—246.

C. Consdl. Binding time analysis for higher order untyped functional languages. Proceedings of the
1990 Conference on Lisp and Functional Programming, Nice, France, June 1990, 264-272.

C. Consd and S. C. Khoo. Parameterized partial eval uation. Proceedingsof the S GPLAN' 91 Conference
on Programming Language Design and Implementation, June 1991, 92-106.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, 1977, 238-252.

Jesper Jargensen. Generating a pattern matching compiler by partial evaluation. To appear at POPL’ 92.

Carsten K. Gomard. A self-applicable partial evaluator for the lambda calculus. ACM Transactionson
Programming Languages and Systems, To appear.

P. Hudak and J. Young. Collecting interpretations of expressions. ACM Transactions on Programming
Languages and Systems, Vol. 13, No. 2, April 1991, 269-290.

18 A Modular Implementation of Partial Evaluation

[10] N. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial evaluation: the generation of a
compiler generator. In Jean-Pierre Jouannaud (Ed.), Rewriting Techniques and Applications, Dijon,
France, Lecture Notesin Computer Science, Vol. 202, Springer-Verlag, 1985, 124-140.

[11] N. Jones, P. Sestoft, and H. Sgndergaard. M1X: a self-applicable partial evaluator for experimentsin
compiler generation. LISP and Symbolic Computation, Vol. 2, No. 1, 1989, 9-50.

[12] D.B.MacQueen. Modulesfor Standard ML. In R. Harper, D. MacQueen, and R. Milner, Sandard ML,
Technical Report ECS-LFCS-86—2, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1986.

[13] Torben Mogensen. Partialy static structures in a self-applicable partial evaluator. In D. Bjarner, A.
P. Ershov, and N. D. Jones (Eds.), Partial Evaluation and Mixed Computation, North-Holland, 1988,

325-347.

[14] P. Wadler. Strictness analysis on non-flat domains (by abstract interpretation over finite domains).
Abstract Inter pretation of Declar ative Languages. Abramsky and Hankin (Eds.), EllisHorwood, Chich-
ester, England, 1987, 266-275.

[15] R. Milner, M. Tofte, and R. Harper. The Definition of Sandard ML. The MIT Press, 1990.

