
A Modular Implementation
of Partial Evaluation

Christopher Colby Peter Lee

March 1992
CMU-CS-92-123

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Charles Consel and Siau Cheng Khoo have developed a technique for parameterizing partial eval-
uation and binding-time analysis with respect to abstract domains [5]. We have found the modules
system of Standard ML [12, 15] to be a useful vehicle for implementing a similar parameteriza-
tion technique. Furthermore, the ability to parameterize binding-time analysis indicates that the
technique may be useful for implementations of collecting interpretations in general. This paper
describes our implementation of parameterized partial evaluation, with a particular focus on the
use of the Standard ML modules system.

This research was partially supported by the National Science Foundation under grant #CCR-9057567 and in part
by the NSF Graduate Research Fellowship Program. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the
National Science Foundation or the US Government.

A Modular Implementation of Partial Evaluation 1

Source program:

factiter(n,r) = if eq(n,0)
1
factiter(minus(n,1),times(n,r))

Input h5; 1i yields the residual program:

factiter7() = 120

Input h5;>i yields the residual program:

factiter7(r) = times(1,times(2,times(3,times(4,times(5,r)))))

Figure 1: Examples of partial evaluation.

1. Introduction

A partial evaluator, when given a program and a partial specification of the program’s input data,
produces a residual program that takes the remainder of the input and computes the proper result. As
an example of partial evaluation, see Figure 1. Several pragmatic considerations lead to difficulties
in the development of a partial evaluator. The first consideration is the efficiency of the residual
programs. Ideally, the availability of the partial input should enable many optimizations. However,
this is complicated by the desire to handle programs that use higher-order functions [8] and complex
data structures [13]. A second consideration is self-application—the ability to partially evaluate
the partial evaluator [10]. Self-applicable partial evaluators can be useful in compiler generation
[7] as well as other areas, but in practice they require a two-pass strategy involving a binding-time
analysis [11]. Despite these difficulties, self-applicable partial evaluators such as Similix [2] and
Schism [3] have been developed and used in nontrivial applications.

A third consideration that has received far less attention has to do with the method for specifying
the partial inputs. The simplest approach allows individual inputs to be completely specified or
unspecified. But a more general notion of partial input can also be useful. For instance, one may
want to specify that an input is an unknown, but positive, integer; another possibility might be to
specify that an input is a list containing three (unknown) elements; and so on. Such flexibility in
the specification of partial input allows more information to be provided to the partial evaluator,
thereby leading to more efficient residual programs. For some examples, see Figure 12.

In order to achieve such generality in the specification of partial input, Charles Consel and
Siau Cheng Khoo have developed a method for parameterizing partial evaluation and binding-time
analysis with respect to abstract domains [5]. Using their method as a general guide, we have
used the modules system of Standard ML [12, 15] to implement a simple partial evaluator that
is parameterized by modular implementations of abstract interpretations. The parameterization
allows a standard implementation of a partial evaluator to be extended in a modular fashion, by
abstract domains, thereby leading to flexibility in the specification of the partial input. We have
also implemented a binding-time analyzer that is parameterized in the same manner. This leads us
to believe that collecting interpretations in general might benefit from this modularity.

2 A Modular Implementation of Partial Evaluation

We begin this paper with some background about the technique developed by Consel and Khoo,
and discuss simple (i.e., not parameterized) partial evaluation. Then, we present a description
and an implementation in Standard ML of our system for specifying and combining abstract
interpretations. We then describe a partial evaluator written in Standard ML that is parameterized
with respect to such abstract interpretations. Finally, we describe an implementation of a binding-
time analyzer parameterized in the same way and conclude with future directions of this research.

2. Background

One of the key notions used by Consel and Khoo is the facet. Given a semantic algebra, a facet
defines an abstraction (or approximation) of that algebra. A semantic algebra [D;O] consists of a
semantic domain D and a set of primitive operations O on this domain. A facet for that algebra is
an algebra [bD; bO] defined by an abstraction funtion �̂ : D ! bD, where

1. bD is an algebraic lattice of finite height.

2. If p 2 O is a closed operator (i.e., p : D� ! D), then p̂ : bD� ! bD is its corresponding
abstract version in bO, and �̂ � p v p̂ � �̂�.

3. If p 2 O is an open operator with functionality D� ! D0, where D0 is some domain different
from D, then p̂ : bD� ! dConst is its corresponding abstract version in bO, and �̂ � p v p̂ � �̂�,
where �̂ : D0 ! dConst is a function that maps domain elements into the lifted domain of
basic values.

An example facet is the rule-of-signs abstraction for the semantic algebra [Int?; f+; <g] wherebD = f?;POS;ZERO;NEG;>g, b+ : bD � bD ! bD is the closed + operator defined over signs and
yielding signs (e.g., b+hPOS;POSi = POS), and b< : bD � bD ! dConst is the open < operator that
may yield concrete values (e.g., b<hNEG;POSi = [[true]]).

Consel and Khoo furthermore define the product of facets, which combines a set of facets
defined for a given semantic algebra. Given facets [bDi; bOi] for i 2 f1 . . .mg defined for the
semantic algebra [D;O], one can define the product of facets, denoted [bD; b
], where bD is, roughly
speaking, a kind of product of the domains bDi, and where there is a product operator !p 2 b
 for
each operator p 2 D. If p is a closed operator, then !p : bD� ! bD. If p is an open operator, then!p : bD� ! dConst. Intuitively, !p triggers each facet operator p̂i with its corresponding abstract
values from the products.

Further details of this framework are presented in [5], which demonstrates as examples a simple
online partial evaluator and a binding-time analyzer for a first-order functional language, both of
which are parameterized with respect to a product of facets. The binding-time analysis involves a
notion of facet analysis and abstract facets to express the collecting interpretation.

We have developed a system embodying notions similar in spirit to the facets, product of facets,
and abstract facets of Consel and Khoo. Furthermore, we have implemented this system in the
language Standard ML in a way that makes good use of ML’s modules system. We describe this
implementation in Section 4.

A Modular Implementation of Partial Evaluation 3

3. A Simple Online Partial Evaluator

Before we present our system of parameterization, we shall first describe a semantics of a simple
online partial evaluator. Figure 2 is a semantics of a partial evaluator for a strict first-order
functional language similar to the one presented in [5] and other papers. The APP function, which
is not shown in Figure 2, makes decisions about when to specialize functions. When a function is
specialized, either the result is inlined or a call to a new specialized function (which is added to the
program returned by APP) is returned.

In this simple online evaluator, the program is symbolically evaluated. Applications of primitive
operations are checked to see if all of the arguments are constant, and if so the entire application
is “constant-folded” away. Hence, constant folding is built into the partial evaluator. It is “hard-
coded” into the Kp function. As described in Section 1, however, we would like to have more
flexibility in expressing the values of an expression during partial evaluation (e.g., POS representing
a positive integer). We will thus see that primitive operations will have to be handled differently.

In our system, instead of building aKp function in the semantics, we supply the partial evalutator
with a facet, which defines the abstract domains over which values are taken and the definitions of
the primitive operations over these domains. A facet is thus a collection of abstract interpretations.
One defines a single such abstract interpretation by a facet specification, and one may combine
multiple facets into a single facet. The standard notion of constant folding can be encapsulated
in a facet, as well; as we shall describe in Section 5, one may achieve this by writing a facet
specification similar to theKp function of Figure 2. But facet specifications are expressive enough
to encapsulate many different abstract interpretations. Later, we shall present a semantics for a
partial evaluator for our first-order functional language that is parameterized with respect to a facet.
But first, we shall explain facets themselves.

4. Facet Specifications, Facets, and the Combinations of Facets

First we shall present some preliminaries. The usual notion of the lift operation involves adding a? element to a set of values. Our “lift”, however, adds > as well. In Standard ML code, we have
the LIFTED signature in Figure 3 which specifies a lifted domain. Type T represents the domain
to be lifted. The signature provides equality, join, and meet operations for the lifted domain. (The
equality operation is provided by Standard ML’s polymorphic equality and enforced by the eqtype
requirement for T.) The signature itself does not enforce the ordering shown in the lattice diagram,
but it is assumed that functions join and meet will be defined appropriately.

The Lift functor in Figure 3 takes a type representing a set of values and produces a flat lifted
domain of that type. Also shown is the result of applying the functor to the set of constants of our
first-order language. We denote the resulting lattice dConst. As we shall see, dConst will play a
major role in our parameterized partial evaluator.

Now, we are ready to present facets as encapsulations of abstract interpretations. One specifies
a facet with a facet specification. The components of a facet specification and the associated ML
signature FACET SPECIFICATION are shown in Figure 4. Notice that � and �, while monotonic,

4 A Modular Implementation of Partial Evaluation� Syntactic Domains � 2 Prog Programse 2 Exp Expressionsc 2 Const Constantsx 2 Var Variablesp 2 Primop Primitive Operatorsf 2 Fn Function Namese ::= c j x j p(e1; . . . ; en) j f (e1; . . . ; en) j if e1 e2 e3� ::= ffi(x1; . . . ; xni) = eig (f1 is the main function)� Semantic Domains � 2 Env = Var ! Exp� Valuation Functions P : Prog ! Exp� ! ProgE : Exp ! Env ! Prog ! Exp � ProgKp : Primop ! Const� ! Const
APP : Fn ! Exp� ! Env ! Program ! Exp � ProgramP � he01; . . . ; e0n1

i = (E[[f1(x1; . . . ; xn1)]](?[e0k=xk])�) #2

where � = [[ffi(x1; . . . ; xni) = eig]]E [[c]] � � = h[[c]]; �iE [[x]] � � = h�[[x]]; �iE [[p(e1; . . . ; en)]] � � = n̂i=1

(e0i 2 Const) ! hKp[[p]]he01; . . . ; e0ni; �ni; h[[p(e01; . . . ; e0n)]]; �ni
where he01; �1i = E[[e1]]��

...he0n; �ni = E[[en]]��n�1E [[if e1 e2 e3]] � � = (e01 2 Const) !(e01 ! E [[e2]]��1; E [[e3]]��1);h[[if e01 e02 e03]]; �3i
where he02; �2i = E[[e2]]��1he03; �3i = E[[e3]]��2

where he01; �1i = E[[e1]]��E [[f (e1; . . . ; en)]] � � = APP[[f]]he01; . . . ; e0ni��n
where he01; �1i = E[[e1]]��

...he0n; �ni = E[[en]]��n�1Kp [[+]] hc1; c2i = c1 + c2Kp [[�]] hc1; c2i = c1 � c2

...

Figure 2: A simple online partial evaluator for a strict first-order functional language.

A Modular Implementation of Partial Evaluation 5

signature LIFTED =
sig

eqtype T
datatype Lifted = Top

| Exact of T
| Bottom

val join: Lifted -> Lifted -> Lifted
val meet: Lifted -> Lifted -> Lifted

end dConst = �� ���HHHLL,,ll? . . .EXACT(c2)EXACT(c1)

>
functor Lift(eqtype T): LIFTED =
struct

type T = T
datatype Lifted = Top

| Exact of T
| Bottom

fun join Bottom x = x
| join x Bottom = x
| join x y = if x=y then x

else Top

fun meet Top x = x
| meet x Top = x
| meet x y = if x=y then x

else Bottom
end

Figure 3: A functor to produce a flat lifted domain and the result of lifting the set of constants.

1. A concrete domain D that must be lifted (as shown in Figure 3).

2. An abstract domain bD.

3. A monotonic abstraction function � : D ! bD and an associated monotonic injection
function � : bD ! D satisfying the safety condition that idD v � � �.

4. A set Oc of closed abstract primitive operations; an operation p̂ 2 Oc has functionalitybD� ! bD.

5. A set Oo of open abstract primitive operations; an operation p̂ 2 Oo has functionalitybD� ! D.

signature FACET_SPECIFICATION =
sig

structure Op: PRIM
structure D: LIFTED
eqtype Dhat
val join: Dhat -> Dhat -> Dhat
val abs: D.Lifted -> Dhat
val inj: Dhat -> D.Lifted
val closedOp: Op.Prim -> bool
val openOp: Op.Prim -> bool
val Oc: Op.Prim -> Dhat list -> Dhat
val Oo: Op.Prim -> Dhat list -> D.Lifted

end

Figure 4: Components of a facet specification and the associated Standard ML signature.

6 A Modular Implementation of Partial Evaluation

do not define a retraction.

As an example of a facet specification, Figure 5 shows exerpts (Oc and Oo are incomplete) from a
Standard ML functor SignSpec that implements the specification for the rule-of-signs abstraction
of integers. The functor takes as arguments a structure Absyn matching signature ABSYN that
specifies the abstract syntax of our first-order language and a structure Const representing a lifted
domain. It yields a structure matching the FACET SPECIFICATION signature of Figure 4. In
addition, there is a sharing constraint that requires that the “non-lifted” elements of the domain that
Const represents be the elements of type Absyn.Const. In other words, Const represents thedConst of Figure 3.

Finally, we can consider combining a set of such abstract interpretations into a single facet.
The form of a facet specification does not lend itself to such combinations. Hence, we introduce
a slightly different kind of structure, called a facet. The components of a facet, along with the
associated signature FACET, are shown in Figure 6. Note that, except for a name change from D to
FacetValue, the only difference between the definition of a facet specification and the definition
of a facet is that there are no open primitive operations in a facet. This will make it possible to
combine two facets into one, as we shall see below.

Figure 7 shows a mechanical process, implemented by the functor MakeFacet, to convert a
facet specification to a facet. Note the definition of the FacetValue domain as bDS�DS . Intuitively,
the idea behind this is that the FacetValue domain is expressive enough to alleviate the need to
differentiate between open and closed primitive operations.

Now, we may combine facets. Figure 8 shows a mechanical process to combine two facets with
the same concrete domain and corresponding primitive operations to a single facet. The FacetValue
domain is the domain cross-product of the two components’ FacetValue domains. The abstraction
function is the pairwise composition of the components’ abstractions functions, and the injection
function returns the best approximation to the results of both components’ injection function.

Notice the definition of the abstract primitive operations O. First, the pairwise application of
the component facets’ corresponding operations is done to yield a compound facet value f . Next,f is injected into D with �. Then, if the result of the injection is ?D, we return the abstraction
of ?D, which is ?FacetValue. Otherwise, if the result of the injection is >D, then we simply returnf , since it is the most accurate facet value information available. Otherwise, f has injected into
a “concrete” value, and we return the abstraction of that value, which is the most accurate facet
value possible of such a concrete value. The intuitive result is that when many facets are combined
into one, if some abstract interpretation yields a concrete value as a result of a primitive operation
(e.g., b<hNEG;POSi), that value is “propagated” down to the other facets to be abstracted via their
respective � functions.

We now have the machinery to capture an arbitrary number of abstract interpretations in a
single facet. First, we define each abstract interpretation by writing specifications matching the
FACET SPECIFICATION signature of Figure 4. Then, we apply theMakeFacet functor of Figure 7
to each facet specification in order to obtain a facet. Finally, we combine all the facets into a single
facet with multiple applications of the CombineFacets functor of Figure 8.

A Modular Implementation of Partial Evaluation 7

functor SignSpec(structure Absyn: ABSYN
structure Const: LIFTED
sharing type Absyn.Const = Const.T): FACET_SPECIFICATION =

struct
exception SignSpec

structure Op = Absyn.Op

structure D = Const

datatype Dhat = Top
| Neg | Zero | Pos
| Bottom

fun join Bottom x = x
| join x Bottom = x
| join x y = if (x=y) then x else Top

fun abs D.Bottom = Bottom
| abs (D.Exact (Absyn.Int n)) =

if n=0 then Zero
else if n>0 then Pos else Neg

| abs _ = Top

fun inj Zero = D.Exact (Absyn.Int 0)
| inj _ = D.Top

fun closedOp Op.PLUS = true
| closedOp Op.MINUS = true
| closedOp Op.TIMES = true
| closedOp _ = false

fun openOp Op.GT = true
| openOp Op.EQ = true
| openOp _ = false

val True = D.Exact (Absyn.Tr true)
val False = D.Exact (Absyn.Tr false)

D = dConstbD = ���QQQ QQQ��� >
POSZERONEG ?�� = 8>>>>>><>>>>>>: POS if � 2 f1; 2; . . .g

ZERO if � = 0
NEG if � 2 f�1;�2; . . .g?bD if � = ?D>bD otherwise��̂ = 8>><>>: >D if �̂ 2 f>bD;POS;NEGg
0 if �̂ = ZERO?D if �̂ = ?bDOc = f b+; b�; . . .g

where b+hPOS;POSi = POSb+hPOS;NEGi = >bD
...Oo = f b>; . . .g

where b>hPOS;NEGi = [[true]]b>hNEG;NEGi = >D
...

fun Oc _ [Bottom,_] = Bottom fun Oo _ [Bottom,_] = D.Bottom
| Oc _ [_,Bottom] = Bottom | Oo _ [_,Bottom] = D.Bottom

| Oc Op.PLUS [Zero,dhat2] = dhat2 | Oo Op.GT [Pos,Neg] = True
| Oc Op.PLUS [dhat1,Zero] = dhat1 | Oo Op.GT [Pos,Zero] = True
| Oc Op.PLUS [Pos,Pos] = Pos | Oo Op.GT [Zero,Pos] = False
| Oc Op.PLUS [Neg,Neg] = Neg | Oo Op.GT [Zero,Zero] = False
| Oc Op.PLUS _ = Top | Oo Op.GT [Zero,Neg] = True

| Oo Op.GT [Neg,Zero] = False
| Oc Op.MINUS ... | Oo Op.GT [Neg,Pos] = False

| Oo Op.GT _ = D.Top
| Oc Op.TIMES ...

| Oo Op.EQ ...
| Oc _ _ = raise SignSpec

| Oo _ _ = raise SignSpec
end

Figure 5: An example: excerpts from a sign FACET SPECIFICATION.

8 A Modular Implementation of Partial Evaluation

1. A concrete domain D that must be lifted (as shown in Figure 3).

2. A facet-value domain FacetValue of finite height.

3. A monotonic abstraction function � : D ! FacetValue and an associated monotonic
injection function � : FacetValue ! D satisfying the safety condition that idD v � � �.

4. A set O of abstract primitive operations; an operation p̂ 2 O has functionality
FacetValue� ! FacetValue.

signature FACET =
sig

structure Op: PRIM
structure D: LIFTED
eqtype FacetValue
val join: FacetValue -> FacetValue -> FacetValue
val abs: D.Lifted -> FacetValue
val inj: FacetValue -> D.Lifted
val O: Op.PRIM -> FacetValue list -> FacetValue

end

Figure 6: Components of a facet and the associated Standard ML signature.

5. A Partial-Evaluation Facet

Besides standard abstract interpretations such as the rule-of-signsabstraction, many useful semantic
definitions can be captured in a facet specification. Particularly worthy of mention is the “partial-
evaluation facet” proposed in [5]. One can create a facet to do constant folding by defining the
abstract domain bD to be the same as D. The abstraction and injection functions are then merely
identity functions, and the abstract primitive operations, all closed, perform constant folding. In
this way, the partial evaluation facet is itself exactly the semantic definition of the primitives of the
language. It essentially encapsulates the primitive application clause of a simple partial evaluator
(e.g., the Kp function of Figure 2); hence, the name. However, it works just like any other facet
and can be combined with other facets to integrate constant folding into the partial evaluation
semantics.

6. Facets for Compound Data Types

Our first-order language has lists as a data type, but such compound types present difficult problems
for abstract interpretations [14]. Given an abstraction, we would like to be able to “lift” that
abstraction over lists. We have written a functor ListSpec, shown in Figure 9, for one possible
way to provide this operation. It takes as arguments the abstract syntax and a facet specification
defining some abstract interpretation. It returns a facet specification that is the result of “lifting”
this abstract interpretation over lists. For example, ListSpec(Absyn,SignSpec) produces an
abstract interpretation that maintains not only signs of integers, but lists of signs of integers, lists
of lists of signs of integers, and so on. The code of ListSpec handles the list operations—cons,

A Modular Implementation of Partial Evaluation 9

D = DS
FacetValue = bDS � DS�� = h�S�; �i�h�̂; �i = �8p̂S 2 OcS 9p̂ 2 O s.t. p̂hh�̂1; �1i; . . . ; h�̂n; �nii = h�̂; �S �̂i

where �̂ = p̂Sh�̂1; . . . ; �̂ni8p̂S 2 OoS 9p̂ 2 O s.t. p̂hh�̂1; �1i; . . . ; h�̂n; �nii = h�S�; �i
where � = p̂Sh�̂1; . . . ; �̂ni

functor MakeFacet(structure S: FACET_SPECIFICATION): FACET =
struct

structure Op = S.Op
structure D = S.D
type FacetValue = S.Dhat * D.Lifted
fun join (dhat,d) (dhat’,d’) = (S.join dhat dhat’, D.join d d’)
fun abs d = (S.abs d, d)
fun inj (_,d) = d
fun O po args =

let val dhats = map (fn (dhat,_) => dhat) args
in if (S.closedOp po) then

let val dhat = (S.Oc po dhats)
in (dhat, S.inj dhat)
end

else if (S.openOp po) then abs (S.Oo po dhats)
else abs D.Top

end
end

Figure 7: From facet specification S to facet.

10 A Modular Implementation of Partial Evaluation

D = DF1(= DF2)
FacetValue = FacetValueF1 � FacetValueF2�hf1; f2i = h�F1f1; �F2f2i�� = �F1� u �F2�p̂ 2 O is defined such thatp̂hhf11 ; f21i; . . . ; hf1n; f2nii = (f if �f = >D�(�f) otherwise

where f = hp̂F1hf11 ; . . . ; f1ni; p̂F2hf21 ; . . . ; f2nii
functor CombineFacets(structure F1: FACET

structure F2: FACET
sharing F1.Op = F2.Op
and F1.D = F2.D): FACET =

struct
structure Op = F1.Op
structure D = F1.D
type FacetValue = F1.FacetValue * F2.FacetValue
fun join (f1,f2) (f1’,f2’) = (F1.join f1 f1’, F2.join f2 f2’)
fun abs d = (F1.abs d, F2.abs d)
fun inj (f1,f2) = D.meet (F1.inj f1) (F2.inj f2)
fun O po args =

let val f = (F1.O po (map (fn (f1,_) => f1) args),
F2.O po (map (fn (_,f2) => f2) args))

in case (inj f) of
D.Top => f

| => abs d
end

end

Figure 8: From two facets F1 and F2 to one facet.

A Modular Implementation of Partial Evaluation 11

car, cdr, and isnull—and any other operation appropriate for the underlying abstraction (e.g.,
plus or gt for SignSpec) is “passed down” to the underlying facet specification.

However, our ListSpec functor has a serious limitation. The definition of the abstract domain
is

datatype Dhat = Top | Abs of S.Dhat | List of Dhat list | Bottom

where S is the underlying facet specification given as the argument. But since abstract lists are
represented as SML lists, they cannot represent lists with an unknown (>) tail. Essentially, applying
ListSpec to a facet specification with abstract domain bD produces a facet specification whose

abstract domain is the separated sum
P1i=1

bDi
, which cannot represent a tail of > but is of finite

height (given that bD is of finite height).

One can imagine other approaches to handling lists. For instance, changing theList constructor
of the above datatype to Dhat*Dhat would allow a richer specification of the tail of the list. But
this of course would produce a domain of infinite height. An online partial-evaluator, since it
subsumes evaluation and thus has no termination property, actually need not be constrained to
operate only on finite-height domains. But, as we shall see in Section 8, we are interested in using
facets for program analyses in general; hence our concern for finite-height representation of lists.

7. A Parameterized Online Partial Evaluator

We now have the machinery we need for an online partial evaluator that is parameterized with
respect to any number of abstract interpretations. Figure 10 shows a semantics for a partial
evaluator that is parameterized with respect to a facet F . The facet is not shown explicitly as an
argument, but is assumed to be a “global variable” of the semantics. This parameterized semantics
differs in several ways from the simple semantics shown in Figure 2:� E now returns a facet value in addition to a residual expression. This allows us to keep abstract

values, even for non-constant expressions, that might be useful in later computations.� The input to the partial evaluator is now a list of facet values rather than a list of expressions.
The facet thus gives us greater expressiveness with partial input, since we may input abstract
values from the abstract domains that we have defined in the parameter facet’s individual
component facets.� We no longer need the Kp function. All semantic definitions of primitive operations are in
the facet and thus are parameterized.� The E [[c]] clause has changed; it now returns the abstraction of c as well as c itself.� The E [[p(e1; . . . ; en)]] clause has changed. It no longer performs constant folding explicitely.
Instead, it uses the abstract operators defined by the facet to perform the operation, and it uses
the facet’s injection function on the result to determine if any abstract interpretation yielded
a constant. Constant folding can be integrated into this scheme with the partial-evaluation
facet, as described in Section 5.

12 A Modular Implementation of Partial Evaluation

functor ListSpec(structure Absyn: ABSYN
structure S: FACET_SPECIFICATION
sharing Absyn.Op = S.Op
and type Absyn.Const = S.D.T): FACET_SPECIFICATION =

struct
exception ListSpec
structure Op = Absyn.Op
structure D = S.D
datatype Dhat = Top | Abs of S.Dhat | List of Dhat list | Bottom

fun join d Bottom = d
| join Bottom d = d
| join (Abs sd) (Abs sd’) = Abs (S.join sd sd’)
| join (List nil) (List nil) = List nil
| join (List (d::l)) (List (d’::l’)) =

(case (join (List l) (List l’)) of
List l’’ => List ((join d d’) :: l’’)

| _ => Top)
| join _ _ = Top

fun abs D.Top = Top
| abs (D.Exact (Absyn.List l)) = List (map (abs o D.Exact) l)
| abs (c as D.Exact _) = Abs (S.abs c)
| abs D.Bottom = Bottom

fun inj Top = D.Top
| inj (Abs sd) = S.inj sd
| inj (List nil) = D.Exact (Absyn.List nil)
| inj (List (d::l)) =

(case ((inj d),(inj (List l))) of
(D.Exact c, D.Exact (Absyn.List l)) => D.Exact (Absyn.List (c::l))

| (D.Bottom,_) => D.Bottom
| (_,D.Bottom) => D.Bottom
| _ => D.Top)

| inj Bottom = D.Bottom

fun inject (Abs sd) = sd
| inject d = S.abs (inj d)

fun closedOp Op.CONS = true
| closedOp Op.CAR = true
| closedOp Op.CDR = true
| closedOp po = S.closedOp po

fun openOp Op.ISNULL = true
| openOp po = S.openOp po

fun Oc Op.CONS [Bottom,_] = Bottom | Oc Op.CDR [Top] = Top
| Oc Op.CONS [_,Top] = Top | Oc Op.CDR [List (_::l)] = List l
| Oc Op.CONS [d,List l] = List (d::l) | Oc Op.CDR _ = Bottom
| Oc Op.CONS _ = Bottom

| Oc po args =
| Oc Op.CAR [Top] = Top if (S.closedOp po)
| Oc Op.CAR [List (d::_)] = d then Abs (S.Oc po (map inject args)
| Oc Op.CAR _ = Bottom else raise ListSpec

fun Oo Op.ISNULL [Top] = D.Top
| Oo Op.ISNULL [List nil] = D.Exact (Absyn.Tr true)
| Oo Op.ISNULL [List _] = D.Exact (Absyn.Tr false)
| Oo Op.ISNULL _ = D.Bottom

| Oo po args =
if (S.openOp po) then S.Oo po (map inject args)
else raise ListSpec

end

Figure 9: Making facet specifications for lists.

A Modular Implementation of Partial Evaluation 13� The E [[if e1 e2 e3]] clause has changed in the case where the branch cannot be selected and
a residual [[if . . .]] expression is constructed. In that case, the join of the facet values of the
partial evaluations of e1 and e2 is returned as the facet value of the result. In this way, we
keep the most accurate information consistent with both branches.

Figure 11 shows the signature ONLINE and most of the code of the Online functor that
implements the partial evaluator defined in Figure 10. The functor takes as a parameter a facet
whose concrete domain must be (via a sharing constraint) dConst, the lifted domain of constants of
the language, as shown in Figure 3.

The functor returns a structure that matches the ONLINE signature. This structure contains a
function online which maps a program and a list of facet values to a residual program. The
int argument to online specifies the maximum depth of conditional branching that may precede
an unfolding of a function call. The list of facet values provide partial input to the program.
The facet parameter defines the expressiveness of this partial input; by adding more facets with
CombineFacets, one can increase power and expressiveness.

Figure 12 shows some actual runs of the online evaluator. The evaluator was given a facet
formed from the following facet specifications:

SignSpec The sign abstraction of integers shown in Figure 5.
PESpec The constant-folding facet described in Section 5.
LengthSpec A length abstraction of lists.
ListSpec(Absyn,SignSpec) Signs mapped over lists.
ListSpec(Absyn,PESpec) Constants mapped over lists.

8. Other Examples and Further Work

Binding-time analysis can be parameterized in a similar fashion. As mentioned in Section 2, [5]
presents the idea of abstract facets with values STATIC and DYNAMIC and a facet analysis to map
facets to abstract facets. We instead merely add a binding-time facet to the facets that we already
have defined. A binding-time facet is one that implements the standard binding-time abstraction.
I.e., the abstract domain is? v STATIC v DYNAMIC, and p̂hd̂1; . . . ; d̂ni = STATIC iff 8(1 � i � n)d̂i = STATIC. The advantage here is that we can combine this binding-time facet with the facets we
already used for the online partial evaluator, resulting in a potentially more powerful domain for
the binding-time analysis. This advantage is illustrated in the last factiter and the factfunny
examples of Figure 13. In the factfunny example, the partial evaluation facet is allowed to
actually do the constant folding to produce 0 for the minus operation. Then the sign facet, after
picking up the 0, returns 0 for the operation times(>,ZERO). The result is that the binding-time
analysis returns STATIC for the r parameter.

Future work includes:� Extension to a CPS-based language, such as the intermediate language of the SML of New
Jersey compiler.

14 A Modular Implementation of Partial Evaluation� Syntactic Domains

(Same as in Figure 2.)� Semantic Domains f 2 FacetValue = FacetValueFr 2 Residual = FacetValue� Exp� 2 Env = Var ! Residual� Valuation FunctionsP : Prog ! FacetValue� ! Int ! ProgE : Exp ! Env ! Prog ! Residual � Prog
APP : Fn ! Residual� ! Env ! Program ! Residual � ProgramP � hf1; . . . ; fn1i = (E [[f1(x1; . . . ; xn1)]](?[fk=xk])�) #2

where � = [[ffi(x1; . . . ; xni) = eig]]E [[c]]� � = hh�F c; [[c]]i; �iE [[x]]� � = h�[[x]]; �iE [[p(e1; . . . ; en)]]� � = (�F f 2 Const) ! hhf; �Ff i; �ni; hhf; [[p(e01; . . . ; e0n)]]i; �ni
where hhf1; e01i; �1i = E[[e1]]��

...hhfn; e0ni; �ni = E[[en]]��n�1f = p̂F hf1; . . . ; fni (p̂F 2 OF)E [[if e1 e2 e3]]� � = (e01 2 Const) !(e01 ! E[[e2]]��1; E [[e3]]��1);hhf2 t f3; [[if e01 e02 e03]]i; �3i
where hhf2; e02i; �2i = E[[e2]]��1hhf3; e03i; �3i = E[[e3]]��2

where hhf1; e01i; �1i = E [[e1]]��E [[f(e1; . . . ; en)]]� � = APP[[f]]hr1; . . . ; rni��n
where hr1; �1i = E [[e1]]��

...hrn; �ni = E [[en]]��n�1

Figure 10: A parameterized online partial evaluator for a strict first-order functional language.

A Modular Implementation of Partial Evaluation 15

signature ONLINE = sig
structure Absyn: ABSYN
structure F: FACET
val online: int -> Absyn.Prog -> F.FacetValue list -> Absyn.Prog

end

functor Online(structure Absyn: ABSYN
structure F: FACET
sharing Absyn.Op = F.Op
and type Absyn.Const = F.D.T): ONLINE = struct

structure Absyn = Absyn
structure F = F

fun getf (f,_) = f fun getexp (_,exp) = exp

fun P (Absyn.Program prog) input ud = ...

and E (exp as (Absyn.Constexp c)) _ prog _ =
((F.abs (F.D.Exact c), exp), prog)

| E (Absyn.Varexp var) env prog _ = (env var, prog)

| E (Absyn.Pexp (po,explst)) env prog ud =
let val (residlst,prog’) = Elist explst env prog ud

val f = F.O po (map getf residlst)
in case (F.inj f) of

F.D.Exact c => ((f, Absyn.Constexp c), prog’)
| _ => ((f, Absyn.Pexp (po, (map getexp residlst))), prog’)

end

| E (Absyn.Fexp (name,explst)) env prog ud =
let val (residlst,prog’) = Elist explst env prog ud
in APP name residlst env prog’ ud
end

| E (Absyn.Ifexp (exp1,exp2,exp3)) env prog ud =
let val ((_,e1),prog1) = E exp1 env prog ud
in case e1 of

Absyn.Constexp (Absyn.Tr true) => E exp2 env prog1 ud
| Absyn.Constexp (Absyn.Tr false) => E exp3 env prog1 ud
| _ => let val ((f2,e2),prog2) = E exp2 env prog1 (ud-1)

val ((f3,e3),prog3) = E exp3 env prog2 (ud-1)
in ((F.join f2 f3, Absyn.Ifexp (e1,e2,e3)), prog3)
end

end

and Elist (exp::rest) env prog ud =
let val (resid,prog’) = E exp env prog ud
in let val (rest’,prog’’) = Elist rest env prog’ ud

in ((resid::rest’),prog’’)
end

end
| Elist _ _ prog _ = (nil,prog)

and APP name residlst env prog ud = ...
(* decides whether or not to specialize based on the unwind depth *)

fun online ud (program as (Absyn.Program _)) input = ...
(* adds an expression to each facet value in input and calls P *)

end

Figure 11: The parameterized online partial evaluator.

16 A Modular Implementation of Partial Evaluation

Source program:

sort(lst) =
if isnull(lst)
[]
insert(car(lst),

sort(cdr(lst)))

insert(n,lst) =
if isnull(lst)
cons(n,[])
if gt(n,car(lst))

cons(car(lst),
insert(n,cdr(lst)))

cons(n,lst)

Input [top,2,1] yields the residual program:

sort1(lst) = insert8(car(lst))
insert8(n) = if gt(n,1)

cons(1,if gt(n,2)
cons(2,cons(n,[]))
cons(n,[2]))

cons(n,[1,2])

Input [neg,3,1,2] yields the residual program:

sort12(lst) = cons(car(lst),[1,2,3])

Input [pos,neg] yields the residual program:

sort7(lst) = cons(car(cons(car(car(lst)),
[])),

cons(car(lst),[]))
Figure 12: Example runs of the online evaluator.

factiter(n,r) =
if eq(n,0)
r
factiter(minus(n,1),

times(n,r))

input output
[3,1] [static,static]
[3,top] [static,top]
[top,1] [top,top]
[top,0] [top,0]

factfunny(n,i,j,r) =
if eq(n,0)

1
factfunny(minus(n,1),i,j,

times(n,times(r,minus(i,j))))

input output
[top,3,3,static] [top,3,3,static]

Figure 13: Examples of the binding-time analyzer.

A Modular Implementation of Partial Evaluation 17� Other collecting interpretations (e.g., strictness analysis). The success of the parameterized
binding-time analyzer lends promise to this line of research.� A specializer to work with the binding-time analyzer.� Development of mathematical foundations to account for the differences from the original
framework of [5].

9. Conclusions

The notion of facet parameterization provides a nice way to combine abstract interpretation with
partial evaluation. We have used the modules system of Standard ML to develop an implementa-
tion that makes facet specification easy, and we have successfully implemented an online partial
evaluator based on this scheme. Furthermore, we have implemented a binding-time analyzer that
can use the exact same facet parameter. This indicates that this specification of facets may be
useful for collecting interpretations in general.

References

[1] S. Abramsky and C. Hankin. Abstract Interpretation of Declarative Languages. Ellis Horwood, Chich-
ester, England, 1987.

[2] A. Bondorf and O. Danvy. Automatic Autoprojection of Recursive Equations with Global Variables and
Abstract Data Types. Technical Report 90–4, DIKU, University of Copenhagen, Denmark, 1990.

[3] C. Consel. New insights into partial evaluation: the Schism experiment. In H. Ganzinger (Ed.), Proceed-
ings of the Second European Symposium on Programming ’88, Nancy, France (March 1988), Lecture
Notes in Computer Science, Vol. 300, Springer-Verlag, 1988, 236–246.

[4] C. Consel. Binding time analysis for higher order untyped functional languages. Proceedings of the
1990 Conference on Lisp and Functional Programming, Nice, France, June 1990, 264–272.

[5] C. Consel and S. C. Khoo. Parameterized partial evaluation. Proceedings of the SIGPLAN’91 Conference
on Programming Language Design and Implementation, June 1991, 92–106.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages, 1977, 238–252.

[7] Jesper Jørgensen. Generating a pattern matching compiler by partial evaluation. To appear at POPL’92.

[8] Carsten K. Gomard. A self-applicable partial evaluator for the lambda calculus. ACM Transactions on
Programming Languages and Systems, To appear.

[9] P. Hudak and J. Young. Collecting interpretations of expressions. ACM Transactions on Programming
Languages and Systems, Vol. 13, No. 2, April 1991, 269–290.

18 A Modular Implementation of Partial Evaluation

[10] N. Jones, P. Sestoft, and H. Søndergaard. An experiment in partial evaluation: the generation of a
compiler generator. In Jean-Pierre Jouannaud (Ed.), Rewriting Techniques and Applications, Dijon,
France, Lecture Notes in Computer Science, Vol. 202, Springer-Verlag, 1985, 124–140.

[11] N. Jones, P. Sestoft, and H. Søndergaard. MIX: a self-applicable partial evaluator for experiments in
compiler generation. LISP and Symbolic Computation, Vol. 2, No. 1, 1989, 9–50.

[12] D. B. MacQueen. Modules for Standard ML. In R. Harper, D. MacQueen, and R. Milner, Standard ML,
Technical Report ECS–LFCS–86–2, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1986.

[13] Torben Mogensen. Partially static structures in a self-applicable partial evaluator. In D. Bjørner, A.
P. Ershov, and N. D. Jones (Eds.), Partial Evaluation and Mixed Computation, North-Holland, 1988,
325–347.

[14] P. Wadler. Strictness analysis on non-flat domains (by abstract interpretation over finite domains).
Abstract Interpretation of Declarative Languages. Abramsky and Hankin (Eds.), Ellis Horwood, Chich-
ester, England, 1987, 266-275.

[15] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press, 1990.

