
A Program Logic for JavaScript

Anonymous Author
Anonymous Institution

anon@ymo.us

Abstract
JavaScript has become the de-facto language for client-side web
programming. The inherent dynamic nature of the language makes
understanding JavaScript code notoriously difficult, leading to
buggy programs and a lack of adequate static-analysis tools. We be-
lieve that logical reasoning has much to offer JavaScript: a simple,
correct description of program behaviour, a clear understanding of
module boundaries, and the ability to verify security contracts.

We introduce a program logic for reasoning about a broad subset
of JavaScript, including challenging features such as prototype
inheritance and with. We adapt ideas from separation logic to
provide tractable reasoning about JavaScript code: reasoning about
easy programs is easy; reasoning about hard programs is possible.
We prove a strong soundness result. All libraries written in our
subset and proved correct with respect to their specifications will
be well behaved, even when called by arbitrary JavaScript code.

1. Introduction
JavaScript has become the de-facto language for client-side web
programming. Ajax web applications, used in e.g. Google Docs,
are based on a combination of JavaScript and server-side program-
ming. JavaScript has become an international standard called EC-
MAScript [13]. Adobe Flash, used in e.g. YouTube, also features
a programming language based on ECMAScript, called ‘Action-
Script’. Even web applications written in e.g. Java, F] or purpose-
designed languages such as Flapjax or Milescript are either com-
piled to JavaScript, or they lack browser integration or cross-
platform compatibility. JavaScript is currently the assembly lan-
guage of the Web, and this seems unlikely to change.

JavaScript was initially used for small web-programming tasks,
which benefited from the flexibility of the language and tight
browser integration. Nowadays, the modern demands placed on
JavaScript are huge. Although this flexibility and browser inte-
gration are still key advantages, the inherent dynamic nature of
the language makes current web code notoriously difficult to un-
derstand [11, 15, 23]. For example, the lack of abstraction mech-
anisms for libraries leads to many buggy programs on the Web.
While there are promising approaches to problem-specific static
analyses of JavaScript [1, 6, 14, 16, 19, 26, 27, 32], there is a grow-
ing need for general-purpose, more expressive analysis tools, able
to provide simple, correct descriptions of program behaviour, a

[Copyright notice will appear here once ’preprint’ option is removed.]

clear understanding of module boundaries, and the ability to verify
security contracts.

We believe that formal methods will have a significant role to
play in the development of static analysis tools for Javascript, es-
pecially IDE support. In this paper, we introduce the first program
logic for reasoning about JavaScript. While it is tempting to ig-
nore the ‘ugly’ parts of the language, and reason only about ‘well-
written’ code, in practice JavaScript programs have to interface
with arbitrary web code. This code can be badly written, untrusted
and potentially malicious. We are particularly concerned with li-
brary code, which must be well-behaved when called by arbitrary
code. Our reasoning is therefore based on a model of the language
that does not shun the most challenging JavaScript features.

For example, the behaviour of prototype inheritance, and the in-
terplay between scoping rules and the with statement, is complex.
This means that our basic reasoning rules must also be complex.
We overcome this by establishing several natural layers of abstrac-
tion on top of our basic rules. With principled code, we can stay
within these layers of abstraction and the reasoning is straightfor-
ward. With arbitrary code, we must break open the appropriate ab-
straction layers until we can re-establish the invariants of the ab-
straction. In this way, we are able to provide clean specifications of
a wide variety of JavaScript programs.

Our reasoning is based on separation logic. Separation logic has
proven to be invaluable for reasoning about programs which di-
rectly manipulate the heap, such as C and Java programs [3, 4, 8,
17, 31]. A key characteristic of JavaScript is that the entire state of
the language resides in the object heap. It is therefore natural to in-
vestigate the use of separation logic to verify JavaScript programs.
In fact, we had to fundamentally adapt separation logic, both to
present an accurate account of JavaScript’s variable store (see Sec-
tion 2: Motivating Examples) and also to establish soundness. For
soundness, it is usual to require that all the program commands are
‘local’, according to a definition first given in [17]. Many JavaScript
statements are not local by this definition: for example, even a sim-
ple variable read is non-local because its result may depend on the
absence of certain fields from arbitrary objects in the heap. There-
fore, we prove soundness using a new concept of ‘weak locality’,
recently introduced by Smith [25].

In this paper, we reason about a substantial subset of JavaScript,
including prototype inheritance, with and dynamic functions. We
do not provide higher-order reasoning about functions, and only
provide conservative reasoning about eval. We prove soundness
of our reasoning with respect a faithful subset of the formal op-
erational semantics of Maffeis et al. [15]. Our soundness result is
strong. Libraries written in our subset and proved correct with re-
spect to their specifications will be well behaved, even when called
by arbitrary JavaScript code. Our soundness result is constructed in
such a way that it will be simple to extend to higher-order reasoning
and reasoning about eval in due course.

1 2011/7/13

Figure 1. A JavaScript Emulated Variable Store

2. Motivating Examples
As convincingly argued in [11, 15, 22, 23], many different factors
drive the complexity of JavaScript behaviour. For a start, JavaScript
is a dynamically typed, prototype-oriented language, which has
no variable store. Instead, JavaScript variables are stored in the
heap, in a structure which imperfectly emulates the variable store
of many other programming languages. This structure consists of
an abstract list of scope objects, analogous to stack frames in
other languages. Every scope object has a pointer to a linked list
of prototypes, providing prototype-based inheritance. Since scope
objects inherit data from their prototypes, the value of a variable
cannot be resolved by a simple list traversal. Variable resolution is
further complicated by the fact that JavaScript objects may share a
common prototype.

JavaScript’s behaviour can make apparently simple programs
deceptively counterintuitive. Consider the code C defined below:

x = null; y = null; z = null;
f = function(w){x = v; v = 4; var v; y = v;};
v = 5; f(null); z = v;

What value should the variables x, y and z store at the end of the
program? The correct answer is undefined, 4 and 5 respectively.
We explain how this occurs as we walk through our reasoning.

In Section 6.2 we prove the following triple of this code:{
storel(x, y, z, f, v|)

}
C{

∃L. storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗ true
}

The current list of scope objects is identified by a global logical
expression l. The store predicate storel(x, y, z, f, v|) states that the
store-like structure referred to by l contains none of the variables
mentioned in the program; the variables occur to the left of the
vertical bar. The store predicate storel(|x : undefined, y : 4, z :
5, f : L, v : 5) denotes the final values for all the variables; the
variables are now on the right of the bar with assigned values.

To understand the complexity of the heap structures described
by store predicates, consider the example heap given in Figure 1.
This diagram illustrates a typical shape of a JavaScript variable
store. Each object is denoted by a box. In this example, the current
list of scope objects is given by l = [l1, l2, l3, l4, lg], where the
li are object addresses and lg is a distinguished object containing
the global variables. Each such object has a pointer to a list of
prototypes, with the arrows representing prototype relationships.
These prototype lists can be shared, as illustrated. They can be
complete, in the sense that they end with the distinguished object
lop which points to null. They can be empty, since the prototype
of a scope object may be null. Finally, if the browser running the
program uses SpiderMonkey, V8 or WebKit, the lists can be partial
in the sense that they have a null prototype pointer at any point
in the prototype list. This last case is not illustrated in Figure 1,

because it is not allowed by the ECMAScript specification. It is
however sufficiently common that it is worth ensuring that it does
not affect the soundness of our reasoning. Our scope predicate
therefore allows such partial lists.

To look up the value of a variable x in our example heap, we
check each object for a field with name x, starting with l1, checking
the prototype list from l1 then moving along the list of scope
objects. In our example, the x in object l will be found first, since
the whole prototype chain of l2 will be visited before l3. When
reading the value stored in x, this is all we need to know. If we
write to the same variable x, the effect will be to create a new field
x at l2. This new field will override the x field in object l in the
usual prototype-oriented way.

All of this messy detail is abstracted away by the store predi-
cate. This predicate is subtle and requires some adaptation of sepa-
ration logic. As well as the separating conjunction ∗ for reasoning
about disjoint resource, we introduce the sepish connective t∗ for
reasoning about paratially-separated resource. It is used, for exam-
ple, to account for the sharing the prototype lists, illustrated in Fig-
ure 1. We also use the assertion (l, x) 7→ �, which states that the
field variable x is not at object address l. This predicate is reminis-
tent of the ‘out’ predicate in [7] stating that values are not present
in a concurrent list. It is necessary to identify the first x in the struc-
ture: in our example, the x at l is the first x, since it does not occur
in the protype list of l1 nor in the prototype list of l2 until l.

Our store predicate allows us to make simple inferences about
variable assignments,without breaking our store abstraction:{

storel(x, y, z, f, v|)
}

x = null;{
storel(y, z, f, v|x : null) ∗ true

}
where the assertion true hides possible garbaged prototype lists.

The evaluation of the function expression function(w) {...}
has the simple effect of creating a new function object and return-
ing the address L of that object. The object contains a number of
housekeeping fields, including @body which contains the body of
the function and @scope which stores the function closure l. Our
inference for the function definition is simply:{

storel(f, v|x : null, y : null, z : null)
}

f = function(w) {...}{
∃L. storel(v|x : null, y : null, z : null, f : L) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ l ∗ true

}
As well as the store predicate, we assert that the state also con-

tains object cells such as (L,@scope) 7→ l. This assertion means
that there is an object with address L in the heap, and it definitely
contains at least the field @scope which has value l. The assertion
says nothing about any other field of L. We assert that our function
object has fields @body and @scope . The full specification, given
in Section 6.2, is actually a little more complicated than this. For
now, we hide additional housekeeping fields in the assertion true.

We know that this program example is complicated, because the
final values of the variables are counterintuitive. All the complexity
of the example occurs within the function call. When JavaScript
calls a function, it performs two passes on the body: in the first
pass, it creates a new scope object and initialises local variables
to undefined; in the second pass, it runs the code in the newly
constructed local scope. Our reasoning reflects this complexity. The
Hoare triple for the function call has the following shape:{

storel(|x : null, y : null, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ l ∗ true

}
f(null);{

? ? ?
}

2 2011/7/13

To fill-in a suitable postcondition, we must reason about the
function body. The precondition of the function-body triple is con-
structed from the first pass of the function call. As well as con-
taining the precondition of the function call, it contains a new
scope object L′ with fields given by the parameters of the func-
tion and the local variables discovered by the first pass. For our
example, it contains the assertions (L′, w) 7→ null for the param-
eter declaration and (L′, v) 7→ undefined for the local variable
declaration. The object L′ also has a @proto field, which points
to null since scope objects do not inherit any behaviour, and a
@this field, which can only be read. We also have the predicate
newobj(L′,@proto, w, v,@this), which asserts the absence of all
the fields we have not initialised. Knowing this absence of fields
is essential if, in the function body, we wish to write to variables,
such as the x and y, which do not appear in the local scope object.
Finally, the new scope object L′ is prepended to the scope list l.

Using this precondition, we are now able to give the triple ob-
tained by the second pass of the function call, which runs the code
having assigned all the local variable declarations to undefined:

∃L′,LS. l .= L′ : LS ∗
storeLS(|x : null, y : null, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
newobj(L′,@proto, w, v,@this)∗
(L′, w) 7→ null ∗ (L′, v) 7→ undefined ∗
(L′,@proto) 7→ null ∗ (L′,@this) 7→ L′′ ∗ true


x = v ; v = 4 ; var v ; y = v;

∃L′,LS. l .= L′ : LS ∗
storeLS(|x : undefined, y : 4, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
newobj(L′,@proto, w, v,@this)∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗
(L′,@proto) 7→ null ∗ (L′,@this) 7→ L′′ ∗ true


The postcondition follows simply, resulting from the three as-

signments in the new local variable store; the var v statement has
no effect in the second pass of the function call: first, variable x
gets the value undefined, since this is the current value of the lo-
cal v; then the local v is assigned 4; and, finally, the global variable
y is assigned the value of the local variable v. Hence, we obtain the
counterintuitive assignments in the store of the postcondition.

The postcondition of the function call is simply the postcondi-
tion of the function body, with local scope object L′ popped off the
current scope list l to obtain:
∃L′. storel(|x : undefined, y : 4, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ l ∗
newobj(L′,@proto, w, v,@this)∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗
(L′,@proto) 7→ null ∗ (L′,@this) 7→ L′′ ∗ true


Reasoning about the final assignment is simple, with z assigned the
value of the global variable v. The final postcondition is obtained
using the consequence rule to hide the function object and local
scope object behind the assertion true, since they are surplus to
requirements, and existentially quantifying local scope object L:{
∃L. storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗ true

}
Part of the challenge of understanding this example is knowing

the scope of local variable v. In JavaScript, variables can only be
declared local to functions, not other blocks such as if and while.
This can lead to undesirable behaviour, especially when a local
variable overloads the name of a global variable. One controversial
technique for solving this problem is to use the with statement and
a literal object to declare local variable blocks precisely where they
are needed. Using with is often considered bad practice, and it is
deprecated in the next version of ECMAScript, version 5. However,

it is widely used in practice [23] and can certainly be used to
improve the program readability. We are able to reason about even
extremely confusing uses of with. Consider the program:

a = {b:1}; with (a){f=function(c){return b}};
a = {b:2}; f(null)

Armed with an operational understanding of JavaScript’s em-
ulated variable store, it is not so difficult to understand that this
program returns the value 1, even though the value of a.b at the
end of the program is 2. It may not be quite so clear that this pro-
gram can fault, and may execute arbitrary code from elsewhere in
the variable store. In a sanitised environment such as a Facebook
app, this could lead to a security violation.

We only understood this example properly by doing the verifi-
cation. In Section 6.2, we prove the triple:

{storel(a, f|) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null}
. . .

{r .
= 1 ∗ true}

in which the precondition ensures the program returns the value 1
as expected. The obvious first try was to have just storel(a, f|) as
the precondition. This does not work as, when reasoning about the
assigment to the variable f, we cannot assert that the variable f
is not in the local scope. The reason for this is that the statement
a = {b:1} results in the creation of a new object L, with field
b, no field f as expected, but with field @proto pointing to the
distinguished object lop:

∃L. (L, b) 7→ 1 ∗ (L, f) 7→ � ∗ (L,@proto) 7→ lop

The with statement puts this new object at the beginning of the
local scope object. This means that, when we attempt to assign to
f, we must check the whole prototype list of L for field f. Thus, we
need assertions in the precondition stipulating that the prototype
chain of lop does not contain any instance of f. Otherwise, the
assignment to f in our program might be a local assignment. In
this case, when the program returns from the with statement,
the function call to f(null) will call whatever global f() might
previously have existed in the store including, for example, an f
at lop. This can result in a fault, if the variable f does not point
to a function object or a security breech if f points to bad code.
This example also shows that the with construct cannot be soundly
compiled away form JavaScript code.

3. Operational Semantics
We define a big-step operational semantics for JavaScript that rep-
resents faithfully the inheritance, prototyping and scoping mecha-
nisms described in the ECMAScript 3 standard. Our semantics is
based on the reference formal semantics [15]. Any derivation in
our semantics corresponds to a valid JavaScript computation. See
Section 3.6 for a discussion of our simplifying assumptions.

3.1 Heaps
The JavaScript heap is a partial function H: (L × X) ⇀ V that
maps memory locations and variable names to values. This struc-
ture emphasises the important role that references (pairs of loca-
tions and variables) play in the semantics of the language.

Values v ∈ V can be basic values u, locations l and lambda
abstractions λx.e. The set of locations L is lifted to a set L⊥
containing the special location null, analogous to a null-pointer
in C, which cannot be in the domain of any heap. We denote the
empty heap by emp, a heap cell by (l, x) 7→ v, the union of two
disjoint heapsby H1 ∗H2, and a read operation by H(l, x).

An object is represented by a set of heap cells addressed by
the same location but different variables. In this context, variables

3 2011/7/13

stand for object property names. For ease of notation we use l 7→
{x1: v1, . . . , xn: vn} as a shorthand for the object (l, x1) 7→ v1 ∗
. . . ∗ (l, xn) 7→ vn.

JavaScript has no variable store. Instead, variables are resolved
with respect to a scope object implicitly known at run time. Scope
objects are just objects whose locations are recorded in a runtime
list called the scope chain (we use a standard notation [], e:L,L++
L for lists). A variable x is resolved as the property x of the first
object in the scope chain that defines it. All user programs are eval-
uated starting from the default scope chain [lg], where lg is the
location of the global JavaScript object, described below. Scoping
constructs such as function calls, cause sub-expressions to be evalu-
ated with respect to a local scope object, which for example defines
the local variables of a function, and then defers to its enclosing
scope, where the resolution of non-local variables continues. The
auxiliary function σ defined below returns the location of the first
object in the scope chain to define a given variable.

Scope resolution: σ(H, l, x).

σ(H, [], x) , null

π(H, l, x) 6= null

σ(H, l:L, x) , l

π(H, l, x) = null

σ(H, l:L, x) , σ(H,L, x)

A similar mechanism is used to model prototype-based inheri-
tance: JavaScript objects are linked in prototype chains, so that an
object property is resolved to the first property of an object in the
relevant prototype chain that defines it. Function π below returns
the location of the first object in the prototype chain to define a
given property.

Prototype resolution: π(H, l, x).

π(H, null, x) , null

(l, x) ∈ dom(H)

π(H, l, x) , l

(l, x) 6∈ dom(H) H(l,@proto) = l′

π(H, l, x) , π(H, l′, x)

We use the notation obj(l, l′) to denote a fresh, empty object at
location l with prototype l′:

obj(l, l′) , (l,@proto) 7→ l′

The set of variables X is partitioned in two disjoint sets of in-
ternal variables X I and user variables XU . The internal variables
X I , {@scope,@body ,@proto,@this} are not directly accessi-
ble by user code, but are used by the semantics. User variables are
denoted by x, y, z ∈ XU and are a subset of strings. In particular,
keywords such as var are not valid variable names. It is worth an-
ticipating at this point a subtlety of the JavaScript semantics. The
evaluation of a user variable x does not return its value, but rather
the reference l′·x where such value can be found (l′ is obtained
using the σ predicate). In general, the values r ∈ VR returned by
JavaScript expressions can be normal values V or references R.
When a user variable x needs to be dereferenced in an expression,
the semantics implicitly calls the γ function defined below, which
returns the value denoted by the reference.

Dereferencing values: γ(H, r).

r 6= l·x
γ(H, r) , r

π(H, l, x) = null
l 6= null

γ(H, l·x) , undefined

π(H, l, x) = l′

l 6= null

γ(H, l·x) , H(l′, x)

A JavaScript expression can only be evaluated in a well-formed
heap, with respect to a valid scope chain. A heap H is well-formed
(denoted by H ` �) if its objects and prototype chains are well-
formed, and if it contains the global scope object lg and the default
prototypes for objects lop and functions lfp. A scope chain L is
valid with respect to heap H (denoted by schain(H,L) if all the
locations in the chain correspond to objects allocated in H , and if
it contains the global object lg . Formal definitions are given in [2].

The default initial state H∅ is the smallest well-formed heap
that also contains the eval function le and its prototype lep:

H∅ ,

(
lg 7→ {@proto : lop,@this : lg} ∗ obj(lop, null)

∗ obj(lfp, lop) ∗ obj(le, lep) ∗ obj(lep, lop)

)
We conclude this section by defining the heap update −] −

operation which will be used by the semantics.

Update H] (l, x) 7→ v.

(l, x) 6∈ dom(H) l 6= null

H] (l, x) 7→ v , H ∗ (l, x) 7→ v

(H ∗ (l, x) 7→ v)] (l, x) 7→ v′ , H ∗ (l, x) 7→ v′

H] (null, x) 7→ v , H] (lg , x) 7→ v

3.2 Terms
The syntax for terms of our JavaScript subset is reported below.

Syntax of Terms: v, e.

v ::= n | m | undefined | null
e ::= e; e | x | v | if(e){e}{e} | while(e){e} | var x

| this | delete e | e⊕ e | e.x | e(e) | e = e
| function (x){e} | function x(x){e} | new e(e)
| {x1 : e1 . . . xn : en} | e[e] | with(e){e}

A basic value v can be a number n, a string m, the special constant
undefined or the null location. ⊕ ∈ {+,−, ∗, /,&&, ||,==, .}
are the standard number and boolean operators plus string con-
catenation. Expressions e include sequential composition, variable
lookup, literal values, conditional expressions, loops, arithmetic
and string concatenation, object property lookup, function call, as-
signment, literal objects, functions and recursive functions.

3.3 Evaluation rules
An expression e is evaluated in a heap H , with a scope chain L. If
it successfully terminates, it returns a modified heap H ′ and a final
value r. Our big-step operational semantics for expressions uses an
evaluation relation −→ , defined on configuration triples H,L, e,
and terminal states H ′, r or fault. Selected evaluation rules are
given below, see [2] for the full table. Recall that a heap value v
can be a user value v, a memory location l or a function closure
λx.e, and a return value r can also be a reference l·x (see [2]).

Operational Semantics: H,L, e−→H′, r.

Notation: H,L, e
γ−→H′, v , ∃r.(H,L, e−→H′, r ∧ γ(H′, r) = v).

(Definition)
H,L, var x−→H, undefined

(Value)
H,L, v−→H, v

(Member Access)
H,L, e

γ−→H′, l′

l′ 6= null

H,L, e.x−→H′, l′ ·x

(Computed Access)
H,L, e1

γ−→H1, l′

l′ 6= null

H1, L, e2
γ−→H′, x

H,L, e1[e2]−→H′, l′ ·x

(Variable)
σ(H,L, x) = l′

H,L, x−→H, l′ ·x

(Object)
H0 = H ∗ obj(l′, lop)

∀i ∈ 1..n.

(
Hi−1, L, ei

γ−→H′i, vi
Hi = H′i] (l′, xi) 7→ vi

)
H,L, {x1:e1, . . . , xn:en}−→Hn, l′

(Binary Operators)
H,L, e1

γ−→H′′, v1

H′′, L, e2
γ−→H′, v2

v1⊕ v2 = v

H,L, e1⊕ e2−→H′, v

(Assignment)
H,L, e1−→H1, l′ ·x
H1, L, e2

γ−→H2, v
H′ = H2] (l′, x) 7→ v

H,L, e1=e2−→H′, v

4 2011/7/13

(This)
σ(H,L,@this) = l1
π(H, l1,@this) = l2
H(l2,@this) = l′

H,L, this−→H, l′

(Function)
H′ = H ∗ obj(l, lop) ∗ fun(l′, L, x, e, l)
H,L, function (x){e}−→H′, l′

(Function Call)
H,L, e1−→H1, r1 This(H1, r1) = l2 γ(H1, r1) = l1
l1 6= le H1(l1,@body) = λx.e3 H1(l1,@scope) = L′

H1, L, e2
γ−→H2, v

H3 = H2 ∗ act(l, x, v, e3, l2) H3, l:L′, e3
γ−→H′, v′

H,L, e1(e2)−→H′, v′

(Eval)
H,L, e1

γ−→H1, le H1, L, e2
γ−→H2, s

parse(s) = e H2, L, e
γ−→H′, v′

H,L, e1(e2)−→H′, v′

(With)
H,L, e1

γ−→H1, l
H1, l:L, e2−→H′, r

H,L, with(e1){e2}−→H′, r

(Fault)
otherwise

H,L, e−→ fault

We now briefly discuss some of the evaluation rules that show
non-standard features typical of JavaScript. Rule (Definition) has
no effect: the var declaration is only used by defs (defined be-
low) to identify function local variables. Rule (Variable) determines
the scope object where a given variable can be found, without de-
referencing the variable. Rules (Member/Computed Access) return
a reference to the object field denoted by the corresponding expres-
sions. Rule (Object) introduces a fresh, empty object at location
l, and then initializes its fields accordingly. Freshness is ensured
by well-formedness of H and disjointness of ∗. Rule (Binary Op-
eratiors) assumes the existence of a semantic version ⊕ for each
syntactic operator ⊕. Each ⊕ is a partial function, defined only
on arguments of a basic type (in this case numbers or strings) and
returning results of some other (possibly the same) basic type, cor-
responding to the intended meaning of the operation. Rule (As-
signment) is quite subtle. Suppose we have the expression x=4. If
x is defined as a property of an object in the scope chain (for ex-
ample, if we are executing the body of a function where x is a local
variable) then x=4 is the usual overwriting assignment. If x cannot
be found anywhere, then it is created as a global variable. Finally,
x could be found in a prototype of an object in the scope chain. In
that case, x=4 is an overriding assignment, with the effect of adding
x as a local variable in the scope whose prototype defined x. Rule
(This) resolves the this identifier, always returning a valid (non-
null) object in a well-formed state. Rule (Function) introduces the
notation fun(l′, L, x, e, l) ,

l′ 7→ {@proto: lfp, prototype: l,@scope:L,@body :λx.e}

to allocate a fresh function object at location l′, and creates a new
empty prototype object at l. Rule (Function Call) uses two auxiliary
functions This and act. Function This determines the object that
should be bound to the this in the function body:

This(H, l·x) , l [(l,@this) 6∈ dom(H)]

This(H, r) , lg [otherwise]

The rationale is that in the expression o.f(null), the this of
f will be o, whereas in the expression f(null) the this of f
will be the global object. The auxiliary function act describes the
allocation of a function activation record (which is a special kind
of scope object): act(l, x, v, e, l′′) ,

l 7→ {x: v,@this: l′′,@proto: null} ∗ defs(x, l, e)

The auxiliary function defs, defined in [2],returns the fresh memory
needed to allocate the local variables defined by a function body.
defs(y, l, var x), where y is the formal parameter of the function
being defined, returns the cell (l, x) 7→ undefined if x 6= y. All
other rules for defs propagate this information homomorphically.
Rule (Eval) assumes a partial function parse that parses a string
into a JavaScript expression, only if there are no syntax errors.

The imperative statements are more standard than the expres-
sions, except for the unusual (With) rule that uses the (possibly
user-defined) object obtained by evaluating e1 as a local scope to
evaluate e2. The (Fault) rule applies when no other rules apply. Be-
cause of potential divergences in the evaluation of subexpressions,
this rule is undecidable, and should be considered as a specification
device to define illegal states rather, than an operational rule.

3.4 Safety
An important sanity property of the evaluation relation is that it
preserves well-formedness of the heap, for any valid scope chain.

Theorem 1 (Well-Formedness). Let H,L be such that H ` � and
schain(H,L). If H,L, e−→H ′, r then H ′ ` �.

Although the theorem is about end-to-end well-formedness, its
proof (reported in Section 2 of [2]) shows that starting from a well-
formed state and scope chain, all the intermediate states and scope
chains visited during the computation are also well-formed, and all
the locations occurring in intermediate return values correspond to
objects effectively allocated on the heap.

3.5 Scope Example
We now revisit the scope example to illustrate some actual evalua-
tion steps of the semantics. Let e1 be the code:

x = null; y = null; z = null;
f = function(w){x=v; v=4; var v; y=v;};
v = 5; f(null); z = v;

We evaluate the state (H∅, [lg], e) using rule (Sequence). We
first compute (H∅, [lg], x = null)−→H1, null, where H1 =
H∅ ∗ (lg, x) 7→ null. Then, if we find some H, r such that
H1, [lg], e2−→H, r we can conclude that H∅, [lg], e1−→H, r,
where H and r are the final heap and return value of the computa-
tion, and e2 is the continuation of e1. Applying a similar reason-
ing to e2 a few times, we can isolate the last two sub-derivations
H5, [lg], f(null)−→H6, r1 and H6, [lg], z = v−→H, v. The
first sub-derivation is the most interesting. It must follow by rule
(Function Call), where the last premise is the sub-derivation

H ′, [lλ, lg], (x=v; v=4; var v; y=v;)
γ−→H6, v1

where lλ is the scope object for executing the function call. It is
easy to see thatH5 = I ∗ lg 7→ {G}∗ lf 7→ {F}∗obj(lfp), where

I = lop 7→ {@proto : null} ∗ obj(lfp)∗
le 7→ {@proto : lep} ∗ obj(lep)

G = @proto: lop,@this: lg, x: null, y: null, z: null, f: lf, v: 5

F = @proto: lfp, prototype: lfp,@scope: [lg],@body : [...]

Heap H ′ = H5 ∗ S is obtained by allocating the scope S at lλ:

S = lλ 7→ {w : null,@this : lg,@proto : null, v : undefined}

Note that v has been added as an undefined local variable by defs.
At this point we can easily deduce H6 and H . In particular, for
some appropriate H ′′,

H = H ′′ ∗ lg 7→ {x : undefined, y : 4, z : 5, v : 5}

5 2011/7/13

3.6 Simplifying Assumptions
We discuss some non-core JavaScript features that we have omit-
ted from our semantics, in order to limit size and complexity of our
semantics for this paper. Unless explicitly stated, adding such fea-
tures would not incure significant conceptual difficulties. Despite
these omissions, we work with a subset of JavaScript which is very
faithful to the ECMAScript 3 standard, modulo the corner cases
discussed below. Significantly, our programs will run reliably in
states generated by any valid JavaScript program (including those
reached by programs using non-standard features that we do not
model, such as proto) or getters and setters. Hence, our rea-
soning of Section 5 will interface well with real-world JavaScript
programs.

We do not model implicit type-coercion functions, and as a con-
sequence of this, we have no boolean type. Instead, where control
structures (if and while) require a boolean, we use other types
with semantics equivalent to the type conversion that occurs in
JavaScript. For simplicity, we use an implicit return statement for
functions. Moreover, our functions take only one parameter, rather
than the arbitrary list of parameters usual in JavaScript, and do
not have the arguments object or the constructor property. Al-
though JavaScript separates programs, statements and expressions,
we merge these three categories in a single sort of expression. This
choice simplifies the formal machinery but also allows our model
to have valid expressions that are not JavaScript terms (for exam-
ple, the sum of two ifs returning numbers). We also chose to omit
several JavaScript constructs such as labels, switch and for, as
they do not contribute significantly to the problem of program rea-
soning. At this stage, we consider a native heap inhabited only by
the global object, Object.prototype, the eval function, its pro-
totype, and Function.prototype, and we only model the proper-
ties of these objects that we find useful to illustrate the semantics or
the reasoning rules. Instead of exceptions, we use a general seman-
tic rule evaluating to fault. Our reasoning conservatively avoids
faults, and our operational semantics induces faults in many cases
where full JavaScript is more subtle. As a result, programs which
are proved using our fault-avoiding local Hoare reasoning will run
without throwing exceptions in JavaScript interpretors.

4. Assertion Language
When reasoning about programs using separation logic, it is usual
to define an assertion language which describes sets of partial
heaps, which may be combined using disjoint union. By describing
partial heaps, separation logic allows the programmer to focus
only on the portion of the heap which is actually affected by a
given program. This portion of the heap is called the program’s
“footprint”. Through the use of the frame rule, it is possible to infer
the behaviour of a program in a larger context, so long as we know
how it behaves on its footprint. In most programming languages,
the footprint of a program will be a collection of allocated heap
cells. If these cells are present, the program runs predictably, and if
they are not, it will fault.

JavaScript is different. The reader will notice that many of the
operational rules given in Section 3.3 make use of auxiliary func-
tions such as π and], which are defined using explicit checks of
the form (l, x) 6∈ dom(H) and σ, which involves partial sharing
of sub-heaps described by the π function. Programs which evaluate
using these rules have complex footprints consisting of both allo-
cated cells, and known de-allocated cells. In order to be sure that
the program behaves predictably, we must know that certain cells
are not in the heap. In order to manage sharing, we introduce a new
logical operator t∗, described below. In order to make positive state-
ments about the non-existence of certain cells in a JavaScript heap,
we define an abstract value � so that the notation (l, x) 7→ � indi-

cates that the cell (l, x) is not allocated in the heap. Accordingly, we
introduce the concept of an abstract heap, which is defined like the
JavaScript heap of Section 3.3 but where each cell can store either
a JavaScript value v or the symbol �. We also define an evaluation
b c which takes an abstract heap to a JavaScript heap.

bhc(l, x) , h(l, x) iff (l, x) ∈ dom(h) ∧ h(l, x) 6= �

Note that (l, x) 7→ �∗ (l, x) 7→ 4 is undefined. If the footprint of a
program contains (l, x) 7→ �, then it will be impossible to frame on
any other heap containing (l, x). In this way, we can make positive
statements about the absence of concrete heap cells.

We define a logical environment ε, which is a partial function
from logical variables X ∈ X L to logical values VL , which may
be any JavaScript term, return value, � or list. Lists L may be
nested. We also define logical expressions E, which are different
from program expressions in that they can’t read or alter the heap.
Expressions E are evaluated in a logical environment εwith respect
to a current scope chain L.
Logical Expressions and Evaluation: JEKLε .

v ∈ VL ::= e | r | � | L ε : X L ⇀ VL

E ::= X Logical variables
| l Scope list
| v Logical values
| E ⊕ E Binary Operators
| E :E List cons
| E ·E Reference construction
| λE .E Lambda values

JvKLε , v JlKLε , L JXKLε , ε(X)

JE2KLε = Ls

JE1:E2KLε , JE1KLε :Ls
JE1KLε = l′ ∧ JE2KLε = x

JE1 ·E2KLε , JE1KLε ·JE2KLε

JE1KLε = n ∧ JE2KLε = n′

JE1 ⊕ E2KLε , n⊕n′
JE1KLε = x

JλE1.E2KLε , λJE1KLε .JE2KLε

The assertions of our assertion language include standard
boolean assertions, expression equality, set assertions, and quan-
tifiers.
Assertions.

P ::= P ∧ P | P ∨ P | ¬P | true | false Boolean assertions
| P ∗ P | P −∗ P | P t∗ P Structural assertions
| (E ,E) 7→ E | � JavaScript assertions
| E = E Expression equality
| E ∈ SET Set inclusion
| E ∈ E List element
| ∃X. P | ∀X. P Quantification

Notation: E 6 ◦E , ¬(E ◦ E) for ◦ ∈ {=,∈}
E1 ◦̇E2 , E1 ◦ E2 ∧ � for ◦ ∈ {=, 6=,∈, /∈}.

A SET may be a literal set, or a named set such as X , the set
of JavaScript field names. In this way we can check the types of
JavaScript values when it is feasible. The JavaScript assertions lift
abstract heaps into the logic. The structural assertions ∗ and −∗ are
standard separation logic assertions, but t∗ is novel, and deserves
further comment. The intuition of P t∗ Q is that its footprint is the
union of the footprints of P and Q, but that sharing of resource
is permitted between P and Q. This allows us to reason naturally
about complex structures that permit sharing, such as the JavaScript
emulated variable store. Note that P ∧ Q =⇒ P t∗ Q holds, as
does P ∗Q =⇒ P t∗Q. Neither of the reverse implications hold.
By convention, the operator t∗ binds more tightly than ∗.

An assertion P may be satisfied by a triple h, L, ε of a heap,
stack list, and logical environment. The satisfaction of boolean
assertions is straightforward, the other cases are reported below.

Satisfaction of assertions: h, L, ε |= P .

6 2011/7/13

h, L, ε |= P ∗Q ⇐⇒ ∃h1, h2. h ≡ h1 ∗ h2∧
(h1, L, ε |= P) ∧ (h2, L, ε |= Q)

h, L, ε |= P −∗Q ⇐⇒ ∀h1. (h1, L, ε |= P) ∧ h# h1
=⇒ ((h ∗ h1), L, ε |= Q)

h, L, ε |= P t∗Q ⇐⇒ ∃h1, h2, h3.
h ≡ h1 ∗ h2 ∗ h3 ∧ (h1 ∗ h3, L, ε |= P) ∧ (h2 ∗ h3, L, ε |= Q)

h, L, ε |= (E1,E2) 7→ E3 ⇐⇒ h ≡ (JE1KLε , JE2KLε) 7→ JE3KLε
h, L, ε |= � ⇐⇒ h = emp

h, L, ε |= E1 = E2 ⇐⇒ JE1KLε = JE2KLε
h, L, ε |= E ∈ SET ⇐⇒ JEKLε ∈ SET
h, L, ε |= E1 ∈ E2 ⇐⇒ JE1KLε is in the list JE2KLε
h, L, ε |= ∃X. P ⇐⇒ ∃v. h, L, [ε|X � v] |= P
h,L, ε |= ∀X. P ⇐⇒ ∀v. h, L, [ε|X � v] |= P

Although we have given a direct definition of t∗ to favour the
intuition, when logical variables can range over heaps t∗ can be
derived: P t∗Q⇔ ∃R. (R−∗ P) ∗ (R−∗Q) ∗ R.

5. Program Reasoning
We give a fault-avoiding program reasoning which is sound with
respect to the operational semantics in Section 3.3. Since many
JavaScript statements are not local in the traditional sense, we prove
soundness using ‘weak locality’ as introduced in [25]. Our reason-
ing closely mirrors the operational semantics in all cases except
for the usual approximation for while and conservative approxi-
mations of function call and eval. These last two constructs are
interesting, and will be the focus of future work as outlined in Sec-
tion 8. Our fault-avoiding Hoare triples take the form: {P}e{Q},
which means “if e is executed in a state satisfying P , then it will
not fault, and if it terminates it will do so in a state satisfying Q.
The postcondition Q may refer to the special variable r, which is
equal to the return value of e.

5.1 Auxiliary Predicates
We define predicates to correspond to the functions used by the
operational semantics in Section 3.3. The σ(Ls,Sc,Var ,L) predi-
cate usest∗ to closely follow the form of the σ function. It holds pre-
cisely when searching for the variable Var in the scope list Sc will
traverse the addresses in the list Ls and return the value L (which
may be null). The σ predicate makes use of the π predicate, just
like in the operational semantics. π(Ls,St ,Var ,L) holds precisely
when searching for the variable Var in the prototype chain pointed
to by St will traverse the addresses in the list Ls and find the vari-
able Var in the object pointed to by L. If L is null, then no variable
Var can be found. The predicate γ(Ls,Ref ,Val) holds when the
semantic function γ would return a value equivalent to Val if called
with the current heap and a value equivalent to Ref after traversing
the list of cells in Ls .
Logical Predicates: σ, π, γ.

σ([], [], , null) , �
σ([Ls],St : Sc,Var ,St) , ∃L. π(Ls,St ,Var ,L) ∗ L 6 .= null

σ((Ls1 : Ls2),St : Sc,Var ,L) ,
π(Ls1,St ,Var , null) t∗ σ(Ls2,Sc,Var ,L)

π([], null, , null) , �
π([St],St ,Var ,St) , ∃V. (St ,Var) 7→ V ∗V 6 .= �
π((St : Ls),St ,Var ,L) ,
∃N. (St ,Var) 7→ � ∗ (St ,@proto) 7→ N ∗ π(Ls,N,Var ,L)

γ([],Val ,Val) , Val 6 ∈̇ R
γ(Ls,L·X , undefined) , π(Ls,L,X , null) ∗ L 6 .= null

γ(Ls,L1 ·X ,Val) ,
∃L2. π(Ls,L1 ,X ,L2) t∗ (L2,X) 7→ Val ∗Val 6 .= �

Notice that while we have taken care with the parameter Ls to pre-
cisely determine the footprint of these predicates, the π predicate

(and hence the σ predicate which uses it) is inexact in the value of
the variable being searched for. Normally, the scope predicate ap-
pears σ in conjunction with the de-referencing predicate γ, which
compensates for this inexactness.

The inference rules also require logical predicates correspond-
ing to a number of other auxiliary semantic functions. We define
newobj and fun predicates, which assert the existence of a fresh
object and function object, and decls that returns the local variables
of an expression. In order to reason about function call, we define
the defs predicate in [2].The other predicates are reported below.

Auxiliary Predicates

This(L· ,L) , (L,@this) 7→ � where L 6= lg
This(L· , lg) , ∃V. (L,@this) 7→ V ∗V 6 .= �

True(E) , E 6 ∈̇ {0, “ ”, null, undefined}
newobj(L,V1, . . . ,Vn) , ∗V∈X\{V1...Vn}(L,V) 7→ �

fun(F ,Closure,Var ,Body,Proto) ,
(F ,@scope) 7→ Closure ∗ (F ,@body) 7→ λVar .Body ∗
(F , prototype) 7→ Proto ∗ (F ,@proto) 7→ lfp

decls(X ,L, e) , x1, . . . , xn where (L, xi) ∈ dom(defs(X ,L, e)

5.2 Inference Rules
We define below some inference rules {P}e{Q} for reasoning
about of JavaScript expressions. The full list can be found in [2].

Inference Rules: {P}e{Q}.

(Definition)
{emp}var x{r .

= undefined}
(Value)
{�}v{r .

= v}

(Variable)
P = σ(Ls1, l, x,L) t∗ γ(Ls2,L·x,V)

{P}x{P ∗ r .
= L·x}

(Variable Null)
P = σ(Ls, l, x, null)
{P}x{P ∗ r .

= null·x}

(Member Access)
{P}e{Q ∗ r .

= V } Q = R ∗ γ(Ls,V ,L) ∗ L 6 .= null

{P}e.x{Q ∗ r .
= L·x}

(Computed Access)
{P}e1{R ∗ r .

= V1 } R = S1 ∗ γ(Ls1,V1,L) ∗ L 6
.
= null

{R}e2{Q ∗X ∈̇ XU ∗ r .
= V2} Q = S2 ∗ γ(Ls2,V2,X)

{P}e1[e2]{Q ∗ r .
= L·X}

(Object)
∀i ∈ 1..n.

(
Pi = Ri ∗ γ(Lsi,Yi ,Xi) {Pi−1}ei{Pi ∗ r .

= Yi}
)

Q =

Pn ∗ ∃L.
 newobj(L,@proto, x1, . . . , xn) ∗

(L, x1) 7→ X1 ∗ . . . ∗ (L, xn) 7→ Xn ∗
(L,@proto) 7→ lop ∗ r .

= L


x1 6= · · · 6= xn r 6∈ fv(Pn)

{P0}{x1:e1, . . . , xn:en}{Q}

(Binary Operators)
{P}e1{R ∗ r .

= V1 } R = S1 ∗ γ(Ls1,V1 ,V3)
{R}e2{Q ∗ r .

= V2 } Q = S2 ∗ γ(Ls2,V2 ,V4)
V = V3 ⊕V4

{P}e1⊕ e2{Q ∗ r .
= V }

(Assign Global)
{P}e1{R ∗ r .

= null·X}
{R}e2{Q ∗ (lg ,X) 7→ � ∗ r .

= V1 } Q = S ∗ γ(Ls,V1 ,V2)

{P}e1 = e2{Q ∗ (lg ,X) 7→ V2 ∗ r .
= V2 }

(Assign Local)
{P}e1{R ∗ r .

= L·X}
{R}e2{Q ∗ (L,X) 7→ V3 ∗ r .

= V1 } Q = S ∗ γ(Ls,V1 ,V2)

{P}e1 = e2{Q ∗ (L,X) 7→ V2 ∗ r .
= V2 }

7 2011/7/13

(Function)

Q =

 ∃L1,L2. newobj(L1,@proto) ∗ (L1,@proto) 7→ lop ∗
newobj(L2,@proto, prototype,@scope,@body) ∗
fun(L2, l, x, e,L1) ∗ r .

= L2


{�}function (x){e}{Q}

(Function Call)
{P}e1{R1 ∗ r .

= F1 }

R1 =

(
S1 t∗ This(F1 ,T) t∗ γ(Ls1,F1 ,F2) ∗ F2 6

.
= le∗

(F2 ,@body) 7→ λX .e3 ∗ (F2 ,@scope) 7→ Ls2

)
{R1}e2{R2 ∗ l .= Ls3 ∗ r .

= V1 } R2 = S2 ∗ γ(Ls4,V1 ,V2)

R3 =

 R2 ∗ ∃L. l
.
= L:Ls2 ∗ (L,X) 7→ V2 ∗

(L,@this) 7→ T ∗
(L,@proto) 7→ null ∗ defs(X ,L, e3)∗
newobj(L,@proto,@this,X , decls(X ,L, e3))


{R3}e3{∃L. Q ∗ l .= L:Ls2} l 6∈ fv(Q) ∪ fv(R2)

{P}e1(e2){∃L. Q ∗ l .= Ls3}

(With)
{P ∗ l .= L}e1{S ∗ l .= L ∗ r .

= V1 } S = R ∗ γ(Ls,V1 ,L1)
{S ∗ l .= L1 }e2{Q ∗ l .= L1 } l 6∈ P,Q,R
{P ∗ l .= L}with(e1){e2}{Q ∗ l .= L}

(While)
{P}e1{S ∗ r .

= V1 } S = R ∗ γ(Ls,V1 ,V2)
{S ∗ True(V2)}e2{P}
Q = S ∗ False(V2) ∗ r .

= undefined r 6∈ fv(R)

{P}while(e1){e2}{Q}

(Frame)
{P}e{Q}
{P ∗R}e{Q ∗R}

(Consequence)
{P1}e{Q1} P =⇒ P1 Q1 =⇒ Q

{P}e{Q}

(Elimination)
{P}e{Q}
{∃X. P}e{∃X. Q}

(Disjunction)
{P1}e{Q1} {P2}e{Q2}
{P1 ∨ P2}e{Q1 ∨Q2}

Although most of the rules correspond closely to their seman-
tics counterparts, some rules deserve further comment. Rule (Defi-
nition) shows the use of the reserved variable r to record the result
of an expression. Rule (Variable) shows the use of t∗ to express the
overlapping footprint of predicates σ and π. Rule (Object), through
the predicate newobj, shows the use of � to assert that certain
known memory cells are available for allocation. Rule (Function
Call) describes JavaScript’s dynamic functions but does not sup-
port higher order reasoning. Rule (Frame) does not have the usual
side condition because JavaScript stores all its program variables
on the heap, so any variable modified by an expression is necesar-
illy contained entirely within the footprint of the expression. Rules
(Consequence), (Elimination) and (Disjunction) are standard.

5.3 Soundness
We show that our inference rules are sound with respect to the
semantics of Section 3.3. Since many JavaScript statements are not
local according to the standard definition of locality from [17], we
use the recently introduced notion of weak locality from [25].

Definition 2 (Soundness of a Hoare triple). A Hoare triple {P}e{Q}
is sound if, for all h, l, ε, it satisfies the following two properties:

Fault Avoidance : h, l, (ε \ r) |= P =⇒ bhc, l, e 6−→ fault

Safety : ∀H, v. h, l, (ε \ r) |= P ∧ bhc, l, e−→H, r
=⇒ ∃h′. H = bh′c ∧ h′, l, [ε|r � r] |= Q.

Notice that we are not limited to reasoning about only well-
formed heaps. While it is the case that all JavaScript programs
maintain the well-formedness of the heap, we are also able to
reason about programs that run on partial-heaps, which may not
be well-formed.

Theorem 3 (Soundness). All derivable Hoare triples {P}e{Q}
are sound according to Definition 2.

The proof (reported in Section 3 of [2]) involves showing that
the predicates used by the language rules correspond to the aux-
iliary functions used by the semantics, showing that all JavaScript
expressions are weakly local with respect to their preconditions and
finally showing that all our inference rules are sound.

6. Layers of Abstraction
The key to reasoning in an easy and intuitive way about a program
is to match the level of abstraction at which it is written. We
present a hierarchy of three layers of abstraction, which provide
increasingly natural reasoning about well-written programs, while
retaining the ability to break the current abstraction and work at a
lower level when required.

6.1 Layer 1: Exploring the scope List
Central to reasoning about JavaScript variables are the σ and π
predicates. The first abstraction layer consists of alternative ver-
sions of these predicates which make reasoning about certain com-
mon cases simpler. The σ predicate unrolls from the global end of
the scope rather than from the local end which makes modifying a
variable easier to specify. It makes use of ¬σ which says that a vari-
able does not exist in a particular partial scope. The ¬σlg predicate
does the same, but excludes lg from its footprint, which makes rea-
soning about global variable instantiation simpler. We prove lem-
mas such as the equivalence of σ and σ in Section 4 of [2].

Layer 1 Predicates.

σ(Ls,Sc,Var , null) , ¬σ(Ls,Sc,Var , null)
σ(Ls1++(Ls2 : []),Sc,Var ,L) ,
¬σ(Ls1,Sc,Var ,L) ∗ ∃L2. π(Ls2,L,Var ,L2) ∗ L2 6

.
= null

¬σ([],St : Sc, ,St) , �
¬σ(Ls2 : Ls,St : Sc,Var ,End) ,

π(Ls2,St ,Var , null) t∗ ¬σ(Ls,Sc,Var ,End)

¬σlg ([],St : Sc, ,St) , �
¬σlg (Ls2 : Ls,St : Sc,Var ,End) ,

πlg (Ls2,St ,Var , null) t∗ ¬σlg (Ls,Sc,Var ,End)

πlg ([], null, , null) , �
πlg ([], lg , , null) , �
πlg ([St],St ,Var ,St) , ∃V. (St ,Var) 7→ V ∗V 6 .= �
πlg ((St : Ls),St ,Var ,L) , ∃N. (St ,Var) 7→ � ∗

(St ,@proto) 7→ N ∗ πlg (Ls,N,Var ,L)

These predicates give us much more flexibility to reason at a
low level about JavaScript variables found in various places in the
emulated variable store. At this level, it is possible to prove quite
general specifications about programs with many corner cases.
A good example of this sort of reasoning is simple assignment
statements. We prove the following general triples about simple
assignments. The first three triples deal with the assignment of a
constant to a variable, in the cases of variable initialisation, variable
override, and variable overwrite respectively. The fourth triple deals
with assigning the value of one variable to another. All four are
proved sound in [2].

Simple Assignments.

P = σ(L1++((lg :L2):L3), l, x, null)

Q =

 ∃L′1,L′3, Sc,G. ¬σlg (L′1, l, x, lg)t∗
π(L2 ,G, x, null) t∗ ¬σlg (L′3, Sc, x, null) ∗ (lg , x) 7→ v∗

(lg ,@proto) 7→ G ∗ l .= ++(lg :Sc) ∗ r .
= v


{P}x = v{Q}

8 2011/7/13

P = σ(L1++[L:L2]), l, x,L) t∗ (L, x) 7→ � t∗ γ(L:L2 , x,V)

Q =

(
∃L′.¬σ(L1 , l, x,L) ∗ (L, x) 7→ v ∗ (L,@proto) 7→ Pr ∗
π(L2 ,Pr , x,L′) t∗ (L′, x) 7→ V ∗ r .

= L·x

)
{P}x = v{Q}

P = σ(L1++[[L]], l, x,L) t∗ (L, x) 7→ V ∗V 6 .= �
Q = ¬σ(L1 , l, x,L) ∗ (L, x) 7→ v ∗ r .

= v

{P}x = v{Q}

P =

(
σ(Ls1, l, y,Ly) t∗ γ(Ls2,Ly ·y,Vy) t∗
σ(L1++((L:[]):[]), l, x,L) t∗ (L, x) 7→ V ∗V 6 .= �

)
Q = σ(Ls1, l, y,Ly) t∗ ¬σ(L1 , l, x,L) ∗ (L, x) 7→ Vy ∗ r .

= Vy

{P}x = y{Q}

Compared to the (Assign -) inference rules, these triples have
a clear footprint, and more clearly describe the destructive effects
of assignment. Yet, they appear complex and difficult to compose.
It would be useful to be also able to ignore some information
about the exact structure of the variable store, while retaining the
information we care about: the mappings of variable names to
values. To do this, we introduce a new store predicate.

6.2 Layer 2: A Simple Abstract Variable Store
The predicates below provide a convenient abstraction for an emu-
lated variable store.
The store Predicate.

storeL(X1 . . .Xn |X ′1 :V1 . . .X ′m :Vm) ,
∃Ls1 . . . ,Lsn,Ls′1, . . . ,Ls′m,Ls′′1 , . . . ,Ls′′m. thischain(L) t∗
t∗i∈1..n ¬σ(Lsi,L,Xi , null) t∗ (lg ,Xi) 7→ �
t∗j∈1..m σ(Ls′j ,L,X

′
j ,Lj) t∗k∈1..m γ(Ls′′k ,Lk ·X ′k ,Vk)

thischain([]) , �
thischain(L : Sc) , (L,@this) 7→ ∗ thischain(Sc)

The assertion storel(a, b|x : 1, y : 2) describes a heap emu-
lating a variable store in which the variables a and b are certainly
not present, and in which the variables x and y take the values 1
and 2 respectively. The subscript l says that the variable store being
described is the current variable store which the program will ac-
cess. The variables a and b can be re-ordered, as can the variables
x and y. To facilitate program reasoning at this level of abstraction,
we provide several inference rules, all of which are proved (using
previous levels of abstraction) in Section 5 of [2].

We start with rules for variable initialisation and overwrite/override,
with a constant and then with the value of a variable.

Writing to a store

Let Q1 = storel(X1 . . .Xn|x:v,X′1:V1 . . .X′m:Vm).
Let Q2 = storel(X1 . . .Xn|x:V, y:V,X′1:V1 . . .X′m:Vm.

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(x,X1 . . .Xn|X′1:V1 . . .X′m:Vm)

{P}x = v{Q1 ∗ true ∗ r .
= v}

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(X1 . . .Xn|x:V,X′1:V1 . . .X′m:Vm)

{P}x = v{Q1 ∗ true ∗ r .
= v}

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(x,X1 . . .Xn|y:V,X′1:V1 . . .X′m:Vm)

{P}x = y{Q2 ∗ true ∗ r .
= V}

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P = storel(X1 . . .Xn|x:V′, y:V,X′1:V1 . . .X′m:Vm)

{P}x = y{Q2 ∗ true ∗ r .
= V}

One limitation of this level of abstraction is that the abstraction
only covers a static (and unknown) list of emulated scope frames.

If we call a function which adds a new emulated scope frame to the
emulated store, then the rules above are insufficient to reason about
our program. The following rules allow us to reason at this level
of abstraction about a program which alters a global variable from
within a new local scope frame.

Writing to a store from a deeper scope

Let Q = storeLS

(
X1, . . . ,Xn|x : V′,X′1 : V′1, . . . ,X

′
m : V′m

)
and

S = (L,@proto) 7→ null ∗ (L, x) 7→ � ∗ (L, y) 7→ V′ ∗ l .= L : LS.

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P1 = storeLS

(
x,X1, . . . ,Xn|X′1 : V′1, . . . ,X

′
m : V′m

)
{P1 ∗ S}x=y{Q ∗ S ∗ true}

x 6= y 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
P2 = storeLS

(
X1, . . . ,Xn|x : V,X′1 : V′1, . . . ,X

′
m : V′m

)
{P2 ∗ S}x=y{Q ∗ S ∗ true}

Finally, we provide two rules for a more general case of store-
interaction. In these cases the value which is to be written to the
variable is the result of computing some arbitrary expression. These
lemmas are therefore necessarily more complicated, since they
must incorporate some features of sequential composition. We in-
sist that whatever the expression does, it must not alter the variable
store in a way that changes the visible values of the variables.

Destructive store Initialisation

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
R = storel(x,X1 . . .Xn|X′1:V1 . . .X′m:Vm)
{R ∗ P}e{R t∗ γ(LS ,V′V) ∗Q ∗ r .

= V′} r 6∈ fv(Q)

S =

(
storel

(
X1 . . .Xn|x:V,X′1:V1 . . .X′m:Vm

)
t∗ γ(LS ,V′V) ∗Q ∗ true ∗ r .

= V

)
{R ∗ P}x = e{S}

x 6= X1 6= · · · 6= Xn 6= X′1 6= · · · 6= X′m
R = storeL:SLS (x,X1 . . .Xn|X′1:V1 . . .X′m:Vm) t∗ ¬σ(Nsls, l, x,L)
{R}e{R t∗ γ(LS ,V′,V) ∗Q ∗ r .

= V′} r 6∈ fv(Q)

S =

(
storeL:SLS

(
X1 . . .Xn|x:V,X′1:V1 . . .X′m:Vm

)
t∗

¬σ(Nsls, l, x,L) t∗ γ(LS ,V′,V) ∗Q ∗ true ∗ r .
= V

)
{R ∗ P}x = e{S}

It may seem surprising that we only provide lemmas for destruc-
tive variable initialisation, and not for destructive variable update.
This is because such an update rule would be unsound: The destruc-
tive expression might have the side effect of overriding the variable
we wish to update. This serves to further demonstrate the need for
the low level reasoning introduced earlier in this paper. We can use
higher level abstractions such as the store predicate where they are
sound, but if we wish to reason about programs with side-effecting
expressions, we will sometimes be forced to reason at a lower level.
The Scope of a Variable. The store abstraction gives us the tools
we need to easily reason about programs with large numbers of
variables. For example, consider the program from Section 2:

x = null; y = null; z = null;
f = function(w){x=v;v=4;var v;y=v;};
v = 5; f(null); z = v;

With the store predicate and the lemmas given above, reasoning
about this program is simple. A proof of the main program is
shown in Figure 2. It relies on a simple proof of the function body
summarised here and given in full in Section 5.1 of [2].
Reasoning About with. This level of abstraction also leads itself
to reasoning about the notorious with statement. Re-consider the
with example from Section 2 (where f implicitly returns b):

a = {b:1}; with (a){f=function(c){b}};

9 2011/7/13

{
storel(x, y, z, f, v|)

}
x = null;y = null;z = null;{

storel(f, v|x : null, y : null, z : null) ∗ true
}

f = function(w){x=v ; v=4 ; var v ; y=v}; ∃L. storel(v|x : null, y : null, z : null, f : L) ∗
(L,@body) 7→ λw.{. . . } ∗
(L,@scope) 7→ LS ∗ true


v = 5; storel(|x : null, y : null, z : null, f : L, v : 5) ∗

(L,@body) 7→ λw.{. . . } ∗
(L,@scope) 7→ LS ∗ true


f(null); ∃L′. storel(|x : undefined, y : 4, z : null, f : L, v : 5) ∗

newobj(L′,@proto, w, v) ∗ (L′,@proto) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗ true


[Frame]{

storel(|x : undefined, y : 4, z : null, f : L, v : 5)
}

z = v;{
storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗ true

}
[Frame] storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗

newobj(L′,@proto, w, v) ∗ (L′,@proto) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗ true


[Cons/Var Elim]{
∃L. storel(|x : undefined, y : 4, z : 5, f : L, v : 5) ∗ true

}

∃L′,LS. l .= L′ : LS ∗
storeLS(|x : null, y : null, z : null, f : L, v : 5) ∗
(L,@body) 7→ λw.{. . . } ∗ (L,@scope) 7→ LS ∗
newobj(L′,@proto, w, v,@this) ∗ (L′,@proto) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ undefined ∗ (L′,@this) 7→ ∗ true


x=v;v=4;var v;y=v;
∃L′,LS. l .= L′ : LS ∗
storeLS(|x : undefined, y : 4, z : null, f : L, v : 5) ∗
newobj(L′,@proto, w, v,@this) ∗ (L′,@proto) 7→ null ∗
(L′, w) 7→ null ∗ (L′, v) 7→ 4 ∗ true


Figure 2. A Proof of the Variable Scopes Program

a = {b:2}; f(null)

This program demonstrates the importance of modeling with cor-
rectly. Notice that when correctly modeled, the closure of the func-
tion f will refer to the object {b:1}, which was pointed to by the
variable a at the time that f was defined. However, even though the
variable a is changed to point to a different object before f(null)
is called, the closure continues to point to the object {b:1}. Thus
the program normally returns the value 1, not 2.

We can reason about this program using the store predicate.
The proof is in Figure 3. This proof relies on a sub-proof for the
invocation of the function f(null), which culminates with the
judgement {P}b{P ∗ r .

= 1}, where P is



∃LS,L,F,L′,LOC. l .= LOC : L : LS ∗
storeLS(|a : L′, f : F) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ true ∗
(L, b) 7→ 1 ∗ (L, f) 7→ � ∗ (L,@proto) 7→ lop ∗
(L′, b) 7→ 2 ∗ (L′, f) 7→ � ∗ (L′,@proto) 7→ lop ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗
(LOC, b 7→ � ∗ (LOC,@proto) 7→ null


For space reasons we reason here about only the case in which

neither a nor f are in the variable store. The same techniques in
tandem with the disjunction rule can be used to prove the more
general precondition:

storel(a, f|) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∨
storel(f|a :) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∨
storel(a|f :) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∨
storel(|a : , f :) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null



Let P = (L, b) 7→ 1 ∗ (L,@proto) 7→ lop ∗ true{
storel(a, f|) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null

}
a = {b:1};{
∃L. storel(f|a : L) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ (L, f) 7→ � ∗ P

}
with (a){ ∃LS,L. l .= L : LS ∗

storeLS(f|a : L) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ (L, f) 7→ � ∗ P


f=function(c){b}
∃LS,L,F. l .= L : LS ∗
storeLS(|a : L, f : F) t∗ (lop, f) 7→ � t∗
(lop,@proto) 7→ null ∗ (L, f) 7→ � ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗ P


}; ∃LS,L,F. l .= LS ∗

storeLS(|a : L, f : F) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∗
(L, f) 7→ � ∗ (F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗ P


a = b:2;
∃LS,L,F,L′. l .= LS ∗
storeLS(|a : L′, f : F) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∗
(L, f) 7→ � ∗ (L′, b) 7→ 2 ∗ (L′, f) 7→ � ∗ (L′,@proto) 7→ lop ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗ P


f(null)
∃LS,L,F,L′,LOC. l .= LS ∗
storeLS(|a : L′, f : F) t∗ (lop, f) 7→ � t∗ (lop,@proto) 7→ null ∗
(L, f) 7→ � ∗ (L′, b) 7→ 2 ∗ (L′, f) 7→ � ∗ (L′,@proto) 7→ lop ∗
(F,@body) 7→ λw.{b} ∗ (F,@scope) 7→ L : LS ∗
(LOC, b 7→ � ∗ (LOC,@proto) 7→ null ∗ P ∗ r .

= 1


{r .

= 1 ∗ true}

Figure 3. Reasoning about with

Notice that even in the more general case, we constrain our precon-
dition with the assertion (lop, f) 7→ � t∗ (lop,@proto) 7→ null.
The requirement for this term may seem surprising. Consider
running the above program in a state satisfying storel(a, f|) t∗
(lop, f) 7→ 4 In this case, when the assignment to f is made, the
function pointer will be written to the cell (L, f), rather than into
the global variable store. Since the variable store does not contain a
function value for the variable f, the call to f(null) will cause the
program to fault. The problem is potentially even worse if (lop, f)
contains a function pointer. In this case, the call to f(null) will not
fault, but rather will execute whatever code it finds. This kind of
unpredictability could lead to very confusing bugs. In the case of a
system like Facebook which attempts to isolate ‘Apps’ from system
code,it could even lead to a security flaw.

6.3 Layer 3: A Recursive Abstract Variable Store
While reasoning using the store predicate, it is possible to handle
large numbers of assignments and small numbers of function calls.
However, for more function calls, another abstraction is called for.
We choose to represent an abstract variable store as a list of lists
of variable-value pairs, with the most local scope frame at the
head of the outer-list. The list [[x = 4], [y = 5], [x = 6, z = 7]]
represents a store in which the global scope contains the vari-
ables x and z, an intermediate scope adds the variable y, and the
local-most scope overrides the variable x. The list elements of
variable-value pairs can be represented in our logical expression
language as lists containing two elements. For readability, we use
the notation x = v above. We define the recursive store pred-
icate recstoreL(EmptyVars,FullVars) which describes an ab-
stract variable store FullVars , which does not contain the variables
in the list EmptyVars .

The Recursive recstore Predicate

recstoreL([x1
′, · · · xm′], [[x1 = V1, · · · , xn = Vn]]) ,

storeL(x1
′, · · · xm′|x1 : V1, · · · , xn : Vn)

recstoreL:LS ([x1
′, · · · xm′], ([x1 = V1, · · · , xn = Vn] : Sc)) ,

10 2011/7/13

recstoreLS ([x1
′, · · · xm′],Sc) ∗ (L,@proto) 7→ null ∗ L 6 .= lg ∗

∗i∈1..m (L, xi′) 7→ � ∗j∈1..n (L, xj) 7→ Vj ∗
nonesL([x1, · · · , xn],Sc)

nonesL(, []) , �

nonesL(Locs, ([x1 = V1, · · · , xn = Vn] : Sc)) ,
∗i∈1..n((xi ∈ Locs ∧ �) ∨ (xi 6∈ Locs ∧ (L, xi) 7→ �)) ∗
nonesL((x1 : · · · : xn : Locs),Sc)

Notice that recstore uses the store predicate to constrain the
global-most scope frame in the abstract scope list, while being
rather more restrictive about more local scope frames. Local scope
frames must be emulated by JavaScript objects which have a null
prototype, and which are not the lg object. These criteria are met
by the emulated scope frames created by a normal function call,
and are not normally met by with calls. This makes this abstraction
ideal for reasoning about programs with many function calls and no
internal uses of the with statement. Notice however that we do not
outlaw with calls in the enclosing scope, represented here by a top-
level use of the store predicate. This means that this abstraction will
facilitate reasoning about libraries which are written in a principled
way, and which may be called by unprincipled clients.

We provide several rules for reasoning at this level of abstraction
in the accompanying document, the most interesting of which are
destructive variable initialisation and update.

Destructive recstore update

R = recstorel((x : EmpVars), (Locals++[Globals]))
{R ∗ P}e{R ∗Q ∗ r .

= Var}
r 6∈ fv(Q)
S = recstorel((EmpVars), (Locals++[x = Var : Globals]))

{R ∗ P}x = e{S ∗Q ∗ true}

R = recstorel((Emps), (Locs++((x = Var) : Curr)++Globs))
{R ∗Globs 6 .= [] ∗ P}e{R ∗Globs 6 .= [] ∗Q ∗ r .

= Var ′}
r 6∈ fv(Q)
∀LS ∈ Locs. (x =) 6∈ LS
S = recstorel((Emps), (Locs++((x = Var ′) : Curr)++Globs))

{R ∗Globs 6 .= [] ∗ P}x = e{S ∗Globs 6 .= [] ∗Q ∗ r .
= V }

Notice that we may not safely update variables in the global
portion of the abstract variable store with the results of potentially
destructive expressions. This is for the same reason as the corre-
sponding restriction on the store predicate in Section 6.2, there is
a corner case which would lead to very unexpected behaviour. At
this level of abstraction however, we have an advantage: we can be
sure that the more local abstract scope frames were constructed in
a more principled way, and so we are able to reason about updating
them with destructive expressions using the second rule above.
Form Validation. Consider a web form with a number of manda-
tory text fields and a submit button. If the button is “disabled” when
the page loads, then an event handler on the form can be used to
regularly check if valid data has been entered in all the fields be-
fore enabling the button. Let us assume that the programmer has
separated the concerns of parsing the web page and of validating
the data. The data validation function will be called with a single
parameter: an object with one field for each text value to check,
a count of those text values, and boolean toggle corresponding to
whether the submit button should be disabled. An example function
which might perform the validation check is:

checkForm = function(data) {
data.buttonDisabled = 0;
var checkField = function(text) {

if(text == "") {data.buttonDisabled = 1;}}
var i = 0;
while(i < data.numEntries) {


recstorel

[] ,

 data = L,
checkField = &undefined,
i = &undefined

 , []
 ∗

(L, numEntries) 7→ N ∗ (L, buttonDisabled) 7→ ∗
(L, 0) 7→ TXT0 ∗ . . . ∗ (L,N) 7→ TXTN


. . . checkForm . . .

∃L′. recstorel([], [[data = L, checkField = L′, i = N], []]) ∗
(L, numEntries) 7→ N ∗
(L, 0) 7→ TXT0 ∗ . . . ∗ (L,N) 7→ TXTN ∗ (

TXT0 6
.
= ”” ∗ . . . ∗ TXTN 6

.
= ”” ∗

(L, buttonDisabled) 7→ 0

)
∨(L, buttonDisabled) 7→ 1




Figure 4. The Specification of checkForm

checkField(data[i]); i = i+1;}}

Notice that this code deals with variables in a principled way. It
makes use of no global variables, preferring instead to use function
parameters and local variables. The repeated work of the loop body
is factored into a function which could be expanded to provide
extra functionality or used elsewhere with little cost in readability.
Using the recstore abstraction it is straightforward to show that the
function body satisfies the specification given in Figure 4.

7. Related Work
This paper is the first to propose a program logic for reasoning
about JavaScript. Our program logic adapts ideas from separation
logic, and proves soundness with respect to a big-step operational
semantics derived from the semantics of Maffeis, Mitchell and
Taly [15]. In this section, we discuss related work on separation
logic and the semantics of JavaScript.

We build on the seminal work of O’Hearn, Reynolds and
Yang [17], who introduced separation logic for reasoning about
C-programs, and on the work of Parkinson and Bierman [21], who
adapted separation logic to reason about Java. We made several
adaptations to their work in order to reason about JavaScript. As
in [20], we use assertions of the form (l, x) 7→ 5 to denote that
a field x in object l has value 5. We extend these assertions by
(l, x) 7→ �, which denotes that the field is not in l. This is in-
spired by Dinsdale-Young’s et al.’s use of the ‘out’ predicate to
state that values are not present in a concurrent set [7]. We intro-
duce the sepish connective t∗ to account for partially-shared data
structures. We have not seen this connective before, which is sur-
prising since shared data structures are common for example in
Linux. There has been much work on various forms of concurrent
separation logic with sharing [9, 18, 30], but they all seem to take
a different approach to our our t∗ connective.

Most work on separation logic proves soundness by requiring
that commands are local. Javascript commands are inherently non-
local, since their behaviour changes depending on where the pro-
gram variables reside in the JavaScript’s emulated variable store.
We base our soundness result on weak locality, recently introduced
by Smith in his PhD thesis [25]. At a similar time, Vafeiadis proved
soundness of concurrent separation logic [29], using an elegant
technique which does not rely on traditional locality. This tech-
nique differs from Smith’s in that it does not aim to be compatible
with existing locality proofs. Smith’s technique allows the re-use
of existing locality proofs when available.

We prove our soundness result with respect to a big-step op-
erational semantics of JavaScript derived from the one of Maffeis
et al. [15]. They define a small-step operational semantics of the
complete ECMAScript 3 language, at the same level of abstrac-
tion where a JavaScript programmer reasons. In contrast, [12] pro-
vide a definitional interpreter of JavaScript written in ML, which
has the advantage of being directly executable, but includes im-

11 2011/7/13

plementation details that obscure the semantic rules. Elsewhere,
Guha et al. [11] compile JavaScript to an intermediate Scheme-
like language. Their approach helps defining type-based analyses
on the object language, but does not enjoy the one-to-one corre-
spondence between semantic-rules and inference-rules exploited
by our approach. Moreover, in some cases the compilation-phase
introduces a loss of precision (for example in the case of the with
construct). There are also a number of more abstract models of
JavaScript, which have proven useful to study selected language
features [1, 27, 32], but that are not sufficiently concrete for our
purpose. Overall, we have chosen the semantics in [15] because it
appears to the most faithful to the actual JavaScript semantics. As
Richards et al. argue in [23], all the unusual features of JavaScript
are well-used in the wild, and cannot be easily abstracted away.

8. Conclusions and Future Work
We have defined a program logic for reasoning about JavaScript,
based on an operational semantics faithful to the ECMAScript stan-
dard. We have adapted separation logic to reason about JavaScript
subset, modelling many complex features, such as for example pro-
totype inheritance and with. We reason about the full dynamic na-
ture of JavaScript’s functions, but do not provide higher-order rea-
soning. We also provide only conservative reasoning about eval.
Full reasoning about these features will be technically challeng-
ing, although we believe that we can build on the recent work
of [5, 10, 24].

Due to our choice of operational semantics, we have been able
to prove a strong soundness result. All syntactically correct library
code, proved using our reasoning to be correct with respect to their
specifications, will be well behaved, even when called by arbitrary
JavaScript code possibly containing features not currently included
in our semantics. Also, our soundness result can be extended com-
positionally to include more sophisticated reasoning about higher-
order functions and eval.

We have given several examples of our reasoning, demonstrat-
ing through short snippets of code that JavaScript is fiendish to un-
derstand, and our reasoning can help. The with example in Sec-
tion 6.2 shows a potential bug that could easily go unnoticed for
some time, whilst leading to security holes in sanitised mashup en-
vironments such as Facebook Apps. Despite the complexity of the
language and the subtlety of the bug, reasoning about this and other
examples is made surprisingly simple by our abstraction layers.

We hope that this work will form the core of a larger body
of work on client-side web programming. For example, Thie-
mann [28] defines a type-safe DOM API, and Smith [25] develops
a context-logics for reasoning about DOM Core Level 1. It would
be valuable to integrate these approaches to DOM modelling with
the JavaScript reasoning presented here. We intend to develop rea-
soning for higher level libraries such as jQuery, Prototype.js and
Slidy. This high level reasoning about JavaScript libraries will take
the idea of our layers of abstraction to the next level To make this
program reasoning genuinely useful for JavaScript programmers,
it is essential that we provide tool support. We intend to produce
analysis tools capable of spotting bugs such as the one described in
the with example in Section 6.2, and integrate our tools with IDEs
such as eclipse.

References
[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type infer-

ence for JavaScript. In Proc. of ECOOP’05, 2005. 1, 7

[2] Anonymous. Accompanying document for POPL 2012 paper #190.
Attached. 3.1, 3.3, 3.3, 3.4, 5.1, 5.2, 5.3, 6.1, 6.2

[3] J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular auto-
matic assertion checking with separation logic. In FMCO, 2005. 1

[4] J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for
systems-level code. In CAV, 2011. 1

[5] N. Charlton. Hoare logic for higher order store using simple seman-
tics. In Proc. of WOLLIC 2011, 2011. 8

[6] R. Chugh, J. Meister, R. Jhala, and S. Lerner. Staged information flow
for javascript. In Proc. of PLDI 2009, pages 50–62. ACM, 2009. 1

[7] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. ECOOP 2010. 2, 7

[8] D. Distefano and M. Parkinson. jStar: towards practical verification
for Java. In OOPSLA ’08, pages 213–226. ACM, 2008. 1

[9] M. Dodds, X. Feng, M.J. Parkinson, and V. Vafeiadis. Deny-guarantee
reasoning, 2009. 7

[10] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. In ICFP, pages 143–
156, 2010. 8

[11] A. Guha, C. Saftoiu, and S. Krishnamurthi. The Essence of JavaScript.
ECOOP 2010, pages 126–150, 2010. 1, 2, 7

[12] D. Herman and C. Flanagan. Status report: specifying JavaScript with
ML. In Proc. of ML’07, pages 47–52, 2007. 7

[13] ECMA International. ECMAScript language specification. stardard
ECMA-262, 3rd Edition, 1999. 1

[14] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for
JavaScript. In Proc. of SAS ’09, volume 5673 of LNCS, 2009. 1

[15] S. Maffeis, J.C. Mitchell, and A. Taly. An operational semantics for
JavaScript. In Proc. of APLAS’08, LNCS, 2008. 1, 2, 3, 7

[16] S. Maffeis and A. Taly. Language-based isolation of untrusted
Javascript. In Proc. of CSF’09, IEEE, 2009. 1

[17] P. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In CSL, 2001. 1, 5.3, 7

[18] Peter W. OHearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007. 7

[19] D. Sands P. Phung and A. Chudnov. Lightweight self protecting
JavaScript. In ASIACCS 2009. ACM Press, 2009. 1

[20] M. Parkinson. When separation logic met java (by example). FTfJP
2006. 7

[21] M. Parkinson and G. M. Bierman. Separation logic, abstraction and
inheritance. In POPL, 2008. 7

[22] G. Richards, C. Hammer, B. Burg, and J. Vitek. The Eval that men
do A large-scale study of the use of Eval in JavaScript applications.
Accepted for publication at ECOOP 2011. 2

[23] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In PLDI, 2010. 1, 2, 2, 7

[24] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested hoare
triples and frame rules for higher-order store. In In Proc. of CSL’09,
2009. 8

[25] G. D. Smith. Local reasoning about web programs. PhD Thesis, Dep.
of Computing, Imperial College London, 2011. 1, 5, 5.3, 7, 8

[26] A. Taly, U. Erlingsson, M. S. Miller, J. C. Mitchell, and J. Nagra.
Automated analysis of security-critical javascript apis. In Proc. of
IEEE Security and Privacy’11. IEEE, 2011. 1

[27] P. Thiemann. Towards a type system for analyzing javascript pro-
grams. In Proc. of ESOP’05, volume 3444 of LNCS, 2005. 1, 7

[28] P. Thiemann. A type safe DOM API. In Proc. of DBPL, pages 169–
183, 2005. 8

[29] V. Vafeiadis. Concurrent separation logic and operational semantics.
In MFPS11, 2011. 7

[30] Viktor Vafeiadis and M. Parkinson. A marriage of rely/guarantee and
separation logic. In IN 18TH CONCUR. Springer, 2007. 7

[31] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P.O’Hearn. Scalable shape analysis for systems code. In CAV, 2008.
1

[32] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumenta-
tion for browser security. In Proc. of POPL’07, 2007. 1, 7

12 2011/7/13

	Introduction
	Motivating Examples
	Operational Semantics
	Heaps
	Terms
	Evaluation rules
	Safety
	Scope Example
	Simplifying Assumptions

	Assertion Language
	Program Reasoning
	Auxiliary Predicates
	Inference Rules
	Soundness

	Layers of Abstraction
	Layer 1: Exploring the scope List
	Layer 2: A Simple Abstract Variable Store
	Layer 3: A Recursive Abstract Variable Store

	Related Work
	Conclusions and Future Work

