
BIT 3 (1963), 124--140

THE DESIGN OF THE GIER ALGOL COMPILER

PART I

P E T E R NAUR

A b s t r a c t .

The report gives a full description of the design of an ALGOL 60 system for the
GIER, a machine having 1024 words of cores and 12800 words on drum. An intro-
ductory section gives the historical perspective of the design and the principal
charac4eristics of the machine. The second section discusses the problems of the
running ALGOL program : storage allocation and addressing of variables, program
references, procedure calls, and the automatic administration of transfers of pro-
gram segments from the drum to the core store.

The second part of the report will describe the translator, and the performance
of the system.

C o n t e n t s .

I. Introduction . 124
2. Background of the project . 125

2.1.

2.2.
2.3.

3. The
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.

Historical notes . 125
Characteristics of GIER . 127
Aims and methods . 128

running system . 128
The non-homogeneous store . 129
Storage and addressing of variables . 129
Program points . 131
The local declaration . 133
Descriptions of quantities . 133
Procedure calls . 134
Referring to formal parameters . 135
Arithmetic expressions and subscripted variables 135
Storage of program . 136
Program segment priorities . 137
Example of segment allocation . 138
Program storage clean-up . 139

1. I n t r o d u c t i o n .

G I E R A L G O L is a n A L G O L compi l e r w r i t t e n for t h e m e d i u m size

c o m p u t e r G I E R m a n u f a c t u r e d b y R e g n e c e n t r a l e n , C o p e n h a g e n .

T h e compi l e r was f i r s t d i s t r i b u t e d i n a s l i gh t ly r e s t r i c t e d f o r m in

S e p t e m b e r 1962. A f ina l ve r s i on was d i s t r i b u t e d i n F e b r u a r y 1963. B y

THE DESIGN OF THE G~R ALGOL COMPILER 125

this time it had become the dominating programming language for the
machine in most of the installations.

The language of GIER ALGOL is ALGOL 60 except for the omission of
integers as labels, arrays called by value, and own arrays. Input and output
(including transfers of variables between the magnetic drum and the
core store) are controlled by means of standard procedures. A full de-
scription of the language is given in the published manual (Ref. 2).

In the following the design of the system and compiler is discussed in
some detail. Some information on the performance is also given. Since
the purpose is to give a clear picture of the over-all design the discussion
is not confined to the points where the system deviates from designs
described elsewhere in the literature.

2. Background of the project.

2.1. Historical notes.

The GIER ALGOL design has been influenced by a variety of other
projects. To put the description in its proper perspective it is helpful
to give a brief historical account of the development of our ideas during
the years 1959 to 1961.

Our first exposure to compiler techniques came from Professors F. L.
Bauer and K. Samelson of the University of Mainz, Germany, the leaders
of the ALCOR group. In June 1959 P. Mondrup and W. Heise of Regne-
centralen spent a few days at Mainz and had the opportunity of studying
the sequential techniques developed there (Ref. 9). These techniques
were adapted to our machine DASK by P. Mondrup and form the main
frame of the DASK ALGOL compiler completed in late 1961.

In the meantime we became increasingly aware of the problems in-
herent in the ALGOL procedure concept and of the incompleteness of
the description of procedures given in the Zfirich ALGOL report (ALGOL
58). We raised this problem within the ALCOR group in December 1959,
but were disappointed to find that the other members of this group did
not seem prepared to take a common stand in the problem. Fortunately
the problem was cleared in ALGOL 60 and during the time which fol-
lowed we developed the scheme for handling the ALGOL 60 name con-
cept which was used in DASK ALGOL (Ref. 3).

In March 1960 we opened an active personal contact with Prof.
A. van Wijngaarden, Dr. E. W. Dijkstra, and Mr. J. A. Zonneveld of the
Stichting Mathematical Center of Amsterdam, Netherlands, who came to
spend a few days of informal discussions with us. These discussions
showed that both groups independently had arrived at the same conclu-

126 PETER NAUR

sion, viz. that the design of the system which administers the run-time
requirements of the ALGOL program (storage allocation and procedure
calls) must be considered the primary problem while the translator is a
secondary problem.

The Dutch group impressed us greatly by their very general approach.
However, although they were prepared to put their solution of the prob-
lem of recursive procedures at our disposal we decided to stick to the
more modest approach which we had already developed to some extent.
The reasons for this reluctance were practical. First of all we felt the
size of the problem to be already rather frightening, in particular because
we still had to face the problem of the two levels of store in DASK, and
also because we wished to include far more error detecting capability in
our compiler than the Dutch. Also at that time we feared the loss of
running speed of a system which included recursive procedures (a fear
which we now know was unfounded).

The first news of the success of the Dutch project, in June 1960, fell
like a bomb in our group. However, we quickly regained spirits and
during July to September completed the design and coding of the DASK
ALGOL running system, including run-time facilities for drum transfers
of program and variables (Ref. 4) and the set of standard functions and
input and output procedures (Ref. 5). This system was wired into DASK
as a new fixed store and was completed in this form in January 1961.

In the meantime the coding of the DASK ALGOL compiler itself had
proceeded, although at a much slower speed than anticipated. As al-
ready mentioned it is based on the Mainz principles, but the adaptation
to DASK had required important modifications. Essentially it is a three
pass compiler, using three tape units, one of them holding the compiler,
the two others being used to store the partially translated program.
The first pass performs a rather modest preprocessing, mainly taking
care of the peculiarities of the paper tape hardware representation. The
second pass performs ahnost all the translation, keeping all its tables
on the drum. The third pass completes the addressing, which is a very
quick process. This compiler was not completed until about September 1961.

Already during the later phases of the coding of DASK ALGOL
other approaches were considered, as a preliminary to coming attempts.
When the idea of the syntax-directed-compiler by Irons (Ref. 6) was
published some of us got very excited about it. From about December
1960 to June 1961 we had Mr. B. Mayoh working on using this for a com-
piler for the GIEt~ which was then in its last phases of development.
However, after this trial we decided that, as far as we were concerned,
the approach was a mistake.

THE DESIGN OF THE GIER ALGOL COMPILER 1 2 7

Other contacts included a visit of the present writer to Amsterdam
in April 1961 during which Edsger Dijkstra supplied me with all desired
details of their method of addressing at run time and of scanning the
source program (Ref. 7). Another decisive influence came from the Stor-
age Allocation Symposium in Princeton in June 1961 where Jorn Jensen
learned about the dynamic storage allocation scheme planned for the
Ferranti Atlas (Ref. 8). Finally, during a stay at the University of North
Carolina, Chapel Hill, during the later half of 1961 the present writer
had the chance to reconsider the complete problem of translating ALGOL
60. The most important result of this was an approach to the problem
of analyzing and checking the source text, which although related to
well-known methods, in particular Grau's version of the Bauer-Samelson
method (ref. 12) yet has some merit of its own (see the Turing machine
approach below). A further result of this visit was the exposure to the
idea widely used in the U.S. of using a Polish notation as an intermediate
form of expressions during translation (ref. 13).

This takes us to January 1962 when it was decided tha t a GIER
ALGOL compiler should be written.

2.2. Characteristics of GIER.
The GIER is a machine manufactured by Regnecentralen. I t has also

been marketed as DISADEC. The following figures refer to the minimum
configuration for which the ALGOL compiler was primarily designed.
For further details see ref. 1.

Stores. Core store: 1024 words of 42 bits, access time 8.8 microseconds.
Magnetic drum: 320 tracks of 40 words each. Transfer time of complete
track: 20 milliseconds. During drum transfers other operations may
take place in the machine.

Word structure: Of the 42 bits two are regarded as marks and are
not processed in parallel with the rest of the word. Floating point opera-
tions divide the word into a 10 bit exponent and a 30 bit mantissa while
the marks are irrelevant.

Order structure: The marks in each word select the order interpreta-
tion modes: (a) One instruction of 40 bits or two instructions of 20
bits in the word. (b) Fixed or floating operation.

Addressing facilities: There is one normal index register, the p-register,
and an index register which is also coupled to the subroutine return
mechanism, the s-register. In addition the address may be relative to
the order counter, r-relative addressing. Indirect addressing is provided.
Instructions of 40 bits may also include an incrementing of the address.

128 PETER NAUR

Operation times: Fixed point operations range from 36 to 50 micro-
seconds. Floating-point operations: addition 100 microseconds, multi-
plication 170 microseconds, division 220 microseconds.

Input: 8-hole paper tape, reading at 500 characters per second.
Output: 8-hole paper tape, punched at 150 characters per second.

2.3. Aims and methods.

The aims of the project were roughly as follows:
1. GIER ALGOL should be a practical working system, taking full

advantage of the machine as far as this is compatible with (a) the gener-
ality of ALGOL 60 and (b) a dead line on the completion of a workable
compiler of September 1, 1962.

2. I t should include virtually complete error detection of the source
program, and should be capable of finding any number of errors in one
compilation run.

The methods adopted for achieving these aims are as follows:
1. The design centers around a dynamic storage allocation of vari-

ables in a stack, basically similar to the design of Dijkstra (Ref. 7 and 10).
2. The storage of program is handled by an automatic administration

of transfers of program tracks to the core store at run time, completely
integrated with the stack administration.

3. The design of the translator again is based on storage allocation
considerations. These indicate that. to achieve speed many internal
passes should be used, employing the drum for storing the partially
translated program, while the program and tables of each pass should
be small enough to be stored completely in the core store.

4. During translation, error handling is integrated with the trans-
lation, i.e. the occurrence of an error is not considered the exception
but will be handled by the same kind of logic as is used for any regular
language feature.

All these methods are discussed in greater detail in the remaining
part of the present report.

3. The running system.

The running system is the fixed administration which is used by any
translated ALGOL prgram while the program is executed. I t occupies
the last 200 words of the core store and its most important tasks are the
handling of the dynamic storage allocation and the execution of proce-
dure calls.

The running system must be defined before the translator is written

THE DESIGN OF THE GIER ALGOL COMPILER 129

since it is an integral par t of the definition of the target language. Our
previous experience shows that the proper order to decide on the solu-
tion is: storage allocation, addressing, procedure call.

3.1. The non-homogeneous store.
In a machine with a core store of 1024 words of 42 bits and a backing

drum of 12800 words some method of transferring the translated ALGOL
program and its variables between the two media must be found. In
DASK ALGOL a system based on explicit information supplied by the
programmer was used for both program and data (Ref. 4). In GIER
ALGOL the transfers of variables are again fully under the control of
the programmer, although the tools placed at his disposal, standard
procedures, are very different from those ineoI~orated in DASK ALGOL.
Transfers of program in GIER ALGOL, on the other hand, are done
automatically by the system.

The decision to provide automatic transfers of program, but not of
variables, is based on the following considerations:

1. The programmer will be fully aware of the storage demands made
by the variables of his program, but will have only a very inaccurate
knowledge of the length of the code needed to represent the algorithms.
Therefore the programmers task of specifying the transfers of variables
is much easier than the specification of transfers of program.

2. Transfers of variables to and from drum may be regarded as input]
output operations and will therefore be analogous to operations which
the programmer will have to learn and use anyway. Any conventions
for transfers of program sections will constitute a unique addition to the
conventions which the programmer will have to learn.

3. In a sensible system the machine instructions will be constant
throughout the run of the program. For the implementor the transfers
of program are simpler because no question of saving a piece of program
which has been copied from drum to cores ever arises.

3.2. Storage and addressing of variables.
Since all variables which can be referenced directly by the ALGOL

program will be stored in the core store, the familiar stack arrangement
can be used (Refs. 7, 10). This is inherently a very economical storage
principle. However, to make full use of the economy of the arrangement,
the scheme chosen for utilizing the storage space left unused by the stack
must be able to follow the variations of the size of the stack during the

130 PETER NAUR

run of the program. This was a decisive factor in the design of the system
for allocation of program described below.

In the addressing system developed by Dijkstra (Refs. 7, 10) two kinds
of variables are distinguished: (a) Named variables, addressed through
their block number and block relative address; (b) Anonymous variables,
addressed relative to the current top of the stack. In Dijkstra's system
and in DASK ALGOL (Ref. 4) anonymous variables are used where-
ever the identity of a variable is given completely through the structure
of the ALGOL text. In a machine having built-in floating point opera-
tions, but no special facility for working at the top of a stack, like GIER,
references to named variables can usually be performed much faster
than references to anonymous variables (see below). For this reason the
GIER ALGOL translator has eliminated references to anonymous vari-
ables as far as possible. This is achieved by replacing anonymous vari-
ables by internally named local quantities. This will cause a certain
slight waste of working locations, since each block will have to reserve
as many locations as are used at any one point of it. The only case
where this replacement of anonymous variables by local ones is not
possible is that in which an anonymous quanti ty is handed over from
one block to another and therefore must be addressed relative to the
universal stack top pointer. The simplest example of this is the return
information which is generated whenever the program transfers control
to a procedure or a formal parameter called by name which is equivalent
to a procedure. The return information is used by that procedure to
transfer the control back again (see the section on program points below).

The basis of the addressing of named variables is the recognition that
at any moment during the execution of a program the variables which
may be referenced directly are exactly those which are local to the
youngest incarnations o f the lexicographically enclosing blocks. The
relative addresses of the variables within a block are finally calculated
during translation. In order to obtain the absolute address of a variable
we only have to add what we call the "stack reference" of the corre-
sponding activation of the block to the relative address. The absolute
addresses of all accessible variables may therefore be calculated if the
program has available the block numbers and relative addresses of the
variables on the one hand, and the "stack reference" of the youngest
incarnations of the enclosing blocks on the other. These latter are held
in the table called the DISPLAY (Ref. I0). In an obvious notation we
have for a variable described by its block number and relative address:

stack reference = D I S P L A Y[block number]
absolute address = relative address + stack reference

THE DESIGN OF THE GIER ALGOL COMPILER 131

In the final machine code it is more convenient to replace the block
number by the so-called "DISPLAY reference" which is the absolute
address of the location which holds the stack reference. Therefore we have

stack reference = store[DISPLA Y reference]

This scheme requires tha t the DISPLAY be up-dated whenever the
control changes to a different block environment. The basis for doing
this is given below in the section on program points.

In a machine having built-in floating point operations, like GIER,
the address calculations according the above scheme must be done by
some very direct method if the use of an undesirably high proportion of
the running time for this purpose shall be avoided. The solution used in
G I E R ALGOL consists in using the two index registers as follows:

a) Variables in the outermost block. For these variables the stack
reference will be constant throughout the program and the compiler will
be able to calculate the final absolute machine addresses.

b) Variables in the currently local block. The stack reference of the
local block is at all times available in the index register p, as well as in
the appropriate element of the DISPLAY. References to local variables
can therefore be made by means of p-relative addresses.

e) Variables in intermediate blocks. These are addressed relative to
the index register s. The s-register is used for other purposes as well.
However the compiler is able to keep track of these uses and will be in
a position to insert explicit machine instructions of the form

s : = store[DISPLA Y reference]
where necessary.

The decision to use the index registers in this way is based on the
observation that in practical programs, in particular published proce-
dures, the overwhelming majori ty of identifiers refer to local quantities.

3.3. Program points.
No part of the translated program can be executed unless the DIS-

PLAY is up-dated so as to contain the stack references of the youngest
incarnations of the lexieographically enclosing blocks. The up-dating is
performed on the basis of the chains of stack references which form a
par t of the block information stored in the stack at all block-relative
addresses 0 and 1. In fact, each time a block is entered the DISPLAY
reference corresponding to its block number and the stack reference of
the youngest incarnation of its innermost enclosing block are placed at

132 PETER NAUR

relative address 0 of the newly reserved section of the stack. By these
means an up-dating of the DISPLAY to make it correspond to the newly
established environment may be performed at any time while this in-
carnation of the block is still active if only the value of the stack refer-
ence is supplied. The algorithm is as follows (I owe this improved form
of the arrangement, which only uses one input parameter, to a personal
communication from E. ~¥. Dijkstra in February 1962):

j := D I S P L A Y reference part(store[stacIc referenceD;
for sr := stack reference,

stack reference part(store[sr]) while
j <__ D I S P L A Y reference of block 0 do

begin store[j] := st; j := j + 1 end;

An alternative description which lies closer to the realization in GIER
ALGOL is the following:

switch U P D A T E := updO, upd l , u p d 2 , . . . ;
sr := stack reference;
go to U P D A T E [1 + D I S P L A Y reference of block 0 -

D I S P L A Y reference part(store[st])] ;
, . .

upd2 : D I S P L A Y[2] : = sr; sr : = stack reference part(store[sr]) ;
upd l : D I S P L A Y[1] : = sr ; sr := stack reference part(store[sr]) ;
updO: D I S P L A Y[O] : = sr;

The switch UPDATE must have as many elements as there are lexico-
graphically enclosing blocks in the program. This number is determined
by the compiler.

When the control is transferred from one point in the translated
ALGOL program to another it is in general necessary to up-date the
DISPLAY to correspond to the new environment. Consequently, in
order to specify a transfer of control we must in general supply both
the static description of the destination (segment track number and
relative address, see the description of program allocation below} and
a dynamic description of its environment, the stack reference. This set
of three numbers, t rack number, t rack relative address, and stack refer-
ence, together define what we call a program point.

Transfer of control within the same block need not use the general
program point specification since the DISPLAY remains unchanged.
This state of affairs may easily be recognized by the translator in the
practically must important cases, jumps created by if and for clauses.

THE DESIGN OF THE GIER ALGOL COMPILER 133

In GIER ALGOL extensive use is made of this possibility of simplifying
the execution.

3.4. The local declaration.
Program points are treated as a kind of variables. Every explicitly

named point of a block (labelled points and entries into the bodies of
local procedures) will have a location in the stack allocated to it, like
the location where the value of a variable is kept. When the block is
entered all the locations of program points are initialized. This is done
by a subroutine call, the so-called local declaration, placed at the begin
of each block. The local declaration contains information on how may
locations must be reserved in the stack and gives the static description
of each named program point.

Program points which are essentially similar to the explicitly named
one are generated in procedure calls, as described below.

Switch declarations are also taken care of in the local declaration,
but shall not be described in detail here.

The complete machine formats of the local declaration are given in
ref. 2, appendix 2.

3.5. Dezcriptions of quantities.
The use of locations in the stack for holding the descriptions of named

program points is one case of the more general use of descriptions of
quantities which extends to array and switch identifiers.

The description of an array identifier comprises (1) an absolute address
which points to the point in the stack where the so-called "dope vector"
is stored and (2) another absolute address which is a base address of the
e]ements. All array identifiers of the same array segment share the same
dope vector. Array identifier descriptions are placed in the stack by the
explicit code representing the array declaration.

A switch identifier is described by a word giving (1) the absolute
address of the first word of a list of the elements kept in the stack and
(2) the number of switch elements. The switch identifier descriptions
and the descriptions of the associated switch elements are placed in the
stack b y the local declaration.

An important factor in the choice of the formats of identifier descrip-
tions is the requirements of the procedure call. These requirements also
lead to the introduction of descriptions of simple variables, as explained
more fully below.

BIT 8 ~ 9

134 PETER NAUR

3.6. Procedure calls.

The central problem of the procedure call is to communicate to the
procedure body a sufficient amount of information about the actual
parameters. This information is transmitted via locations in the stack,
one for each parameter, the so-called formal locations. In detail GIER
ALGOL proceeds as follows:

The translator has transformed each procedure call into a call of a
subroutine followed by words describing the actual parameters and in
addition giving the static description of the point following the complete
call, the return point. A last word gives the DISPLAY reference and
block relative address of the location in the stack which holds the de-
scription of the entry point of the procedure being called. The possible
forms of words used as parameters (see also ref. 2, appendix 2) and their
treatment in the call are the following:

1. Constant.
The value of the constant is given and is transmitted to the formal

location.

2. Described in stack.
The call supplies the DISPLAY reference and relative address of a

location in the stack. This location will hold a description of a quantity
(see above). In the call the description is copied into the formal location.
This form is used for array, switch, and procedure identifiers, and for
formal parameters.

3. Static program point.
The call supplies a program segment track number and a track relative

address. In the call the full program point is formed and put into the
formal location. This is used for actual parameters which are compound
expressions and for the return point. The codes representing compound
expressions (thunks, see ref. 11) have been placed at the end of the call
proper by the translator.

4. Simple variable.
The call supplies the DISPLAY reference and relative address of the

variable. The call calculates the absolute address and puts it in the
formal location.

The procedure call subroutine will transform the descriptions of the
actual parameters and transmit them to the stack one by one. In doing
so it need not refer to the procedure to be called. The procedure body will
be able to identify each formal location by using the top of the stack as

THE DESIGN OF THE GIER ALGOL COMPILER 135

reference point. In fact, since our stack starts at the high address end
of the store the description of the return point will be found at the address
"last used in stack" while the description of actual parameter no. p is
found at the address "last used in stack" + p.

3.7. Referring to formal parameters.
The outstanding advantage of using explicit stored descriptions of the

quantities of the program, including the program points, is that the
translated ALGOL program need not distinguish between formal and
non-forma] versions of the quantities. Indeed, once a quantity descrip-
tion has been placed in a formal location the procedure body may refer
to it exactJy as though it had been non-formal.

The only formal parameters which receive a special treatment when
referred to from the procedure body are those which are specified as
integer, real, Boolean, or label. I t may be noted that the reason for this
anomaly is that we do not wish to treat simple non-forma] variables
through a genera] administration based on descriptions this would
entail an undue loss of storage space and execution speed. When referring
to a simple formal parameter called by name a routine in the running
system will examine the description of the actual parameter given in
the formal location in the stack. Depending on the description the actual
parameter is one of three things: (1) a constant, (2) a simple variable,
or (3) an expression. The contents of the formal location in the three
cases is: (1) the value of the constant, (2) the absolute address of the vari-
able, and (3) the description of the program point where the actual
parameter expression code (thunk) starts. The routine is expected to place
the address of the actual paramter in the so-called universal address.
This is simple in cases (1) and (2). In case (3) the routine must form the
complete program point description of the point following the reference
to the formal and place it at the top of the stack and transfer control
to the point described in the formal location, the thunk. The code repre-
senting the thunk will then perform its task and will place the appro-
priate address in the universal address and will finally return to the point
described at the top of the stack.

3.8. Arithmetic expressions and subscripts.
The running system is rather simple-minded about arithmetic expres-

sions. All arithmetic variables are represented as floating point numbers
within the machine. The difference between integer and real types only
makes itself felt in round-off operations.

136 I~ETER :NATSt¢

Likewise subscripting is treated by the most straightforward method:
the machine code evaluates the subscripts one by one and forms the
product sum of these values and the coefficients kept in the dope vector,
using floating point operations throughout. A 9-word subroutine in the
running system then calculates the final machine address and checks
that, it lies within the proper bounds.

3.9. Storage o f p rogram.

In trying to automize the transfers of program segments from the
drum to the core store it is tempting to make use of the segmentation of
the program which is defined in the block structure. The block structure
was in fact used in this manner in DASK ALGOL (Ref. 4). However,
we have since then realized that this approach has serious disadvantages.
The point is that a block by definition is a unit with respect to the scope
of its identifiers. However, what we need for segmentation is the dy-
namic units of the program. These are rather difficult to detect at trans-
late time. In simple cases the most important dynamic units are small
loops comprising much less than a block. In fact, the first part of a
block is usually just intialization which is devoid of interest as soon as
the real work begins. A more complicated situation is shown in the
following fragment of a program which will be a dynamic unit while
the solution of the equation

z t 2 + (1 - (z + 1) x ln((z + 1)/z) x y = 0

is being found by bisections:
. . .

procedure Bisec t ion(F , x , . . .) ; real F , x ; . . .

begin . . .
for q : = q/2 while a~s(q) > eps do

x : = (i f F > 0 t h e n q else - q) + x
end;

. . .

Bisec t ion(z ~ 2 + (1 - (z + 1) x ln((z + 1)/z) x y , z )

. . .

For each cycle of the for statement the control will pass from Bisection
to the expression in the call, from there to the In-routine, then back to
the call and finally back to Bisection. This means that the most im-
portant dynamic unit is composed of three pieces of program taken from
widely seprated places in the text.

On the basis of considerations of this kind and inspired by the scheme

THE DESIGN OF THE GIEI:t ALGOL COMPILER 137

adopted for the Ferranti Atlas (Ref. 8) we decided on the following
scheme for the storage of the programs within GIER ALGOL:

1. No par t of the instructions representing the algorithms of the
program will be held permanently in the core store.

2. The program of instructions is held on the drum and is segmented
by the compiler into the drum tracks so as to waste no space on the
tracks.

3. The program segment stored on a drum track is arranged in such a
way that while it is executed it may be stored in any place in the core
store and will make no assumptions as to other program segments being
present in the core store.

4. At any time the part of the core store which is not reserved for
variables will be available for as many program segments as it will hold.
The number of segment places will be allowed to vary between 2 and 20.

5. Program segments are transferred from the drum to the core store
when the execution of the program requires them.

6. The running system keeps a table of the program segments cur-
rently held in the core store. When the program calls for a transfer of
control to another segment the running system will t ry to avoid trans-
ferring the segment from the drum by first searching through this table.

7. When the program calls for a transfer of control to a segment
which is not in the core store and there are no more unused segment
places left in the core store, the segment will be overwritten on that seg-
ment held in the core store which for the longest time has been left unused.

This scheme could be realized quite conveniently in GIER. In particu-
lar the availablity of addressing relative to the order-counter could be
used for references within the same segment. This is used, n o t only for
j u m p instructions, bu t also for references to constants. In fact, as one
unusual consequence of this scheme the literal constants of a program
are never compiled into a table common to the program, but only into
tables which are separate for each segment. In this way the constants
used from a segment will follow this segment and not make any per-
manent demands on the core store. This requires that constants are
taken through all stages of the translation as a unique class of objects.

Further details of this scheme are given in the following sections. In
the machine code of the running system the corresponding algorithms
require about 80 words.

3.10. Program segment priorities.
The rule of point 7 above is applied with the aid of a priority asso-

ciated with each available segment. The running system keeps a current

138 PETER NAUR

priority, which is the priority of the segment which is currently in ac-
tion. Each time the control is transferred to a segment the current pri-
ority is increased by one and is also assigned as the new priority of the
segment. In this way the difference between the current priority and
the priority associated with a segment in the core store shows how many
segment transfers have been made since the segment was last used. In
particular the segment having the lowest priority will be the one which
has been left unused for the longest time.

Additional complications arise because in general the number of avail-
able segment places in the core store will vary. Clearly the system
should in general be prepared to use all the available core store space
for program segments. However, it is desirable that the reaction of the
system in the case of an increase of the amount of storage available for
segments should be somewhat cautious because the increase might be due
to only a transient cancellation of reservations in the stack. For this
reason the following procedure has been adopted. Irrespective of the
amount of free store, new segment places are only put into circulation
one at a time and only at the time when an actual transfer of a segment
from the drum is taking place. Further this new segment place is not
used for the segment actually being transferred, but is left empty with
the priority one less than the new current priority. An additional ad-
vantage of this method is that the actual process of initializing a new
segment place may use the drum transfer time which would otherwise
be wasted.

3.11. Example of segment allocation.
As an illustration, let a program cycle indefinitely in a simple loop

consisting of the segments stored on the tracks 91, 92, 93, and 94. The
following table describes the development of the situation from the
initial state, set by the translator, until all four segments are present
in the core store. Each line corresponds to a situation. The columns

I n i t i a l s t a t e
Af t e r e n t r y in to 91

- - - 92
- - - 9 3

- - - 9 4

- - - 9 1

- - - 9 2

1

- - 1

91 1
91 1
91 1
91 1
91 5
91 5

S e g m e n t p lace

2 3

- - 0

- - 0 - - 0

0 92 2
93 3 92 2
93 3 92 2
93 3 92 2
93 3 92 6

- - 1

1
94 4
94 4
94 4

- - 2

2
2
2

- - 3

3
3

C u r r e n t
p r i o r i t y

0
1

2
3
4
5
6

THE DESIGN OF THE GIER ALGOL COMPILER 139

give, for each segment place, the drum track number of the segment
stored in that place and the priority of that segment. If no track number
and priority is given it means that the segment place is not regarded as
available. The current priority is given in an addtional column.

If the loop had comprised 5 segments the 5¢~h would have been put
into segment place 1, thus overwriting segment 91. This indicates the
tendency of the scheme to keep the program at the lower segment places.
This tendency is further enhanced by the final process involved in the
program allocation, the cancellation of segment places on priority over-
flow described in the following section.

3.12. Program storage clean-up.
Priorities will always be kept in the range 0-511. Whenever the pri-

ority counter reaches 512 the opportunity is taken to perform the fol-
lowing clean-up of the situation: priorities from 0 to 255 are replaced
by 0, those from 256 to 511 by 1, while the track which is just being
entered will be assigned the priority 2. Moreover the track places are
checked in sequence, beginning with the one closest to the stack of
variables, and all those of new priority 0 are removed from the list until
the first one having the priority 1 or 2 is found or there are only two
segment places left. The principal aim of this clean-up is to cancel those
segment places which are never used. This may be of importance in
short programs, because it will reduce the number of unsuccesful tests
for coincidence of the new track number and the track numbers kept in
the segment table performed at each transfer of control to a segment.

R E F E R E N C E S

1. Krarup, T., and Svejgaard, B., GIER, Logical Organization. Ingenioren, International
edition, voL 5, Dec. 1961, no. 4.

2. Naur, P. (ed.), A Manual of GIER ALGOL. Regneeentralen, Copenhagen 1963.
3. Jensen, J., and Naur, P., An Implementation of ALGOL 60 Procedures, BIT 1 (1961),

38.
4. Jensen, J., Mondrup, P., and Naur, P., A Storage Allocation Scheme .for ALGOL 60.

BIT 1 (1961), 89; Comm. ACM 4 (Oct. 1961), 441-445.
5. Jensen, J., Jensen, T., Mondrup, P., and Naur P., A Manual of the D A S K ALGOL

Language. Regnecentralen, Copenhagen, 1961.
6. Irons, Edgar T., A Syntax Directed Compiler for ALGOL 60. Comm. ACM 4 (Jan.

(1961), 51-55.
7. Dijkstra, E. W., ALGOL-60 Translation. ALGOL Bulletin Supplement no. 10, Math.

Centrum Amsterdam, Nov. 1961; Annual Review of Automatic Programmlng Vol.
III , 327-356. Pergamon Press, London, 1963.

140 PETER NAUR

8. Fotheringham, John, Dynamic Storage Allocation in the Atla, Computer, including an
Automatic Use of a BacIcing Store. Comm. ACM 4 (Oct. 1961), 435-436.

9. Samelson, K. and Bauer, F.L. , Sequential ~orm/ula Translation. Comm. ACIVI 3
(Feb. 1960), 76-83.

10. Dijkstra, E. W., Recur~ive Prog~'amming. Num. Math. 2 (1960), 312-318.
11. Ingerman, P. Z., Thunbs. Comm. ACM 4 (Jan. 1961), 55-58.
12. Grau, A. A., The ~trueture of an ALGOL Translator, Oak Ridge National Laboratory

report ORNL-3054, 1961.
13. Arden, B. W., Graham, R.M., On G A T and ~he Construction of Translators. Comm.

ACM 2 (1959) no. 7, 24-26.

