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THE DESIGN OF THE GIER ALGOL COMPILER 

PART I 

P E T E R  NAUR 

A b s t r a c t .  

The report gives a full description of the design of an ALGOL 60 system for the 
GIER,  a machine having 1024 words of cores and 12800 words on drum. An intro- 
ductory section gives the historical perspective of the design and  the principal 
charac4eristics of the machine. The second section discusses the problems of the 
running ALGOL program : storage allocation and addressing of variables, program 
references, procedure calls, and the automatic administration of transfers of pro- 
gram segments from the drum to the core store. 

The second part  of the report will describe the translator, and the performance 
of the system. 
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1. I n t r o d u c t i o n .  

G I E R  A L G O L  is a n  A L G O L  compi l e r  w r i t t e n  for  t h e  m e d i u m  size 

c o m p u t e r  G I E R  m a n u f a c t u r e d  b y  R e g n e c e n t r a l e n ,  C o p e n h a g e n .  

T h e  compi l e r  was  f i r s t  d i s t r i b u t e d  i n  a s l i gh t ly  r e s t r i c t e d  f o r m  in  

S e p t e m b e r  1962. A f ina l  ve r s i on  was  d i s t r i b u t e d  i n  F e b r u a r y  1963. B y  
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this time it had become the dominating programming language for the 
machine in most of the installations. 

The language of GIER ALGOL is ALGOL 60 except for the omission of 
integers as labels, arrays called by value, and own arrays. Input  and output  
(including transfers of variables between the magnetic drum and the 
core store) are controlled by means of standard procedures. A full de- 
scription of the language is given in the published manual (Ref. 2). 

In  the following the design of the system and compiler is discussed in 
some detail. Some information on the performance is also given. Since 
the purpose is to give a clear picture of the over-all design the discussion 
is not confined to the points where the system deviates from designs 
described elsewhere in the literature. 

2. Background of the project. 

2.1. Historical notes. 

The GIER ALGOL design has been influenced by a variety of other 
projects. To put  the description in its proper perspective it is helpful 
to give a brief historical account of the development of our ideas during 
the years 1959 to 1961. 

Our first exposure to compiler techniques came from Professors F. L. 
Bauer and K. Samelson of the University of Mainz, Germany, the leaders 
of the ALCOR group. In June 1959 P. Mondrup and W. Heise of Regne- 
centralen spent a few days at Mainz and had the opportunity of studying 
the sequential techniques developed there (Ref. 9). These techniques 
were adapted to our machine DASK by P. Mondrup and form the main 
frame of the DASK ALGOL compiler completed in late 1961. 

In the meantime we became increasingly aware of the problems in- 
herent in the ALGOL procedure concept and of the incompleteness of 
the description of procedures given in the Zfirich ALGOL report (ALGOL 
58). We raised this problem within the ALCOR group in December 1959, 
but were disappointed to find that  the other members of this group did 
not seem prepared to take a common stand in the problem. Fortunately 
the problem was cleared in ALGOL 60 and during the time which fol- 
lowed we developed the scheme for handling the ALGOL 60 name con- 
cept which was used in DASK ALGOL (Ref. 3). 

In  March 1960 we opened an active personal contact with Prof. 
A. van Wijngaarden, Dr. E. W. Dijkstra, and Mr. J. A. Zonneveld of the 
Stichting Mathematical Center of Amsterdam, Netherlands, who came to 
spend a few days of informal discussions with us. These discussions 
showed that  both groups independently had arrived at the same conclu- 
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sion, viz. that the design of the system which administers the run-time 
requirements of the ALGOL program (storage allocation and procedure 
calls) must be considered the primary problem while the translator is a 
secondary problem. 

The Dutch group impressed us greatly by their very general approach. 
However, although they were prepared to put their solution of the prob- 
lem of recursive procedures at our disposal we decided to stick to the 
more modest approach which we had already developed to some extent. 
The reasons for this reluctance were practical. First of all we felt the 
size of the problem to be already rather frightening, in particular because 
we still had to face the problem of the two levels of store in DASK, and 
also because we wished to include far more error detecting capability in 
our compiler than the Dutch. Also at that time we feared the loss of 
running speed of a system which included recursive procedures (a fear 
which we now know was unfounded). 

The first news of the success of the Dutch project, in June 1960, fell 
like a bomb in our group. However, we quickly regained spirits and 
during July to September completed the design and coding of the DASK 
ALGOL running system, including run-time facilities for drum transfers 
of program and variables (Ref. 4) and the set of standard functions and 
input and output procedures (Ref. 5). This system was wired into DASK 
as a new fixed store and was completed in this form in January  1961. 

In the meantime the coding of the DASK ALGOL compiler itself had 
proceeded, although at a much slower speed than anticipated. As al- 
ready mentioned it is based on the Mainz principles, but the adaptation 
to DASK had required important modifications. Essentially it is a three 
pass compiler, using three tape units, one of them holding the compiler, 
the two others being used to store the partially translated program. 
The first pass performs a rather modest preprocessing, mainly taking 
care of the peculiarities of the paper tape hardware representation. The 
second pass performs ahnost all the translation, keeping all its tables 
on the drum. The third pass completes the addressing, which is a very 
quick process. This compiler was not completed until about September 1961. 

Already during the later phases of the coding of DASK ALGOL 
other approaches were considered, as a preliminary to coming attempts. 
When the idea of the syntax-directed-compiler by Irons (Ref. 6) was 
published some of us got very excited about it. From about December 
1960 to June 1961 we had Mr. B. Mayoh working on using this for a com- 
piler for the GIEt~ which was then in its last phases of development. 
However, after this trial we decided that, as far as we were concerned, 
the approach was a mistake. 
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Other contacts included a visit of the present writer to Amsterdam 
in April 1961 during which Edsger Dijkstra supplied me with all desired 
details of their method of addressing at  run time and of scanning the 
source program (Ref. 7). Another decisive influence came from the Stor- 
age Allocation Symposium in Princeton in June 1961 where Jorn Jensen 
learned about the dynamic storage allocation scheme planned for the 
Ferranti  Atlas (Ref. 8). Finally, during a stay at the University of North 
Carolina, Chapel Hill, during the later half of 1961 the present writer 
had the chance to reconsider the complete problem of translating ALGOL 
60. The most important  result of this was an approach to the problem 
of analyzing and checking the source text, which although related to 
well-known methods, in particular Grau's version of the Bauer-Samelson 
method (ref. 12) yet  has some merit of its own (see the Turing machine 
approach below). A further result of this visit was the exposure to the 
idea widely used in the U.S. of using a Polish notation as an intermediate 
form of expressions during translation (ref. 13). 

This takes us to January  1962 when it was decided tha t  a GIER 
ALGOL compiler should be written. 

2.2. Characteristics of GIER. 
The GIER is a machine manufactured by Regnecentralen. I t  has also 

been marketed as DISADEC. The following figures refer to the minimum 
configuration for which the ALGOL compiler was primarily designed. 
For further details see ref. 1. 

Stores. Core store: 1024 words of 42 bits, access time 8.8 microseconds. 
Magnetic drum: 320 tracks of 40 words each. Transfer time of complete 
track: 20 milliseconds. During drum transfers other operations may 
take place in the machine. 

Word structure: Of the 42 bits two are regarded as marks and are 
not  processed in parallel with the rest of the word. Floating point opera- 
tions divide the word into a 10 bit exponent and a 30 bit mantissa while 
the marks are irrelevant. 

Order structure: The marks in each word select the order interpreta- 
tion modes: (a) One instruction of 40 bits or two instructions of 20 
bits in the word. (b) Fixed or floating operation. 

Addressing facilities: There is one normal index register, the p-register, 
and an index register which is also coupled to the subroutine return 
mechanism, the s-register. In  addition the address may  be relative to 
the order counter, r-relative addressing. Indirect addressing is provided. 
Instructions of 40 bits may  also include an incrementing of the address. 
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Operation times: Fixed point operations range from 36 to 50 micro- 
seconds. Floating-point operations: addition 100 microseconds, multi- 
plication 170 microseconds, division 220 microseconds. 

Input: 8-hole paper tape, reading at 500 characters per second. 
Output: 8-hole paper tape, punched at 150 characters per second. 

2.3. Aims and methods. 

The aims of the project were roughly as follows: 
1. GIER ALGOL should be a practical working system, taking full 

advantage of the machine as far as this is compatible with (a) the gener- 
ality of ALGOL 60 and (b) a dead line on the completion of a workable 
compiler of September 1, 1962. 

2. I t  should include virtually complete error detection of the source 
program, and should be capable of finding any number of errors in one 
compilation run. 

The methods adopted for achieving these aims are as follows: 
1. The design centers around a dynamic storage allocation of vari- 

ables in a stack, basically similar to the design of Dijkstra (Ref. 7 and 10). 
2. The storage of program is handled by an automatic administration 

of transfers of program tracks to the core store at run time, completely 
integrated with the stack administration. 

3. The design of the translator again is based on storage allocation 
considerations. These indicate that. to achieve speed many internal 
passes should be used, employing the drum for storing the partially 
translated program, while the program and tables of each pass should 
be small enough to be stored completely in the core store. 

4. During translation, error handling is integrated with the trans- 
lation, i.e. the occurrence of an error is not considered the exception 
but will be handled by the same kind of logic as is used for any regular 
language feature. 

All these methods are discussed in greater detail in the remaining 
part of the present report. 

3. The running system. 

The running system is the fixed administration which is used by any 
translated ALGOL prgram while the program is executed. I t  occupies 
the last 200 words of the core store and its most important tasks are the 
handling of the dynamic storage allocation and the execution of proce- 
dure calls. 

The running system must be defined before the translator is written 
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since it is an integral par t  of the definition of the target language. Our 
previous experience shows that  the proper order to decide on the solu- 
tion is: storage allocation, addressing, procedure call. 

3.1. The non-homogeneous store. 
In  a machine with a core store of 1024 words of 42 bits and a backing 

drum of 12800 words some method of transferring the translated ALGOL 
program and its variables between the two media must be found. In  
DASK ALGOL a system based on explicit information supplied by the 
programmer was used for both program and data  (Ref. 4). In  GIER 
ALGOL the transfers of variables are again fully under the control of 
the programmer, although the tools placed at his disposal, standard 
procedures, are very different from those ineoI~orated in DASK ALGOL. 
Transfers of program in GIER ALGOL, on the other hand, are done 
automatically by the system. 

The decision to provide automatic transfers of program, but  not of 
variables, is based on the following considerations: 

1. The programmer will be fully aware of the storage demands made 
by the variables of his program, but  will have only a very inaccurate 
knowledge of the length of the code needed to represent the algorithms. 
Therefore the programmers task of specifying the transfers of variables 
is much easier than the specification of transfers of program. 

2. Transfers of variables to and from drum may  be regarded as input] 
output  operations and will therefore be analogous to operations which 
the programmer will have to learn and use anyway. Any conventions 
for transfers of program sections will constitute a unique addition to the 
conventions which the programmer will have to learn. 

3. In  a sensible system the machine instructions will be constant 
throughout the run of the program. For the implementor the transfers 
of program are simpler because no question of saving a piece of program 
which has been copied from drum to cores ever arises. 

3.2. Storage and addressing of variables. 
Since all variables which can be referenced directly by  the ALGOL 

program will be stored in the core store, the familiar stack arrangement 
can be used (Refs. 7, 10). This is inherently a very economical storage 
principle. However, to make full use of the economy of the arrangement, 
the scheme chosen for utilizing the storage space left unused by the stack 
must  be able to follow the variations of the size of the stack during the 
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run of the program. This was a decisive factor in the design of the system 
for allocation of program described below. 

In the addressing system developed by  Dijkstra (Refs. 7, 10) two kinds 
of variables are distinguished: (a) Named variables, addressed through 
their block number and block relative address; (b) Anonymous variables, 
addressed relative to the current top of the stack. In  Dijkstra's system 
and in DASK ALGOL (Ref. 4) anonymous variables are used where- 
ever the identity of a variable is given completely through the structure 
of the ALGOL text. In a machine having built-in floating point opera- 
tions, but  no special facility for working at the top of a stack, like GIER, 
references to named variables can usually be performed much faster 
than references to anonymous variables (see below). For  this reason the 
GIER ALGOL translator has eliminated references to anonymous vari- 
ables as far as possible. This is achieved by  replacing anonymous vari- 
ables by  internally named local quantities. This will cause a certain 
slight waste of working locations, since each block will have to reserve 
as many locations as are used at  any one point of it. The only case 
where this replacement of anonymous  variables by  local ones is not  
possible is that  in which an anonymous quanti ty is handed over from 
one block to another and therefore must be addressed relative to the 
universal stack top pointer. The simplest example of this is the return 
information which is generated whenever the program transfers control 
to a procedure or a formal parameter called by  name which is equivalent 
to a procedure. The return information is used by  that  procedure to 
transfer the control back again (see the section on program points below). 

The basis of the addressing of named variables is the recognition that  
at  any moment  during the execution of a program the variables which 
may  be referenced directly are exactly those which are local to the 
youngest incarnations o f  the lexicographically enclosing blocks. The 
relative addresses of the variables within a block are finally calculated 
during translation. In order to obtain the absolute address of a variable 
we only have to add what  we call the "stack reference" of the corre- 
sponding activation of the block to the relative address. The absolute 
addresses of all accessible variables may therefore be calculated if the 
program has available the block numbers and relative addresses of the 
variables on the one hand, and the "stack reference" of the youngest 
incarnations of the enclosing blocks on the other. These latter are held 
in the table called the DISPLAY (Ref. I0). In  an obvious notation we 
have for a variable described by  its block number and relative address: 

stack reference = D I S P L A  Y[block number] 
absolute address = relative address + stack reference 
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In the final machine code it is more convenient to replace the block 
number by  the so-called "DISPLAY reference" which is the absolute 
address of the location which holds the stack reference. Therefore we have 

stack reference = store[DISPLA Y reference] 

This scheme requires tha t  the DISPLAY be up-dated whenever the 
control changes to a different block environment. The basis for doing 
this is given below in the section on program points. 

In  a machine having built-in floating point operations, like GIER,  
the address calculations according the above scheme must be done by  
some very direct method if the use of an undesirably high proportion of 
the running time for this purpose shall be avoided. The solution used in 
G I E R  ALGOL consists in using the two index registers as follows: 

a) Variables in the outermost block. For these variables the stack 
reference will be constant throughout the program and the compiler will 
be able to calculate the final absolute machine addresses. 

b) Variables in the currently local block. The stack reference of the 
local block is at all times available in the index register p, as well as in 
the appropriate element of the DISPLAY. References to local variables 
can therefore be made by  means of p-relative addresses. 

e) Variables in intermediate blocks. These are addressed relative to 
the index register s. The s-register is used for other purposes as well. 
However the compiler is able to keep track of these uses and will be in 
a position to insert explicit machine instructions of the form 

s : =  store[DISPLA Y reference] 
where necessary. 

The decision to use the index registers in this way is based on the 
observation that  in practical programs, in particular published proce- 
dures, the overwhelming majori ty of identifiers refer to local quantities. 

3.3. Program points. 
No part  of the translated program can be executed unless the DIS- 

PLAY is up-dated so as to contain the stack references of the youngest 
incarnations of the lexieographically enclosing blocks. The up-dating is 
performed on the basis of the chains of stack references which form a 
par t  of the block information stored in the stack at all block-relative 
addresses 0 and 1. In  fact, each time a block is entered the DISPLAY 
reference corresponding to its block number and the stack reference of 
the youngest incarnation of its innermost enclosing block are placed at 
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relative address 0 of the newly reserved section of the stack. By these 
means an up-dating of the DISPLAY to make it correspond to the newly 
established environment may be performed at any time while this in- 
carnation of the block is still active if only the value of the stack refer- 
ence is supplied. The algorithm is as follows (I owe this improved form 
of the arrangement, which only uses one input parameter, to a personal 
communication from E. ~¥. Dijkstra in February 1962): 

j := D I S P L A Y  reference part(store[stacIc referenceD; 
for sr := stack reference, 

stack reference part(store[sr]) while 
j <__ D I S P L A Y  reference of  block 0 do 

begin store[j] :=  st;  j :=  j +  1 end; 

An alternative description which lies closer to the realization in GIER 
ALGOL is the following: 

switch U P D A T E  := updO, upd l ,  u p d 2 , . .  . ; 
sr := stack reference; 
go to U P D A T E [ 1  + D I S P L A Y  reference of block 0 - 

D I S P L A Y  reference part(store[st])] ; 
, . .  

upd2 : D I S P L A  Y[2] : = sr; sr : = stack reference part(store[sr]) ; 
upd l  : D I S P L A  Y[1] : = sr ; sr :=  stack reference part(store[sr]) ; 
updO: D I S P L A  Y[O] : = sr; 

The switch UPDATE must have as many elements as there are lexico- 
graphically enclosing blocks in the program. This number is determined 
by  the compiler. 

When the control is transferred from one point in the translated 
ALGOL program to another it is in general necessary to up-date the 
DISPLAY to correspond to the new environment. Consequently, in 
order to specify a transfer of control we must in general supply both  
the static description of the destination (segment track number and 
relative address, see the description of program allocation below} and 
a dynamic description of its environment, the stack reference. This set 
of three numbers, t rack number, t rack relative address, and stack refer- 
ence, together define what  we call a program point. 

Transfer of control within the same block need not  use the general 
program point specification since the DISPLAY remains unchanged. 
This state of affairs may easily be recognized by  the translator in the 
practically must important cases, jumps created by  if and for clauses. 
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In  GIER ALGOL extensive use is made of this possibility of simplifying 
the execution. 

3.4. The local declaration. 
Program points are treated as a kind of variables. Every  explicitly 

named point of a block (labelled points and entries into the bodies of 
local procedures) will have a location in the stack allocated to it, like 
the location where the value of a variable is kept. When the block is 
entered all the locations of program points are initialized. This is done 
by  a subroutine call, the so-called local declaration, placed at the begin 
of each block. The local declaration contains information on how may 
locations must  be reserved in the stack and gives the static description 
of each named program point. 

Program points which are essentially similar to the explicitly named 
one are generated in procedure calls, as described below. 

Switch declarations are also taken care of in the local declaration, 
but  shall not be described in detail here. 

The complete machine formats of the local declaration are given in 
ref. 2, appendix 2. 

3.5. Dezcriptions of quantities. 
The use of locations in the stack for holding the descriptions of named 

program points is one case of the more general use of descriptions of 
quantities which extends to array and switch identifiers. 

The description of an array identifier comprises (1) an absolute address 
which points to the point in the stack where the so-called "dope vector" 
is stored and (2) another absolute address which is a base address of the 
e]ements. All array identifiers of the same array segment share the same 
dope vector. Array identifier descriptions are placed in the stack by  the 
explicit code representing the array declaration. 

A switch identifier is described by  a word giving (1) the absolute 
address of the first word of a list of the elements kept  in the stack and 
(2) the number of switch elements. The switch identifier descriptions 
and the descriptions of the associated switch elements are placed in the 
stack b y  the local declaration. 

An important  factor in the choice of the formats of identifier descrip- 
tions is the requirements of the procedure call. These requirements also 
lead to the introduction of descriptions of simple variables, as explained 
more fully below. 

BIT 8 ~ 9  
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3.6. Procedure calls. 

The central problem of the procedure call is to communicate to the 
procedure body a sufficient amount of information about the actual 
parameters. This information is transmitted via locations in the stack, 
one for each parameter, the so-called formal locations. In detail GIER 
ALGOL proceeds as follows: 

The translator has transformed each procedure call into a call of a 
subroutine followed by words describing the actual parameters and in 
addition giving the static description of the point following the complete 
call, the return point. A last word gives the DISPLAY reference and 
block relative address of the location in the stack which holds the de- 
scription of the entry point of the procedure being called. The possible 
forms of words used as parameters (see also ref. 2, appendix 2) and their 
treatment in the call are the following: 

1. Constant. 
The value of the constant is given and is transmitted to the formal 

location. 

2. Described in stack. 
The call supplies the DISPLAY reference and relative address of a 

location in the stack. This location will hold a description of a quantity 
(see above). In the call the description is copied into the formal location. 
This form is used for array, switch, and procedure identifiers, and for 
formal parameters. 

3. Static program point. 
The call supplies a program segment track number and a track relative 

address. In the call the full program point is formed and put into the 
formal location. This is used for actual parameters which are compound 
expressions and for the return point. The codes representing compound 
expressions (thunks, see ref. 11) have been placed at the end of the call 
proper by the translator. 

4. Simple variable. 
The call supplies the DISPLAY reference and relative address of the 

variable. The call calculates the absolute address and puts it in the 
formal location. 

The procedure call subroutine will transform the descriptions of the 
actual parameters and transmit them to the stack one by one. In doing 
so it need not refer to the procedure to be called. The procedure body will 
be able to identify each formal location by using the top of the stack as 
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reference point. In fact, since our stack starts at the high address end 
of the store the description of the return point will be found at the address 
"last used in stack" while the description of actual parameter no. p is 
found at the address "last used in stack" + p. 

3.7. Referring to formal parameters. 
The outstanding advantage of using explicit stored descriptions of the 

quantities of the program, including the program points, is that the 
translated ALGOL program need not distinguish between formal and 
non-forma] versions of the quantities. Indeed, once a quantity descrip- 
tion has been placed in a formal location the procedure body may refer 
to it exactJy as though it had been non-formal. 

The only formal parameters which receive a special treatment when 
referred to from the procedure body are those which are specified as 
integer, real, Boolean, or label. I t  may be noted that the reason for this 
anomaly is that we do not wish to treat simple non-forma] variables 
through a genera] administration based on descriptions this would 
entail an undue loss of storage space and execution speed. When referring 
to a simple formal parameter called by name a routine in the running 
system will examine the description of the actual parameter given in 
the formal location in the stack. Depending on the description the actual 
parameter is one of three things: (1) a constant, (2) a simple variable, 
or (3) an expression. The contents of the formal location in the three 
cases is: (1) the value of the constant, (2) the absolute address of the vari- 
able, and (3) the description of the program point where the actual 
parameter expression code (thunk) starts. The routine is expected to place 
the address of the actual paramter in the so-called universal address. 
This is simple in cases (1) and (2). In case (3) the routine must form the 
complete program point description of the point following the reference 
to the formal and place it at the top of the stack and transfer control 
to the point described in the formal location, the thunk. The code repre- 
senting the thunk will then perform its task and will place the appro- 
priate address in the universal address and will finally return to the point 
described at the top of the stack. 

3.8. Arithmetic expressions and subscripts. 
The running system is rather simple-minded about arithmetic expres- 

sions. All arithmetic variables are represented as floating point numbers 
within the machine. The difference between integer and real types only 
makes itself felt in round-off operations. 
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Likewise subscripting is treated by  the most straightforward method: 
the machine code evaluates the subscripts one by  one and forms the 
product sum of these values and the coefficients kept  in the dope vector, 
using floating point operations throughout. A 9-word subroutine in the 
running system then calculates the final machine address and checks 
that, it  lies within the proper bounds. 

3.9. Storage  o f  p rogram.  

In trying to automize the transfers of program segments from the 
drum to the core store it is tempting to make use of the segmentation of 
the program which is defined in the block structure. The block structure 
was in fact used in this manner in DASK ALGOL (Ref. 4). However, 
we have since then realized that  this approach has serious disadvantages. 
The point is that  a block by definition is a unit with respect to the scope 
of its identifiers. However, what  we need for segmentation is the dy- 
namic units of the program. These are rather difficult to detect at trans- 
late time. In simple cases the most important dynamic units are small 
loops comprising much less than a block. In fact, the first part  of a 
block is usually just  intialization which is devoid of interest as soon as 
the real work begins. A more complicated situation is shown in the 
following fragment of a program which will be a dynamic unit while 
the solution of the equation 

z t 2 + (1 - (z + 1) x ln((z + 1)/z) x y = 0 

is being found by  bisections: 
. . .  

procedure Bisec t ion(  F ,  x ,  . . . ) ; real F , x  ; . . .  

begin . . .  
for q : =  q/2 while a~s(q) > eps  do 

x : =  ( i f F  > 0 t h e n  q else - q ) + x  
end; 

. . .  

Bisec t ion(z  ~ 2 + (1 - (z + 1) x ln((z + 1)/z) x y , z  . . . .  ) 

. . .  

For each cycle of the for statement the control will pass from Bisection 
to the expression in the call, from there to the In-routine, then back to 
the call and finally back to Bisection. This means that  the most im- 
portant  dynamic unit  is composed of three pieces of program taken from 
widely seprated places in the text. 

On the basis of considerations of this kind and inspired by  the scheme 
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adopted for the Ferranti  Atlas (Ref. 8) we decided on the following 
scheme for the storage of the programs within GIER ALGOL: 

1. No par t  of the instructions representing the algorithms of the 
program will be held permanently in the core store. 

2. The program of instructions is held on the drum and is segmented 
by  the compiler into the drum tracks so as to waste no space on the 
tracks. 

3. The program segment stored on a drum track is arranged in such a 
way that  while it is executed it may be stored in any place in the core 
store and will make no assumptions as to other program segments being 
present in the core store. 

4. At any time the part  of the core store which is not reserved for 
variables will be available for as many program segments as it will hold. 
The number of segment places will be allowed to vary between 2 and 20. 

5. Program segments are transferred from the drum to the core store 
when the execution of the program requires them. 

6. The running system keeps a table of the program segments cur- 
rently held in the core store. When the program calls for a transfer of 
control to another segment the running system will t ry  to avoid trans- 
ferring the segment from the drum by  first searching through this table. 

7. When the program calls for a transfer of control to a segment 
which is not in the core store and there are no more unused segment 
places left in the core store, the segment will be overwritten on that  seg- 
ment held in the core store which for the longest time has been left unused. 

This scheme could be realized quite conveniently in GIER.  In  particu- 
lar the availablity of addressing relative to the order-counter could be 
used for references within the same segment. This is used, n o t  only for 
j u m p  instructions, bu t  also for references to constants. In fact, as one 
unusual consequence of this scheme the literal constants of a program 
are never compiled into a table common to the program, but  only into 
tables which are separate for each segment. In  this way  the constants 
used from a segment will follow this segment and not  make any per- 
manent demands on the core store. This requires that  constants are 
taken through all stages of the translation as a unique class of objects. 

Further  details of this scheme are given in the following sections. In  
the machine code of the running system the corresponding algorithms 
require about  80 words. 

3.10. Program segment priorities. 
The rule of point 7 above is applied with the aid of a priority asso- 

ciated with each available segment. The running system keeps a current 
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priority, which is the priority of the segment which is currently in ac- 
tion. Each time the control is transferred to a segment the current pri- 
ority is increased by  one and is also assigned as the new priority of the 
segment. In  this way the difference between the current priority and 
the priority associated with a segment in the core store shows how many 
segment transfers have been made since the segment was last used. In 
particular the segment having the lowest priority will be the one which 
has been left unused for the longest time. 

Additional complications arise because in general the number of avail- 
able segment places in the core store will vary. Clearly the system 
should in general be prepared to use all the available core store space 
for program segments. However, it is desirable that  the reaction of the 
system in the case of an increase of the amount of storage available for 
segments should be somewhat cautious because the increase might be due 
to only a transient cancellation of reservations in the stack. For this 
reason the following procedure has been adopted. Irrespective of the 
amount of free store, new segment places are only put  into circulation 
one at a time and only at the time when an actual transfer of a segment 
from the drum is taking place. Further  this new segment place is not 
used for the segment actually being transferred, but  is left empty  with 
the priority one less than the new current priority. An additional ad- 
vantage of this method is that  the actual process of initializing a new 
segment place may use the drum transfer time which would otherwise 
be wasted. 

3.11. Example of segment allocation. 
As an illustration, let a program cycle indefinitely in a simple loop 

consisting of the segments stored on the tracks 91, 92, 93, and 94. The 
following table describes the development of the situation from the 
initial state, set by  the translator, until all four segments are present 
in the core store. Each line corresponds to a situation. The columns 

I n i t i a l  s t a t e  
Af t e r  e n t r y  in to  91 

- - - 92 
- - - 9 3  

- - - 9 4  

- - - 9 1  

- - - 9 2  

1 

- -  1 

91 1 
91 1 
91 1 
91 1 
91 5 
91 5 

S e g m e n t  p lace  

2 3 

- -  0 

- -  0 - -  0 

0 92 2 
93 3 92 2 
93 3 92 2 
93 3 92 2 
93 3 92 6 

- -  1 

1 
94 4 
94 4 
94 4 

- -  2 

2 
2 
2 

- -  3 

3 
3 

C u r r e n t  
p r i o r i t y  

0 
1 

2 
3 
4 
5 
6 
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give, for each segment place, the drum track number of the segment 
stored in that place and the priority of that segment. If no track number 
and priority is given it means that the segment place is not regarded as 
available. The current priority is given in an addtional column. 

If the loop had comprised 5 segments the 5¢~h would have been put 
into segment place 1, thus overwriting segment 91. This indicates the 
tendency of the scheme to keep the program at the lower segment places. 
This tendency is further enhanced by the final process involved in the 
program allocation, the cancellation of segment places on priority over- 
flow described in the following section. 

3.12. Program storage clean-up. 
Priorities will always be kept in the range 0-511. Whenever the pri- 

ority counter reaches 512 the opportunity is taken to perform the fol- 
lowing clean-up of the situation: priorities from 0 to 255 are replaced 
by 0, those from 256 to 511 by 1, while the track which is just being 
entered will be assigned the priority 2. Moreover the track places are 
checked in sequence, beginning with the one closest to the stack of 
variables, and all those of new priority 0 are removed from the list until 
the first one having the priority 1 or 2 is found or there are only two 
segment places left. The principal aim of this clean-up is to cancel those 
segment places which are never used. This may be of importance in 
short programs, because it will reduce the number of unsuccesful tests 
for coincidence of the new track number and the track numbers kept in 
the segment table performed at each transfer of control to a segment. 
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