
Acta Informatica 27, 505-517 (1990)

�9 Springer-Verlag 1990

Referential Transparency,
Definiteness and Unfoldability

Hara ld Sondergaard 1 and Peter Sestoft 2
1 Department of Computer Science, University of Melbourne, Parkville 3052 Vic., Australia
2 DIKU, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen O, Denmark

Received November 30, 1987/January 4, 1990

Summary. The term "referential t ransparency" is frequently used to indicate
that a programming language has certain useful substitution properties. We
observe, however, that the formal and informal definitions given in the litera-
ture are not equivalent and we investigate their relationships. To this end,
we study the definitions in the context of a simple expression language and
show that in the presence of non-determinism, the differences between the
definitions are manifest. We propose a definition of "referential transpar-
ency", based on Quine's, as well as of the related notions: definiteness and
unfoldability. We demonstrate that these notions are useful to characterize
programming languages.

1. Introduction

The notions of referential transparency and referential opacity are common
in discussions of properties of programming languages. They were originally
suggested by Quine and brought into computer science by Landin and Strachey.
The notions however have changed during time and the formal or informal
definitions found in the literature are not equivalent.

The present paper discusses referential transparency, referential opacity, and
similar notions. Precise definitions are suggested in the context of a non-deter-
ministic expression language, but the perspective is broader since some of the
definitions extend to programming languages more generally. The purpose is
to clarify the relations between a number of properties of a formal language.
These are very fundamental properties concerning identity and substitutivity,
and so should be treated with great care.

The observation that in everyday language one may not always substitute
a term by an equivalent term is exemplified by Quine. The statements

Cicero = Tully (1.1)

' Cicero' contains six letters (1.2)

Offprint requests to: H. Sondergaard

506 H. Sondergaard and P. Sestoft

are bo th true, but the replacement of the first name by the second will turn
(1.2) false [13]. The point is that, owing to the quotes, ' C i c e r o ' in (1.2) does
not refer to the person Cicero, but to the word Cicero. In this way the quotes
change or destroy reference, that is, the relation between a term and the object(s)
it denotes.

The fact that words are sometimes used in this manner is noted by the
medieval Will iam of Sherwood, and Leibniz repeatedly ment ions it (see Notes
1 and 2). Frege, in his discussion of sense and reference, gives the following
formula t ion:

"It can also happen, however, that one wishes to talk about the words themselves or
their sense. This happens, for instance, when the words of another are quoted. One's
own words then first designate words of the other speaker, and only the latter have their
usual reference. We then have signs of signs. In writing, the words are in this case enclosed
in quotation marks. Accordingly, a word standing between quotation marks must not
be taken to have its ordinary reference" (see Note 3).

A thorough investigation of the phenomenon has been undertaken by Quine. He
calls a context referentially opaque if it destroys reference. Otherwise it is referentially
transparent [14].

We just saw how quoting is referentially opaque, and the example

Tegucigalpa = the capital of Honduras

Philip believes that Tegucigalpa is in Nicaragua

(1.3)
(1.4)

shows that "_bel ieves t h a t _ " is referentially opaque in place 2, since (1.3) and
(1.4) may well hold, whereas replacing Tegucigalpa in (1.4) by the right-hand side
of (1.3) presumably yields a falsehood [13]. In general modal contexts fail to preserve
reference, and so are referentially opaque.

The usefulness of Quine's notions to the science of programming languages was
realized by Landin and Strachey. Strachey refers to Quine and the notion of referen-
tial transparency which

"means that if we wish to find the value of an expression which contains a sub-expression,
the only thing we need to know about the sub-expression it its value" [-18, page 16].

We shall henceforth refer to this principle as extensionality of the enclosing expres-
sion. Strachey also notes that

"We tend to assume automatically that the symbol x in an expression such as 3 x2+ 2 x + 17
stands for the same thing (or has the same value) on each occasion it occurs. This is
the most important consequence of referential transparency" [18, page 22].

We shall refer to this principle as definiteness (of variables, which we thus call definite
or indefinite depending on whether the principle applies or not).

Strachey's statement may be valid in the case of deterministic programming
languages, but in a non-deterministic language it becomes a crucial question what
is meant by "stands for the same thing". In a very natural interpretation it turns
out that definiteness is not a consequence of extensionality. We demonstrate this
by giving a language Q1 which is referentially transparent in Quine's sense, but
in which distinct occurrences of a variable (even within the same scope) may have
different values.

Referential Transparency, Definiteness and Unfoldability 507

Based on Strachey's observations, Stoy gives an informal definition of referential
transparency in this textbook on denotational semantics. Definiteness, which Stra-
chey regards a consequence of referential transparency, becomes part of Stoy's defini-
tion:

"We use [referential transparency] to refer to the fact of mathematics which says: The
only thing that matters about an expression is its value, and any subexpression can be
replaced by any other equal in value. Moreover, the value of an expression is, within
certain limits, the same whenever it occurs". [17, page 5]

This definition has three components. The first states the extensionality principle.
The second is the principle that "any subexpression can be replaced by any other
equal in value" which we refer to as Leibniz's law, or substitutivity of identity. The
third expresses the principle of definiteness, and perhaps even some kind of determin-
acy. The qualification "within certain limits" is presumably to allow for the notion
of scope of variables. Thus, in arguing that the lambda calculus is referentially trans-
parent in his sense, Stoy notes that

"for ~-2 I.E -~ all free occurrences of I in E denote the same value". [17, page 190, italics
ours]

Stoy's book does not discuss mathematical semantics for non-deterministic lan-
guages, a topic that was just about to find its proper treatment at the time the
book was written. So the above definition is perfectly adequate for Stoy's purpose.
In general, however, it is advantageous to separate the component notions, because
each provides a useful dimension in the characterization of a formal language, and
because they are fundamentally distinct, as will be shown.

Languages with assignment lack many useful substitutivity properties. Consider

x :=x - 1 ; y.'=x. (1.5)

All occurrences of x in (1.5) are in the same scope. A discussion of reference is
complicated by the fact that an occurrence of x on the left-hand side of .'= is inter-
preted rather differently to an occurrence of x on the right-hand side. This is the
well-known distinction between L-values and R-values of variables [17, 18]. In (1.5),
the first occurrence of x is taken to denote a "locat ion" which in turn "holds"
a value, whereas the other occurrences denote values. Whether such ambiguity should
count as destruction of reference may be a matter of taste. In any case variables
are not definite, since even the two right-hand side occurrences of x have different
values.

In functional programming languages, the use of substitutivity of identity as
a criterion for referential transparency has an added twist. Namely, one kind of
substitution that may or may not apply is unfolding of a function application (corre-
sponding to fl-reduction in the lambda calculus). If unfolding is equivalence preserv-
ing, we say that unfoldability applies, or that fl-reduction is admissible. The problem
is that it is common to use the equality symbol " = " when writing function defini-
tions, as in

f x x... (1.6)

This may be misleading, since it may well be the case that substitutivity of identity
holds and yet unfoldability does not apply, so that it is not admissible to replace
the function application f e by the instantiated right-hand side ...e... of (1.6). This

508 H. Sondergaard and P. Sestoft

will be exemplified when we investigate unfoldability and its relation to the notions
of referential transparency and definiteness.

Textbooks on programming languages offer a variety of suggestions as to what
referential transparency means. The following is a selection: definiteness (Note 4),
absence of side-effects (Note 5), determinacy (Note 6), unfoldability (Note 7), exten-
sionality (Note 8), and applicability of Leibniz's law (Note 9). This variety is justified
to some extent because textbooks often teach more efficiently by simplifying issues
slightly. It must however confuse a student seeking precise knowledge: certainly
not all of the above notions are equivalent. The intention with this paper is to
clarify some of their relations.

After some preliminary remarks on notation in Sect. 2, we present in Sect. 3
a simple expression language called Qo. This language will serve as a basis for
the discussion of concepts. In Sect. 4 we define the notions of referential transparency,
referential opacity, definiteness, and unfoldability, and we use these to characterize
the language Qo. In Sect. 5 we apply some distortions to the semantics of the lan-
guage, thus obtaining a series of slightly different languages Q~-Q4 that exhibit
varying combinations of the properties introduced in Sect. 4. We summarize in
Sect. 6 and draw conclusions as to the relations between the notions discussed
in the paper.

2. Preliminaries

The present note is concerned with issues of reference. We should therefore state
exactly which devices the paper itself employs to indicate referential use. We use
italics to indicate identifiers such as x or exp. We use the pair of brackets [...~
for quasi-quotation of expressions: meta-language variables that appear between
the brackets denote whatever they are bound to, whereas all other symbols denote
themselves. This is the usual convention of denotational semantics. Thus the brackets
are nothing but "Quine corners" [12].

To distinguish various kinds of equivalence, we use two equivalence signs: a
"syntactic" and a "semantic" one. The symbol = is used between expressions to
denote syntactic identity, that is, the relation in which an expression stands to itself
and to no other expression. Trivial as it may seem, there is good use for = , because
we use variables and expressions that range over syntactic objects (expressions);
thus it makes sense to write, for instance, e~ = e2, where et and e 2 are meta-language
variables.

The equality symbol, = , is used for a number of purposes: (1) between elements
of a set, (2) between sets, with the usual meaning: each is a subset of the other,
(3) between functions to denote strong pointwise equality, and (4) between expressions
to denote codenotation: both sides denote the same object.

In the following, some knowledge of denotational semantics will be beneficial
[17]. A note concerning the modeling of non-determinism and the interpretation
of equality is in order. Consider the non-deterministic expressions el and e2. We
follow the standard approach and let the denotation of an expression be the set
of values it may evaluate to (including possible error values). So et = e2 means that
whatever et may evaluate to, e2 may evaluate to, and vice versa. This, however,
does not mean that el and e2 will necessarily evaluate to the same thing. In this
way the introduction of non-determinism highlights a difference between denotation
and intended meaning: expression e may denote a set, but the intended meaning
is that e stands for some member of the set, we just cannot know which.

Referential Transparency, Definiteness and Unfoldability 509

3. A Simple Expression Language

This section introduces the language Qo which we shall use for defining and illustrat-
ing various substitution properties. Qo is a very restricted expression language and
certainly useless as a programming language. Even so, we feel justified in basing
our analysis on it, because it incorporates constructs known from existing program-
ming languages, albeit only those considered relevant for our discussion: Occam's
razor has been applied whenever possible, to bring the issues under investigation
into focus. The syntax of Qo is given in Table 1. In Sect. 5 we discuss a series
of languages Q 1 - Q 4 , all having the same syntax as Qo but with differing semantics.
Each of these semantics is defined by changing the definition of the preceding lan-
guage very slightly. Nevertheless they will be shown to lead to rather different substi-
tution properties.

The "full fo rm" displayed will help certain definitions, but for readability we
normally use the "shor t fo rm" of expressions, using parentheses to remove ambiguity.
However, we use 2xe e' simply, for (2x e) e', in the understanding that variables
in e' are not bound by the occurrence of 2~. Since x is the only available variable,
the standard notat ion " 2 x . e " for a lambda abstraction would be pleonastic, and
the use of "2 e" would disturb intuition, hence the notat ion "2~ e ' .

Table 2 gives a denotational definition of Qo- The set of values of expressions is

v = { o , a, # } ,

Table 1. Syntax for the Q family of languages

Full form Short form

exp --*

furl

0 0
1 1
X X

(minus exp exp) e x p - exp
(numeral? exp) @ exp
(choose exp exp) expnexp
(apply fun exp) fun exp

(lambda exp) 2 x exp

Table 2. Semantics of Qo

Below, e, el, e2 E exp; f ~ fun; v l, 1) 2 e V'~ U e P V.

D ~ e ~ =E[e~{#}
E = {0}
E~l~u ={l}
E[x u =u

E~el-e2~u={i f v l = # or
Ivl~E[el~ u

E~@e~u =if e=0 or e = l
E~el ne2~ u=E[el~ u u E[e2~ u

E~fe~ u =V[f~(E[e~ u)
F ~2 x e~ u =if u = { # } then

v 2 = # or vx<v2 then
and v2~E~e2~u}

then {1} else {0}

e l se D 1 --I)2

{#} else (E[e~u)u ({*}nu)

(El)
(E2)
(E3)
(Ft)

510 H. Sondergaard and P. Sestoft

where # signifies failure of evaluation. The non-determinism of expressions is
modeled by having the semantic equations define sets of possible results. We therefore
use a semantic domain

P V = (~ V) \ { ~ } ,

that is, the set of non-empty subsets of V. The empty set is excluded because an
expression must have a value (if evaluation fails, then its "value" is #). The valuation
function for expressions is

D: exp -o PV,

which in turn is defined in terms of the functions

E: exp-o P V ~ PV

F: f u n ~ P V ~ P V . .

An expression is evaluated given an element from PV (namely the set of possible
values of x), to yield an element from PV (namely the set of possible result values).

Let us informally describe evaluation of compound expressions. If el and e2 may
evaluate to vt and/)2, respectively, then e l - e 2 may evaluate to v~-/)2 (which fails
in case vl < v2). If e is a numeral (0 or 1), then @ e must evaluate to 1, otherwise
it must evaluate to 0. The choice expression e l n e 2 may evaluate to v if either
el may or e2 may, and it may fail if either e~ may or e2 may. This amounts to
erratic non-determinism [4]. Finally, let u be the set of values to which e' may
evaluate. The expression 2x e e' may evaluate to whatever e may evaluate to, given
that an occurrence of x in e must evaluate to some veu. There are, however, two
provisos, given by (F1): (1) if evaluation of e' must fail, then so must evaluation
of 2x e e', and (2) if evaluation of e' may fail, then so may evaluation of 2x e e'.
This yields the natural counterpart to applicative order evaluation in a deterministic
language.

We can now define semantic equivalence of expressions as codenotation. Expres-
sions are semantically equivalent iff they have the same denotation. By definition,

e l = e 2 iff D[el~=D~e2~

for all el, e2~exp. Note that D is a parameter in this definition, in the sense that
the definition applies throughout the paper, even when D (or E and F, on which
D depends) is changed.

It is a crucial feature of Q0 that x becomes bound to a (non-empty) set of values.
As a consequence, the denotation of, say, 2 x (x - x) (0 n l) is {0, 1, ~} rather than
{0}. In other words, even within the same scope, distinct occurrences of a variable
need not evaluate to the same result, witness the subexpression (x - x) in 2 x (x - x)
(0 r~ 1). This type of semantics is known as plural [5] or run time choice I-8] semantics.
The last term hints at the operational view that a value for x is chosen anew every
time x is met during evaluation.

The language Qo lacks a number of substitutivity properties which are introduced
in the next section. In Sect. 5 we investigate the consequences of various changes
in the semantic definition with respect to such properties, and in Sect. 6 we summarize
and compare the properties. Elsewhere we have discussed further (algebraic) proper-
ties of languages akin to Q o - Q 4 , but with recursion 1-15, 16J.

Referential Transparency, Definiteness and Unfoldability 511

4. Referential Transparency and Substitution Properties

Quine defines referential transparency using the concept of a purely referential posi-
tion in a sentence: "the position must be subject to the substitutivity of identity"
[14, page 142]. He then defines referential transparency:

"I call a mode of containment ~b referentially transparent if, whenever an occurrence of
a singular term t is purely referential in a term or sentence ~(t), it is purely referential
also in the containing term or sentence ~(~,(t))" 1-14, page 144].

So ~b is referentially transparent if it preserves pure referentiality, that is, preserves
substitutivity of identity. This amounts to Leibniz's law, and to extensionality. How-
ever, it is independent of the other important substitutivity properties we have met.
We now define the various substitutivity concepts more precisely and check whether
they apply to Qo.

A position p is a (possibly empty) sequence of natural numbers, peN*. The
empty sequence is denoted by e. The sequence constructor is denoted by ".". Let
t2 be an operator. Expression e with e' inserted at position p, e[e'/p], is defined by

e [e'/~] - e'

e [e'/i. p] =-- (f2 el. . . el [e'/p]... e,> if e------ (Q e l . . . el... e,>, else undefined.

Position p is purely referential in expression e iff el = e2=~e[el/p] = e [e2/p] for all
el, e2eexp. That is, a position is purely referential in expression e iff it is subject
to the substitutivity of identity. Note that for every expression e, position e is purely
referential in e. An operator I2 is referentially transparent in place i iff for every
expression e-- (f2el ... el... e,>, whenever position p is purely referential in ei, position
i .p is purely referential in e. Otherwise t2 is referentially opaque in place i. We
shall also say that f2 is referentially transparent, simply, iff it is referentially transpar-
ent in all places. Similarly, O is referentially opaque iff it is referentially opaque
in some place. Finally, we call a formal language referentially transparent if all
its operators are referentially transparent; otherwise we call it referentially opaque.

Examples of referentially opaque operators are @ as introduced in Sect. 3, Pas-
cars quotation marks used for character strings, and Lisp's quote (a few other opera-
tors from the Lisp category of "fexpr" are referentially opaque, though not all:
cond, for example, is referentially transparent). Common to these operators is that
they depend on the form of their argument rather than its value. Note that a position
may well be purely referential globally and yet not locally: if (as in Lisp) we had
had an eval and a quote operator such that eval (quote e) = e , then the position
of e in eval (quote e) would be purely referential, in spite of the fact that quote
is referentially opaque.

A language has the definiteness property iff the denotation of a variable necessari-
ly is a single value. For a language in our family, the implication of this is that
x - x will always evaluate to 0 (or possibly :t#), even though x may be bound (by
a function application) to an expression such as 0r~ 1. To see that this is to give
x a special treatment, consider replacing x by what it is bound to. This yields
(On 1) - (0 n 1), which may evaluate to either 0 or 1, or fail. If definiteness applies,
we say that the variables are definite, otherwise we call them indefinite.

Let e [e'] denote the expression e with all free occurrences of x replaced by
e' (even when enclosed by semantic brackets as in [e [e'] ~). We say that unfoldability
applies (for a language in our family) iff 2 x e e' = e [e'] for all e, e'~exp.

512 H. Sondergaard and P. Sestoft

Let us analyse Qo in terms of the introduced notions. First, Qo is not referentially
transparent, because the operator @ destroys reference. As an example, 1 - 0 = 1
since both sides denote { 1 }. However, @ (1 -0)4= @ 1 since the left-hand side denotes
{0}, whereas the right-hand side denotes {1}. All other operators are referentially
transparent, as will be shown in Sect. 5.1. Second, variables in Qo are indefinite.
Thus the Qo expression

2x(X-x)(Om 1) (4.1)

denotes {0, 1, # } rather than {0}. Finally, unfoldability does not apply in the case
of Qo- To see this, consider the expression

2x 0(0-1) . (4.2)

Unfolding this application yields 0, but D ~2x 0(0-1)~ = { ~ }, while D W0~ = {0}.

5. Variat ions on a T h e m e

In this section various changes are made to the semantics of Qo. We thereby obtain
a series of languages Q1-Q4 that exhibit quite different substitutivity properties.
In this way the languages illustrate how the properties interrelate.

5.1. Obtaining Referential Transparency

We have seen that @ is referentially opaque. The definition of the semantic function
E is now changed slightly to make @ void of effect. We replace (E 1) by

E ~@ e~ u = E ~e~ u. (E 1')

The resulting language is called Q1.

Example. The Q1 expression @(@ 1) denotes {1}, whereas qua Qo expression it
denotes {0}. []

Clearly, by (E 1'), @ is no longer referentially opaque. In fact the following proposi-
tion holds.

Proposition. Q1 is referentially transparent.

Proof. Consider the semantic definition in Table 2. The result of applying E to
expressions of the form (2xe0 e2, el rne2, or e l - e 2 only depends on the meaning
E[e,~ u of the subexpressions e, for ie{1,2}. We demonstrate this in the case of
el in expression e~ne2. If e~=e'~, then E[el~ u=E[e'~ u, by definition of " = "
on expressions. So for uePV,, E~elne2~ u=EWe:~ uwE~e2~ u=E~e'l~ uwE[e2~ u
= E~e'l r~e2~ u, and so el n e2 = e~ n e2. This proves that (_ r-n _) is purely referential
in place 1, and since e~ and e2 were arbitrary, it follows that it is referentially
transparent in place 1. Similar arguments hold for all other cases. []

Although no operator thus destroys reference, variables are still not definite. Namely,
example (4.1) qua Q~ expression evaluates exactly like before, since it does not contain

Referential Transparency, Definiteness and Unfoldability 513

the @ operator. Furthermore, as example (4.2) qua Q1 expression shows, unfoldability
still does not apply.

This proves that a non-deterministic programming language may well be referen-
tially transparent in the sense of Sect. 4 (and of Quine) and yet violate the principle
that "a variable stands for the same thing on each occasion it occurs". It also
shows that referential transparency does not imply unfoldability.

5.2. Obtaining Unfoldability

We now modify Qt to make unfolding equivalence preserving. This is done by
replacing (F 1) in the definition of Qi by

F [2x e~ u = E [e~ u. (F 1')

The resulting language is called Q2. Evaluation in Q2 resembles normal order evalua-
tion in deterministic languages.

Example. The Q2 expression 2x 0(0-1) denotes {0}, whereas qua Qo or Q~ expression
it denotes { ~ }, that is, evaluation must fail. []

Like Q1, Q2 is referentially transparent, and variables in Q2 are still indefinite, as
witnessed by (4.1) qua Q2 expression. However, Q2 allows for unfolding as the follow-
ing proposition shows.

Proposition. Let e and e' be Q2 expressions. Then 2~ e e' = e [e'].

Proof. Let uePV and let u '= E ~e'~ u. Since by (E 3) and (F 1'),

E[2~ ee'~ u =f~2~ e~(E[e'~ u)=E[e~ u',

it suffices to show that E[e~ u' =E[e[e']~ u for all e, e'cexp. We show this by induc-
tion on the structure of e. The cases e - 0 and e - 1 are trivial. For e - x we have:
E ~x~ u'= E [e'~ u = E Ix [e'] ~ u. The case e - el - e2 is similar to el n e2 below.

Case e=@el:

E~@ el~ u'=E[el~ u'
=E~ei[e']~u
=E[@(el [e'])~ u
=E[(@ei)[e']~u

Case e=e i r-q e21

E[etr-ne2~ u'=E[el~ u' w E~e2~ u'
= E~el [e']~ uw E[e2[e'] ~ u
= E [el [e'] n e2 [e'] ~ u
= E~ (el rne2)[e'] ~ u

Case e=2xel e2:

E~2:,el e2~ u'=F[2xel~(E~e2~ u')
= F [2x e ~ (E [e2 [e'] ~ u)
=E~2x el (e2 [e'])~ u
=E[(2~ el e2)[e']~ u

by (E 1')
by the induction hypothesis
by (E 1')
q.e.d.

by (E 2)
by the induction hypothesis
by(E2)
q.e.d.

By structural induction, E Eel u' = E [e [e'] ~ u, and the proposition follows.

by(E3)
by the induction hypothesis
by(E3)
q.e.d.

[]

514 H. Sondergaard and P. Sestoft

5.3. Obtaining Definiteness at the Expense of Unfoldability

All of the languages so far had indefinite variables: different occurrences of a variable
might evaluate differently, so for instance x - x might evaluate to 1. We now want
to make variables definite. This can be done by making the semantics singular [5],
that is, by guaranteeing that at any instant, a variable denotes exactly one value
(rather, a singleton set of values). This type of semantics is found also under the
label call time choice semantics, reflecting the operational view that the value for
a (lambda) variable is determined once: at the time of application [8]. More precisely
we replace line (E3) in the definition of Q2 by

E I f e~ u = U {F [f~ {v}lv~ E [e~ u}. (E 3')

Here U is the distributed union operator. The resulting language is called Q3.

Example. The Q3 expression

,L(x- x)(0~ 1) (5.1)

denotes {0}, whereas qua Qo, Q1, or Q2 expression it denotes {0, 1, #}. []

It should be clear that x is now definite. However, as compared to Q2, Q3 has
lost unfoldability. Unfolding the call in (5.1) yields (0 n l) - (0 n l) which denotes
(0,1, =~}.

In the presence of non-determinism, we cannot obtain both definiteness and
unfoldability. If we retain (F 1) rather than (F 1'), the resulting language (let us call
it Q~) will still have definite variables and lack unfoldability, since the above example
still applies. Usually designers of non-deterministic languages choose to renounce
unfoldability in order to keep variables definite. This is the case, for example, in
the wide-spectrum language CIP-L whose transformation system explicitly requires
a function to be determinate for any of its applications to be unfolded [3, page
99].

5.4. Giving Up Non-Determinism

The only way to achieve both definiteness and unfoldability is to give up non-
determinism. This can be done for instance by replacing (E2) in the definition of
Q3 by

E[e,r-le2~u=E~el~u. (E2')

The resulting language is called Q4.

Example. The Q4 expression 0 n l denotes {0}, whereas qua Qo, Q1, Q2, or Q3
expression it denotes {0, 1}. []

Thus n is now almost void of effect. All sets that are returned by E are singleton
sets, and it should be clear that both definiteness and unfoldability apply. Note
that Q4 is still referentially transparent, as is Q1, Q2, and Q3. The operator n
does not destroy reference by ignoring e 2. It is still true that "all that matters
about e 2 is its value", although this value is not being used for anything.

Referential Transparency, Definiteness and Unfoldability 515

6. Conclusion

We have suggested a definition of referential transparency in programming languages
which is in accordance with Quine's notion [14]. By this, an operator is referentially
transparent if it preserves applicability of Leibniz's law, or substitutivity of identity:
the principle that any subexpression can be replaced by any other equal in value.

Even though definiteness (the principle that within the same scope, distinct occur-
rences of a variable evaluate to the same) is sometimes taken as the definition of
referential transparency, a language may well lack definiteness and yet be referentially
transparent. The same goes for unfoldability, or admissibility of fl-reduction. Neither
of these properties are implied by referential transparency. This has been exemplified
by a series of languages Qo-Q4- It was also argued that in the presence of non-
determinism it is impossible to obtain both definiteness and unfoldability at the
same time. However, a non-deterministic language may well be referentially transpar-
ent.

Table 3 summarizes these findings. The table does not present an exhaustive
list of the possible combinations of "yes" and "no". Many more (and indeed more
contrived) languages are possible. So one should not deduce from the table that
definiteness implies referential transparency or that determinacy implies unfoldabi-
lity, for example. Such implications fail to hold in general. We conclude that it
is useful to separate the issues: determinacy, definiteness, unfoldability, and referential
transparency, because they cover different aspects of languages, and they all provide
useful dimensions along which to characterize programming languages.

We have avoided such classical terms for evaluation strategies as "call by value"
and "call by name", simply because they were not defined for non-deterministic
languages. Table 4 suggests a natural way to generalize the notions (we find the
nomenclature more natural than Clinger's [5], as well as in better agreement with
current use for deterministic languages). In the absence of non-determinism, the
two rows of Table 4 collapse into one: at least in a language without side-effects,
there is no difference in the results obtained using call by name and call by need.

Table 3. Properties of the languages

Qo Q1 Q2 Q3 Q,

Determinacy no no no no yes
Definiteness no no no yes yes
Unfoldability no no yes no yes
Referential transparency no yes yes yes yes

Table 4. Relations to operational notions

"Applicative" order "Normal" order

Plural semantics Qo and Q1 Q2
(run time choice) Call by name

Singular semantics (Q~) Q3 and Q4
(call time choice) Call by value Call by need

516 H. Sondergaard and P. Sestoft

We have not discussed side-effects in the present paper, since this phenomenon
does not come up in purely applicative languages. In a language like Algol 60,
whose semantics can only be explained in terms of a notion of "state" [17], the
expression x - x (where x is an integer variable) may well evaluate to 6, say, owing
to side-effects of the evaluation of x. Clearly non-determinism is not the only obstacle
for definiteness.

Acknowledgements. We have found the referees' critical comments very helpful when revising
this paper. In particular, the present simplified and improved example language is basically
due to one of the referees. Thanks also go to Rodney Topor and Phil Wadler. The first
author has been supported in part by the Danish Research Academy, the second by the
Danish Natural Science Research Council.

Notes

1. " A ~ B significat Aet B esse idem, seu ubique sibi posse substitui. (Nisi prohibeatur,
quod fit in iis, ubi terminus aliquis certo respectu considerari declaratur ver. g.
licet trilaterum et triangulum sint idem, tamen si dicas triangulum, quatenus tale,
habet 180 gradus; non potest substitui trilaterum. Est in eo aliquid materiale)."
I-6, page 261].

2. "Au reste il arrive quelques fois que nos id6es et pens6es sont la matiere de
nos discours et font la chose m~me qu'on veut signifier, et les notions reflexives
entrent plus qu'on ne croit dans celles des choses. On parle mSmes quelque fois
des mots materiellement sans que dans cet endroit lh precisement, on puisse substi-
tuer ~ la place du mot la signification, ou le rapport aux id6es ou aux choses"
1-11, page 287].

3. ,,Es kann aber auch vorkommen, dab man von den Worten selbst oder von ihrem
Sinne reden will. Jenes geschieht, z.B., wenn man die Worte eines Andern in
gerader Rede anfiihrt. Die eigenen Worte bedeuten dann zun/ichst die Worte
des Andern und erst diese haben die gew6hnliche Bedeutung. Wir haben dann
Zeichen von Zeichen. In der Schrift schliel3t man in diesem Falle die Wortbilder
in Anfiihrungszeichen ein. Es darf also ein in Anfiihrungszeichen stehendes Wort-
bild nicht in der gewShnlichen Bedeutung genommen werden" [7, page 28].

4. "Program variables necessarily violate Quine's (1960) request for "referential trans-
parency": that a "variable"(= a designation) has the same value at every position
in the text" [2, page 353].

5. "The purpose of an expression is to compute a value. Expressions are composed
of operands such as constants and variables, operators and possibly function
calls. The process of evaluation is to substitute values for the operands and perform
the operations. The values which are associated with the variables of a program
form the state space or environment of the program. Evaluation of an expression
should only produce a value and not change the environment. This idea is called
by the grandiose name referential transparency" 1-10, page 93].

6. "One essential ingredient of functional programming is that the value of a function
is determined solely by the values of its arguments. Thus, calls of the function
using the same arguments will always produce the same value. This property
is called referential transparency" 1-10, page 357].

7. "... consider a logic program containing two statements

S 1: parent (x, z) if mother (x, z)
S 2: grandparent (x, y) if parent (x, z), parent (z, y)

Referential Transparency, Definiteness and Unfoldability 517

We may ... substitute for parent(x, z) in $2 its referent mother(x, z)... to obtain

$3: grandparent(x,y)ifmother(x,z), parent(z,y)

... Logic and other pure declarative languages therefore enjoy what is called referen-
tial transparency; what any of their constituents refer to in a program can be
ascertained by exploiting the soundness of substitutivity, taking no account of
the irrelevant run-time context" [9, page 240-241].

8. " . . . a principle known as referential transparency [Quine 1960] that holds in math-
ematics: The value of an expression can be determined solely from the values
of its subexpressions, and if any subexpression is replaced by an arbitrary expres-
sion with the same value then the value of the entire expression remains
unchanged" 1,19, page 29].

9. "A language that supports the concept that "equals can be substituted for equals"
without changing the values of expressions is said to be referentially transparent"
1-1, page 178].

References

1. Abelson, H., Sussman, G.J.: Structure and interpretation of computer programs. Cambridge,
Mass.: MIT Press 1985

2. Bauer, F.L., Wrssner, H.: Algorithmic language and program development. Berlin Heidel-
berg New York: Springer 1982

3. Bauer, F.L. et al. The Munich project CIP, vol. I: The wide spectrum language CIP-L
(Lect. Notes Comput. Sci., vol. 183). Berlin Heidelberg New York: Springer 1985

4. Broy, M.: A theory for nondeterminism, parallelism, communication, and concurrency.
Theor. Comput. Sci. 45, 1-61 (1986)

5. Clinger, W.: Nondeterministic call by need is neither lazy nor by name. Proc. 1982 Symp.
Lisp Funct. Progr., Pittsburgh, Pennsylvania pp. 226-234, 1982

6. Couturat, L.: Opuscules et fragments inrdits de Leibniz. Hildesheim: Georg Olm 1961
7. Frege, G.: Uber Sinn und Bedeutung. Z. Philosophie philosophische Kritik 100, 25-50

(1892). English translation in: Geach, P., Black, M. (eds.) Translations from the philosophical
writings of Gottlob Frege, pp. 56-78. Oxford: Blaekwell 1952

8. Hennessy, M.C.B., Ashcroft, E.A.: Parameter-passing mechanisms and nondeterminism.
Proc. Ninth ACM Symp. Theory Comput., pp. 306-311. Boulder, Colorado 1977

9. Hogger, C.J.: Introduction to logic programming. London: Academic Press 1984
10. Horowitz, E.: Fundamentals of programming languages. Berlin Heidelberg New York:

Springer 1983
11. Leibniz, G.W.: Nouveaux essais sur rentendement humain, III, 2. In: Gottfried Wilhelm

Leibniz - Sfimtliche Schriften und Briefe VI, 6. Berlin (GDR): Akademie-Verlag 1962
12. Quine, W.V.O.: Mathematical logic. New York: Norton 1940
13. Quine, W.V.O.: Reference and modality. In: From a logical point of view, pp. 139-159.

Cambridge, Mass.: Harvard University Press 1953
14. Quine, W.V.O.: Word and object. Cambridge, Mass: MIT Press 1960
15. S~ndergaard, H., Sestoft, P.: Non-determinism in functional languages. Comput. J. (to

appear)
16. S~ndergaard, H., Sestoft, P.: Referential transparency and allied notions. University of

Copenhagen, Denmark, DIKU Research Report 88/7, 1988
17. Stoy, J.E.: Denotational semantics. Cambridge, Mass.: MIT Press 1977
18. Strachey, C.: Fundamental concepts in programming languages. Int. Summer School in

Computer Programming, Copenhagen, Denmark 1967 (unpublished)
19. Waite, W.M., Goos, G.: Compiler construction. Berlin Heidelberg New York: Springer

1984

