
Lightweight Run-Time Code Generation�Mark Leone Peter LeeCarnegie Mellon UniversityPittsburgh, Pennsylvania 15213 USAfmleone,petelg@cs.cmu.eduAbstractRun-time code generation is an alternative and complementto compile-time program analysis and optimization. Staticanalyses are inherently imprecise because most interestingaspects of run-time behavior are uncomputable. By defer-ring aspects of compilation to run time, more precise infor-mation about program behavior can be exploited, leading togreater opportunities for code improvement.The cost of performing optimization at run time is ofparamount importance, since it must be repaid by improvedperformance in order to obtain an overall speedup. This pa-per describes a lightweight approach to run-time code gen-eration, called deferred compilation, in which compile-timespecialization is employed to reduce the cost of optimizingand generating code at run time. Implementation strategiesdeveloped for a prototype compiler are discussed, and theresults of preliminary experiments demonstrating signi�cantoverall speedup are presented.1 IntroductionMany compiler optimizations depend on compile-time analy-sis to approximate properties of a program's run-time behav-ior. Static analyses are necessarily imprecise because mostuseful aspects of run-time behavior are uncomputable. Fur-ther compromises in precision must also be made in practiceto reduce the complexity and ine�ciency of analysis algo-rithms. Such imprecision makes it di�cult for a compiler tooptimize programs thoroughly.An alternative approach is to defer some analysis and op-timization (and therefore also code generation) to run time.While this does not avoid the fundamental problems of un-computability and ine�ciency, it does make possible the useof run-time information in improving code quality.�This research was partially supported by the National ScienceFoundation under grant number CCR-9057567. The views and con-clusions contained in this document are those of the authors andshould not be interpreted as representing the o�cial policies, eitherexpressed or implied, of the National Science Foundation or the USGovernment.To appear in the ACM SIGPLAN Workshop onPartial Evaluation and Semantics-Based ProgramManipulation, June 1994.

In this paper we report on our experience with a newapproach to generating optimized code at run time. Thesalient characteristics of our approach, which we term de-ferred compilation, are as follows:� It is lightweight. Compile-time specialization elimi-nates the need to process any intermediate represen-tation of a program at run time. Each part of a com-piled program that performs run-time code generationis \hard wired" to optimize and generate code for asmall portion of the input program.� It is largely automatic. Manual construction of codetemplates or run-time code generators is not required.Syntactic cues and programmer hints are used to de-termine which parts of a program should be subjectedto run-time compilation.� It is general. Many standard optimizations, such asstrength reduction and function inlining, can be e�-ciently employed at run time.We have implemented a prototype compiler, which wecall Fabius, to evaluate this approach. In preliminary ex-periments, we have found that the overhead of deferredcompilation is often quite small when compared to the per-formance gain. Furthermore, we have encountered uniquedesign tradeo�s in considering which aspects of optimiza-tion and code generation should be performed statically andwhich should be deferred to run time. We see some encour-aging signs that deferred compilation can be practical, andwe �nd that there is much further work to be done.1.1 MotivationRun-time code generation is bene�cial for programs thatexhibit multiple stages of computation because the code forlate stages can be optimized based on values computed inearly stages. Multiple stages of computation occur naturallyin both functional and imperative programs. For example,when a strict curried function f of type �1 ! �2 ! �3 isapplied to an argument x, a closure representing a value oftype �2 ! �3 will typically be constructed before compu-tations involving additional arguments proceed. It may bepro�table to generate optimized code for f(x) if it will beapplied many times. Run-time code generation can there-fore be viewed as an alternative to the conventional imple-mentation of closures; this idea has also been described byAppel [App87] and Feeley and Lapalme [FL92].



Stages of computation also arise from conventional iter-ation constructs such as loop nests. Values computed in anouter loop are usually �xed for the duration of inner loops,and substantial bene�ts might be obtained by optimizinginner loops for each iteration of an outer loop. More deeplynested loops lead to more stages of computation.For example matrix multiplication is commonly imple-mented as a triply nested loop: the two outer loops select avector from each matrix and the innermost loop computestheir dot product. At run time it may be pro�table to spe-cialize the dot-product loop, since the vector selected by theoutermost loop will be used to compute many dot products.The dot-product loop can be completely unrolled, eliminat-ing a large number of bounds checks and branches. Its arith-metic operations can also be optimized based on the contentsof the �xed vector, which can signi�cantly improve perfor-mance on sparse data. Such optimizations usually cannotbe performed at compile time, however, because the sizesand contents of the matrices are generally not statically ap-parent.Run-time code generation may also reduce the cost ofabstraction, allowing well-structured programs to be writ-ten without incurring an undue performance penalty. Func-tional programming languages encourage the use of smallfunctions that are combined using higher-order constructssuch as composition, map, and fold, but programs writtenin this manner are di�cult to optimize. Intraproceduraloptimizations are relatively ine�ective because of the smallsize of basic blocks, and interprocedural optimizations aredi�cult to perform at compile time because control 
ow isuncomputable.1.2 Compile-Time AlternativesProgram staging can also be exploited by some compile-timeprogram transformations. To see why run-time code gener-ation is desirable, consider the following simple program,which repeatedly calls an exponentiation function with a�xed exponent that is statically unknown:fun raise exp bases =map (power exp) basesand power exp base =if exp = 0 then 1else base * power (exp - 1) base1.2.1 Staging TransformationsVarious techniques such as staging transformation [JS86,Han91], program bifurcation [Mog89, DBV91], fold/unfoldtransformations [BD77], or loop-invariant removal [ASU86]might be employed at compile time to \hoist" computationsthat do not depend on base out of its scope. Hoisting theconditional test, subtraction, and recursive call yields thefollowing implementation of power:1fun power exp =if exp = 0 then (fn base => 1)else let pow = power (exp - 1)in fn base => base * pow baseend1fn x => e denotes the strict function �x:e.

This transformation reduces the dynamic frequency of thehoisted operations, which otherwise would be repeated nu-merous times. However, a signi�cant amount of overheadhas been introduced: calling this implementation of powerwill typically result in the creation of a large number ofclosures, each containing a code pointer and a pointer toanother closure.Run-time code generation can reduce the dynamic fre-quency of loop-invariant operations with less overhead. Inaddition, it can optimize non-loop-invariant computationsusing information that is not available at compile time.1.2.2 Static SpecializationAlternatively, specialization [JGS93], driving [Tur86], or pro-cedure cloning [CHK93] might be employed at compile timeto transform power into the following function:2fun powgen exp =nth exp [fn base => 1,fn base => base,fn base => base * base,fn base => base * base * base,... 9>>>=>>>; k]handle Nth => power expGiven an exponent value powgen simply chooses from a ta-ble of power functions, each specialized to a value of expfrom 0 to k � 1. The specialized functions are highly opti-mized and can be compiled into high-quality machine code,so one might expect this approach to be useful in the samesituations as run-time code generation.However, there are two practical problems in perform-ing such a transformation automatically. First there is thematter of choosing the set of values on which to specialize.In general it is not possible to predict the range of valuesthat might result from an early computation, and such val-ues might be arbitrary data structures. A second problem isthat, due to space constraints, a relatively small limit mustbe placed on the number of specialized functions created atcompile time (represented by the constant k in the above ex-ample). Key bene�ts of run-time code generation are thatspecialization occurs \on demand" and that code space canbe reused.1.3 Run-Time Code GenerationRun-time code generation has a long history; a useful sum-mary can be found in [KEH91]. However, it has not beenwidely adopted, primarily because it is di�cult to automateand because the cost of optimization is often recovered onlyfor large input sizes.The cost of run-time code generation is often reducedusing templates. A template is a manually constructed,machine-dependent representation of code containing \holes"in place of some values. Run-time code generation simplyrequires copying a template and instantiating its holes withrun-time values, which yields run-time \constant" propaga-tion. Other simple optimizations can be achieved at low2nth i [x0, . . . , xn] yields xi, the ith element of a list. An ex-ception called Nth is raised if i > n, in which case powgen returns aclosure containing the value of exp and the code of an unspecializedexponentiation function.2



cost; for example, loop unrolling can be implemented byconcatenating templates.Templates are employed in the Synthesis kernel [Mas92,MP89] to reduce the overhead of kernel calls and contextswitches. Other applications that bene�t signi�cantly fromrun-time template compilation include decompression andcache simulation [KEH93] and the bitblt graphics primi-tive [PLR85].Although run-time template compilation is fast, the rangeof optimizations that may be applied at run time is limited.For example, instruction scheduling across template bound-aries is di�cult to achieve. Using a more general interme-diate representation permits a wider range of optimizationsand results in higher-quality code, but at higher cost.Keppel, Eggers, and Henry [KEH93, KEH91] have ex-plored the tradeo� between run-time code generation costsand code quality by implementing a template compiler anda more general intermediate-representation compiler for sev-eral applications. Engler and Proebsting [EP93] have inves-tigated using the lcc compiler's intermediate representationfor run-time code generation. Intermediate code constructedusing ad hoc methods can be compiled by the lcc back endat run time and then directly executed.Run-time compilation is employed in SELF [HU94, DC94,CU91], a compiler for a classless object-oriented language,using a general-purpose intermediate representation. Run-time optimizations are obtained automatically by simplydeferring the bulk of compilation to run time. Similar ap-proaches have been implemented for Smalltalk [DS84] andconcurrent object-oriented languages [CKP93]. In SELF theprimary run-time optimizations are inlining and a form ofspecialization in which methods are customized to reducethe cost of dynamic type dispatch. The cost of run-timecompilation is reduced by delaying the compilation of in-frequently executed methods3 and applying aggressive op-timizations only to frequently executed methods using dy-namic recompilation. Nevertheless, compilation is time con-suming: the SELF91 run-time compiler is about as fast asan optimizing C compiler [CU91].2 Deferred CompilationDeferred compilation employs compile-time specialization toreduce the cost of run-time code generation. No interme-diate representation of a program is processed at run time;instead, portions of a program are compiled into code that is\hard-wired" to perform optimizations and generate nativecode at run time. Our goal is to make run-time code gen-eration lightweight and largely automatic without greatlylimiting the range of optimizations that may be applied atrun time.There are close connections between deferred compila-tion and partial evaluation [JGS93]. A partial evaluator,called mix for historical reasons, could be invoked at runtime to specialize (the text of) a function f to a particularargument value: mix([[f]]; x) = fxwhere [[f ]] is a closed term representing f , x is a run-timevalue, and fx is the so-called residual program, representingthe specialization of f to x. A key aspect of deferred com-pilation is that the input x is not known until run time, so3Chambers and Ungar [CU91] originally coined the term \deferredcompilation" to describe this strategy.

some amount of specialization must be carried out at runtime. The text of f is known at compile time, however,so the cost of run-time specialization can be reduced by acompile-time specialization of mix to f:mix([[mix]]; [[f ]]) = mixfIf mix exhibits good \binding-time separation," mixf willspecialize fx without the overhead of processing [[f ]] at runtime. Deferred compilation employs a similar form of com-pile-time specialization to reduce the cost of optimizing andgenerating code at run time.In the remainder of this section we illustrate the basicprinciples of deferred compilation by describing the designof a prototype implementation. The connections betweendeferred compilation and partial evaluation are discussed inmore detail in Section 2.4.2.1 ImplementationWe have implemented a prototype compiler called Fabius4to investigate and evaluate the notion of deferred compi-lation. A key issue is how to apportion the costs of op-timization and code generation between compile time andrun time. For the moment, the primary goal of Fabius is toreduce the run-time cost of code generation to a minimum,at the cost of some degradation in the quality of the gener-ated code and an increase in the size of both the generatingand the generated code. This provides a baseline for theevaluation of more aggressive run-time optimizations. Fu-ture extensions to Fabius are discussed in Section 3.2 andSection 5.The Fabius source language is, for the time being, a rudi-mentary, strict, �rst-order functional language. Integers andpointers to heap-allocated structures are the only run-timevalues. Fabius generates native code for the MIPS R2000.The three major phases of compilation are as follows:� Staging analysis identi�es computation stages at whichit may be pro�table to perform run-time code gen-eration. In a process similar to binding-time analy-sis [JSS89, Con93], subexpressions of the program areannotated to indicate whether they belong to early orlate stages of computation.� Register allocation assigns registers to program vari-ables and intermediate values. The usual notion oflifetime ranges must be modi�ed, since textually ad-jacent computations may belong to di�erent programstages, and may therefore use overlapping register sets.� Code generation compiles \early" computations in theusual way, but \late" computations are compiled intomachine code that generates optimized instruction se-quences at run time.A simple example will be used to illustrate these steps inmore detail. As mentioned in Section 1.1, matrix multiplica-tion is well suited to run-time code generation. It is usuallyimplemented as a triply nested loop, where the two outerloops select a vector from each matrix and the innermostloop computes their dot product. Consider the following(tail-recursive) implementation of a dot-product loop:4Quintus Fabius Maximus was a Roman general best known for hisdefeat of Hannibal in the Second Punic War. His primary strategywas to delay confrontation; repeated small attacks eventually led tovictory without a single decisive con
ict.3



fun dotprod (v1, v2, sum) =if v1 = nil then sumelse dotprod (tl v1, tl v2,sum + hd v1 * hd v2)To simplify the presentation we assume vectors are imple-mented as linked lists of integers.5 As a point of reference,consider the machine code that might be generated for thedotprod function by a conventional compiler:dotprod:beq r1, r0, L1 ; if v1 = nil goto L1ld r4, (r1) ; x1 = hd v1ld r5, (r2) ; x2 = hd v2mul r4, r4, r5 ; prod = x1 * x2add r3, r3, r4 ; sum = sum + prodld r1, 4(r1) ; v1 = tl v1ld r2, 4(r2) ; v2 = tl v2jmp dotprod ; goto dotprodL1: move r1, r3 ; result = sumret ; returnThe next section describes how staging analysis identi�eswhere compilation can be deferred, and Section 2.3 describeshowFabius creates a specialized code generator for dotprod.2.2 Staging AnalysisIn the implementation of matrix multiply described above,the vector selected by the outermost loop, v1, is used tocompute numerous dot products. It may therefore be prof-itable to create an optimized dot-product function (param-eterized by v2 and sum) for each iteration of the outer loop.In such situations, we say that the �rst argument of dotprodis available at an early stage and the remaining argumentsare available at a late stage.Deferred compilation employs a staging analysis to iden-tify such computation stages and track data dependencies.The subexpressions of a program are annotated to indicatewhether they depend only on the results of early computa-tions or whether they might rely on late-stage results. Forexample dotprodmight be annotated as follows, where over-lines indicate early computations and underlines indicatelate computations:fun dotprod (v1, v2, sum) =if v1 = nil then sumelse dotprod (tl v1, tl v2,sum + hd v1 * hd v2)The test v1=nil can be computed at an early stage be-cause v1 is available early, and therefore the conditionalbranch can also be performed early, and so on. The stag-ing analysis also labels the recursive application as an earlycomputation, indicating that the function should be inlinedat run time (see Section 3.3).In the case of just two stages, this labeling of early andlate computations is very similar to a binding-time analysisand annotation [JSS89, Con93]. There is a subtle di�erencebetween the two, however. Binding-time analysis is guidedby an externally imposed division of the program inputs thatspeci�es which are supplied at compile time and which will5hd returns the head of a list and tl the tail.

only be available at run time. But in the setting of deferredcompilation, all of the program inputs are supplied at thesame time, upon execution of the compiled program. Thedistinction between \early" and \late" stages is introducedby the compiler, quite arti�cially, in the hope of obtainingfaster code.Detecting program stages is a di�cult problem. Syntac-tic features of programming languages often provide clearindications of stages that can be subjected to deferred com-pilation. Applications of curried functions are an obviouscandidate for deferred compilation, as are nested loop con-structs. Consel, Pu, and Walpole [CPW93] recently pro-posed the use of a multi-level programming language to al-low programmers to express invariants that will become es-tablished during the execution of a large system. For exam-ple, an operating system might be structured in a way thatpermits specialization to be applied at compile time, linktime, boot time, and run time. Such a multi-level languagewould facilitate staging analysis.In addition to detecting program stages, staging analysismust also determine which stages will bene�t from run-timecompilation. Partial evaluators commonly adopt the aggres-sive strategy of performing specialization whenever possible,even when doing so does not result in signi�cant code im-provements. Deferred compilation requires a more conser-vative approach because the cost of optimization must berepaid by improved performance. It can be quite di�cult todetermine when this will be the case, especially since opti-mizations applied at run time may be machine speci�c. On-line strategies that employ run-time information to guide op-timization may be necessary. For example, online strategiesare employed in the Cecil and SELF compilers to determinewhere method specialization [DCG94] and inlining [DC94]should be applied at run time.Currently Fabius relies on programmer hints to deter-mine where run-time code generation will be pro�table. Anotation similar to currying can be used in function de�-nitions to specify which formal parameters are \early" andwhich are \late." Calls to such functions require a syntaxsimilar to curried application to introduce a \division" ofthe actual arguments.In the parlance of partial evaluation, this technique ismonovariant because all call sites must supply a \compati-ble" division of the actual arguments. But a degree of poly-variance is possible because the \signature" of a function is�xed by its de�nition and is not a�ected by the stages as-signed to its actual arguments. For example, in a \curried"application of the formf(e1; . . . ; em)(e01; . . . ; e0n)a compatible division of the actual arguments is constructedas follows:� If any ei is late, all ei and e0i are \lifted" to a late stage.� If any e0i is late, all e0i are \lifted" to a late stage.As a result, the staging \analysis" implemented in Fabiusis a simple, one-pass annotation algorithm.Currently only two-stage divisions are supported. Nev-ertheless, programs exhibiting more than two stages of ex-ecution can bene�t from run-time code generation at eachstage because \late" values may be passed as \early" argu-ments. In such circumstances run-time-generated code willcontain calls to statically compiled code generators.4



2.3 Code GenerationAfter staging analysis, Fabius performs register allocation,the discussion of which we postpone to Section 3.2, and thencode generation. Early computations are compiled in theusual way, but late computations are compiled into code thatemits optimized instruction sequences at run time. From theannotated dotprod function shown above, Fabius generatesthe following code:6dotgen:beq r1, r0, L1 ; if v1 = nil goto L1ld r2, (r1) ; x1 = hd v1emit ld r3, (r1) ; emit x2 = hd v2emit mul r3, [r2], r3 ; emit prod = x1 * x2emit add r2, r2, r3 ; emit sum = sum + prodld r1, 4(r1) ; v1 = tl v1emit ld r1, 4(r1) ; emit v2 = tl v2jmp dotgen ; goto dotgenL1:emit move r1, r2 ; emit result = sumret ; returnThere are only two di�erences between dotgen and themachine code for dotprod that was presented earlier. First,some instructions are emitted (perhaps many times) insteadof being executed. Second, some early and late values havebeen assigned to the same registers, since operations involv-ing these values belong to non-overlapping program stages.This optimization is discussed further in Section 3.2.dotgen is a specialized code generator that does not ma-nipulate any intermediate representation of the source pro-gram at run time. Readers familiar with partial evalua-tion may notice that dotgen is a generating extension fordotprod. Specialized code generators can also be viewed asexecutable data structures [Mas92] in which interpretationaloverhead is eliminated by merging code and data.dotgen e�ectively performs \constant" propagation, con-ditional folding, and inlining at run time. For example whencalled with the vector [x1 . . .xn], the following code is gen-erated at run time:ld r3, (r1) ; x2 = hd v2mul r3, x1, r3 ; prod = x1 * x2add r2, r2, r3 ; sum = sum + prodld r1, 4(r1) ; v2 = tl v2...ld r3, (r1) ; x2 = hd v2mul r3, xn, r3 ; prod = xn * x2add r2, r2, r3 ; sum = sum + prodld r1, 4(r1) ; v2 = tl v2move r1, r2 ; result = sumThese simple optimizations can yield a signi�cant overallspeedup, even for small input sizes. Some preliminary mea-surements are reported in Section 4.6We use the pseudo-instruction \emit" to simplify the presenta-tion. It expands into a sequence of instructions that allocates spacein a dynamic code segment, builds the representation of an instruc-tion from its opcode and arguments, and �nally writes the instructionto the allocated space. The operands of the emitted instruction areusually �xed, but the value of an immediate operand may be deter-mined by the contents of a register. For example, \emit mul r3, [r2],r3" can emit a register-immediate multiply instruction if the value inr2 is small enough to permit such an encoding.For clarity, the order in which arguments are computed has beenchanged, which eliminates some register shu�ing, and code that emitsprocedure linkage code has been omitted.

Making deferred compilation practical for a wide varietyof programs is more of a challenge than this simple exam-ple might imply. Here we see that run-time inlining canbe highly pro�table, but clearly there are limits; if pursuedtoo aggressively, the run-time overhead may exceed the per-formance gain of the dynamically generated code. Section 3discusses such issues in more detail and describes the strate-gies employed to address them. We also examine how awider range of optimizations and code generation techniquescan be adapted to deferred compilation.2.4 Deferred Compilation via Partial EvaluationThe Fabius code generator is structured much like a con-ventional code generator. It is interesting to note, however,that it could be automatically derived in a more principledway using partial evaluation.To see how this might be accomplished, �rst considerhow a conventional partial evaluator, mix, might be used tospecialize a function f at run time:mix([[f]]; x) = [[fx]]Here [[f ]] is the source code for f , and x is a run-time value.Since conventional partial evaluators are designed for source-to-source program transformation, the specialized code thatresults, [[fx]], will be expressed in a high-level language.Hence it will require (run-time) compilation before it canbe executed: (comp �mix)([[f ]]; x) = [fx]The single-brackets indicate a result in the form of nativecode. However, note that [[f ]] is known at compile time, sowe can specialize comp �mix (or comix for short) to reducethe cost of run-time specialization and compilation:mix([[comix]]; [[f]]) = [[comixf ]]The result is (the text of) a program that specializes andcompiles f to native code at run time. If comix exhibitsgood binding-time separation, no intermediate representa-tion of [[f]] will be processed at run time.Unfortunately, a na��ve composition of comp and mixdoes not have good binding-time separation, so run-timecompilation will not be specialized. It is well known, how-ever, that partial evaluators need not express residual pro-grams as source code. One could directly implement comixas a specializer that generates native machine code. A com-piler similar to Fabius could then be obtained by self appli-cation: comix([[comix]]; [[comix]]) � [Fabius]To the best of our knowledge, no existing partial evaluatordirectly generates native machine code. One system thatcomes close to this goal is AMIX, a self-applicable partialevaluator for a �rst-order functional language whose targetis an abstract stack machine [Hol88]. AMIX's abstract ma-chine code is a relatively high-level language, however, andthe cost of compiling it to native code at run time would besubstantial. The interpretational overhead present in thiscompilation cannot be statically eliminated.Fabius can be viewed as a manually derived implemen-tation of comix([[comix]]; [[comix]]). This bears strong simi-larity to the notion of hand-writing cogen [BHOS76, EH80,5



HL91]. How then does deferred compilation di�er from par-tial evaluation? Perhaps the most fundamental di�erence,discussed in Section 2.2, is that deferred compilation is notdriven by an externally imposed division of program inputs,but rather by the staging inherent a program. In addi-tion, deferred compilation incorporates low-level optimiza-tions that are not considered by conventional specializers(such as strength reduction and register allocation) and re-quires di�erent heuristics to determine where specializationand unfolding should be applied. Section 3 discusses theseissues in more detail.3 Run-Time OptimizationsThe dot-product example presented in Section 2.3 demon-strated that simply deferring code generation to run timeallows us to achieve run-time \constant" folding, loop un-rolling, and \dead code" elimination. Other conventionaloptimization and code generation techniques can be adaptedto deferred compilation, but the lack of any run-time in-termediate representation poses a challenge. Optimizationsmust be staged in a way that separates the manipulation ofthe source program from the use of run-time information. Inpartial evaluation terminology, optimizations must exhibitgood \binding-time separation." Fortunately this seems tobe the case for many conventional optimizations.3.1 Local OptimizationsLocal optimizations, such as strength reduction and instruc-tion selection, are easy to adapt to deferred compilation. Forexample, when emitting x*y, where x is the result of an earlycomputation, a code generator can �rst check whether x iszero and if so emit a cheaper instruction:beq r1, r0, L1 ; if x = 0 goto L1emit mul r2, [r1], r1 ; emit z = x * yjmp L2 ; goto L2L1: emit move r2, 0 ; emit z = 0L2:Fabius incorporates a number of local optimizations of thisform. The increased cost of such run-time optimizationsmust be weighed against their bene�t. In this case, the costis only a few cycles per multiplication and the bene�ts can besigni�cant, as we demonstrate in Section 4 where we considera computation involving sparse data. The choice of run-timeoptimizations need not be made globally: specialized codegenerators can be individually tailored to perform a varietyof optimizations.3.2 Register AllocationDeferred compilation reduces register pressure but compli-cates register allocation. Fewer registers are required be-cause program stages are not interleaved and can thereforeuse overlapping register sets. For example in dotprod, com-putations involving the two vectors are textually adjacent,but because they belong to di�erent stages the same registercan be assigned to both vectors.Existing register allocation algorithms based on graphcoloring [Cha82, CH84] can be adapted to deferred compi-lation by simply modifying the construction of the inter-ference graph. An interference graph contains nodes repre-senting the lifetime ranges of variables and edges indicating

where these ranges intersect. Any K-coloring of this graphis therefore a valid assignment of the variables to K regis-ters. Deferred compilation simply requires a revised notionof variable lifetime: during construction of the interferencegraph, edges should only be added between overlapping life-time ranges of variables from the same program stage.Fabius uses a similar technique to perform all register al-location at compile time, which signi�cantly reduces the costof run-time code generation. This approach has drawbacks,however. Inlining and loop unrolling may occur at run time,so an exact interference graph cannot be constructed at com-pile time. Also, �xing the register assignments of functionsat compile time makes run-time inlining less e�ective. Forexample, code must be generated to shu�e registers if theformal and actual parameters of a function are assigned todi�erent registers, and so forth. Eliminating this kind ofoverhead is one of the primary motivations for inlining, soit seems desirable to perform run-time register allocation insome cases.Constructing an exact interference graph at run time islikely to be prohibitively expensive, so we are investigat-ing an alternative technique in which register allocation isperformed at compile time but register assignment for late-stage computations is deferred to run time. Compile-timeregister allocation can conservatively determine where reg-ister spilling is necessary, based on a static approximationof the interference graph as described above, and run-timecode generators can be parameterized by register mappings.For example, dotgen can perform run-time register assign-ment as follows:dotgen:beq r1, r0, L1 ; if v1 = nil goto L1ld r2, (r1) ; x1 = hd v1emit ld Rr4, (Rr2) ; emit x2 = hd v2emit mul Rr4, [r2], Rr4 ; emit prod = x1 * x2emit add Rr3, Rr3, Rr4 ; emit sum = sum + prodld r1, 4(r1) ; v1 = tl v1emit ld Rr2, 4(Rr2) ; emit v2 = tl v2jmp dotgen ; goto dotgenL1:emit move Rr5, Rr3 ; emit result = sumret ; returnThis function takes �ve arguments: the value of v1 (in r1),the numbers of the registers assigned to v2 and sum (in r2and r3), and the numbers of an available temporary regis-ter and the destination register (in r4 and r5). The emitpseudo-instruction used here determines the operands of theemitted instruction from the contents of the speci�ed regis-ters. This takes a few more cycles than emitting instructionswith �xed operands, but the generated code will be more ef-�cient in contexts that would otherwise require the registershu�ing described above.3.3 Inlining and Loop UnrollingInlining and loop unrolling are valuable optimizations inconventional compilers because they yield increased oppor-tunities for optimization, eliminate the overhead of functioncalls, and improve the amortization of computations such asrange checks [DH88]. The extent to which these optimiza-tions may be performed at compile time is rather limited,however. Loop bounds are usually unknown, and a loop canonly be unrolled a �xed number of times. Special-case codecontaining numerous branches is required when unrolling a6



0102030405060
708090
20 40 60 80 100 120 140 160 180 200

No RTCGRTCG, dense inputRTCG, sparse inputCost of RTCG(Included above)Dimension (n)
Instructions (M)

? ? ? ? ? ? ? ? ? ?
r r r r r r r r r r
b b b b b b b b b br r r r r r r r r rFigure 1: Instructions to multiply two n� n matricesloop because the actual number of iterations might not bea multiple of the unrolling depth. Inlining is often impos-sible when compiling languages with higher-order functionsbecause calls to unknown functions are common. Run-timeinlining and loop unrolling can solve these problems.Fabius decides at compile time where run-time inliningshould occur, based on the results of the staging analy-sis. Loops are expressed as tail-recursive functions, so inlin-ing yields loop unrolling. An aggressive heuristic currentlyguides inlining: a call to a function with both \early" and\late" formal parameters is marked for run-time inlining ifit does not appear in a branch of a conditional controlledby a late-stage value [BD91]. Each function that might beinlined at run time is compiled into a specialized code gener-ator that does not emit procedure linkage code, but insteademits optimized code directly into the code being generatedfor the calling context.Although the inlining strategy implemented by Fabiuspreserves the termination behavior of programs [BD91], itremains to be seen whether the increased time and spacerequirements of such aggressive run-time inlining are man-ageable in large applications.3.4 SpecializationIn some contexts it is impractical to inline a function yetstill desirable to specialize it based upon the results of earlycomputations. For example if a function is called at sev-eral di�erent program points with the same value from anearly computation, it may be preferable to generate a sin-gle optimized version of the function rather than inlining itsbody at each call site. Specialization also permits run-time-optimized code to be reused rather than regenerated, whichsaves both space and time.Determining where specialization will be bene�cial is adi�cult problem. Fabius currently implements the aggres-sive heuristic employed in [BD91]: all functions with both\early" and \late" arguments that are not inlined are spe-cialized. Such functions are compiled into specialized codegenerators, parameterized by the values of the early ar-guments, which generate optimized functions at run time.

These code generators are memoized, so that previously op-timized code is reused whenever possible. Run-time memo-ization on structured data can be quite expensive [Mal93],so Fabius uses pointer equality.Although this form of specialization yields signi�cantspeedups for some examples, it does not always terminate[BD91]. Preliminary experiments also indicate that the strat-egy is too aggressive in practice, since some functions do notbene�t signi�cantly from specialization.4 ResultsPreliminary experiments with Fabius are encouraging. Asan example we return to the matrix multiplication algorithmthat was introduced in Section 2. We measured the num-ber of instructions executed and the overall execution timeof matrix multiply for both dense and sparse inputs. Ex-ecution times were measured on an unloaded DECstation5000/200. The inputs were square matrices of dimension ncontaining pseudo-random untagged 32-bit integers. SinceFabius does not yet support vectors or arrays, we imple-mented matrices as lists of lists. Sparse input was 90% zero,and non-zero values were randomly located. The same run-time optimizations were applied for both dense and sparseinputs. For the purposes of comparison we also measuredthe performance of statically optimized code, which was ob-tained by simply disabling the Fabius staging analysis. Thequality of this code was good, although compile-time inlin-ing was not performed.Since the Fabius prototype does not yet have a garbagecollector, our measurements do not re
ect the cost of re-claiming data and code space, although they do accountfor the cost of allocation. Also, since code space is not yetreused at run time, we have not yet evaluated the cost ofinstruction-cache 
ushing. This issue is discussed further inSection 4.3.4.1 Instruction CountsFigure 1 compares the number of instructions executed whenmultiplying dense and sparse matrices of varying size. Thetop curve gives the performance of the statically optimized7



02468
1012
20 40 60 80 100 120 140 160 180 200

RTCG, dense inputNo RTCGRTCG, sparse inputCost of RTCG(Included above)Dimension (n)
Seconds

? ? ? ? ? ? ? ? ? ?
r r r r r r r r r r
b b b b b b b b b br r r r r r r r r rFigure 2: Time to multiply two n� n matricescode, and the middle two curves demonstrate the improve-ment obtained by deferred compilation, after taking intoaccount the cost of generating code at run time. The low-est curve represents the cost of run-time code generation fordense input. Sparse input resulted in faster run-time codegeneration, since fewer instructions were emitted.As the �gure demonstrates, deferred compilation can sig-ni�cantly improve performance even for small problem sizes.In this case the cost of optimizing and generating code atrun time was recovered for dense matrices larger than 20�20and sparse matrices larger than 2� 2. For larger input sizesthe improvement obtained for dense data asymptotically ap-proaches 20%, and the improvement on sparse data increaseslinearly. At n = 200 deferred compilation reduced the to-tal number of instructions executed by 18% for dense dataand 72% for sparse data. The cost of run-time optimizationand code generation was very low, accounting for 3% of thetotal number of instructions executed when n = 200. Fordense input, the average cost was 4.8 instructions for eachinstruction generated at run time; the average was 6.2 forsparse input.4.2 Execution TimesAs predicted by the instruction counts, the time spent opti-mizing and generating code at run time was brief, totalling170 milliseconds for dense input and 120 milliseconds forsparse input when n = 200. However, overall executiontimes were greater than we expected. As shown in Fig-ure 2, deferred compilation did not yield an overall speedupfor dense matrices, and yielded a speedup of only 50% forsparse matrices.This curious behavior is caused by an instruction pipelinestall. On the MIPS an integer-multiply instruction requiresseveral cycles to complete, and the instruction pipeline willstall if an attempt is made to access the result before it isready. The statically optimized code is large enough thatseveral unrelated instructions can be scheduled after themultiplication in the dot-product function, so a pipeline stalldoes not occur. Run-time code generation happens to elim-inate precisely these instructions.

We veri�ed this explanation by measuring the executiontime of a variant of the benchmark code in which the re-sult of the multiplication was discarded. Overall executiontime improved signi�cantly, and was closely predicted byinstruction counts, indicating that no other pipeline stallswere introduced by deferred compilation.Better instruction scheduling can reduce or eliminatesuch pipeline stalls. For example, instructions from itera-tion i + 1 of the dot product loop can be scheduled afterthe multiplication in the ith iteration. However, since thedot-product loop is not unrolled at compile time, it maybe necessary to perform this instruction scheduling at runtime. We are currently investigating the feasibility of suchoptimizations.4.3 CaveatsAlthough encouraging, the results of this experiment are notconclusive. A more realistic implementation of matrix mul-tiply would likely include special-purpose code for sparse in-puts, and aggressive compile-time loop optimizations mightbe able to improve the performance of our benchmark codewithout resorting to run-time code generation. Such per-formance improvements are not incompatible with deferredcompilation, however.Additional concerns that must be addressed in practiceinclude space usage and instruction caching. Compile-timespecialization of run-time code generators essentially tradesspace for time. For example, enabling run-time code genera-tion more than doubled the static size of the matrix multiplycode, from 70 words to 150 words. Aggressive run-time inlin-ing and loop unrolling can also dramatically increase spacerequirements. For example when n = 200 the code gener-ated at run time for a single dot product function occupiedapproximately 1600 words; if code space is not reclaimed thetotal space required exceeds one megabyte.Run-time code generation can also interact poorly withinstruction caching. Most modern architectures prefetch in-structions into an instruction cache, and many do not auto-matically invalidate cache entries when memory writes oc-cur. Portions of the instruction cache may therefore need8



to be 
ushed whenever new code is generated at run time[KEH91]. Fortunately the regularity of code-space alloca-tion and initialization simpli�es amortizing the cost of suchoperations. Fabius aligns each newly allocated code ob-ject to a boundary that the MIPS instruction prefetcher isguaranteed not to have crossed while executing previouslygenerated code, thus avoiding the invalidation of cached in-structions. Cache 
ushing is therefore required only whengarbage collection occurs.7Although we have not yet implemented code-space recla-mation, we believe that the cost of cache 
ushing will notbe signi�cant. For example Keppel reports that 
ushingthe instruction cache on a DECstation 5000/200 requiresa kernel trap plus approximately 0.8 nanoseconds per byte
ushed [Kep91]. This would add approximately ten mil-liseconds to the total cost of run-time code generation whenmultiplying 200� 200 matrices.5 Conclusions and Future ResearchDeferred compilation is an alternative and complement tocompile-time analysis and optimization in which aspects ofoptimization and code generation are deferred to run time.Fast run-time optimization and code generation is achievedby eliminating, through compile-time specialization, the over-head of processing intermediate representations of sourceprograms at run time. Preliminary experiments with a pro-totype compiler are promising, but we �nd that further ex-perimentation is required for a full assessment.Currently, we are extending the Fabius prototype tocompile programs with higher-order functions and mutabledata structures. We are also exploring the use of a widerrange of optimization and code generation techniques at runtime. Of particular interest is the usefulness of performingregister assignment at run time. Also, we plan a detailedstudy of the e�ectiveness of di�erent strategies for control-ling run-time inlining, specialization, and memoization.Finally, the matter of staging analysis is, at this point,poorly understood. We currently rely on programmer hintsto determine where run-time code generation will be prof-itable, but clearly a more automatic approach is desirable.The development of both the theoretical foundations and apractical implementation of automatic staging analysis willbe the subject of future research.AcknowledgementsWe are grateful to Chris Stone, who provided valuable as-sistance in the implementation of Fabius, and also to Ali-Reza Adl-Tabatabai, Chris Colby, Charles Consel, OlivierDanvy, David Keppel, Mark Lillibridge, Greg Morrisett,Chris Okasaki, Amr Sabry, Chris Stone, and David Tarditifor their time and e�ort in productive discussions.7A vexing problem arises if pointers are propagated like other val-ues during optimization, since they may become embedded in run-time-generated code. The garbage collector must then update codeand 
ush the instruction cache whenever it moves data. Such em-bedded pointers may be di�cult to locate and update; for exampleon the MIPS a constant 32-bit pointer might be embedded into twoinstructions that contain 16-bit immediate values. Instruction re-ordering during run-time code generation can make the locations ofthese instructions unpredictable.

References[App87] Andrew W. Appel. Re-opening closures. TechnicalReport CS-TR-079-87, Department of Computer Sci-ence, Princeton University, 1987.[ASU86] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ull-man. Compilers: Principles, Techniques, and Tools.Addison-Wesley, Reading, Massachusetts, 1986.[BD77] R. M. Burstall and John Darlington. A transformationsystem for developing recursive programs. Journal ofthe ACM, 24(1):44{67, January 1977.[BD91] Anders Bondorf and Olivier Danvy. Automatic auto-projection of recursive equations with global variablesand abstract data types. Science of Computer Pro-gramming, 16(2):151{195, September 1991.[BHOS76] Lennart Beckman, Anders Haraldson, �Osten Oskars-son, and Erik Sandewall. A partial evaluator, andits use as a programming tool. Arti�cial Intelligence,7(4):319{357, 1976.[CH84] Frederick Chow and John Hennessy. Register alloca-tion by priority-based coloring. In Proceedings of theACM SIGPLAN '84 Symposium on Compiler Con-struction, pages 222{232. SIGPLAN Notices, June1984.[Cha82] Gregory J. Chaitin. Register allocation and spillingvia graph coloring. SIGPLAN Notices, 17(6):98{105,June 1982.[CHK93] Keith D. Cooper, Mary W. Hall, and Ken Kennedy.A methodology for procedure cloning. Computer Lan-guages, 19(2):105{117, April 1993.[CKP93] Andrew A. Chien, Vijay Karamcheti, and JohnPlevyak. The Concert system| compiler and runtimesupport for e�cient, �ne-grained concurrent object-oriented programs. Technical Report R-93-1815, De-partment of Computer Science, University of Illinoisat Urbana-Champaign, June 1993.[Con93] Charles Consel. Polyvariant binding-time analysis forapplicative languages. In Proceedings of the Sym-posium on Partial Evaluation and Semantics-BasedProgram Manipulation, pages 66{77. Association forComputing Machinery, June 1993.[CPW93] Charles Consel, Calton Pu, and JonathanWalpole. In-cremental partial evaluation: The key to high perfor-mance, modularity and portability in operating sys-tems. In Proceedings of the Symposium on PartialEvaluation and Semantics-Based Program Manipula-tion, pages 44{46. Association for Computing Machin-ery, June 1993.[CU91] Craig Chambers and David Ungar. Making pureobject-oriented languages practical. In OOPSLA '91Conference Proceedings. SIGPLAN Notices 26(11):1{15, November 1991.[DBV91] Anne De Niel, Eddy Bevers, and Karel De Vlam-inck. Program bifurcation for a polymorphically typedfunctional language. In Proceedings of the Sym-posium on Partial Evaluation and Semantics-BasedProgram Manipulation, pages 142{153. SIGPLAN No-tices, September 1991.[DC94] Je�rey Dean and Craig Chambers. Towards betterinlining decisions using inlining trials. In Proceedingsof the 1994 ACM Conference on LISP and FunctionalProgramming, June 1994. To appear.[DCG94] Je�rey Dean, Craig Chambers, and David Grove.Identifying pro�table specialization in object-orientedlanguages. Technical Report 94-02-05, Departmentof Computer Science and Engineering, University ofWashington, February 1994.9



[DH88] JackW. Davidson and Anne M. Holler. A study of a Cfunction inliner. Software | Practice and Experience,18(8):775{790, 1988.[DS84] L. Peter Deutsch and Allan M. Schi�man. E�cientimplementation of the Smalltalk{80 system. In Con-ference Record of the 11th Annual ACM Symposiumon Principles of Programming Languages, Salt LakeCity, pages 297{302, January 1984.[EH80] Par Emanuelson and Anders Haraldsson. On compil-ing embedded languages in LISP. In ACM Conferenceon Lisp and Functional Programming, Stanford, Cal-ifornia, pages 208{215, 1980.[EP93] Dawson R. Engler and Todd A. Proebsting. DCG: Ane�cient, retargetable dynamic code generation sys-tem. In preparation, November 1993.[FL92] Marc Feeley and Guy Lapalme. Closure generationbased on viewing lambda as epsilon plus compile.Computer Languages, 17(4):251{267, October 1992.[Han91] John Hannan. Staging transformations for abstractmachines. In Proceedings of the Symposium on PartialEvaluation and Semantics-Based Program Manipula-tion, pages 130{141. SIGPLAN Notices, 1991.[HL91] N. Carsten Kehler Holst and John Launchbury. Hand-writing cogen to avoid problems with static typing. InDraft Proceedings, Fourth Annual Glasgow Workshopon Functional Programming, Skye, Scotland, pages210{218. Glasgow University, 1991.[Hol88] N. Carsten Kehler Holst. Language triplets: TheAMIX approach. In D. Bj�rner, A.P. Ershov, and N.D.Jones, editors, Partial Evaluation and Mixed Compu-tation, pages 167{185. North-Holland, October 1988.[HU94] Urs H�olzle and David Ungar. Optimizing dynamically-dispatched calls with run-time type feedback. In ACMSIGPLAN '94 Conference on Programming LanguageDesign and Implementation, June 1994. To appear.[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.Partial Evaluation and Automatic Program Genera-tion. Prentice-Hall, 1993.[JS86] Ulrik J�rring and William L. Scherlis. Compilers andstaging transformations. In Conference Record of the13th Annual ACM Symposium on Principles of Pro-gramming Languages, pages 86{96, January 1986.[JSS89] Neil D. Jones, Peter Sestoft, and Harald S�ndergaard.Mix: A self-applicable partial evaluator for experi-ments in compiler generation. LISP and SymbolicComputation, 2(1):9{50, 1989.[KEH91] David Keppel, Susan J. Eggers, and Robert R. Henry.A case for runtime code generation. Technical Report91-11-04, Department of Computer Science and Engi-neering, University of Washington, November 1991.[KEH93] David Keppel, Susan J. Eggers, and Robert R. Henry.Evaluating runtime-compiled value-speci�c optimiza-tions. Technical Report 93-11-02, Department of Com-puter Science and Engineering, University of Washing-ton, November 1993.[Kep91] David Keppel. A portable interface for on-the-
y in-struction space modi�cation. In Proceedings of the4th International Conference on Architectural Sup-port for Programming Languages and Operating Sys-tems, pages 86{95, April 1991.[Mal93] Karoline Malmkj�r. Towards e�cient partial evalu-ation. In Proceedings of the Symposium on PartialEvaluation and Semantics-Based Program Manipula-tion, pages 33{43. Association for Computing Machin-ery, June 1993.

[Mas92] Henry Massalin. Synthesis: An E�cient Implementa-tion of Fundamental Operating System Services. PhDthesis, Department of Computer Science, ColumbiaUniversity, 1992.[Mog89] Torben Mogensen. Separating binding times in lan-guage speci�cations. In Fourth International Con-ference on Functional Programming Languages andComputer Architecture, London, England, Septem-ber 1989, pages 14{25. Reading, MA: Addison-Wesley,1989.[MP89] Henry Massalin and Calton Pu. Threads and in-put/output in the Synthesis kernel. In Proceedingsof the 12th ACM Symposium on Operating SystemsPrinciples, pages 191{201, December 1989.[PLR85] Rob Pike, Bart Locanthi, and John Reiser. Hard-ware/software trade-o�s for bitmap graphics on theBlit. Software | Practice and Experience, 15(2):131{151, February 1985.[Tur86] Valentin F. Turchin. The concept of a supercompiler.ACM Transactions on Programming Languages andSystems, 8(3):292{325, 1986.

10


