Lightweight Run-Time Code Generation

Mark Leone

*

Peter Lee

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 USA
{mleone,petel}@cs.cmu.edu

Abstract

Run-time code generation is an alternative and complement
to compile-time program analysis and optimization. Static
analyses are inherently imprecise because most interesting
aspects of run-time behavior are uncomputable. By defer-
ring aspects of compilation to run time, more precise infor-
mation about program behavior can be exploited, leading to
greater opportunities for code improvement.

The cost of performing optimization at run time is of
paramount importance, since it must be repaid by improved
performance in order to obtain an overall speedup. This pa-
per describes a lightweight approach to run-time code gen-
eration, called deferred compilation, in which compile-time
specialization is employed to reduce the cost of optimizing
and generating code at run time. Implementation strategies
developed for a prototype compiler are discussed, and the
results of preliminary experiments demonstrating significant
overall speedup are presented.

1 Introduction

Many compiler optimizations depend on compile-time analy-
sis to approximate properties of a program’s run-time behav-
ior. Static analyses are necessarily imprecise because most
useful aspects of run-time behavior are uncomputable. Fur-
ther compromises in precision must also be made in practice
to reduce the complexity and inefficiency of analysis algo-
rithms. Such imprecision makes it difficult for a compiler to
optimize programs thoroughly.

An alternative approach is to defer some analysis and op-
timization (and therefore also code generation) to run time.
While this does not avoid the fundamental problems of un-
computability and inefficiency, it does make possible the use
of run-time information in improving code quality.

*This research was partially supported by the National Science
Foundation under grant number CCR-9057567. The views and con-
clusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the National Science Foundation or the US
Government.

To appear in the ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program
Manipulation, June 1994.

In this paper we report on our experience with a new
approach to generating optimized code at run time. The
salient characteristics of our approach, which we term de-
ferred compilation, are as follows:

o It is lightweight. Compile-time specialization elimi-
nates the need to process any intermediate represen-
tation of a program at run time. Each part of a com-
piled program that performs run-time code generation
is “hard wired” to optimize and generate code for a
small portion of the input program.

o It is largely automatic. Manual construction of code
templates or run-time code generators is not required.
Syntactic cues and programmer hints are used to de-
termine which parts of a program should be subjected
to run-time compilation.

o It is general. Many standard optimizations, such as
strength reduction and function inlining, can be effi-
ciently employed at run time.

We have implemented a prototype compiler, which we
call FaBIUS, to evaluate this approach. In preliminary ex-
periments, we have found that the overhead of deferred
compilation is often quite small when compared to the per-
formance gain. Furthermore, we have encountered unique
design tradeoffs in considering which aspects of optimiza-
tion and code generation should be performed statically and
which should be deferred to run time. We see some encour-
aging signs that deferred compilation can be practical, and
we find that there is much further work to be done.

1.1 Motivation

Run-time code generation is beneficial for programs that
exhibit multiple stages of computation because the code for
late stages can be optimized based on values computed in
early stages. Multiple stages of computation occur naturally
in both functional and imperative programs. For example,
when a strict curried function f of type mm — ™ — 73 is
applied to an argument x, a closure representing a value of
type 72 — 73 will typically be constructed before compu-
tations involving additional arguments proceed. It may be
profitable to generate optimized code for £(x) if it will be
applied many times. Run-time code generation can there-
fore be viewed as an alternative to the conventional imple-
mentation of closures; this idea has also been described by
Appel [App87] and Feeley and Lapalme [FL92].

Stages of computation also arise from conventional iter-
ation constructs such as loop nests. Values computed in an
outer loop are usually fixed for the duration of inner loops,
and substantial benefits might be obtained by optimizing
inner loops for each iteration of an outer loop. More deeply
nested loops lead to more stages of computation.

For example matrix multiplication is commonly imple-
mented as a triply nested loop: the two outer loops select a
vector from each matrix and the innermost loop computes
their dot product. At run time it may be profitable to spe-
cialize the dot-product loop, since the vector selected by the
outermost loop will be used to compute many dot products.
The dot-product loop can be completely unrolled, eliminat-
ing a large number of bounds checks and branches. Its arith-
metic operations can also be optimized based on the contents
of the fixed vector, which can significantly improve perfor-
mance on sparse data. Such optimizations usually cannot
be performed at compile time, however, because the sizes
and contents of the matrices are generally not statically ap-
parent.

Run-time code generation may also reduce the cost of
abstraction, allowing well-structured programs to be writ-
ten without incurring an undue performance penalty. Func-
tional programming languages encourage the use of small
functions that are combined using higher-order constructs
such as composition, map, and fold, but programs written
in this manner are difficult to optimize. Intraprocedural
optimizations are relatively ineffective because of the small
size of basic blocks, and interprocedural optimizations are
difficult to perform at compile time because control flow is
uncomputable.

1.2 Compile-Time Alternatives

Program staging can also be exploited by some compile-time
program transformations. To see why run-time code gener-
ation is desirable, consider the following simple program,
which repeatedly calls an exponentiation function with a
fixed exponent that is statically unknown:

fun raise exp bases =
map (power exp) bases

and power exp base =
if exp = 0 then 1
else base * power (exp - 1) base

1.2.1 Staging Transformations

Various techniques such as staging transformation [JS86,
Han91], program bifurcation [Mog89, DBV91], fold /unfold
transformations [BD77], or loop-invariant removal [ASU86]
might be employed at compile time to “hoist” computations
that do not depend on base out of its scope. Hoisting the
conditional test, subtraction, and recursive call yields the
following implementation of power:!

fun power exp =
if exp = 0 then (fn base => 1)
else let pow = power (exp - 1)
in
fn base => base * pow base
end

1tn & => e denotes the strict function Az.e.

This transformation reduces the dynamic frequency of the
hoisted operations, which otherwise would be repeated nu-
merous times. However, a significant amount of overhead
has been introduced: calling this implementation of power
will typically result in the creation of a large number of
closures, each containing a code pointer and a pointer to
another closure.

Run-time code generation can reduce the dynamic fre-
quency of loop-invariant operations with less overhead. In
addition, it can optimize non-loop-invariant computations
using information that is not available at compile time.

1.2.2 Static Specialization

Alternatively, specialization [JGS93], driving [Tur86], or pro-
cedure cloning [CHK93] might be employed at compile time
to transform power into the following function:?

fun powgen exp =
nth exp [fn base => 1,
fn base => base,
fn base => base * base,
fn base => base * base * base,

].
handle Nth => power exp

Given an exponent value powgen simply chooses from a ta-
ble of power functions, each specialized to a value of exp
from 0 to k — 1. The specialized functions are highly opti-
mized and can be compiled into high-quality machine code,
so one might expect this approach to be useful in the same
situations as run-time code generation.

However, there are two practical problems in perform-
ing such a transformation automatically. First there is the
matter of choosing the set of values on which to specialize.
In general it is not possible to predict the range of values
that might result from an early computation, and such val-
ues might be arbitrary data structures. A second problem is
that, due to space constraints, a relatively small limit must
be placed on the number of specialized functions created at
compile time (represented by the constant k in the above ex-
ample). Key benefits of run-time code generation are that
specialization occurs “on demand” and that code space can
be reused.

1.3 Run-Time Code Generation

Run-time code generation has a long history; a useful sum-
mary can be found in [KEH91]. However, it has not been
widely adopted, primarily because it is difficult to automate
and because the cost of optimization is often recovered only
for large input sizes.

The cost of run-time code generation is often reduced
using templates. A template is a manually constructed,
machine-dependent representation of code containing “holes”
in place of some values. Run-time code generation simply
requires copying a template and instantiating its holes with
run-time values, which yields run-time “constant” propaga-
tion. Other simple optimizations can be achieved at low

2nth § [20, +-., n] yields @;, the i** element of a list. An ex-
ception called Nth is raised if ¢ > n, in which case powgen returns a
closure containing the value of exp and the code of an unspecialized
exponentiation function.

cost; for example, loop unrolling can be implemented by
concatenating templates.

Templates are employed in the Synthesis kernel [Mas92,
MP89] to reduce the overhead of kernel calls and context
switches. Other applications that benefit significantly from
run-time template compilation include decompression and
cache simulation [KEH93] and the bitblt graphics primi-
tive [PLR85].

Although run-time template compilation is fast, the range
of optimizations that may be applied at run time is limited.
For example, instruction scheduling across template bound-
aries is difficult to achieve. Using a more general interme-
diate representation permits a wider range of optimizations
and results in higher-quality code, but at higher cost.

Keppel, Eggers, and Henry [KEH93, KEH91] have ex-
plored the tradeoff between run-time code generation costs
and code quality by implementing a template compiler and
a more general intermediate-representation compiler for sev-
eral applications. Engler and Proebsting [EP93] have inves-
tigated using the lcc compiler’s intermediate representation
for run-time code generation. Intermediate code constructed
using ad hoc methods can be compiled by the 1cc back end
at run time and then directly executed.

Run-time compilation is employed in SELF [HU94, DC94,
CU91], a compiler for a classless object-oriented language,
using a general-purpose intermediate representation. Run-
time optimizations are obtained automatically by simply
deferring the bulk of compilation to run time. Similar ap-
proaches have been implemented for Smalltalk [DS84] and
concurrent object-oriented languages [CKP93]. In SELF the
primary run-time optimizations are inlining and a form of
specialization in which methods are customized to reduce
the cost of dynamic type dispatch. The cost of run-time
compilation is reduced by delaying the compilation of in-
frequently executed methods® and applying aggressive op-
timizations only to frequently executed methods using dy-
namic recompilation. Nevertheless, compilation is time con-
suming: the SELF91 run-time compiler is about as fast as
an optimizing C compiler [CU91].

2 Deferred Compilation

Deferred compilation employs compile-time specialization to
reduce the cost of run-time code generation. No interme-
diate representation of a program is processed at run time;
instead, portions of a program are compiled into code that is
“hard-wired” to perform optimizations and generate native
code at run time. Our goal is to make run-time code gen-
eration lightweight and largely automatic without greatly
limiting the range of optimizations that may be applied at
run time.

There are close connections between deferred compila-
tion and partial evaluation [JGS93]. A partial evaluator,
called miz for historical reasons, could be invoked at run
time to specialize (the text of) a function f to a particular

argument value:

where [f] is a closed term representing f, z is a run-time
value, and f, is the so-called residual program, representing
the specialization of f to z. A key aspect of deferred com-
pilation is that the input z is not known until run time, so

3 Chambers and Ungar [CU91] originally coined the term “deferred
compilation” to describe this strategy.

some amount of specialization must be carried out at run
time. The text of f is known at compile time, however,
so the cost of run-time specialization can be reduced by a
compile-time specialization of miz to f:

miz([miz], [f]) = miz;

If miz exhibits good “binding-time separation,” miz; will
specialize f, without the overhead of processing [f] at run
time. Deferred compilation employs a similar form of com-
pile-time specialization to reduce the cost of optimizing and
generating code at run time.

In the remainder of this section we illustrate the basic
principles of deferred compilation by describing the design
of a prototype implementation. The connections between
deferred compilation and partial evaluation are discussed in
more detail in Section 2.4.

2.1 Implementation

We have implemented a prototype compiler called FaBrus*
to investigate and evaluate the notion of deferred compi-
lation. A key issue is how to apportion the costs of op-
timization and code generation between compile time and
run time. For the moment, the primary goal of FABIUS is to
reduce the run-time cost of code generation to a minimum,
at the cost of some degradation in the quality of the gener-
ated code and an increase in the size of both the generating
and the generated code. This provides a baseline for the
evaluation of more aggressive run-time optimizations. Fu-
ture extensions to FABIUS are discussed in Section 3.2 and
Section 5.

The FABIUS source language is, for the time being, a rudi-
mentary, strict, first-order functional language. Integers and
pointers to heap-allocated structures are the only run-time
values. FABIUS generates native code for the MIPS R2000.
The three major phases of compilation are as follows:

o Staging analysis identifies computation stages at which
it may be profitable to perform run-time code gen-
eration. In a process similar to binding-time analy-
sis [JSS89, Con93], subexpressions of the program are
annotated to indicate whether they belong to early or
late stages of computation.

o Register allocation assigns registers to program vari-
ables and intermediate values. The usual notion of
lifetime ranges must be modified, since textually ad-
Jjacent computations may belong to different program
stages, and may therefore use overlapping register sets.

o Code generation compiles “early” computations in the
usual way, but “late” computations are compiled into
machine code that generates optimized instruction se-
quences at run time.

A simple example will be used to illustrate these steps in
more detail. As mentioned in Section 1.1, matrix multiplica-
tion is well suited to run-time code generation. It is usually
implemented as a triply nested loop, where the two outer
loops select a vector from each matrix and the innermost
loop computes their dot product. Consider the following
(tail-recursive) implementation of a dot-product loop:

% Quintus Fabius Maximus was a Roman general best known for his
defeat of Hannibal in the Second Punic War. His primary strategy
was to delay confrontation; repeated small attacks eventually led to
victory without a single decisive conflict.

fun dotprod (vi, v2, sum) =
if vl = nil then sum
else dotprod (t1 vi, tl1 v2,
sum + hd v1 * hd v2)

To simplify the presentation we assume vectors are imple-
mented as linked lists of integers.® As a point of reference,
consider the machine code that might be generated for the
dotprod function by a conventional compiler:

dotprod:
beq ri1, r0, L1 ; if vl = nil goto L1
1d 4, (1) ; x1 = hd v1
1d =5, (x2) ; x2 = hd v2
mul r4, r4, rb ; prod = x1 * x2
add r3, r3, r4 ; sum = sum + prod
1d 1, 4(r1) ; vl = t1 v1
1d 2, 4(xr2) ; v2 = t1 v2
jmp dotprod ; goto dotprod
L1:
move rl, r3 ; result = sum
ret ;s return

The next section describes how staging analysis identifies
where compilation can be deferred, and Section 2.3 describes
how FABIUS creates a specialized code generator for dotprod.

2.2 Staging Analysis

In the implementation of matrix multiply described above,
the vector selected by the outermost loop, v1, is used to
compute numerous dot products. It may therefore be prof-
itable to create an optimized dot-product function (param-
eterized by v2 and sum) for each iteration of the outer loop.
In such situations, we say that the first argument of dotprod
is available at an early stage and the remaining arguments
are available at a late stage.

Deferred compilation employs a staging analysis to iden-
tify such computation stages and track data dependencies.
The subexpressions of a program are annotated to indicate
whether they depend only on the results of early computa-
tions or whether they might rely on late-stage results. For
example dotprod might be annotated as follows, where over-
lines indicate early computations and underlines indicate
late computations:

fun dotprod (vi, v2, sum) =
if v1 = nil then sum
else dotprod (tI vi, t1 v2,
sum + hd v1 * hd v2)

The test v1=nil can be computed at an early stage be-
cause v1 is available early, and therefore the conditional
branch can also be performed early, and so on. The stag-
ing analysis also labels the recursive application as an early
computation, indicating that the function should be inlined
at run time (see Section 3.3).

In the case of just two stages, this labeling of early and
late computations is very similar to a binding-time analysis
and annotation [JSS89, Con93]. There is a subtle difference
between the two, however. Binding-time analysis is guided
by an externally imposed division of the program inputs that
specifies which are supplied at compile time and which will

5hd returns the head of a list and tl the tail.

only be available at run time. But in the setting of deferred
compilation, all of the program inputs are supplied at the
same time, upon execution of the compiled program. The
distinction between “early” and “late” stages is introduced
by the compiler, quite artificially, in the hope of obtaining
faster code.

Detecting program stages is a difficult problem. Syntac-
tic features of programming languages often provide clear
indications of stages that can be subjected to deferred com-
pilation. Applications of curried functions are an obvious
candidate for deferred compilation, as are nested loop con-
structs. Consel, Pu, and Walpole [CPW93] recently pro-
posed the use of a multi-level programming language to al-
low programmers to express invariants that will become es-
tablished during the execution of a large system. For exam-
ple, an operating system might be structured in a way that
permits specialization to be applied at compile time, link
time, boot time, and run time. Such a multi-level language
would facilitate staging analysis.

In addition to detecting program stages, staging analysis
must also determine which stages will benefit from run-time
compilation. Partial evaluators commonly adopt the aggres-
sive strategy of performing specialization whenever possible,
even when doing so does not result in significant code im-
provements. Deferred compilation requires a more conser-
vative approach because the cost of optimization must be
repaid by improved performance. It can be quite difficult to
determine when this will be the case, especially since opti-
mizations applied at run time may be machine specific. On-
line strategies that employ run-time information to guide op-
timization may be necessary. For example, online strategies
are employed in the Cecil and SELF compilers to determine
where method specialization [DCG94] and inlining [DC94]
should be applied at run time.

Currently FABIUS relies on programmer hints to deter-
mine where run-time code generation will be profitable. A
notation similar to currying can be used in function defi-
nitions to specify which formal parameters are “early” and
which are “late.” Calls to such functions require a syntax
similar to curried application to introduce a “division” of
the actual arguments.

In the parlance of partial evaluation, this technique is
monovariant because all call sites must supply a “compati-
ble” division of the actual arguments. But a degree of poly-
variance is possible because the “signature” of a function is
fixed by its definition and is not affected by the stages as-
signed to its actual arguments. For example, in a “curried”
application of the form

f(el,..-,em)(eiy"'7e”n.)

a compatible division of the actual arguments is constructed
as follows:

o If any e; is late, all e; and e} are “lifted” to a late stage.
o If any e is late, all e} are “lifted” to a late stage.

As a result, the staging “analysis” implemented in FABIUS
is a simple, one-pass annotation algorithm.

Currently only two-stage divisions are supported. Nev-
ertheless, programs exhibiting more than two stages of ex-
ecution can benefit from run-time code generation at each
stage because “late” values may be passed as “early” argu-
ments. In such circumstances run-time-generated code will
contain calls to statically compiled code generators.

2.3 Code Generation

After staging analysis, FABIUS performs register allocation,
the discussion of which we postpone to Section 3.2, and then
code generation. Early computations are compiled in the
usual way, but late computations are compiled into code that
emits optimized instruction sequences at run time. From the
annotated dotprod function shown above, FABIUS generates
the following code:®

dotgen:
beq ri1, r0, L1 ; if vl = nil goto L1
1d 2, (r1) ; x1 = hd v1
emit 1d 3, (r1) ; emit x2 = hd v2
emit mul r3, [r2], r3 ; emit prod = x1 * x2
emit add r2, r2, r3 ; emit sum = sum + prod
1d 1, 4(r1) ; vl = t1 v1
emit 1d r1, 4(ri1) ; emit v2 = t1 v2
jmp dotgen ; goto dotgen

L1:
emit move rl, r2 ; emit result = sum
ret ;s return

There are only two differences between dotgen and the
machine code for dotprod that was presented earlier. First,
some instructions are emitted (perhaps many times) instead
of being executed. Second, some early and late values have
been assigned to the same registers, since operations involv-
ing these values belong to non-overlapping program stages.
This optimization is discussed further in Section 3.2.

dotgen is a specialized code generator that does not ma-
nipulate any intermediate representation of the source pro-
gram at run time. Readers familiar with partial evalua-
tion may notice that dotgen is a generating extension for
dotprod. Specialized code generators can also be viewed as
executable data structures [Mas92] in which interpretational
overhead is eliminated by merging code and data.

dotgen effectively performs “constant” propagation, con-
ditional folding, and inlining at run time. For example when
called with the vector [z ...zx], the following code is gen-
erated at run time:

14 r3, (r1) ; x2 = hd v2

mul r3, 1, r3 ; prod = z; * x2
add r2, r2, r3 ; sum = sum + prod
14 ri, 4(r1) ; v2 = t1 v2

14 r3, (r1) ; x2 = hd v2

mul r3, z,, r3 ; prod = z, * x2
add r2, r2, r3 ; sum = sum + prod
14 ri, 4(r1) ; v2 = t1 v2

move rl, r2 ; result = sum

These simple optimizations can yield a significant overall
speedup, even for small input sizes. Some preliminary mea-
surements are reported in Section 4.

6 We use the pseudo-instruction “emit” to simplify the presenta-
tion. It expands into a sequence of instructions that allocates space
in a dynamic code segment, builds the representation of an instruc-
tion from its opcode and arguments, and finally writes the instruction
to the allocated space. The operands of the emitted instruction are
usually fixed, but the value of an immediate operand may be deter-
mined by the contents of a register. For example, “emit mul r3, [r2],
r3” can emit a register-immediate multiply instruction if the value in
r2 is small enough to permit such an encoding.

For clarity, the order in which arguments are computed has been
changed, which eliminates some register shuffling, and code that emits
procedure linkage code has been omitted.

Making deferred compilation practical for a wide variety
of programs is more of a challenge than this simple exam-
ple might imply. Here we see that run-time inlining can
be highly profitable, but clearly there are limits; if pursued
too aggressively, the run-time overhead may exceed the per-
formance gain of the dynamically generated code. Section 3
discusses such issues in more detail and describes the strate-
gies employed to address them. We also examine how a
wider range of optimizations and code generation techniques
can be adapted to deferred compilation.

2.4 Deferred Compilation via Partial Evaluation

The FABIUS code generator is structured much like a con-
ventional code generator. It is interesting to note, however,
that it could be automatically derived in a more principled
way using partial evaluation.

To see how this might be accomplished, first consider
how a conventional partial evaluator, miz, might be used to
specialize a function f at run time:

miz([f],z) = [f]

Here [f] is the source code for f, and z is a run-time value.
Since conventional partial evaluators are designed for source-
to-source program transformation, the specialized code that
results, [f.], will be expressed in a high-level language.
Hence it will require (run-time) compilation before it can
be executed:

(comp o miz)([f],z) = [fe]

The single-brackets indicate a result in the form of native
code. However, note that [f] is known at compile time, so
we can specialize comp o miz (or comiz for short) to reduce
the cost of run-time specialization and compilation:

miz([comiz],[f]) = [comiz;]

The result is (the text of) a program that specializes and
compiles f to native code at run time. If comiz exhibits
good binding-time separation, no intermediate representa-
tion of [f] will be processed at run time.

Unfortunately, a naive composition of comp and miz
does not have good binding-time separation, so run-tirme
compilation will not be specialized. It is well known, how-
ever, that partial evaluators need not express residual pro-
grams as source code. One could directly implement comziz
as a specializer that generates native machine code. A com-
piler similar to FABIUS could then be obtained by self appli-
cation:

comiz([comiz], [comiz]) ~ [FABIUS]

To the best of our knowledge, no existing partial evaluator
directly generates native machine code. One system that
comes close to this goal is AMIX, a self-applicable partial
evaluator for a first-order functional language whose target
is an abstract stack machine [Hol88]. AMIX’s abstract ma-
chine code is a relatively high-level language, however, and
the cost of compiling it to native code at run time would be
substantial. The interpretational overhead present in this
compilation cannot be statically eliminated.

FaBIUS can be viewed as a manually derived implemen-
tation of comiz([comiz], [comiz]). This bears strong simi-
larity to the notion of hand-writing cogen [BHOS76, EH80,

HL91]. How then does deferred compilation differ from par-
tial evaluation? Perhaps the most fundamental difference,
discussed in Section 2.2, is that deferred compilation is not
driven by an externally imposed division of program inputs,
but rather by the staging inherent a program. In addi-
tion, deferred compilation incorporates low-level optimiza-
tions that are not considered by conventional specializers
(such as strength reduction and register allocation) and re-
quires different heuristics to determine where specialization
and unfolding should be applied. Section 3 discusses these
issues in more detail.

3 Run-Time Optimizations

The dot-product example presented in Section 2.3 demon-
strated that simply deferring code generation to run time
allows us to achieve run-time “constant” folding, loop un-
rolling, and “dead code” elimination. Other conventional
optimization and code generation techniques can be adapted
to deferred compilation, but the lack of any run-time in-
termediate representation poses a challenge. Optimizations
must be staged in a way that separates the manipulation of
the source program from the use of run-time information. In
partial evaluation terminology, optimizations must exhibit
good “binding-time separation.” Fortunately this seems to
be the case for many conventional optimizations.

3.1 Local Optimizations

Local optimizations, such as strength reduction and instruc-
tion selection, are easy to adapt to deferred compilation. For
example, when emitting X*y, where x is the result of an early
computation, a code generator can first check whether x is
zero and if so emit a cheaper instruction:

beq ri1, r0, L1 ; if x = 0 goto L1
emit mul r2, [ri], r1 ; emit z = x * y
jmp L2 ; goto L2

Li: emit move r2, 0 ; emit z = 0

L2:

FABIUS incorporates a number of local optimizations of this
form. The increased cost of such run-time optimizations
must be weighed against their benefit. In this case, the cost
is only a few cycles per multiplication and the benefits can be
significant, as we demonstrate in Section 4 where we consider
a computation involving sparse data. The choice of run-time
optimizations need not be made globally: specialized code
generators can be individually tailored to perform a variety
of optimizations.

3.2 Register Allocation

Deferred compilation reduces register pressure but compli-
cates register allocation. Fewer registers are required be-
cause program stages are not interleaved and can therefore
use overlapping register sets. For example in dotprod, com-
putations involving the two vectors are textually adjacent,
but because they belong to different stages the same register
can be assigned to both vectors.

Existing register allocation algorithms based on graph
coloring [Cha82, CH84] can be adapted to deferred compi-
lation by simply modifying the construction of the inter-
ference graph. An interference graph contains nodes repre-
senting the lifetime ranges of variables and edges indicating

where these ranges intersect. Any K-coloring of this graph
is therefore a valid assignment of the variables to K regis-
ters. Deferred compilation simply requires a revised notion
of variable lifetime: during construction of the interference
graph, edges should only be added between overlapping life-
time ranges of variables from the same program stage.

FABIUS uses a similar technique to perform all register al-
location at compile time, which significantly reduces the cost
of run-time code generation. This approach has drawbacks,
however. Inlining and loop unrolling may occur at run time,
so an exact interference graph cannot be constructed at com-
pile time. Also, fixing the register assignments of functions
at compile time makes run-time inlining less effective. For
example, code must be generated to shuffle registers if the
formal and actual parameters of a function are assigned to
different registers, and so forth. Eliminating this kind of
overhead is one of the primary motivations for inlining, so
it seems desirable to perform run-time register allocation in
some cases.

Constructing an exact interference graph at run time is
likely to be prohibitively expensive, so we are investigat-
ing an alternative technique in which register allocation is
performed at compile time but register assignment for late-
stage computations is deferred to run time. Compile-time
register allocation can conservatively determine where reg-
ister spilling is necessary, based on a static approximation
of the interference graph as described above, and run-time
code generators can be parameterized by register mappings.
For example, dotgen can perform run-time register assign-
ment as follows:

dotgen:
beq ri1, r0, L1 ; if vl = nil goto L1
1d r2, (r1) ; x1 = hd v1
emit 1d Rys, (Ry2) ; emit x2 = hd v2
emit mul R,s, [r2], R,4 ; emit prod = x1 * x2
emit add R,3, Rr3, Rrs ; emit sum = sum + prod
1d r1, 4(r1) ; vl = 1 v1
emit 1d R,2, 4(R2) ; emit v2 = t1 v2
jmp dotgen ; goto dotgen

L1:
emit move R,5, Ry3 ; emit result = sum
ret ;s return

This function takes five arguments: the value of v1 (in r1),
the numbers of the registers assigned to v2 and sum (in r2
and r3), and the numbers of an available temporary regis-
ter and the destination register (in r4 and r5). The emit
pseudo-instruction used here determines the operands of the
emitted instruction from the contents of the specified regis-
ters. This takes a few more cycles than emitting instructions
with fixed operands, but the generated code will be more ef-
ficient in contexts that would otherwise require the register
shuffling described above.

3.3 Inlining and Loop Unrolling

Inlining and loop unrolling are valuable optimizations in
conventional compilers because they yield increased oppor-
tunities for optimization, eliminate the overhead of function
calls, and improve the amortization of computations such as
range checks [DH88]. The extent to which these optimiza-
tions may be performed at compile time is rather limited,
however. Loop bounds are usually unknown, and a loop can
only be unrolled a fixed number of times. Special-case code
containing numerous branches is required when unrolling a

Instructions (M)
90 :

80 |-

70 -

60 |-

50 |-

40 -

30 |-

20 |-

= No RTCG

RTCG, dense input

RTCG, sparse input

Cost of RTCG
(Included above)

20 40 60 80 100

120 140 160 180 200

Dimension (n)

Figure 1: Instructions to multiply two n X n matrices

loop because the actual number of iterations might not be
a multiple of the unrolling depth. Inlining is often impos-
sible when compiling languages with higher-order functions
because calls to unknown functions are common. Run-time
inlining and loop unrolling can solve these problems.

FaBIUs decides at compile time where run-time inlining
should occur, based on the results of the staging analy-
sis. Loops are expressed as tail-recursive functions, so inlin-
ing yields loop unrolling. An aggressive heuristic currently
guides inlining: a call to a function with both “early” and
“late” formal parameters is marked for run-time inlining if
it does not appear in a branch of a conditional controlled
by a late-stage value [BD91]. Each function that might be
inlined at run time is compiled into a specialized code gener-
ator that does not emit procedure linkage code, but instead
emits optimized code directly into the code being generated
for the calling context.

Although the inlining strategy implemented by FaBIus
preserves the termination behavior of programs [BD91], it
remains to be seen whether the increased time and space
requirements of such aggressive run-time inlining are man-
ageable in large applications.

3.4 Specialization

In some contexts it is impractical to inline a function yet
still desirable to specialize it based upon the results of early
computations. For example if a function is called at sev-
eral different program points with the same value from an
early computation, it may be preferable to generate a sin-
gle optimized version of the function rather than inlining its
body at each call site. Specialization also permits run-time-
optimized code to be reused rather than regenerated, which
saves both space and time.

Determining where specialization will be beneficial is a
difficult problem. FABIUS currently implements the aggres-
sive heuristic employed in [BD91]: all functions with both
“early” and “late” arguments that are not inlined are spe-
cialized. Such functions are compiled into specialized code
generators, parameterized by the values of the early ar-
guments, which generate optimized functions at run time.

These code generators are memoized, so that previously op-
timized code is reused whenever possible. Run-time memo-
ization on structured data can be quite expensive [Mal93],
so FABIUS uses pointer equality.

Although this form of specialization yields significant
speedups for some examples, it does not always terminate
[BD91]. Preliminary experiments also indicate that the strat-
egy is too aggressive in practice, since some functions do not
benefit significantly from specialization.

4 Results

Preliminary experiments with FABIUS are encouraging. As
an example we return to the matrix multiplication algorithm
that was introduced in Section 2. We measured the num-
ber of instructions executed and the overall execution time
of matrix multiply for both dense and sparse inputs. Ex-
ecution times were measured on an unloaded DECstation
5000/200. The inputs were square matrices of dimension n
containing pseudo-random untagged 32-bit integers. Since
FaBIUS does not yet support vectors or arrays, we imple-
mented matrices as lists of lists. Sparse input was 90% zero,
and non-zero values were randomly located. The same run-
time optimizations were applied for both dense and sparse
inputs. For the purposes of comparison we also measured
the performance of statically optimized code, which was ob-
tained by simply disabling the FABIUS staging analysis. The
quality of this code was good, although compile-time inlin-
ing was not performed.

Since the FABIUS prototype does not yet have a garbage
collector, our measurements do not reflect the cost of re-
claiming data and code space, although they do account
for the cost of allocation. Also, since code space is not yet
reused at run time, we have not yet evaluated the cost of
instruction-cache flushing. This issue is discussed further in
Section 4.3.

4.1 Instruction Counts

Figure 1 compares the number of instructions executed when
multiplying dense and sparse matrices of varying size. The
top curve gives the performance of the statically optimized

Seconds
12

10 |-

0 $ 4

RTCG, dense input
' No RTCG

RTCG, sparse input

Cost of RTCG
(Included above)

20 40 60 80 100

120 140 160 180 200

Dimension (n)

Figure 2: Time to multiply two n X n matrices

code, and the middle two curves demonstrate the improve-
ment obtained by deferred compilation, after taking into
account the cost of generating code at run time. The low-
est curve represents the cost of run-time code generation for
dense input. Sparse input resulted in faster run-time code
generation, since fewer instructions were emitted.

As the figure demonstrates, deferred compilation can sig-
nificantly improve performance even for small problem sizes.
In this case the cost of optimizing and generating code at
run time was recovered for dense matrices larger than 20 x 20
and sparse matrices larger than 2 x 2. For larger input sizes
the improvement obtained for dense data asymptotically ap-
proaches 20%, and the improvement on sparse data increases
linearly. At n = 200 deferred compilation reduced the to-
tal number of instructions executed by 18% for dense data
and 72% for sparse data. The cost of run-time optimization
and code generation was very low, accounting for 3% of the
total number of instructions executed when n = 200. For
dense input, the average cost was 4.8 instructions for each
instruction generated at run time; the average was 6.2 for
sparse input.

4.2 Execution Times

As predicted by the instruction counts, the time spent opti-
mizing and generating code at run time was brief, totalling
170 milliseconds for dense input and 120 milliseconds for
sparse input when n = 200. However, overall execution
times were greater than we expected. As shown in Fig-
ure 2, deferred compilation did not yield an overall speedup
for dense matrices, and yielded a speedup of only 50% for
sparse matrices.

This curious behavior is caused by an instruction pipeline
stall. On the MIPS an integer-multiply instruction requires
several cycles to complete, and the instruction pipeline will
stall if an attempt is made to access the result before it is
ready. The statically optimized code is large enough that
several unrelated instructions can be scheduled after the
multiplication in the dot-product function, so a pipeline stall
does not occur. Run-time code generation happens to elim-
inate precisely these instructions.

We verified this explanation by measuring the execution
time of a variant of the benchmark code in which the re-
sult of the multiplication was discarded. Overall execution
time improved significantly, and was closely predicted by
instruction counts, indicating that no other pipeline stalls
were introduced by deferred compilation.

Better instruction scheduling can reduce or eliminate
such pipeline stalls. For example, instructions from itera-
tion z + 1 of the dot product loop can be scheduled after
the multiplication in the #** iteration. However, since the
dot-product loop is not unrolled at compile time, it may
be necessary to perform this instruction scheduling at run
time. We are currently investigating the feasibility of such
optimizations.

4.3 Caveats

Although encouraging, the results of this experiment are not
conclusive. A more realistic implementation of matrix mul-
tiply would likely include special-purpose code for sparse in-
puts, and aggressive compile-time loop optimizations might
be able to improve the performance of our benchmark code
without resorting to run-time code generation. Such per-
formance improvements are not incompatible with deferred
compilation, however.

Additional concerns that must be addressed in practice
include space usage and instruction caching. Compile-time
specialization of run-time code generators essentially trades
space for time. For example, enabling run-time code genera-
tion more than doubled the static size of the matrix multiply
code, from 70 words to 150 words. Aggressive run-time inlin-
ing and loop unrolling can also dramatically increase space
requirements. For example when n = 200 the code gener-
ated at run time for a single dot product function occupied
approximately 1600 words; if code space is not reclaimed the
total space required exceeds one megabyte.

Run-time code generation can also interact poorly with
instruction caching. Most modern architectures prefetch in-
structions into an instruction cache, and many do not auto-
matically invalidate cache entries when memory writes oc-
cur. Portions of the instruction cache may therefore need

to be flushed whenever new code is generated at run time
[KEH91]. Fortunately the regularity of code-space alloca-
tion and initialization simplifies amortizing the cost of such
operations. FABIUS aligns each newly allocated code ob-
ject to a boundary that the MIPS instruction prefetcher is
guaranteed not to have crossed while executing previously
generated code, thus avoiding the invalidation of cached in-
structions. Cache flushing is therefore required only when
garbage collection occurs.”

Although we have not yet implemented code-space recla-
mation, we believe that the cost of cache flushing will not
be significant. For example Keppel reports that flushing
the instruction cache on a DECstation 5000/200 requires
a kernel trap plus approximately 0.8 nanoseconds per byte
flushed [Kep91]. This would add approximately ten mil-
liseconds to the total cost of run-time code generation when
multiplying 200 x 200 matrices.

5 Conclusions and Future Research

Deferred compilation is an alternative and complement to
compile-time analysis and optimization in which aspects of
optimization and code generation are deferred to run time.
Fast run-time optimization and code generation is achieved

by eliminating, through compile-time specialization, the over-

head of processing intermediate representations of source
programs at run time. Preliminary experiments with a pro-
totype compiler are promising, but we find that further ex-
perimentation is required for a full assessment.

Currently, we are extending the FABIUS prototype to
compile programs with higher-order functions and mutable
data structures. We are also exploring the use of a wider
range of optimization and code generation techniques at run
time. Of particular interest is the usefulness of performing
register assignment at run time. Also, we plan a detailed
study of the effectiveness of different strategies for control-
ling run-time inlining, specialization, and memoization.

Finally, the matter of staging analysis is, at this point,
poorly understood. We currently rely on programmer hints
to determine where run-time code generation will be prof-
itable, but clearly a more automatic approach is desirable.
The development of both the theoretical foundations and a
practical implementation of automatic staging analysis will
be the subject of future research.

Acknowledgements

We are grateful to Chris Stone, who provided valuable as-
sistance in the implementation of FABIUS, and also to Ali-
Reza Adl-Tabatabai, Chris Colby, Charles Consel, Olivier
Danvy, David Keppel, Mark Lillibridge, Greg Morrisett,
Chris Okasaki, Amr Sabry, Chris Stone, and David Tarditi

for their time and effort in productive discussions.

A vexing problem arises if pointers are propagated like other val-
ues during optimization, since they may become embedded in run-
time-generated code. The garbage collector must then update code
and flush the instruction cache whenever it moves data. Such em-
bedded pointers may be difficult to locate and update; for example
on the MIPS a constant 32-bit pointer might be embedded into two
instructions that contain 16-bit immediate values. Instruction re-
ordering during run-time code generation can make the locations of
these instructions unpredictable.

References

[App87]

[ASUS6]

[BD77]

[BDo1]

[BHOS76]

[CH84]

[Cha82]

[CHK93]

[CKP93]

[Con93]

[CPW93]

[cUo1]

[DBV91]

[DC94]

[DCG94]

Andrew W. Appel. Re-opening closures. Technical
Report CS-TR-079-87, Department of Computer Sci-
ence, Princeton University, 1987.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Technigues, and Tools.
Addison-Wesley, Reading, Massachusetts, 1986.

R. M. Burstall and John Darlington. A transformation
system for developing recursive programs. Journal of
the ACM, 24(1):44-67, January 1977.

Anders Bondorf and Olivier Danvy. Automatic auto-
projection of recursive equations with global variables
and abstract data types. Science of Computer Pro-
gramming, 16(2):151-195, September 1991.

Lennart Beckman, Anders Haraldson, Osten Oskars-
son, and Erik Sandewall. A partial evaluator, and
its use as a programming tool. Artificial Intelligence,
7(4):319-357, 1976.

Frederick Chow and John Hennessy. Register alloca-
tion by priority-based coloring. In Proceedings of the
ACM SIGPLAN ’84 Symposium on Compiler Con-
struction, pages 222-232. SIGPLAN Notices, June
1984.

Gregory J. Chaitin. Register allocation and spilling
via graph coloring. SIGPLAN Notices, 17(6):98-105,
June 1982.

Keith D. Cooper, Mary W. Hall, and Ken Kennedy.
A methodology for procedure cloning. Computer Lan-
guages, 19(2):105-117, April 1993.

Andrew A. Chien, Vijay Karamcheti, and John
Plevyak. The Concert system — compiler and runtime
support for efficient, fine-grained concurrent object-
oriented programs. Technical Report R-93-1815, De-
partment of Computer Science, University of Illinois
at Urbana-Champaign, June 1993.

Charles Consel. Polyvariant binding-time analysis for
applicative languages. In Proceedings of the Sym-
posium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 66—77. Association for
Computing Machinery, June 1993.

Charles Consel, Calton Pu, and Jonathan Walpole. In-
cremental partial evaluation: The key to high perfor-
mance, modularity and portability in operating sys-
tems. In Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipula-
tion, pages 44—46. Association for Computing Machin-
ery, June 1993.

Craig Chambers and David Ungar. Making pure
object-oriented languages practical. In OOPSLA 91
Conference Proceedings. SIGPLAN Notices 26(11):1—
15, November 1991.

Anne De Niel, Eddy Bevers, and Karel De Vlam-
inck. Program bifurcation for a polymorphically typed
functional language. In Proceedings of the Sym-
posium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 142-153. SIGPLAN No-
tices, September 1991.

Jeffrey Dean and Craig Chambers. Towards better
inlining decisions using inlining trials. In Proceedings
of the 1994 ACM Conference on LISP and Functional
Programming, June 1994. To appear.

Jeffrey Dean, Craig Chambers, and David Grove.
Identifying profitable specialization in object-oriented
languages. Technical Report 94-02-05, Department
of Computer Science and Engineering, University of
Washington, February 1994.

[DHsS]

[DS84]

[EHS0]

[EP93]

[FL92]

[Han91]

[HL91]

[Hol8s8]

[HU94]

[JGS93]

[IS86]

[JSS89)

[KEH91]

[KEH93]

[Kep91]

[Mal93]

Jack W. Davidson and Anne M. Holler. A study of a C
function inliner. Software — Practice and Ezperience,
18(8):775-790, 1988,

L. Peter Deutsch and Allan M. Schiffman. Efficient
implementation of the Smalltalk—80 system. In Con-
ference Record of the 11th Annual ACM Symposium
on Principles of Programming Languages, Salt Lake
City, pages 297-302, January 1984.

Par Emanuelson and Anders Haraldsson. On compil-
ing embedded languages in LISP. In A CM Conference
on Lisp and Functional Programming, Stanford, Cal-
ifornia, pages 208-215, 1980.

Dawson R. Engler and Todd A. Proebsting. DCG: An
efficient, retargetable dynamic code generation sys-
tem. In preparation, November 1993.

Marc Feeley and Guy Lapalme. Closure generation
based on viewing lambda as epsilon plus compile.
Computer Languages, 17(4):251-267, October 1992.

John Hannan. Staging transformations for abstract
machines. In Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipula-
tion, pages 130-141. SIGPLAN Notices, 1991.

N. Carsten Kehler Holst and John Launchbury. Hand-
writing cogen to avoid problems with static typing. In
Draft Proceedings, Fourth Annual Glasgow Workshop
on Functional Programming, Skye, Scotland, pages
210-218. Glasgow University, 1991.

N. Carsten Kehler Holst. Language triplets: The
AMIX approach. In D. Bjgrner, A.P. Ershov, and N.D.
Jones, editors, Partial Evaluation and Mized Compu-
tation, pages 167-185. North-Holland, October 1988.

Urs Hélzle and David Ungar. Optimizing dynamically-
dispatched calls with run-time type feedback. In A CM
SIGPLAN ’94 Conference on Programming Language
Design and Implementation, June 1994. To appear.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.
Partial Evaluation and Automatic Program Genera-
tion. Prentice-Hall, 1993.

Ulrik Jgrring and William L. Scherlis. Compilers and
staging transformations. In Conference Record of the
13th Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 86—96, January 1986.

Neil D. Jones, Peter Sestoft, and Harald Sgndergaard.
Mix: A self-applicable partial evaluator for experi-
ments in compiler generation. LISP and Symbolic
Computation, 2(1):9-50, 1989.

David Keppel, Susan J. Eggers, and Robert R. Henry.
A case for runtime code generation. Technical Report
91-11-04, Department of Computer Science and Engi-
neering, University of Washington, November 1991.

David Keppel, Susan J. Eggers, and Robert R. Henry.
Evaluating runtime-compiled value-specific optimiza-
tions. Technical Report 93-11-02, Department of Com-
puter Science and Engineering, University of Washing-
ton, November 1993.

David Keppel. A portable interface for on-the-fly in-
struction space modification. In Proceedings of the
4th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 86-95, April 1991.

Karoline Malmkjeer. Towards efficient partial evalu-
ation. In Proceedings of the Symposium on Partial
Evaluation and Semantics-Based Program Manipula-
tion, pages 33—-43. Association for Computing Machin-
ery, June 1993.

10

[Mas92]

[Mog89]

[MP89)]

[PLRS85]

[Turss]

Henry Massalin. Synthesis: An Efficient Implementa-
tion of Fundamental Operating System Services. PhD
thesis, Department of Computer Science, Columbia
University, 1992.

Torben Mogensen. Separating binding times in lan-
guage specifications. In Fourth International Con-
ference on Functional Programming Languages and
Computer Architecture, London, England, Septem-
ber 1989, pages 14-25. Reading, MA: Addison-Wesley,
1989.

Henry Massalin and Calton Pu. Threads and in-
put/output in the Synthesis kernel. In Proceedings
of the 12th ACM Symposium on Operating Systems
Principles, pages 191-201, December 1989.

Rob Pike, Bart Locanthi, and John Reiser. Hard-
ware /software trade-offs for bitmap graphics on the
Blit. Software — Practice and Ezperience, 15(2):131—
151, February 1985.

Valentin F. Turchin. The concept of a supercompiler.
ACM Transactions on Programming Languages and
Systems, 8(3):292-325, 1986.

