
Abstract

Title of dissertation Modeling, Quantifying, and Limiting
Adversary Knowledge

Piotr Mardziel, Doctor of Philosophy, 2015

Dissertation directed by Professor Michael Hicks
Department of Computer Science

Users participating in online services are required to relinquish control over potentially
sensitive personal information, exposing them to intentional or unintentional miss-use
of said information by the service providers. Users wishing to avoid this must either
abstain from often extremely useful services, or provide false information which is
usually contrary to the terms of service they must abide by. An attractive middle-
ground alternative is to maintain control in the hands of the users and provide a
mechanism with which information that is necessary for useful services can be queried.
Users need not trust any external party in the management of their information but
are now faced with the problem of judging when queries by service providers should
be answered or when they should be refused due to revealing too much sensitive
information.

Judging query safety is difficult. Two queries may be benign in isolation but
might reveal more than a user is comfortable with in combination. Additionally
malicious adversaries who wish to learn more than allowed might query in a manner
that attempts to hide the flows of sensitive information. Finally, users cannot rely on
human inspection of queries due to its volume and the general lack of expertise.

This thesis tackles the automation of query judgment, giving the self-reliant user
a means with which to discern benign queries from dangerous or exploitive ones. The
approach is based on explicit modeling and tracking of the knowledge of adversaries
as they learn about a user through the queries they are allowed to observe. The
approach quantifies the absolute risk a user is exposed, taking into account all the
information that has been revealed already when determining to answer a query.
Proposed techniques for approximate but sound probabilistic inference are used to
tackle the tractability of the approach, letting the user tradeoff utility (in terms of the
queries judged safe) and efficiency (in terms of the expense of knowledge tracking),
while maintaining the guarantee that risk to the user is never underestimated. We
apply the approach to settings where user data changes over time and settings where
multiple users wish to pool their data to perform useful collaborative computations
without revealing too much information.

By addressing one of the major obstacles preventing the viability of personal
information control, this work brings the attractive proposition closer to reality.

Modeling, Quantifying, and Limiting
Adversary Knowledge

by

Piotr Mardziel

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:

Professor Michael Hicks, Chair
Professor Prakash Narayan
Professor Jonathan Katz
Professor David van Horn
Michael R. Clarkson
Professor Boris Köpf

c© Copyright by
Piotr Mardziel

2015

Acknowledgments

First and foremost I am immensely thankful for the opportunity to have studied under
the direction of my advisor, Michael Hicks, who despite shouldering innumerable other
responsibilities provided consistent and invaluable guidance throughout my graduate
career. I’m thankful to the members of my defense committee, particularly Michael
Clarkson and Boris Köpf who not only provided valuable feedback during the writing
of this thesis but also authored the works that inspired it. I’m grateful to my excellent
collaborators, many of whom have contributed to the research that serves as the basis
of this thesis. In alphabetical order, they are: Mário Alvim, Adam Bender, Carlos
Cid, Michael Clarkson, Matthew Hammer, Michael Hicks, Jonathan Katz, Arman
Khouzani, Dave Levin, Stephen Magill, James Parker, Kasturi Raghavan, Aseem
Rastogi, and Mudhakar Srivatsa. I would also like to thank all the members, past
and present, of the group for Programming Languages at University of Maryland
(PLUM) who provided a fun and stimulating research environment (and occasionally
tech support). I’m fortunate to have had the opportunity to be taught, advised,
and inspired earlier during my undergraduate years at the Worcester Polytechnic
Institute by professors Daniel Dougherty, Kathi Fisler, Carolina Ruiz, and Stanley
Selkow. Finally, I’m grateful to my family, to my friends, and to my dog Mika, who
is a good dog.

ii

Research was sponsored by US Army Research laboratory and the UK Ministry of
Defence and was accomplished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of
the US Army Research Laboratory, the U.S. Government, the UK Ministry of Defense,
or the UK Government. The US and UK Governments are authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright no-
tation hereon.

iii

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Organization of Thesis . 2
1.2 Dynamic enforcement setting . 3
1.3 Predictive setting . 4
1.4 Symmetric setting . 4
1.5 Probabilistic programming . 5

2 Background 7
2.1 Quantitative Information Flow . 7

2.1.1 Example: Birthday query . 8
2.1.2 Static vs. Dynamic . 10
2.1.3 Example: Second birthday query 11
2.1.4 Relative vs. Absolute . 12

2.2 Probabilistic Programming . 13
2.3 Secure Multiparty Computation . 14

3 Dynamic enforcement 16
3.1 Example: Dynamic birthday queries 16
3.2 Knowledge tracking . 19
3.3 Risk assessment . 21
3.4 Knowledge Threshold enforcement . 22
3.5 Discussion . 23

3.5.1 Initial belief . 23
3.5.2 Collusion . 23
3.5.3 Querier belief tracking . 24
3.5.4 Further applications . 24

3.6 Related work . 26

4 Predicting Risk with Evolving Secrets 30
4.1 Model for dynamic secrets . 32

4.1.1 Iterated rounds . 33
4.1.2 Context . 35
4.1.3 Full scenario and evaluation 35

4.2 Metrics . 36
4.2.1 Defining the metrics . 36
4.2.2 Expressing existing metrics 38

iv

4.2.3 Computing optimal adversary gain and associated defender loss 40
4.2.4 Computing worst- and best-case defender loss 42

4.3 Experiments . 43
4.3.1 How does gain differ for dynamic secrets, rather than static

secrets? . 47
4.3.2 How does low adaptivity impact gain? 48
4.3.3 How does wait adaptivity impact gain? 48
4.3.4 Can gain be bounded by costly observations? 50
4.3.5 Does more frequent change necessarily imply less gain? 52
4.3.6 How does a non-zero-sum utility/gain impact information flow

as compared to zero-sum? . 55
4.3.7 How can a defender be prevented from a catastrophic worst-case

behavior? . 55
4.3.8 How can sound over-estimation of adversary gain impact de-

fender loss? . 58
4.4 Related Work . 60

5 Symmetric Enforcement 63
5.1 Enforcing knowledge thresholds for symmetric queries 65

5.1.1 Example . 65
5.1.2 Knowledge-based security with belief sets 66
5.1.3 Soundness of belief sets . 67
5.1.4 SMC belief tracking: ideal world 68
5.1.5 SMC belief tracking: real world 70
5.1.6 Soundness of SMC belief tracking 71

5.2 Experiments . 72
5.2.1 “Am I the richest?” example (richest). 72
5.2.2 “Similar” example . 74
5.2.3 “Millionaires” example. 75

5.3 Related Work . 76
5.4 Summary . 77

6 Probabilistic Programming 79
6.1 Knowledge Tracking and Probabilistic Programming 79
6.2 Example: Birthday revisited . 80
6.3 Tracking beliefs . 86

6.3.1 Core language . 86
6.3.2 Probabilistic semantics for tracking beliefs 86
6.3.3 Belief and security . 90

6.4 Belief revision via abstract interpretation 91
6.4.1 Polyhedra . 91
6.4.2 Probabilistic Polyhedra . 93
6.4.3 Abstract Semantics for P . 94
6.4.4 Policy Evaluation . 104
6.4.5 Supporting Other Domains, Including Intervals and Octagons 104

v

6.5 Powerset of Probabilistic Polyhedra 106
6.5.1 Abstract Semantics for Pn (P) 107
6.5.2 Policy Evaluation . 109

6.6 Experiments . 112
6.6.1 Benchmark Programs . 112
6.6.2 Comparison to Enumeration 114
6.6.3 Performance analysis . 115
6.6.4 Relational queries . 120

6.7 Related work . 122
6.8 Improving Performance . 123

7 Conclusion 125
7.1 Future Directions . 126
7.2 Final Remarks . 126

A Example queries 128
A.1 Birthday . 128
A.2 Birthday (large) . 130

A.2.1 Pizza . 130
A.3 Photo . 132
A.4 Travel . 133
A.5 Relational Queries . 134
A.6 Benchmark Results . 135

B Soundness proofs for P 138
B.1 Projection . 138
B.2 Assignment . 143
B.3 Plus . 149
B.4 Product . 155
B.5 Conditioning . 156
B.6 Scalar product . 160
B.7 Uniform . 161
B.8 While loops . 162
B.9 Soundness of Abstraction . 165
B.10 Normalization . 166
B.11 Security . 167

C Soundness proofs for Pn (P) 169
C.1 Useful Lemmas . 169
C.2 Bounding Operation . 170
C.3 Distributive Operations . 170
C.4 Other Powerset Lemmas . 174
C.5 Main Soundness Theorem for Powerset Domain 175

vi

List of Figures

2.1 System modeled as an information theoretic channel. 7

4.1 Model with changing secrets. 32
4.2 Metrics of risk among defender and adversary strategies 37
4.3 Gain in experiment of Section 4.3.1 47
4.4 Gain in experiment of Section 4.3.2 49
4.5 Gain in experiment of Section 4.3.3 49
4.6 Gain in experiment of Section 4.3.4 51
4.7 Gain detail in experiment of Section 4.3.4 52
4.8 Gain and strategy vulnerability in experiment of Section 4.3.5 53
4.9 Gain and loss in experiment of Section 4.3.6 56
4.10 Loss in experiment of Section 4.3.7 58
4.11 Gain functions gainnear and gainfar . 59
4.12 Gain and loss in experiment of Section 4.3.8 59

5.1 Running example richest , plot of vulnerabilities 73
5.2 Running example richest ; δx21 ; plot of P1’s max belief about x2 vs.

values of x1 . 74
5.3 similarw example; plot of vulnerability for a variety of windows w sizes 75
5.4 richest p example; plot of vulnerabilities for a variety of noising proba-

bilities p . 77

6.1 Example 1: revised beliefs . 82
6.2 Example 2: most precise revised beliefs 84
6.3 Core language syntax . 87
6.4 Probabilistic semantics for the core language and index of state/distri-

bution operations . 88
6.5 Example of a forget operation in the abstract domain P 97
6.6 Example of distribution conditioning in the abstract domain P. 102
6.7 The (over)approximation of a polyhedron using an octagon (left) and

an interval (right). 105
6.8 Example of a poly partition of two overlapping convex polyhedra (shaded),

resulting in 5 disjoint convex polyhedra (outlined). 111
6.9 Query evaluation comparison . 114
6.10 birthday query sequence benchmarks 116
6.11 birthday (large) query sequence benchmarks 117
6.12 pizza query benchmarks . 118
6.13 photo query benchmarks . 119
6.14 travel query benchmarks . 120
6.15 LattE benchmarks . 121
6.16 birthday query sequence precision variation 121

vii

List of Tables

4.1 Elements of the model with changing secrets. 34

A.1 Query evaluation benchmarks . 137

viii

Chapter 1

Introduction

Facebook, Twitter, Flickr, and other successful on-line services enable users to easily
foster and maintain relationships by sharing information with friends and fans. These
services store users’ personal information and use it to customize the user experience
and to generate revenue. For example, Facebook third-party applications are granted
access to a user’s “basic” data (which includes name, profile picture, gender, networks,
user ID, and list of friends [3]) to implement services like birthday announcements
and horoscopes, while Facebook selects ads based on age, gender, and even sexual
preference [49].

Unfortunately, once personal information is collected, users have limited control
over how it is used. For example, Facebook’s EULA grants Facebook a non-exclusive
license to any content a user posts [5]. Most popular social networking sites include
such provisions in their user agreement, including Twitter, LinkedIn, Pinterest, and
Google Plus.

Some researchers have proposed that, to keep tighter control over their data, users
could use a storage server (e.g., running on their home network) that handles personal
data requests, and only responds when a request is deemed safe [12,96].

The question is: which requests are safe?
While deferring to user-defined access control policies seems an obvious approach,

such policies are unnecessarily restrictive when the goal is to maximize the customized
personal experience. To see why, consider two example applications: a horoscope or
“happy birthday” application that operates on birth month and day, and a music
recommendation algorithm that considers birth year (age). Access control at the
granularity of the entire birth date could preclude both of these applications, while
choosing only to release birth year or birth day precludes access to one application
or the other. But in fact the user may not care much about these particular bits
of information, but rather about what can be deduced from them. For example, it
has been reported that zip code, birth date, and gender are sufficient information to
uniquely identify 87% of Americans in the 1990 U.S. census [102] and 63% in the 2000
census [46]. So the user may be content to reveal any one of these bits of information
as long as a querier does not attain a sufficient amount of information about the
combination of three to identify the user. The user, in effect, can tradeoff utility of
the application of which the query is a part of, and the privacy risks involved in the
query’s output. 1

When it comes to determining query safety, there are several questions open.

1Note that it is safer for the user to assume that the application is adversarial, actively trying
to break the privacy of the data the user is concerned about, even though in many, if not most,
situations the application is actually benign. For this reason, we will usually refer to the party
making the query as the adversary and the private information they are seeking as the secret.

1

• Question 1: How does one measure information?

• Question 2: How does the adversary obtain information?

• Question 3: How can a user make sure that the adversary does not attain too
much information?

Partial answers to some of these questions can be found in the literature on quan-
titative information flow which is focused on measuring the amount of secret infor-
mation that “leaks” through a system’s (that is, a query’s) observable behavior (its
output) during its execution. Leakage involves (usually) information theoretic an-
swers to Question 1. This thesis takes an attack-oriented view on how to quantify
information; the more utility the attack gains from exploiting the information, the
larger the measure of information. This notion then plays into the handling of Ques-
tion 2: the adversary, being adversarial, behaves so as to maximize his success. The
exact behavior and the answer to Question 3 varies with the complexity of the infor-
mation sharing setting. At the core of each of these questions, however, is adversary
knowledge.

Our thesis is that query safety can be decided based on explicit modeling of adver-
sary knowledge. Knowledge models are the focal point of the answers to our three
questions: 1) information or privacy risk can be defined as a property of adversary
knowledge, 2) adversary learning is the process of inference with their knowledge as
the prior, and 3) limiting information or risk can be done by refusing to share if
the posterior’s risk would exceed a threshold. We note that this thesis is an initial
exploration and more work beyond it is necessary to make it fully practical.

1.1 Organization of Thesis

In this thesis we will explore models of adversary knowledge and the three questions
above in three related settings. First is the dynamic enforcement setting where a user
is tasked with judging query safety without necessarily knowing the queries that will
be asked in the future. Second, we will look at predictive setting in which the user
at time 0 wants to predict risks of answering queries from now up to time n without
knowing what exactly the adversary will ask nor fixing what his own secret value
will be throughout this process (it may change over time). Finally we look at the
symmetric setting in which two mutually-adversarial users scrutinize queries that will
reveal information about each other’s secrets.

This thesis is organized roughly into parts corresponding to the three settings. In
the remainder of this introduction, we will briefly summarize the settings. In prepa-
ration we discuss background material related to quantitative information flow in
Section 2.1 which serve as the inspiration and partial solution to the questions posed
in this thesis. We also discuss probabilistic programming in Section 2.2 which will
be used as the tool for formal specification of various models we present as well as
the approach to their implementation. The three settings follow: dynamic setting in
Chapter 3, predictive setting in Chapter 4, and symmetric setting in Chapter 5. We

2

then present our work on the probabilistic programming and the computational as-
pects of the models and techniques therein in Chapter 6. That work has applicability
to probabilistic programming in general and hence is described in its own chapter.
We conclude in Chapter 7.

1.2 Dynamic enforcement setting

Part of the difficulty in judging whether a query should be executed or not is that the
user might not know what might be asked in the future. Not knowing what will be
asked is in fact central to the advantage online query interface has over obfuscation
and release of data for offline access: the user does not have to figure out what about
their data will be important to each party and different parties can access different
information.

For this setting we describe the design for enforcing what we call knowledge-based
security policies. In our model, a user U ’s agent responds to queries involving secret
data. For each querying principal Q, the agent maintains a probability distribution
over U ’s secret data, representing Q’s belief of the data’s likely values. For example,
to mediate queries from a social networking site X, user U ’s agent may model X’s
otherwise uninformed knowledge of U ’s birthday according to a likely demographic:
the birth month and day are uniformly distributed, while the birth year is most likely
between 1960 and 1996 [6]. Each querier Q is also assigned a knowledge-based policy,
expressed as a set of thresholds, each applying to a different group of (potentially
overlapping) data. For example, U ’s policy for X might be a threshold of 1/100 for
the entire tuple (birthdate, zipcode, gender), and 1/5 for just birth date. U ’s agent refuses
any queries that it determines could increase Q’s ability to guess a secret above the
assigned threshold. If deemed safe, U ’s agent returns the query’s (exact) result and
updates Q’s modeled belief appropriately.

The approach to Questions 1 and 2 here is to model adversary knowledge as
probability distributions and then use them to quantify how effective the adversary
would be at guessing the secret or part of it. Variations of guessability [100] as means
of measuring information will be used throughout the thesis though we will leave the
exact nature of exploitability (guessing or otherwise) abstract where possible. In all
of our settings the answer to Question 2 starts with modeling adversaries as Bayesian
agents having prior beliefs. In the next setting the behavior of the adversary will be
greatly expanded to include more than just Bayesian reasoning. Lastly, the notion of
knowledge threshold (or rather guessability threshold) serves as part of the answer to
Question 3.

The main contribution of this work [70–72] is the definition of knowledge-based
security policies (KBSP) to limit adversary knowledge, and a method of enforcing
the policies in a manner that does not, itself, leak additional information about the
secret. In Chapter 6 we demonstrate how to implement KBSP enforcement using an
approximate but policy-sound method of probabilistic computation.

3

1.3 Predictive setting

In contrast to the dynamic setting, in the predictive setting the task for the user
is almost entirely speculative. The user in this setting wants to predict the risks
involved at future time n while not knowing exactly what will happen from now until
then. What if the secret can change? What if the adversary gets smart about what
they query and how they exploit the secret?

Some prior work on QIF has considered this setting. We consider models involving
richer query contexts to handle the above-mentioned uncertainties: 1) secrets can
change over time, 2) adversary can influence queries by providing inputs adaptively,
and 3) adversary can decide when to exploit their acquired knowledge. The more
complex setting makes Question 2 more nuanced. In general, the adversaries will be
assumed to be not just Bayesian rational agents but also ones that pick their actions
optimally from among the choices provided them by the setting.

The work [66–68] draws several conclusions about both the behaviors of the ad-
versary and the effects of changing secrets:

• Frequent change of a secret can increase leakage, even though intuition might
initially suggest that frequent changes should decrease it. The increase occurs
when there is an underlying order that can be inferred and used to guess future
(or past) secrets.

• Wait-adaptive adversaries, ones which can decide when to exploit the secret
based on what they observe, can derive significantly more gain than adversaries
who cannot adaptively choose when to attack. So ignoring the adversary’s
adaptivity (as in prior work on static secrets) might lead one to conclude secrets
are safe when they really are not.

• A wait-adaptive adversary’s expected gain increases monotonically with time,
whereas a non-adaptive adversary’s gain might not.

• Adversaries that are low adaptive, meaning they are capable of influencing their
observations by providing low-security inputs (or selecting their query from
among some fixed set), can learn exponentially more information than adver-
saries who cannot provide inputs.

1.4 Symmetric setting

What if both the user and the adversary are simultaneously holders of secrets and
queriers of (each other’s) secrets? In the symmetric setting we consider how to deter-
mine query safety in this situation. The motivation for this setting comes from work
on secure multi-party computation (SMC) [43,44, 59, 105] that describes a technique
in which multiple parties can compute a function f (a query) of their joint inputs
si without revealing those inputs, all the while without relying on any trusted third
party.

4

Most work on SMC provides an answer to the question of how to compute f , but
does not address the complementary question of when it is “safe” to compute f in
the first place, i.e., when the output of f may reveal more information than parties
are comfortable with. The latter question is important: the information implied by a
query’s result depends both on the parties’ inputs and their prior knowledge. As an
example of the former, suppose two parties want to compute the “less than or equal”
function, f(s1, s2)

def
= s1 ≤ s2 with variables ranging in {1, . . . , 10}. This function

could reveal a lot about s1 to P2. If s2 = 1 and f(s1, s2) returns true, then P2 learns
that s1 can only be the value 1. However, if s2 = 5 then regardless of the output of
the function, P2 only learns that s1 is one of 5 possibilities, a lower level of knowledge
than in the first case.

On the other hand we may deem a pair of queries acceptable in isolation, but
allowing their composition would be too revealing. For example, suppose the parties
also want to compute “greater than or equal”, f2(s1, s2)

def
= s1 ≥ s2. When s2 = 5,

either query in isolation narrows the values of s1 to a set of at least 4 possibilities
from P2’s perspective. But if f1 and f2 both return true, P2 can infer s1 = s2 = 5.

To address the problem of query safety in the symmetric setting, we use the ideas
and techniques developed for the dynamic enforcement setting (asymmetric setting)
and generalize them to SMC.

This work [69] has two main contributions:

• We describe a pair of techniques for evaluating the information security im-
plications of SMC queries. This problem is significantly harder than in the
asymmetric case as now a party P cannot be sure what the other parties learn
due to P not knowing the values of the other parties’ secrets.

• Similarly to the dynamic setting, we describe how to implement a knowledge-
limiting threshold policy in a manner that does not leak additional information.

1.5 Probabilistic programming

As we have already noted, we will view adversary knowledge as probability distribu-
tions that are revised using probabilistic inference throughout the three settings. To
describe the knowledge and the inference process as well as the queries involved we
will make great use of probabilistic programming [48].

In general, probabilistic programming is about viewing programs as conditional
distributions and taking advantage of this higher-level view. A program that takes
in input X and produces output Y can be viewed as a conditional distribution of
Y given X. This is most interesting when the program has some randomness in its
definition but can also be useful when the input X is itself probabilistic (as is the case
of adversary knowledge about the secret). The program viewed this way can then
be “inverted” to perform probabilistic inference by producing the distribution on X
given the observation that Y has some value y. This exactly captures the process of
adversary learning something about the secret X (input) given the query output Y .

5

Throughout the thesis we will also favor specification of probabilistic processes and
distributions via programs for their conciseness (as compared to purely mathematical
formulations) whenever possible.

We also use probabilistic programming and inference as a means of implementing
the enforcement mechanisms and predictive models presented in the thesis. Proba-
bilistic inference, however, is intractable in general (even undecidable [7]). Most work
that addresses this problem relies on approximation which has undesirable implica-
tions for security applications where soundness is desired.

In the last main chapter of this thesis we describe an implementation of probabilis-
tic programming based on abstract interpretation [28] that is capable of approximate
inference, but is sound relative to our knowledge-limiting policies. In particular,
our implementation ensures that, despite the use of abstraction, the probabilities we
ascribe to the querier’s belief are never less than the true probabilities.

In that work [70–72] we make two main contributions:

• Design and implementation of approximate but sound probabilistic program-
ming with inference by extending the abstract domains of polyhedra, octagons,
and intervals with under- and over-approximations of probability. Both are
necessary for sound estimation of probability after probabilistic inference (con-
ditioning).

• Experimental evaluation of the approach of implementation based on the ex-
tended abstract domains of varying complexity that allow for tradeoff between
precision and efficiency.

6

Chapter 2

Background

In this section we present several background underlying this thesis. First, we describe
the area of quantified information flow which addresses problems similar to those
posed by this work. Second, we introduce the idea of probabilistic programming
which we use as a modeling language and computational tool. Finally, we present
some background on secure multi-party computation which is the substrate underlying
the symmetric setting.

2.1 Quantitative Information Flow

Consider a password checker, which grants or forbids access to a user based on whether
the password supplied matches the one stored by the system. The password checker
must leak secret information, because it must reveal whether the supplied password
is correct. Quantifying the amount of information leaked is useful for understanding
the security of the password checker—and of other systems that, by design or by
technological constraints, must leak information.

The classic model for QIF, pioneered by Denning [34], represents a system, or in
our case, a query as an information-theoretic channel:

system

high input

low input
observable

output

Figure 2.1: System modeled as an information theoretic channel.

A channel is a probabilistic function 1 that maps a high security (i.e., secret) input
and a low security (typically adversary controlled) input to an observable output. The
adversary is assumed to have some prior notion about the distribution of high inputs.
By providing low input and observing the output, the adversary revises their view
about the about the high input. If the prior and posterior beliefs can be formulated
in terms of some notion of uncertainty, then the change in the adversary’s uncertainty
is the amount of information leakage due to the channel:

leakage = initial uncertainty − revised uncertainty .

More formally, let Xh, X` and Xo be random variables representing the distribu-
tion of high inputs, low inputs, and observables, respectively. Given a function F (X)

1You can think of such a function as returning a probability distribution instead of a concrete
value.

7

of the uncertainty of X, leakage is then:

F (Xh)− F (Xh | X` = `,Xo), (0.1)

where ` is the low input chosen by the adversary,
F (Xh) is the adversary’s initial uncertainty about the high input, and F (Xh | X` =
`,Xo) is the revised uncertainty. As is standard, F (Xh | X` = `,Xo) is defined to
be Eo←Xo [F (Xh | Xo = o,X` = `)], where Ex←X [f(x)] denotes

∑
x Pr (X = x) ·f(x).

The definition of F (Xh | X` = `,Xo) hides the relationship between the inputs (low
and high) and the output of a channel. This can be made explicit by writing it al-

ternatively as Eh←Xh

[
Eo←XC(h,`)

[
F (Xh | XC(h,`) = o,X` = `)

]]
, where XC(h,`) is the

random variable describing the distribution of channel outputs when h and ` are its
inputs. Written in this manner it is more clear that information leakage as defined
per Equation 0.1 is an expectation over the high values (and potentially the non-
determinism of the channel). This point will be important to the applicability of the
definition as we will discuss in Section 2.1.2.

Various instantiations of F have been proposed, including Shannon entropy [10,
20, 23, 62, 64, 82, 83], guessing entropy [63, 73], marginal guesswork [90], and (Bayes)
vulnerability [19,100].

Some of these metrics have interpretations that connect them in some way to a
measurement of adversary success in some form of exploitation. In this sense the
function F can be thought of as measuring the inverse of risk in that the larger the
uncertainty, the lower the risk to the user. The exact meaning of risk in terms of
the probability or magnitude of bad events varies. For example, vulnerability [100]
measures the expected probability that an optimal adversary will guess the secret
value in one try. The g-leakage framework [10] uses gain functions to generalize the
interpretation of many metrics by describing them as the expected payoff attributed
to the adversary making some optimal action or exploit. In this thesis we use a similar
approach for quantifying uncertainty; instead of information-theoretic quantities we
will view it as the payoff an optimal adversary receives.

2.1.1 Example: Birthday query

Consider the problem of answering queries about a user’s demographic information
similar to that of Section 1.2. Specifically let us assume that a user drawn ran-
domly from a population has an associated triple (byear, bday, gndr) with each element
distributed independently according to the following uniform distributions:

Pr
(
Xbyear = y

)
=

1

37
for y ∈ year

def
= {1960, · · · , 1996}

Pr
(
Xbday = d

)
=

1

365
for d ∈ day

def
= {0, · · · , 364}

Pr
(
Xgndr = g

)
=

1

2
for g ∈ gender

def
= {Male, Female}

8

The joint distribution of the triple is therefore uniform with probability 1
37·365·2 for

triples in the ranges above. Let demo refer to the triple (birthyear, birthday, gender), then
the prior or initial uncertainty in Xdemo or F (Xdemo) varies depending on the choice
of F . For example, we have:

• The (Shannon) entropy of Xdemo is approximately 14.721. Entropy can be
interpreted as the expected number of (optimally designed) yes/no questions
that need to be answered about demo in order to determine it’s value.

• The guessing entropy of Xdemo is 1.3506×104 and has the interpretation as the
expected number of guesses an optimal adversary would need to make before
they correctly guess the demographics.

• The vulnerability of Xdemo is 3.7× 10−5 and is the probability that an optimal
adversary will guess a user’s demographics correctly in one try.

Now consider the following query, which checks whether the given user’s birthday
occurs in the next week:

bday query : day× (year× day× gender)→ bool

let bday query: today (byear, bday, gndr) 7→
if today < 365 − 7 then (bday >= today and bday + 7 < today)
else (bday >= today or bday < (today+7) mod 365)

This query constitutes a channel through which information about the demographic
flows, though just the bday in this case. To compute the revised uncertainty we need
to consider both possible outputs of this query. In the first case, the query returns
true and does so with probability 7

365
on a randomly sampled user. In the other case it

returns false with probability 358
365

. Let us say that today = 100, then the two possible
revised distributions of Xbday are:

Pr
(
Xbday = d | Xo = true, · · ·

)
=

1

7
for d ∈ {100, · · · , 106}

Pr
(
Xbday = d | Xo = false, · · ·

)
=

1

358
for d ∈ {0, · · · , 99, 107, · · · , 364}

Note that we omitted the condition Xtoday = 100 for brevity. The distributions over

the whole demographic, Xdemo, are the above, except additionally weighted by 1
37∗2

(the birthyear and gender are independent of birthday). The expected revised measures
of uncertainty average the uncertainty in these two by their respective probabilities
of occurrence (as indicated by probabilities of Xo).

• The revised (or “conditional”) entropy of Xdemo |
(
Xtoday = 100, Xo

)
is 14.584

as compared to 14.721 in the prior. The query thus reduces the expected number
of optimally chosen yes/no questions required to determine the demographic by
approximately 0.137.

9

• The revised guessing entropy of Xdemo |
(
Xtoday = 100, Xo

)
is 1.2997× 104 as

compared to 1.3506 × 104 in the prior. Thus the query reduces the number of
expected guesses by approximately 509.

• The revised vulnerability of Xdemo |
(
Xtoday = 100, Xo

)
is 7.40 × 10−5, com-

pared to 3.70 × 10−5 in the prior. Note that vulnerability increases with ob-
servations. For this reason the same idea is often expressed as the related
min-entropy 2 to better align with the notion of uncertainty. In that sense, the
query leaks exactly 1 bit of information.

2.1.2 Static vs. Dynamic

The definition of information flow in Equation 0.1 above inherently makes assump-
tions about adversary belief and the distribution of secrets that dictate nuances in
its interpretation and restrict its applicability. In particular the prior distribution of
secrets, represented via the random variable Xh, serves two functions at once: 1) it is
the prior belief of the adversary, 2) it is the distribution of secrets over which the flow
is averaged. In other words, adversary belief is conflated with the true distribution
over the secrets.

The very notion that there is a true distribution of secrets means that the equation
has a static interpretation, one that is independent of any particular value of the
secret. Such an interpretation is useful to calculating the expected risks inherent
in the channel without knowing what the secret value is. On the other hand, this
interpretation does not say anything about the risk for the user that has a particular
secret value. If we assume Xh represents the distributions of secrets among some
population of users then the leakage quantity in Equation 0.1 would measure risks in
expectation over the population. It would not say anything, however, about the risks
to a particular user with a particular secret.

This problem can be seen in the example of Section 2.1.1. There we see how
two outcomes of a query are averaged in the computation of the revised uncertainty
measure. For any individual, only one of those two outcomes will occur and if the
query returns true it reveals a lot more information than if it returns false. It is much
more likely to leak less but this is no comfort to individuals for whom it leaks more.

In contrast to the static case, a dynamic variation of the notion of leakage can
be adapted from the static equation by assuming that there is a true secret value
h that is consistent with the prior belief of the adversary (that is, the adversary
considers h possible). Likewise the distribution of channel outputs represented by
the random variable Xo is exactly the distribution of channel outputs when h is the
high input. The interpretation of the dynamic variation is applicable to users as
individuals instead of as members of a population. This is the approach taken in the
experimental protocol of Clarkson et al. [24] and which we build upon in this thesis
to address the dynamic enforcement setting.

The difference between dynamic and static notions of uncertainty can be quite
stark. Consider, for example, the flow calculations in the birthday query example

2Vulnerability of v is equivalent to min-entropy of lg(1/v).

10

in Section 2.1.1. Specifically, let us take a closer look at the static vulnerability
calculation. It averages two outcomes: the two different outputs of bday query:

F (Xdemo | Xo, · · ·) = Pr (Xo = true) · F (Xdemo | Xo = true, · · ·) +

Pr (Xo = false) · F (Xdemo | Xo = false, · · ·)
≈Pr (Xo = true) · 1.9305× 10−3+

Pr (Xo = false) · 0.3775× 10−3

≈ 7.4047× 10−5

On average we see that an adversary has a fairly low chance of guessing the
demographic. For users which the query returns true, however, the risk is over 26
times higher than the average. Though the probability of a random user being one
of those is low, this is not a useful fact from their perspective.

2.1.3 Example: Second birthday query

Consider now another extending the previous example of Section 2.1.1 with another
query asked after the first. In particular consider the same bday query but with today

equal to 101 instead of 100. What is the flow due to the second query? The notion of
flow is easily extended by comparing the measures of uncertainty after the first query
to that after the second:

F (XH | Xtoday1
= 100, Xo1)− F (XH | Xtoday1

= 100, Xtoday2
= 101, Xo1 , Xo2)

We use today1 and today2 to differentiate the two instances of query input. We do
so similarly for the two outputs o1 and o2. There are now 4 possible outcomes of the
two queries: the 4 combinations of true and false:

Pr
(
Xbday = d | Xo1 = true, Xo2 = true, · · ·

)
=

1

6
for d ∈ {101, · · · , 106}

Pr
(
Xbday = d | Xo1 = true, Xo2 = false, · · ·

)
= 1 for d = 100

Pr
(
Xbday = d | Xo1 = false, Xo2 = true, · · ·

)
= 1 for d = 107

Pr
(
Xbday = d | Xo1 = false, Xo2 = false, · · ·

)
=

1

357
for d ∈ {0, · · · , 99, 107, · · · , 364}

Thus the expectation of the information release due to the second query (after the
first) can be calculated as the expectation of uncertainties in those four cases (adding
the birthyear and gender factors) weighted by their respective probabilities, which are

6
365

, 1
365

, 1
365

, and 357
365

, respectively.

• The revised (or “conditional”) entropy of Xdemo | Xo1 , Xo2 , · · · is 14.546 as
compared to 14.584 after the first query and 14.721 initially. Thus the expected
number of optimally chosen yes/no questions required to determine the demo-
graphic is reduced by 0.038 due to the second query, as compared to 0.137 due
to the first query.

11

• The revised guessing entropy ofXdemo | Xo1 , Xo2 , · · · is 1.2924×104 as compared
to 1.2997×104 after the first query and 1.3506×104 initially. Thus the expected
number of guesses has further reduced by another 73 guesses after it has already
reduced by 509 due to the first query.

• The revised vulnerability of Xdemo | Xo1 , Xo2 , · · · is 1.48 × 10−4 as compared
to 7.40 × 10−5 after the first query and 3.70 × 10−5 initially. In terms of min-
entropy the second query leaked a additional 1 bit as has the first query before
it.

The difference between static and dynamic measurements of uncertainty is even
greater in the case of the two queries. In particular the vulnerability for a user
for whom the two queries return different answers is 1.35 × 10−2 as compared to
0.00148 × 10−2 in the average. For these unfortunate users the queries fully reveal
their birthday and their risk is over 91 times larger than expected.

2.1.4 Relative vs. Absolute

The definition of information flow in Equation 0.1 is relative. It relates the risks in a
level of adversary knowledge after observing the output of a query to the risk before
the observation. The relative measure is useful for a variety of reasons:

• It can compare one query to another on the basis of the risks associated with
each.

• It measures the dangers of query in isolation of much of the details of what has
been revealed before.

• Measures of relative flow are sometimes easy to bound. For example, relative
vulnerability can be bounded knowing only how many possible outputs a query
has [57]. This can be seen in examples in Sections 2.1.1,2.1.3: the increasing
vulnerability there would be identical for any deterministic query with 2 possible
outputs, or any two queries with 4 possible output combinations.

On the other hand, relative measurement is not well suited in addressing the
challenges posed in this thesis. The goal of the thesis is to limit risk in information
release. It is not sufficient to merely compare queries relative to each other in isolation
of the knowledge already revealed; we need to reason about the absolute level of
knowledge, and therefore absolute risk, accrued by queries in aggregate. A query
which reveals a lot in the relative sense but does so to within a reasonable risk
threshold is not as big of a concern as a query which reveals a little but does so
beyond the threshold. Without tracking knowledge the correct distinction between
those two cases cannot be made.

12

2.2 Probabilistic Programming

Probabilistic programming (PP) is the idea of viewing programs as (conditional)
probability distributions and taking advantage of this view to perform probabilistic
inference, in effect inverting the semantics of a program to reason about what its
outputs imply about its inputs.

Writing programs with non-deterministic elements is much easier than reasoning
about the eventual distributions induced by said programs. Likewise, inference is a
conceptually and computationally more difficult task than description of a probabilis-
tic process itself. A big part of the motivation for probabilistic programming is thus
the goal of making probabilistic inference more accessible to non-experts [48]. For
the purposes of this thesis, probabilistic programming will serve both as a concep-
tual modeling tool to describe various information release scenarios, but also as the
computational tool for experimentation and for implementation of security policies.

As a simple example, consider the birthday examples of Sections 2.1.1 and 2.1.3.
We can express the prior uniform demographic information as a function sample user

which samples the three demographic attributes uniformly from given ranges:

sample user : unit → D (year× day× gender)

let sample user () 7→
let byear ← uniform {1960, 1961, · · ·, 1996} in
let bday ← uniform {0, 1, · · ·, 364} in
let gndr ← uniform {Male, Female} in

(byear, bday, gndr)

The expression uniform in S uniformly samples an element from a set S. Running
sample user many times we would find that the distribution of its output approaches
that of the random variable Xdemo in Section 2.1.1 and that in the limit the two
are equal. The core of probabilistic programming is the equating of the expression
sample user (), which produces a value non-deterministically, with the distribution of
those values.

The process of adversary learning about the demographic by observing the output
of birthday query can be captured using the following program:

let demo ← sample user () in
let o ← birthday query 100 demo in
condition o = true in

demo

The condition P in e expression (sometimes alternatively called “observe” or “as-
sert”) serves to probabilistically condition the distribution of program variables up
that point and evaluates the expression e on a distribution in which P holds. Concep-
tually we can view conditioning as throwing away samples for which the predicate fails
and only considering the distribution of the ones that remain. The end result of this
program is distributed as the random variable Xdemo |

(
Xtoday = 100, Xo = true

)
.

The same idea applies to multiple observations as in the same of two birthday
queries:

13

let demo ← sample user () in
let o1 ← bday query 100 demo in
let o2 ← bday query 101 demo in
condition o1 = true in
condition o2 = true in

demo

For most of this thesis we will use pseudo-code of this form and ignore how to
actually produce distributions from these programs. In Section 6 we will formally
define a simpler language and its probabilistic semantics as well as address the issue
of computational tractability of inference. Below we briefly summarize some notation
related to probabilistic programs and probability in general that we will make use
throughout the thesis.

Notation 1 (Probability and Programs).

• We write f : A → D (B) to designate a probabilistic function of type A → B,
i.e., a function that takes an element of A as input and probabilistically returns
an element of B (so D should be read “distribution over”).

• Given a program expression exp that evaluates to a distribution, we write Xexp

as the random variable distributed according to the possible values of exp and
write Pr

(
Xexp = v

)
for the probability that the expression’s value is equal to

v.

• Given a random variable X, we will write x ← X as the process of sampling
a value from the distribution Pr (X) and write x ∈ X to designate any value
x that has non-zero probability according to Pr (X). We will sometimes write
support (X) as the set of non-zero probability values of X when the dual-use of
X as a set and a random variable would be otherwise confusing.

2.3 Secure Multiparty Computation

Though a completely formal treatment of the security provided by SMC [43,44,59,105]
is beyond the scope of this thesis we provide here a brief background on the topic.
Throughout this chapter we assume that all parties are semi-honest. This means that
they run any specified protocol exactly as prescribed, but may try to infer information
about other parties’ inputs based on their view of the protocol execution. (A party’s
view consists of its local state, along with all messages that it sent or received.)
We also assume that parties do not collude. SMC can be extended to malicious
parties who behave arbitrarily, as well as to handle collusion, but these complicate
the treatment and are tangential to our main thrust.

The symmetric sharing setting considers a scenario where N mutually distrust-
ing parties P1, . . . , PN wish to compute some query f(s1, . . . , sN) of their respective
inputs, while ensuring privacy of their inputs to the extent possible. In an ideal sce-
nario, the parties would all have access to a trusted entity PT who would compute the
function on their behalf. That is, each party Pi would simply send its input si to PT ,

14

who would in turn evaluate (out1, . . . , outn) = f(s1, . . . , sn) and return the result outi
to party Pi. We write out = f(...) if the same output is sent to all participants. If f
is a probabilistic function, then PT evaluates it using uniform random choices.

Fix some distributed protocol Π that computes f . (This just means that when the
parties run the protocol using their inputs s1, . . . , sN , the protocol terminates with
each party holding output outi.) We say that Π is secure if it simulates the ideal
computation of f described above (where a trusted entity is available). Specifically,
an execution of Π should reveal no information beyond what is revealed in the ideal
computation. 3 This is formally defined by requiring that any party in the ideal world
can sample from a distribution that is “equivalent” to the distribution of that party’s
view in a real-world execution of Π. Since any party Pi in the ideal world knows only
its own input si and the output outi that it received from PT , this implies that Π
achieves the level of privacy desired. We stress that not only is no information (beyond
the output) about any single party’s input is revealed, but also no joint information
about several parties’ inputs is revealed either (just as in the ideal world).

The cryptographic literature considers several notions of what it means for two
distributions D,D′ to be “equivalent”. The simplest notion is to require D,D′ to
be identical. If this is the case for the distributions described above, then Π is said
to achieve perfect security. Alternately, we may require that D,D′ be indistinguish-
able by computationally bounded algorithms. (We omit a formal definition, though
remark that this notion of indistinguishability is pervasive in all of cryptography,
beyond SMC.) In this case, we say that Π achieves computational security. Perfect
security is achievable for N ≥ 3, whereas only computational security is possible
for N = 2.

In Section 5 we will look at how the parties can scrutinize the queries they execute
securely to make sure that what is revealed by their outputs (and policy decisions) is
sufficiently safe. The approach will follow the general techniques used in the previous
settings though adjusted to take into account correlations among multiple parties and
the inability of parties to hold representations of each other’s knowledge.

3Readers who are familiar with SMC may note that this definition is slightly simpler than usual.
The reason is that we are considering semi-honest security, and in this paragraph assume a determin-
istic function for simplicity. We are also glossing over various technical subtleties that are inessential
to get the main point across.

15

Chapter 3

Dynamic enforcement

In this Chapter we describe means with which an individual user can enforce dynam-
ically limits in adversary knowledge about their secret. The setting here is dynamic
in two senses. First dynamic is in contrast with static measurements of expected risk
which we noted in Section 2.1.2 is not necessarily applicable to limiting risk for an
individual. Second, the enforcement mechanism applies to streams of queries, where
at any time, some queries have been considered so far, and unknown queries will need
be handled in the future.

We begin with an elaboration of our running birthday example in Section 3.1.
We then proceed to the details of knowledge tracking using beliefs in Section 3.2, the
measurement of risk using beliefs in Section 3.3, and complete the approach with the
mechanism for limiting risk in Section 3.4. We discuss the approach and related work
in Section 3.5.

This chapter is based on the work originally published in the 2011 Computer
Security Foundations Symposium [70], a 2013 issue of the Journal of Computer Se-
curity [72], and a University of Maryland technical report released in 2011 [71]. The
work was done in collaboration with Michael Hicks, Stephen Magill, and Mudhakar
Srivatsa.

3.1 Example: Dynamic birthday queries

To motivate the setting concretely, recall the bday query queries of Section 2.1.1, which
we replicate below:

bday query : day× (year× day× gender)→ bool

let bday query: today (byear, bday, gndr) 7→
if today < 365 − 7 then (bday >= today and bday + 7 < today)
else (bday >= today or bday < (today+7) mod 365)

We have looked at this query as it reveals information about users drawn from a
population described by the Pr (Xdemo) composed of the following three independent
uniform distributions:

Pr
(
Xbyear = y

)
=

1

37
for y ∈ year = {1960, · · · , 1996}

Pr
(
Xbday = d

)
=

1

365
for d ∈ day = {0, · · · , 364}

Pr
(
Xgndr = g

)
=

1

2
for g ∈ gender = {Male, Female}

16

The above distribution also served to model the prior knowledge an adversary has
about the population. In contrast to the analysis in Chapter 2, we are now concerned
with a single individual from this population who has a particular demographic. We
assume that the real values of the demographic are consistent with the adversary
knowledge in that the real values could have been drawn from the assumed distribu-
tion. We will call the real values Sbyear, Sbday, Sgndr or Sdemo in combination. Thus
Sdemo ∈ support (Xdemo).

Let us consider what happens with adversary knowledge for a user whose birthday

is 101, after the adversary learns the output of the query when today is 100. Recall in
Section 2.1.1 we showed that there are two possible states of adversary knowledge in
the posterior, after learning the output of the query. Which one is reached depends on
the output. For a user with Sbday = 101, the query can only return in the affirmative.
Hence after learning this, the adversary’s belief about the user’s birthday becomes:

Pr
(
Xbday = d | Xo = true, · · ·

)
=

1

7
for d ∈ {100, · · · , 106}

This means that the adversary has now narrowed down the possible values of birthday
to one in seven possibilities, each with equal probability. Let us use the probability of
the most probable secret value as the measure of risk. In this case it is 1

7
. Now, if the

user is content with this level of risk then they would be OK with letting the adversary
learn the answer to the query. Let us assume that the user is comfortable with the
measure of risk being no more than 364

365
. That is, they do not want their birthday to

be known exactly, but anything less that is deemed safe. The user could thus use the
speculation of the outcome of answering as a means of judging the risk involved. We
will later see how to handle situations where the query includes probabilistic choice
(randomness) which the user must take into account during this speculation.

Let us say that the user did answer the query. He or she can then update the
estimated knowledge of the adversary to the random variable Xbday conditioned on
Xo = true, Xtoday = 100. This revised belief can then serve as the prior when
speculating as to the outcomes of a future query. Let us consider then a second query
with today = 101. This query can again return only true and revise the belief of the
adversary to the following:

Pr
(
Xbirthday = d | Xo2 = true, Xo1 = true, · · ·

)
=

1

6
for d ∈ {101, · · · , 106}

Notice that were this query to be answered, the measure of risk increases to 1
6
, which

is still below the comfort. It would seem that the user should reveal the answer to
this query. Consider, though, what would be the situation if the user’s birthday was
100 instead of 101. The first query’s outcome would be unchanged, but the second
query would return false and revise the belief of the adversary to:

Pr
(
Xbirthday = d | Xo2 = false, Xo1 = true, · · ·

)
= 1 for d ∈ {100}

17

The risk in this belief reaches the threshold at which the user is no longer comfort-
able which would mean that the user should not answer the query. If we assume that
the adversary knows the process by which the user decides to answer the queries, how-
ever, we see that there is a problem. The birthday value of 100 is the only possibility
that would result in the second query revealing too much information. Therefore,
if the adversary is told that the second birthday query will not be answered after
learning the first’s output was true, they can infer that Sbirthday = 100.

The root of the problem here is that since the user uses their secret value in
the determination of whether to answer a query, there is danger that this secret
leaks information through policy decisions. The problem of the refusal to answer
as potentially leaking information is well known. The work of Kenthapadi et al., in
particular, addresses the problem in a setting similar to ours [53]. In general, a simple
solution to the problem is to make sure policy decisions do not depend on the true
secret value. A slight refinement of this approach is to make sure policy decisions
are simulatable, in that the adversary has all the knowledge necessary in order to
determine the policy decision without asking the user for it.

In our setting, the approach to overcome the problem of leaky policies is to broaden
the range of possibilities a user speculates about when deciding to answer a query,
from just those that are consistent with their secret value, to those that are consistent
with all possible secret values according to the knowledge of the adversary. The
decision procedure can be made simulatable in this case as the adversary is already
assumed to have the knowledge we attribute to them.

Note that this approach is partially static and partially dynamic. On one hand the
policy decision does not depend on the true value of the secret. On the other hand, it
only considers values consistent with adversary knowledge which does depend on what
has been revealed about the true secret in the past. In this sense the approach can be
described as modeling adversary knowledge dynamically, but performing enforcement
statically.

In terms of our running example, when a user is considering the second birthday
query with today = 101, they must consider what would happen to the adversary
knowledge under any of the 6 secret values they adversary considers possible. For
most of them (101 through 106), the result will be sufficiently comfortable to the user.
For one of them (100), however, the query would reveal the secret birthday exactly.
Thus the user must reject this second query even if their birthday is not 100.

This mode of enforcement might seem overly restrictive to the point that no
additional birthday queries could be answered after the first. To the contrary, if the
second birthday query had today = 102 instead, then no matter the outcome, the
adversary will get no better idea of the birthday than one in two possibilities. In that
case, this alternate second query would be allowed.

In the rest of this chapter we formalize the policy and enforcement mechanism we
just informally described. To this end we start with knowledge tracking in Section 3.2.
We then describe risk assessment and the policy definitions aimed at limiting risk in
Section 3.3. We conclude with simulatable enforcement of these policies in Section 3.4.

18

3.2 Knowledge tracking

In this section we describe how to track adversary knowledge using probabilistic
programs. This is done essentially as in the experimental protocol of Clarkson et
al. [24] but with simplified notation.

• Let S be a set of secret values and let prior : D (S) be a distribution over the set
S that is the prior belief of an adversary about the true secret. The function
sample user of Section 2.2 serves to produce a prior belief:

let sample user () 7→
let byear ← uniform {1960, 1961, · · ·, 1996} in
let bday ← uniform {0, 1, · · ·, 364} in
let gndr ← uniform {Male, Female} in

(byear, bday, gndr)

• Let s ∈ S be the true secret value and assume that s is consistent with the
prior: s ∈ Xprior .

• Let q be a potentially non-deterministic query with q : S → D (O) for some
set of outputs O. We model queries here as having only the secret as input
so the differing birthday queries in our running example can be modeled as
single-input queries with the today argument already provided.

The essence of knowledge tracking is encapsulated in the function posterior below
which is effectively an expression of Bayesian inference in the form of a probabilistic
program:

posterior : D (S)× (S → D (O))×O → D (S)

1 let posterior : prior q o 7→
2 let o’ ← q prior in
3 condition o’ = o in
4 prior (∗ now the revised posterior ∗)

The output of the program is the subject of the following core lemma.

Lemma 2 (Experimental protocol of Clarkson et al. [24]). Assume that the adversary
believes that o is sampled from (q s) then the program (posterior prior q s) produces the
adversary’s posterior belief about the secret after learning the output of q was o.

The assumption in the Lemma as to the origin of the output o is critical; the
adversary will only make this belief revision if he thinks that the channel through
which he is observing the secret is indeed the query q executed faithfully by the
user. On the flip side, if a user wishes to accurately model adversary belief, he must
convince the querier to trust that the outputs are faithfully produced. This is one
among a few important assumptions that underlie this section and this thesis. They
are important and recurring enough to warrant a definition.

Definition 3 (Standard interaction assumptions).

19

1. A belief attributed to an adversary is indeed their actual belief.

2. Adversaries are perfect Bayesian reasoning agents. In this Chapter this just
means that the adversaries guess the secret in an optimal manner given their
observations. In the next Chapter, the adversaries will also have choices to
make before the exploitation of the secret.

3. Users respond to queries in an honest manner, in that if they answer, the answer
was produced on running the query on the actual secret.

4. Adversaries know exactly the process with which a user responds to their
queries, whether they are rejected or not.

5. The mechanisms we model are the sole avenues with which the adversary learns
information about the user. That is, we will not consider adversaries learn-
ing about the secret using means other than the query interface we describe.
Additionally we ignore the possibility of side channels, e.g. timing.

We will make these assumptions implicitly throughout this thesis. We further
discuss the first of these assumptions in Section 3.5.

Notation 4 (Strings).

• ε is the empty string.

• Given alphabet S, strings are given type S∗ def
= {ε} ∪ S ∪ S2 · · · . We will use

capital letters (L,H,O, · · ·) to refer to strings. We will sometimes write St to
designate an element of S∗ that is t elements long and at to refer to the tth

element in some string S.

• Given S ∈ St and a ∈ S, the concatenation of S with a and the reverse are
written S·a ∈ St+1 and a·S ∈ St+1, respectively.

Lemma 2 can be applied recursively to model the knowledge of an adversary over
time: the posterior belief can be used as the prior for subsequent queries. If we have
a sequence of queries and outputs then the revised posterior belief of the adversary
after learning outputs of all of them is produced by the following program:

posterior sequence : D (S)× (S → D (O))∗ ×O∗ → D (S)

let posterior sequence : prior (q·ε) (o·ε) 7→
posterior prior q o

let posterior sequence : prior (q·Q) (o·O) 7→
posterior sequence (posterior prior q o) Q O

20

3.3 Risk assessment

Knowledge tracking computes the adversary’s belief about the user’s secret after
learning the output of a sequence of queries. This distribution, which we will call
belief ∈ D (S), can be measured for the risk it represents to the user. We have
already seen several options for this measurement in Section 2.1. In this work we
base risk on the notion of vulnerability which aims to quantify the probability that
the adversary will guess the secret in one try. Vulnerability is an attractive option
because of its direct connection to a threat scenario (adversary guessing).

In our dynamic setting, the guessing interpretation of vulnerability will not hold.
Even though in our setting the true secret is known, we cannot use it in calculating
risk. Were such a quantity used for policy enforcement, it could leak information
about the secret. Thus our measurement will be based purely on the tracked adversary
belief, independent of the true secret value. Due to this, our measurement of risk will
correspond to what the adversary believes are his chances of guessing the secret in
one try, even though we, knowing what the true secret is, might know better. For
example, if the adversary thinks the most likely secret is 42 and has probability 0.5,
then he believes he has 50% chance of guessing it correctly in one try. The user, on
the other hand, knows that the actual probability is either 0 if the secret is not 42 or
1 if it is. We argue that this alternate interpretation is still attractive as bounding the
risk from the adversary’s perspective, we are essentially making sure the adversary
never becomes confident enough to exploit their knowledge.

Definition 5 (Vulnerability). Vulnerability of a random variable, written V (X) is
defined as V (X)

def
= maxx Pr (X = x). Vulnerability is the probability with which the

adversary believes he can guess the secret in one try.

In our running example we stipulated that only a part of the secret is sensitive, the
bday field of the demographic. In general we will assume that there is some sensitive
property of a secret that needs to be protected, not necessarily a subset of the fields
in a secret. We model this by introducing a function target : S → T to some set of
property values that is of interest to assessing risk. In our running example target

would merely select the bday field:

let target : (byear, bday, gndr) 7→ bday

A vulnerability threshold along with the target property to be protected to a
degree specified by the threshold constitute a policy:

Definition 6 (Knowledge-Threshold Security). Let target : S → T be a deterministic
function describing property about the secret that is sensitive. Let h ∈ [0, 1] be a vul-
nerability threshold. A belief belief satisfies (target, h) knowledge-threshold security

as long as V
(
X(target belief)

)
≤ h.

In the next section we will show how the user can enforce knowledge-threshold
security when deciding which query to answer.

21

3.4 Knowledge Threshold enforcement

Though Lemma 2 requires that queries be evaluated honestly on the true secret and
the outputs provided unmodified, the user can still speculate as to what the knowledge
of the adversary would be for any possible output of a query, not necessarily the output
that he samples when running it. This has the benefit of being independent of the true
secret value (conditional on the knowledge already contained in the adversary belief).
Because of this, it can be used for policy enforcement without leaking additional
information about the secret. Speculation over all outputs is the function of the
following definition.

Definition 7 (Worst-case Posterior Vulnerability). The worst-case posterior target
vulnerability given a prior belief and query q is the maximal vulnerability achievable
in all possible posterior beliefs that can result in observing the output of the query.
It is defined as below:

V max (belief , q)
def
= max

o∈X(q belief)
V
(
X(posterior belief q o)

)
This worst-case measure can then be used to bound risk in revealing query outputs.

Let h be a vulnerability threshold and belief be a prior belief with V (X(target belief)) <
h. That is, the belief does not already exceed the risk threshold. The following pro-
gram defines the query interface that is the goal of this Chapter.

1 let query: s belief q h 7→
2 if V max(belief, q) ≤ h then
3 let o ← q s in
4 let post ← posterior belief o in
5 (post, Accept o)
6 else
7 (belief , Reject)

The function produces a revised adversary belief along with a query result to be
output to the adversary (or a rejection).

Theorem 8. Under the standard interaction assumptions, the query mechanism above
preserves (target, h)-security. That is, if an adversary has belief belief that is (target, h)-
secure, then their posterior belief after learning the (second) output of query, will still
be (target, h)-secure.

Proof. (sketch) In the case that query returns Reject then the belief of the adversary
does not change as the condition on Line 2 does not involve the secret. Hence the
unchanged belief is still (target, h)-secure.

In the other case query returns an output o. By Lemma 2, we know that the
adversary’s belief becomes posterior belief o. As the conditional on Line 2 passed, it
must have been that the target vulnerability of posterior belief o’ for every possible
o’ was below h, including the posterior for o. Thus posterior belief o, the adversary’s
new belief is (target, h)-secure.

22

3.5 Discussion

This section considers the some of the tradeoffs, challenges, design alternatives, and
possibilities for future directions on knowledge-based security policies.

Employing knowledge-based policies successfully requires maintaining a reason-
able estimate of queriers’ beliefs. Two difficulties that arise in doing so are (1) es-
tablishing the initial belief, and (2) accounting for collusion among queriers. Here we
discuss these two issues, and suggest further applications of knowledge-based policies.

3.5.1 Initial belief

For P to enforce a knowledge-based policy on queries by P1 requires that P estimate
P1’s belief about the possible valuations of P ’s secret data. When P1 has no particular
knowledge of P ’s secrets, statistical demographic data can be used; e.g., the US Cen-
sus and other public sources could be used for personal information. When P1 might
have inside knowledge, P must expend more effort to account for it. For example, in
a military setting, estimating a coalition partner’s estimate of one’s resources could
be derived from shared information, and from the likelihood of P1 having acquired
illicit information.

Our examples and benchmarks in Section 6 largely consider personal, private in-
formation, e.g., gender, age, level of education, etc. This information can be drawn
from public sources (e.g., Facebook demographics [6]). However, the distributions we
experiment with are oversimplifications of the actual, reported distributions: they are
largely simple, uniform distributions. This does not preclude more complex distri-
butions in the prior. Due to computational issues which we will see in Section 6 it
might become too expensive to be perfectly accurate in this regard.

If the initial belief estimate is (very) inaccurate, then P risks releasing information
to P1 contrary to his intended policy. To “hedge his bets” against this possibility, he
might choose to maintain a set of possible beliefs Beliefs = { belief i}i, rather than a
single belief belief , and only release if the threshold was satisfied for every belief ∈
Beliefs . We return to this idea in when we discuss differential privacy in Section 3.6
below.

3.5.2 Collusion

Assuming that P maintains separate beliefs and thresholds for distinct adversaries P1

and P2, the possibility of collusion arises. Following the example in Section 3.1, P ’s
privacy would be thwarted if he shared the output of the first birthday query with P1

and the output of the second with P2 but then P1 and P2 shared their information.
This problem is not unique to our work; the same problem would arise if P used
an access control policy to protect two pieces of his data, each visible to one of the
queriers but which, when brought together, violated privacy.

A simple approach to preventing this would be to model adversary knowledge
globally, effectively assuming that all queriers share their query results; doing so would
prevent either P1’s or P2’s query (whichever was last). This approach is akin to having

23

a global privacy budget in differential privacy (see Section 3.6) or a single, global
access control policy and would obviously harm utility. Moreover, the confidence
of an agent can actually decrease as a result of observing outputs of probabilistic
queries 1. This can occur when the agent is initially confident in something that is
not true, or as a result of improbable outputs of probabilistic queries even when the
agent is not mistakenly confident. Due to this non-monotonicity in knowledge, if
agents purported to be colluding are in fact not colluding then a global belief might
under-approximate a non-colluding agent’s true level of knowledge.

One possible compromise would be to consider both the potential of collusion
and non-collusion by tracking a global belief and a set of individual beliefs. When
considering a query, a rejection would be issued if either belief fails the policy check.

It is important to note that despite the possibility of a decreased certainty due to
queries, rational adversaries, interested in maximizing their chances of guessing the
secret value, will take all outputs into account, even unlikely outcomes of probabilistic
queries. Though they might be detrimental to certainty, in expectation, all queries
increase chances of guessing the secret correctly. This point is discussed further in
the work of Clarkson et al., specifically the Section on Accuracy, Uncertainty, and
Misinformation [24].

3.5.3 Querier belief tracking

Recall a vital property of our knowledge-based policy enforcement is simulatability :
the adversary has (or is allowed to have) all the information necessary to decide the
policy that governs its access, without interacting with the data owner. As such,
the computation of policy enforcement could, in theory, by done by the querier.
Naturally, they should not be trusted in this regard completely. One general direction
is to imagine the querier performing the entire computation, and providing proof of
the outcome, via something like proof-carrying code [85]. Alternatively, the querier
could provide hints to the data owner to improve the speed of his computation. For
example, the querier could determine the optimal choices for merge order, and send
a digest of these choices.

3.5.4 Further applications

We have used the goal of decentralizing social networking applications as a motivator
for our technique. But knowledge-based policies have other applications as well. Here
are four examples.

The first application is secure multiparty computation (SMC) [105]. We will cover
this application in Section 5 later in this thesis. Such computations allow a set of
mutually distrusting parties to compute a function f of their private inputs while re-
vealing nothing about their inputs beyond what is implied by the result. Depending
on f , however, the result itself may reveal more information than parties are com-
fortable with. Knowledge-based policies can generalized to this setting: each party X

1An example of a probabilistic query following the demographic scenario is the query spec year
of Section 6.2.

24

can assess whether the other parties Yi could have secret values such that f ’s result
would exceed a knowledge threshold about X’s secret.

Another application is to protecting user browsing history. With the advent of
“do not track” guidelines that forbid storing cookies to track users’ browsing habits
across sites [37], service providers have turned to fingerprinting, which aims to iden-
tify a user based on available browser characteristics [17]. We can protect these at-
tributes with knowledge-based policies, and enforce them by analyzing the javascript
code on browsed pages. The flexibility of knowledge-based policies is useful: with
access control we would have to choose, in advance, which attributes to reveal, but
with knowledge-based policies we can set a threshold on the entire tuple of the most
sensitive attributes and a web page can have access to whatever (legal) subset of
information it likes, for a better user experience. The work of Besson et al. [16]
proposes an approach similar to this. Though they use the same security criterion
of vulnerability thresholds, their technique adds noise to fingerprinting programs in
order to achieve security. Their work applies to individual fingerprinting programs
that are given and analyzed ahead of time, hence that work does not have to take
into account the dynamics and issues of policies leaking information.

A third application is to protect sensing capabilities. In particular, we can treat
sensor readings as samples from a random process parameterized by confidential char-
acteristics of the sensor. Each reading provides information about these parameters,
in addition to information from the reading itself. For example, suppose we want to
share mobility traces for traffic planning, but want to protect individuals’ privacy.
We can view each trace as a series of samples from a random process that determines
the individual’s location based on periodic factors, like previous location, time of day,
day of week, etc. [97]. We can define the sampling function in our simple language,
involving probabilistic choices over the hidden parameters. Belief tracking can be
used to narrow down the set of possible parameters to the model that could have pro-
duced the observed traces; if the observer’s certainty about these parameters exceeds
the threshold, then the trace elements are not revealed. Note that trace obfuscation
techniques are easily accounted for—they can simply be composed with the sampling
function and reasoned about together.

Finally, we observe that we can simply track the amount of released information
due to an interaction as a degenerate case of enforcing knowledge-based policies. In
particular, we can set the prebelief over some sensitive information to be the uniform
distribution, and set the threshold to be 1. In this case, we will always answer any
query, and at any time we can compute the entropy of the current belief estimate to
calculate the (maximum) number of bits leaked. This information may be used to
evaluate the susceptibility to attack by gauging the confidence an attacker might have
in their belief about secret information. It can be used to gauge what aspects of secret
information were of interest to the attacker, giving hints to as their motive, or maybe
even differentiating an honest querier from a malicious one. Tracking information in
this manner is less expensive than enforcing threshold policies directly, since not all
possible outputs need to be considered, and carries no risk of a misestimate of the
prebelief: the number of reported leaked bits will be conservatively high.

25

3.6 Related work

We consider four areas of work related to work presented in this Chapter: systems
aimed at protecting access to users’ private data; methods for quantifying informa-
tion flow from general-purpose programs; methods for privacy-preserving computa-
tion, most notably differential privacy ; and finally approaches to performing general-
purpose probabilistic computation.

Privacy enhancing network services

Several recent proposals have considered alternative service architectures for better
ensuring the privacy of individual participants. These systems tend to enforce access
control policies. For example, PrPl [96] is a decentralized social networking infrastruc-
ture aimed to permit participants to participate in social networking without losing
ownership of their data. The system uses Personal-Cloud Butler services to store
data and enforce access control policies. Persona [12] uses a centralized Facebook-
style service, but users can store personal data on distributed storage servers that use
attribute-based encryption. Access to data is granted to those parties who have the
necessary attribute keys. XBook [99] mediates social network data accesses by third-
party application extensions. Privad [50] is a privacy-preserving advertising platform
that, like our running examples, runs the ad selection algorithm over the user’s data
on the user’s platform. Privad presumes that outputs of ad selection reveal little
about the inputs. A recent survey [88] lists 17 different approaches for implementing
decentralized social networks with various forms of access control.

Knowledge-based security policies generalize access control policies: if we maintain
a belief estimate for each principal Pi, then the equivalent of granting Pi access to data
d is to just set Pi’s knowledge threshold for target d to 1; for principals Ri who should
not have access, the threshold for d is 0. Knowledge-based policies afford greater
flexibility by allowing partial access, i.e., when a threshold less than 1. Moreover, as
mentioned in the introduction, we can set a policy on multiple data items, and thus
grant more access to one item than another (e.g., birth day and/or year) as long as
knowledge of the aggregate is controlled.

Quantified information flow

Others have considered how an adversary’s knowledge of private data might be in-
formed by a program’s output. Clark, Hunt, and Malacaria [23] define a static anal-
ysis that bounds the secret information a straight-line program can leak in terms of
equivalence relations between the inputs and outputs. Backes et al. [11] automate
the synthesis of such equivalence relations and quantify leakage by computing the
exact size of equivalence classes. Köpf and Rybalchenko [56] extend this approach,
improving its scalability by using sampling to identify equivalence classes and using
under- and over-approximation to obtain bounds on their size. Mu and Clark [84]
present a similar analysis that uses over-approximation only. In all cases, the inferred
equivalence classes can be used to compute entropy-based metrics of information
leakage.

26

We differ from this work in two main ways. First, we implement a security criterion
that is applicable to the dynamic setting as opposed to the static one. Recall the
conditional vulnerability metric we discussed in Section 2.1. It can be defined using
our notation as follows.

Definition 9. A query q is (static) vulnerability threshold secure iff for

V (belief ,q)
def
= E

o←Xq belief

[
V (Xposterior belief q o)

]
we have V (belief ,q) ≤ h for some threshold h.

The above definition is an expectation over all possible query outputs, so unlikely
outputs have less influence. Our notion of threshold security (Definition 7) replaces

the expectation over o← X(q belief) with maximization over o ∈ support
(
X(q belief)

)
.

This notion of security is strictly stronger as it considers each output individually:
if any output, however unlikely, would increase knowledge beyond the threshold, the
query would be rejected. As we have demonstrated in Section 2.1.2, the static notion
can greatly underestimate the risk for under-represented individuals.

The idea of strengthening of an entropy measure by eliminating the expectation
has been briefly considered by Köpf and Basin [55]. In their work this measure is
proposed as a stronger alternative, a choice ultimately dependent on the application.
In our case, however, the worst-case measure is absolutely necessary in order to
prevent the leakage of information when rejecting a query.

The other distinguishing feature of our approach is that we keep an on-line model
of adversary knowledge according to prior, actual query results. Once a query is
answered, the alternative possible outputs of this query no longer matter. To see the
benefit of this query-by-query approach, consider performing query q1 followed by a
query q2 which use the same code as bday query but with today = 200 in the first case
and today = 205 in the second. With our system and birthday = 100 the answer to
q1 is false and with the revised belief the query q2 will be accepted for any threshold
h ≥ 1

7
. If instead we had to model this pair of queries statically they would be

rejected because (under the assumption of uniformity) the pair of outputs true,true is
possible and implies birthday ∈ {205, 206} which would require threshold h ≥ 1

2
. Our

approach also inherits from the belief-based approach the ability to model a querier
who is misinformed or incorrect, which can arise following the result of a probabilistic
query or because of a change to the secret data between queries [24]. We note these
advantages come at the cost of maintaining on-line belief models.

McCamant and Ernst’s FlowCheck tool [75] measures the information released
by a particular execution. However, it measures information release in terms of
channel capacity, rather than remaining uncertainty which is more appropriate for
our setting. For example, FlowCheck would report a query that tries to guess a
user’s birthday leaks one bit regardless of whether the guess was successful, whereas
the belief-based model (and the other models mentioned above) would consider a
failing guess to convey very little information (much less than a bit), and a successful
guess conveying quite a lot (much more than a bit).

27

Differential privacy

A recent thread of research has aimed to enforce the privacy of database queries.
Most notably, Dwork and colleagues have proposed differential privacy [39]: a dif-
ferentially private query q over a database of individuals’ records is a randomized
function that produces roughly the same answer whether a particular individual’s
data is in the database or not. An appealing feature of this definition is that the
adversary’s knowledge is not considered directly; rather, we are merely assured that
q’s answer will not differ by much whether a particular individual is in the database
or not. On the other hand, differentially private databases require that individuals
trust the database curator, a situation we would prefer to avoid, as motivated in the
introduction.

We can compare differential privacy to our notion of threshold security by recasting
the differential privacy definition into the form of an adversarial privacy definition,
which was formulated by Rastogi and Suciu to compare their own privacy definition
on databases to differential privacy [95]. Rastogi and Suciu’s definition is in terms of
the presence or absence of a record in a database, whereas our notion is defined on
the values of a secret. To bridge this gap we can suppose that the secret in our case
is a subset of H, which is the set of “records”. So here S, the set of possible secret
values, becomes P (H). Then we can state adversarial privacy as follows.

Definition 10 (Adversarial Privacy). Given a query q, let O be the set of all pos-
sible outputs of q and Beliefs be a set of potential adversary beliefs. We say that
program q is ε-adversarially private w.r.t. Beliefs iff for all belief ∈ Beliefs , all ele-
ments x ∈ H, and all possible outputs o ∈ O, that Pr

(
x ∈ Xposterior prior q o

)
≤

eε · Pr
(
x ∈ Xprior

)
.

This definition says that query q is acceptable when the output of q increases only
by a small multiplicative factor an adversary’s certainty that some element x is in
the secret, for all adversaries whose prior beliefs are characterized by Beliefs . Ras-
togi and Suciu show that defining Beliefs to be the class of planar, total sub-modular
(or PTLM) distributions renders an adversarial privacy definition equivalent to dif-
ferential privacy. Among other conditions, PTLM distributions require fixed-sized
databases and require the probability of one element’s presence to not be positively
correlated with another’s.

Comparing Definition 10 to Definition 6 we can see that the former makes a relative
assertion about the increased certainty of any one of a set of possible adversarial
beliefs, while the latter makes an absolute assertion about the certainty of a single
adversarial belief. The absolute threshold of our definition is appealing, as is the more
flexible prior belief, which allows positive correlations among state variables. On the
other hand, our definition assumes we have correctly modeled the adversary’s belief.
While this is possible in some cases, e.g., when demographic information is available,
differential privacy is appealing in that it is robust against a much larger number of
adversaries, i.e., all those whose prebeliefs are in PTLM .

Clarkson and Schenider [25] also demonstrate the equivalence of differential pri-
vacy and a notion of information flow. They show that an output of an ε-differentially

28

private program cannot reveal more than ε · log2 e bits (as measured by mutual infor-
mation) of information about any element that is not in the input database. Barthe
and Köpf [14] also make connections between differential privacy and relative infor-
mation leakage based on min-entropy. Alvim et al. [9] show a comparison with min
mutual information.

The strong privacy guarantees based on differential privacy seem to come at a
correspondingly strong cost to utility. For example, deterministic queries are effec-
tively precluded, eliminating some possibly useful applications. For the application
of social networks, Machanavajjhala et al. [61] have shown that good private social
recommendations are feasible only for a small subset of the users in the social network
or for a lenient setting of privacy parameters. We can see the utility loss in our moti-
vating scenario as well. Consider the bday query from our running example. The user’s
birthday being/not being in the query range influences the output of the query only
by 1 (assuming true/false are akin to 1/0). One could add an appropriate amount of
(Laplacian) noise to the query answer to hide what the true answer was and make
the query differentially private. However, this noise would be so large compared to
the original range {0, 1} that the query becomes essentially useless—the user would
be receiving a birthday announcement most days. 2

By contrast, our approach permits answering (deterministic or randomized) queries
exactly if the release of information is below the threshold. Moreover, by tracking
beliefs between queries, there is no limit on the number of queries since we can track
the released information exactly. Even if the threshold is reached, queries can still
be answered as long as they do not reveal information beyond what has already been
revealed. Differential privacy imposes a limit on the number of queries because the
post-query, revised beliefs of the adversary are not computed. Rather, each query
conservatively adds up to ε to an adversary’s certainty about a tuple, and since the
precise release is not computed, we must assume the worst. Eventually, performing
further queries will pose too great of a risk.

2By our calculations, with privacy parameter ε = 0.1 recommended by Dwork [39], the probability
the query returns the correct result is approximately 0.5249.

29

Chapter 4

Predicting Risk with Evolving Secrets

Quantitative information-flow models [20, 23, 24, 83, 100] and analyses [11, 56, 70, 84]
typically assume that secret information is unchanging. Likewise, in the previous
chapter, we have assumed that secrets do not change. But real-world secrets evolve
over time. Passwords, for example, should be changed periodically. Cryptographic
keys have periods after which they must be retired. Memory offsets in address space
randomization techniques are periodically regenerated. Medical diagnoses evolve,
military convoys move, and mobile phones travel with their owners. Leaking the
current value of these secrets is undesirable. But if information leaks about how
these secrets change, adversaries might also be able to predict future secrets or infer
past secrets. For example, an adversary who learns how people choose their passwords
might have an advantage in guessing future passwords. Similarly, an adversary who
learns a trajectory can infer future locations. So it is not just the current value of a
secret that matters, but also how the secret changes. Methods for quantifying leakage
and protecting secrets should, therefore, account for these dynamics.

In Section 4.1 we propose a model for measuring risk with dynamic secrets. To
capture the dynamics of secrets, our model uses strategy functions [104] to generate
new secret values based on the history of past secrets and query outputs. For example,
a strategy function might yield the GPS coordinates of a high-security user as a
function of time, and of the path the user has taken so far. Because of this the risk
incurred by answering queries cannot be attributed solely to the belief of the adversary
concerning the secret value right after the query. The secret might evolve from that
point to increase (or decrease) the eventual risk even if no further interaction between
the user and the adversary takes place. This work is thus aims to predict the risk
over time.

Due to this predictive setting we must also model the behavior of the adversaries in
their query choice and their exploitation of revealed information. Our model includes
wait-adaptive adversaries, who can observe execution of a system, waiting until a
point in time at which it appears profitable to attack. For example, an attacker
might delay attacking until collecting enough observations of a GPS location to reach
a high confidence level about that location. Or an attacker might passively observe
application outputs to determine memory layout, and once determined, inject shell
code that accesses some secret.

Modeling adversary behavior requires us to model their goals and introduces the
possibility of their goals being distinct from the goals of the user (limiting their notion
of risk). Most approaches to QIF consider leakage only from the adversary’s point
of view, whereas the goals and concerns of the defender—i.e., the user interested in
protecting information—are overlooked. While in many cases the adversary’s gain
is directly and inversely related to the defender’s loss, this is not always the case.
Out model allows us to explore this point of view, that is, that the actual leakage

30

of information due to queries is linked to the defender’s loss of secrecy and not
necessarily the adversary’s gain of information.

In Section 4.2 we propose an information-theoretic metric for quantifying defender
loss and adversary gain with dynamic secrets. Our metric can be used to quantify
loss of the current value of the secret, of a secret at a particular point in time, of
the history of secrets, or even of the strategy function that produces the secrets. We
show how to construct an optimal wait-adaptive adversary with respect to the metric,
and how to quantify that adversary’s expected gain and defender’s expected loss, as
determined by a scenario-specific gain and loss functions. In Section 4.2.2 we show
how our metric generalizes previous metrics for quantifying leakage of static secrets,
including vulnerability [100], guessing entropy [55], and g-vulnerability [10].

In Section 4.3 we put our model and metric to use by implementing them in
a probabilistic programming language [48] and conducting a series of experiments.
Several conclusions can be drawn from these experiments:

• Frequent change of a secret can increase gain, even though intuition might
initially suggest that frequent changes should decrease it. The increase occurs
when there is an underlying order that can be inferred and used to guess future
(or past) secrets.

• Wait-adaptive adversaries can derive significantly more gain than adversaries
who cannot adaptively choose when to attack. So ignoring the adversary’s
adaptivity (as in prior work on static secrets) might lead one to conclude secrets
are safe when they really are not.

• A wait-adaptive adversary’s expected gain increases monotonically with time,
whereas a non-adaptive adversary’s gain might not.

• Adversaries that are low adaptive, meaning they are capable of influencing their
observations by providing low-security inputs, can learn exponentially more
information than adversaries who cannot provide inputs.

• Both adversary gain and defender loss are necessary to quantify vulnerability of
the secret and that if the distinction is ignored, incorrect conclusions can follow.

• Sound overestimation of adversary gain can lead to unsound underestimation
of defender loss (once again motivating the need to distinguish the two).

We conclude the chapter in Section 4.4 with related work.
The work presented in this chapter was originally published in the 2014 Sympo-

sium on Security and Privacy [66], the 2014 Workshop on Foundations of Computer
Security [67], and a University of Maryland technical report released in 2014 [68]. The
work was done in collaboration with Mário Alvim, Michael Clarkson, and Michael
Hicks.

31

scen (scenario)

evaluation

context

round

high-input generation
η(Ht−1, Lt−1, Ot−1)

action generation
α(Lt−1, Ot−1)

system
υ(Ht, Lt, Ot−1)

high input ht low input `t
delay 1

ot−1

loss evaluation
λ(Ht, At−1, Ot−1)

gain evaluation
γ(Ht, At−1, Ot−1)

loss s gain g

high-input strategies Sη

Xη

action strategies Sα

high-input
strategy

η action
strategy

α

ηwcηbc αopt

history (Ht, At−1, Ot−1)

Figure 4.1: Model with changing secrets.

4.1 Model for dynamic secrets

The model we present greatly expands the simple channel model of Figure 2.1 in
order to handle the additional nuances of the setting. Most importantly, the model
captures an iterative process instead of a one-shot channel execution. Though the
simple channel model could be applied iteratively to model the execution of multiple
queries, our need to take into account what exactly happens in between the iterations
requires us to capture the process of iteration within the model itself. In addition to
iteration, we have the following features:

Dynamic secrets Typical information flow models assume the defender’s secret
is fixed across adversarial observations. Our model permits the defender to replace
the existing secret with a new secret without resetting the measure of leakage; thus
from the adversary’s point of view, the secret is a moving target.

Interactivity To model a powerful adversary, our model allows feedback from
outputs to inputs. That is, the adversary can use knowledge gained from one obser-

32

vation to choose a subsequent input to feed into the system. We call an adversary
with this low adaptive.

Input vs. attack Our model distinguishes inputs that are attacks from those
that are not. For example, an adversary might navigate through a website before
uploading a maliciously crafted string to launch a SQL injection attack; the navigation
inputs themselves are not attacks. This distinction is important when quantifying
information flow: the leakage at one point is taken with respect to the expectation of
a future attack.

Delayed attack Just as adversaries are permitted to decide what input to
provide, they are also permitted to decide when is the best time to attack, and this
decision process will be considered when quantifying leakage. An adversary with this
ability will be called wait adaptive.

The model is depicted in Figure 4.1, and consists of roughly three parts: the
context, at the top defines the beliefs of the defender and adversary about the secret
and its possible evolutions; the round, in the middle defines the iterative process of
channel execution and secret evolution; and the evaluation, at the bottom captures
exploitation which results in a measure of adversary gain and defender loss. The
latter two phases together are termed the scenario. As a whole, the model essentially
defines a two-player game with imperfect information and non-zero-sum payoffs. We
will limit our analysis to situations where the defender’s strategy or the adversary’s
strategy is fixed. This will let us define metrics by optimizing a party’s actions without
the need for costly equilibrium analyses that would otherwise be necessary.

We describe each part of our model in turn. The terminology that we use through-
out the model is tabulated in Table 4.1.

4.1.1 Iterated rounds

The model depicted in Figure 4.1 characterizes an interaction between two partici-
pants, an adversary and a defender. The elements of the classic model from Figure 2.1
can be seen in the middle part of the figure, the round, which is iterated over a series
of rounds (hence its name). Here, the defender (the box labeled high-input genera-
tion) starts by picking an initial secret (high) value out of a set H, and may choose
a different secret in subsequent rounds t (the secret value h is indexed by the round
t). Likewise, in each round the adversary (the box labeled action generation) pro-
duces a low input drawn from a set L. These inputs are fed into the system υ which
produces an observable, visible to both participants, that is drawn from set O. The
system may consider past observations as well when producing its result; it has type
H∗ ×L∗ ×O∗ → D (O). At some predetermined time T , or before then if it is in his
interest, the adversary picks an exploit from a set E , which is then evaluated, along
with the history of events so far, to determine the gain of the adversary and the loss
of the defender. We discuss the evaluation phase at the end of this section.

33

Notation Explanation
H Finite set of high inputs
L Finite set of low inputs
E Finite set of exploits
history The set H∗ × L∗ ×O∗
pubhistory The set L∗ ×O∗
A The set of low inputs and exploits, L ∪ E (also called actions)
O Finite set of observables
υ The system function, of type history → D (O)
η A high-input strategy, of type history → D (H)
α An adversary’s action strategy, of type pubhistory→ D (A)
Sη The set of possible high-input strategies
Pr(Xη) The distribution of possible high-input strategies for a given scenario
Sα The set of possible action strategies
λ, γ Loss, and gain, functions, respectively, each with type history → D (R)
T ∈ Z+ The latest possible time to attack in a given scenario

Table 4.1: Elements of the model with changing secrets.

The history of an execution can be split into a secret history (high values) and a
public history (low values and observables). The defender’s view of an execution con-
sists of both the secret and public history, whereas the adversary’s view is restricted
to the latter. The choices made in each round by the defender and adversary are
specified in terms of strategy functions, which depend on their views of the execution.
The defender’s high-input strategy is a function η : history → D (H) that produces the
next high value given the history so far. For the adversary, the strategy is a function
α : pubhistory → D (L ∪ E) that produces a low input or an exploit given the public
history of the execution. These strategies are determined by the context in a manner
described in the next section.

Next we characterize the scenario precisely. A single round of interactions is
described by the round function (where we write A to mean the set L ∪ E):

roundη,α : history → D (history)

1 let roundη,α : (H,A·e,O)7→(H,A·e,O)
2 let roundη,α : (H,A,O) 7→ // (A = ε or A ∈ L∗)
3 let a←α(A,O) in
4 if a ∈ L then
5 let o←υ(H,A·a,O) in
6 let h←η(H,A·a,O·o) in
7 (H·h,A·a,O·o)
8 else // a ∈ E
9 (H,A·a,O)

The subscripts on the function identify the two strategy functions, and the proper
arguments characterize the history of high inputs, actions (low inputs or exploits),

34

and observations made so far. Lines 2–9 consider the case that the last action of the
adversary was a low input `. In this case, the scenario computes next action of the
adversary (line 3) and, if it is a low input (line 4), produces the next observation (line
5) and the subsequent high value using the defender’s strategy (line 6). Each of these
choices is appended to the existing history (line 7). If the adversary instead produces
an exploit (line 8), then just this exploit is added to the history (line 9). An exploit
is considered the final event of an interaction, and as such line 1 leaves the history
untouched.

4.1.2 Context

The context describes the possible strategy functions used in a scenario. It includes
a set of high-input strategies Sη and a distribution Xη on these strategies, which
encodes an adversary’s prior knowledge of the possible strategies the defender will
use. This distribution helps establish the adversary’s initial uncertainty about the
defender’s secret.

The context also includes a set of adversary strategies Sα which enumerates the
space of behaviors permitted to the adversary. While the defender’s strategy can be
any one drawn from Xη, our definition of information leakage assumes that adversaries
are optimal and pick from the set Sα only strategies maximizing expected gain. Later,
we will define the set Sα to restrict the adversary in several ways and in so doing show
how to define standard QIF metrics.

4.1.3 Full scenario and evaluation

The impact of an exploit is evaluated by two functions, as shown at the bottom of the
figure. The gain function γ : history → D (R) determines the gain to the adversary;
the loss function λ : history → D (R) determines the defender’s loss. Notice that gain
functions are defined over the history of each of the relevant values, rather than, say,
the most recent ones. This is because we are quantifying leakage about moving-target
secrets, so we must discriminate current and past high values.

To use these functions to compute the information leakage, we can evaluate the
scenario up to (at most) some time T and then compute the gain, and loss, of the
final outcome. This is done according to the scen function.

scenγ,λ : Z× Sη × Sα → D (R× R)

1 let scenγ,λ : (T, η, α)7→
2 let h0←η(ε, ε, ε) in

3 let (H,A,O)←roundTη,α(h0, ε, ε) in

4 let s←λ(H,A,O) in
5 let g←γ(H,A,O) in
6 (s, g)

Evaluation starts with computing the initial high value h0 (line 2). It then com-
putes T rounds using round (line 3): on the first iteration it uses arguments (h0, ε, ε),

35

which produces some output (H2, A1, O1) that is used as input to the next call to
round, whose output is passed to the next call, and so on; this happens T times with
(H,A,O) as the final outcome. The loss s and gain g are computed on lines 4 and 5,
respectively.

In the remainder of this chapter, when (s, g) = E (scenγ,λ(· · ·)) we sometimes write
lossγ,λ(· · ·) and gainγ,λ(· · ·) to refer to the expected loss s and the expected gain g,
respectively. 1

4.2 Metrics

The evaluation component of the model from the previous section produces expected
values of loss and gain for given defender and adversary strategies. In this section we
use these values to define metrics of the information flow of system executions, and
we show how to compute these metrics. Our definitions generalizes several popular
metrics from the literature which we demonstrate in Section 4.2.2.

4.2.1 Defining the metrics

The amount of information leaked by a system depends on actions performed by
both adversary and defender. Our metrics are defined assuming that each party has
independent interests, and that each has some knowledge about the other’s actions.

In particular, we assume that the adversary knows that the defender draws a high-
input strategy according to Xη. Hence an optimal adversary picks an action strategy
αopt ∈ Sα that would maximize their expected gain. The adversary’s expected gain G
is defined, then, as the expected gain when using an optimal strategy αopt.

Given that the defender draws a high-input strategy from Xη, the expected loss S
is defined as the expectation of the loss evaluation function, assuming the adversary’s
strategy is their optimal one, αopt.

Figure 4.2 depicts an example of spaces of strategies, together with the gain and
loss they induce. In both graphs, the x-axis represents defender’s loss and the y-axis
represents adversary gain.

The top graph depicts the set of possible adversary strategies. The maximum
expected gain, labeled G, is achieved by an optimal strategy αopt, and this strategy
induces an expected loss, labeled S, for the defender. This loss, however, is not
necessarily the maximum (or minimum) possible.

Worst- and best-case defender loss are depicted in the bottom graph. They are
defined, respectively, as the maximum and minimum expected loss over the set Sη of
high strategies when the adversary follows the optimal strategy αopt.

Whereas S represents the expected loss over all defenders in Sη, worst-case loss
S∧ and best-case loss S∨ are absolute bounds that hold for all defenders.

Before formally introducing metrics to capture the interplay between defender’s
loss and adversary’s gain, we will introduce the following notation.

gainγ,λ(T, η←Xη, α)
def
= Eη←Xη

[
gainγ,λ(T, η, α)

]
, and

1Multivariate expectation E(x, y) is defined as (E(x),E(y)).

36

loss
(for η ← Xη)

gain
(against η ← Xη)

action strategies
Sα

high-input
strategies
Sη

αopt

loss
(against
αopt)

ηwcηbc

G

S

S S∧S∨

Xη

Figure 4.2: Metrics of risk among defender and adversary strategies
Optimal expected gain (above), and (worst case, best-case, expected) loss (below).

lossγ,λ(T, η←Xη, α)
def
= Eη←Xη [lossγ,λ(T, η, α)],

The expectation is taken over the probability Pr (Xη) and the various probabilities in
the other model parameters.

Definition 11 (Metrics of information).

1. An adversary’s (optimal) expected gain against prior Pr(Xη) is the maximal
expected gain over the set Sα of adversary strategies:

GT
γ (Xη,Sα, υ)

def
= max

α∈Sα
gainγ,λ(T, η ← Xη, α)

= gainγ,λ(T, η ← Xη, αopt)

2. The defender’s expected loss against the optimal adversary αopt is defined as: 2

STγ,λ (Xη,Sα, υ)
def
= lossγ,λ(T, η ← Xη, αopt)

3. The defender’s worst case (best case) loss is the maximal (minimal) expected
loss against the optimal adversary αopt:

ST∧γ,λ (Xη,Sη,Sα, υ)
def
= max

η∈Sη
lossγ,λ(T, η, αopt)

= lossγ,λ(T, ηwc, αopt)

2We assume that if there are multiple optimal adversary strategies, αopt is one which maximizes
defender loss among them (that is, uses loss as a tie-breaker in the optimization).

37

ST∨γ,λ (Xη,Sη,Sα, υ)
def
= min

η∈Sη
lossγ,λ(T, η, αopt)

= lossγ,λ(T, ηbc, αopt)

(So, ηwc and ηbc are the strategies that, respectively, maximize and minimize
loss against an optimal adversary.)

4.2.2 Expressing existing metrics

The model for predicting risk described in Chapter 4 extends various models for
quantifying information flow. Expressing more limited models is useful to ground the
extensions in already familiar frames. We summarize in this section how to express
vulnerability, g-vulnerability, and guessing entropy in our model with varying limits
on adversary power.

Low-adaptivity The ability of an adversary to influence the system is modeled
using low inputs. This ability can be restricted to model situations without adaptive
adversaries by setting L = ∅ or alternatively defining adversary strategies such that
they ignore observations: α : (L,O) 7→ f(L). In either way, the adversary lose any
ability to adaptively influence the observation process.

Wait-adaptivity An import element of adversaries introduced in [66] is their
ability to adaptively wait for the right time to attack (exploit). This is modeled by
an adversary strategy producing an exploit instead of a low input. This power can
be restricted by defining adversary strategies so that they only output an exploit at
time T and no other time.

Dynamics Our model allows the secret to change over time based on the
history up to that point. We can restrict the model by defining high-input strategies
in a manner that lets them pick only the initial high value, but keeps it constant
thereafter.

We will use the term static model to refer to scenarios in which the adversary and
model is restricted as noted above. We then define existing metrics using a static
variant of our model.

Vulnerability

The notion of vulnerability [100] corresponds to an equality gain function (i.e., a
guess).

let gain vul :(H·h,A·e,O):→
if h = e then 1 else 0

The goal of the attacker assumed in vulnerability is evident from gain vul; they are
directly guessing the secret, and they only have one chance to do it.

38

Theorem 12. In a static model, the vulnerability (written V) of the secret conditioned
on the observations is equivalent to dynamic gain using the gain vul gain function.

GT
gain vul (· · ·) = V (Xh | XO)

In the above we use Xh and XO to designate the random variables representing
the initial/last/only high value and the string of observations, respectively. We also
omit the loss function as it does not influence gain.

g-vulnerability

Generalized gain [10] functions can be used to evaluate metrics in a more fine-grained
manner, leading to a metric called g-vulnerability. This metric can also be expressed
in terms of the static model. Let gainfunc be a generalized gain function, taking in the
secret and an adversary exploit and returning a real number between 0 and 1, then
we have:

let gain gen gain:(H·h,A·e,O) 7→
let g←gainfunc h e in g

The difference between expected gain and g-vulnerability are non-existent in the
static model. The gain of a system corresponds exactly to g-vulnerability of gainfunc,
written Vgainfunc (· · ·).

Theorem 13. In a static model the g-vulnerability of gainfunc is equivalent to dynamic
gain using gain gen gain gain function.

GT
gain gen gain (· · ·) = Vgainfunc (Xh | XO)

Guessing-entropy

Guessing entropy [73], characterizing the expected number of guesses an optimal
adversary will need in order to guess the secret, can also be expressed in terms of the
static model. We let exploits be strings of highs (really permutations of all highs),
E def

= H|H| . The exploit permutation corresponds to an order in which the secret is
to be guessed. We then define expected gain to be proportional to how early in that
string of guesses the secret appears.

let pos of :(h,H)7→
// compute the position of h in H //
// assuming strings are 1−indexed //

let gain guess ent :(H·h,A·e,O)7→
let pos←pos of(h, e) in −pos

Note that we negate the gain as an adversary would optimize for the minimum
number of guesses, not the maximum. Guessing entropy, written G, is related to
dynamic gain as follows.

39

Theorem 14. In a static model, guessing entropy is equivalent to (the negation of)
dynamic gain using the gain guess ent gain function.

−GT
gain guess ent (· · ·) = G (Xh | XO)

4.2.3 Computing optimal adversary gain and associated defender loss

If the sets of possible strategies are large, enumerating them in order to calculate
the given metrics could be too costly. Here we consider the following alternative
approach.

We assume that the set of adversary strategies Sα has a basis of deterministic
strategies, which ensures that the search for optimal action strategies can be simpli-
fied. We then define a procedure P that predicts the adversary’s expected gain and
the associated defender’s loss. This procedure builds an action strategy (simplified
by our assumption) that always picks an action maximizing gain according to the
adversary’s current belief about the state of the system. This belief is constructed by
the procedure infer which describes how the adversary updates their knowledge about
the high values in an execution, given their view of the system (the public history of
adversary actions and observables). This procedure produces a distribution over high
values conditioned on the adversary’s view. We describe each of these steps in more
detail in the rest of this section.

Structure on Sα We assume the set Sα has a basis composed of determin-
istic strategies, meaning that whenever an action can be generated by a probabilis-
tic strategy in Sα, there is also a deterministic strategy in Sα that can generate
the same action. We represent this basis in compact form as a possibilistic strategy
αS : pubhistory → P (A), which returns the subset of A consisting of exactly all ac-
tions allowed by some strategy in Sα. The set of all deterministic strategies gen(αS)
generated by the possibilistic strategy αS is given by

gen(αS)
def
= {α ∈ pubhistory→ D (A) :

α is deterministic,

α is consistent with αS},

where we say strategy α is consistent with possibilistic strategy αS iff support (α(L,O)) ⊆
αS(L,O) for every L,O.

Assuming that gen(αS) ⊆ Sα, we can greatly reduce the computational cost of
finding an optimal strategy, as the best strategy among all of those in Sα can be
found using the possibilistic strategy as the underlying search space. 3

3This is because in games in which an adversary is optimized against a fixed defender, as is the
case here, there is always an optimal deterministic strategy [66], assuming it can choose from among
the options available to the probabilistic strategies. Effectively, in general probabilistic strategies
can be ignored as long as the space of deterministic ones is general enough (which is the case, for
instance, when deterministic strategies are corner points for the space of all strategies).

40

Adversary inference By interacting with the system and observing the public
history of an execution, the adversary learns about the defender’s strategy and the
high values. For a given context Xη and system υ, this learning process is encap-
sulated by the procedure infer defined below. Given the public history visible to an
adversary, the procedure produces a distribution over the secret history conditioned
on adversary’s view (i.e., consistent with the adversary’s observations). We will use
this distribution in maximizing the expectation of gain.

infer : pubhistory→ D (Sη ×H∗)

1 let infer :(ε, ε) 7→
2 let η←Xη in
3 let h←η(ε, ε, ε) in
4 (η, h)
5 let infer :(A·a,O·o)7→
6 let (η,H)←infer(A,O) in
7 condition υ(H,A·a,O) = o in
8 let h←η(H,A·a,O·o) in
9 (η,H·h)

The second case (lines 5–9) determines the adversary’s knowledge about H·h
given a non-empty public history A·a, O·o. The adversary first determines an initial
knowledge about η and H, which is defined recursively (line 6). This knowledge is
then refined (via probabilistic conditioning) by taking into consideration that the
system function must have returned o when evaluated on H,A·a,O (line 7). Finally,
he predicts the next high value h as produced from the high strategy η (line 9).

Gain optimization We can now define P (for “prediction”) as the function
that, for a given context Xη and system υ, maps the adversary’s view to the pair of
their optimal expected gain and associated defender’s expected loss.

P (A,O)
def
=

max
a∈αS(A,O)

E(·,H)← infer (A,O)

g←γ(H,A·a,O)
s←λ(H,A·a,O)

[(g, s)] (1)

E(η,H)← infer (A,O)
o←υ(H,A·a,O)

[P (A·a,O·o)] (2)

where (1) requires a ∈ E or t = T , and (2) requires a ∈ L and t < T , given that
t

def
= length of A,O. For purposes of maximization, we order pairs lexicographically,

favoring g over s, i.e., (g1, s1) < (g2, s2) whenever g1 < g2 or g1 = g2 and s1 < s2. This
is a technicality required for the definition of defender loss when there are multiple
optimal adversaries. This definition lets us construct an optimal “demonic” adversary
who, when gain is equal, picks actions that maximize loss.

The definition of P recursively maximizes the expected gain over all actions avail-
able to the adversary, given the public history at each time step. Whenever an exploit
is produced, or when the maximum time T is achieved, the adversary expected gain

41

is calculated using the result of the gain function evaluated over the public history
and the adversary’s belief about what the secret history might be. Alternatively,
when t < T and the action is a low input, their expected gain is calculated using the
gain expected for the adversary’s view at the following time step, which includes a
prediction of what the next observable might be.

An optimal strategy αopt is defined by replacing max with argmax in the definition
of P above.

Proposition 15. The recurrence P accurately describes the optimal expected adver-
sary gain and the associated defender loss. Also, the strategy αopt is a strategy that
realizes both.

GT
γ (Xη,Sα, υ) = P1(ε, ε) = gainγ,λ(T, η ← Xη, αopt)

STγ,λ (Xη,Sα, υ) = P2(ε, ε) = lossγ,λ(T, η ← Xη, αopt)

4.2.4 Computing worst- and best-case defender loss

The worst- and best-case defender loss can be determined by computing lossγ,λ(T, η, αopt)
for every η ∈ Sη. Once again, enumerating the set Sη of defender strategies may be
too costly, so we assume additional structure on that set and describe how to find the
defender strategies that realize the worst- and best loss.

More precisely, we consider that the defender’s strategy can be split into two com-
ponents: (i) a controllable one, which is deterministic and can be directly regulated
by the defender, and (ii) an imposed one, which can be probabilistic and is beyond
the defender’s control. As an example, consider a defender who can decide when to
reset a secret key (via a controlled component), but does not have control over the
value it is reset to (it is picked by the imposed component). This expressiveness is
particularly relevant for calculating our best- and worst-case metrics, since it allows
us to rule out a defender who, knowing beforehand that the adversary is rational,
would behave so to minimize the efficacy of the adversary’s strategy (e.g., by always
picking the secret key that would be guessed last by the rational adversary).

Formally, the imposed and controllable components of a defender strategy are
separated as follows. Define H̄ to be a set of high actions (distinct from secret high
values H), modeling inputs that the controllable component can produce and feed
to the imposed component. A controllable half is a strategy η̄ : history → D

(
H̄
)

that produces a high action to be fed to a imposed half, which is a function ηf :
history × H̄ → D (H) that takes the high action into account to actually produce a
high value. A defender strategy, thus, is a composition η̄ ◦ ηf :
(η̄ ◦ ηf):(H,L,O) 7→

let h̄←η̄(H,L,O) in
ηf (H,L,O, h̄)

42

Our enumeration of high actions is made akin to that of adversary actions in
the optimization for gain. We will similarly define a possibilistic high action strategy
η̄S : H∗ × L∗ ×O∗ → P

(
H̄
)
, which provides the set of high actions available at any

point in a scenario. The search for the worst- and best-case defender loss can be thus
restricted to strategies generated as follows:

gen(η̄S , ηf)
def
= {η ∈ history → D (H) :

η = η̄ ◦ ηf ,
η̄ is deterministic,

η̄ is consistent with η̄S}

We thus assume that gen(η̄S , ηf) ⊆ Sη, and that any other strategy in Sη is a
composition of some η̄ (consistent with η̄S) and ηf . From here we proceed similarly
as in the optimization of adversary behavior. We define S∧ and S∨ as mappings from
the defender’s view (the full history of the execution) to their expected worst- and
best-case loss, respectively.

S∧(H,A,O)
def
=

max
h̄∈η̄S(H,A·a,O)

Eh←ηf (H,A·a,O,h̄)

s←λ(H·h,A·a,O)

[s] (1)

Eh←ηf (H,A·a,O,h̄)
o←υ(H·h,A·a,O)

[S∧(H·h,A·a,O·o)] (2)

where (1) requires a ∈ E or t = T , and (2) requires a ∈ L and t < T , given that
a

def
= αopt(A,O) and t

def
= length of H.

The definition of S∨ for computing the best-case is the same but replacing max
with min and S∧ with S∨ in the recursive case. Let ηwc and ηbc be strategies defined by
replacing max and min above with argmax and argmin respectively, and composing
with the imposed ηf as described above.

Proposition 16. The recurrences S∧ and S∨ accurately describe the worst- and best-
case defender loss against the optimal adversary. Also, the strategies exhibiting the
worst- and best-case loss are ηwc and ηbc, respectively.

ST∧γ,λ (Xη,Sη,Sα, υ) = S∧(ε, ε, ε)

= lossγ,λ(ηwc, αopt)

ST∨γ,λ (Xη,Sη,Sα, υ) = S∨(ε, ε, ε)

= lossγ,λ(ηbc, αopt)

4.3 Experiments

In the following section we perform a sequence of experiments of various scenarios
to demonstrate and explore several aspects of risk prediction using our model. First

43

we present several experiments that describe zero-sum settings, ones in which the
loss to defender and gain to adversary are the same quantity. Later we demonstrate
scenarios in which this is not the case.

We implemented our model using a simple monadic embedding of probabilistic
computing [93] in OCaml, as per Kiselyov and Shan [54]. The recursive procedure P
from Section 4.2 is computed using these elements to obtain both the optimal adver-
sary gain and associated defender loss, as well as the strategy that achieves these. To
compute the worst- and best-case defender loss we similarly implement the recursive
procedures S∧ and S∨ of Section 4.2.4. The implementation (and experiments from
the next section) are available online 4. Though a big portion of the implementation
involves probabilistic programming and inference, there are significant roadblocks to
applying the approximate approach for the tasks described in Chapter 6. The biggest
issue is that the model in this Chapter involves iterative steps which optimize ad-
versary choices based on the result of probabilistic inference. If an approximation
does not provide a definitive optimal choice at step t, then multiple potentially op-
timal adversary actions would need to be considered and the work for optimizing
step t + 1 would increase two-fold (or n-fold where n is the number of potentially
optimal choices). Though the issue is not insurmountable, it could introduce enough
complexity to discount any benefits of the approximation.

Given the limitations of our implementation, the experiments we present are sim-
ple and include only limited ranges of secrets, inputs, and observables. We cannot
analyze, for example, the full space of passwords in an authentication scheme, ad-
dresses in an address space randomization approach, medical diagnoses in a medical
information sharing system, or locations in a location-based service. Instead we fo-
cus on small examples with which we demonstrate our model and make observations
which should carry-over to realistic scenarios. The setting of our experiments is a
whimsical one so that the limited range of elements in these experiments does not
need to be motivated as realistic.

Our experiments develop several examples on the theme of stakeouts and raids.
Each example varies different parameters, including whether and how a secret changes,
whether the adversary is low- and/or wait-adaptive, and whether there is are costs
associated with observations. We describe the general scenario first and in the fol-
lowing experiments we will restrict various parts of the model in order to focus each
experiment on a particular aspect.

Consider a pirate captain (the defender) who can choose to hide a stash of gold
in one of a set of possible stash locations, modeled as an integer between 0 and 7. At
every point in time the rival Captain (the adversary) may pick one of three actions:
(i) stake out, at a cost, a location to learn whether the defender’s stash is stored there;
(ii) raid a location, obtaining a gain of 1 if the stash is found there, and 0 otherwise;
or (iii) stall and not stake out or raid at all (at no gain or cost). Concomitantly, every
f -th time step (for f to be specified by experiment), the defender can move the stash
to a new random location. In the non-zero-sum section later on we will define the

4https://github.com/plum-umd/qif

44

https://github.com/plum-umd/qif

loss to the defender based on whether or not the stash stays hidden, regardless of the
cost incurred by the adversary in finding it.

This example can be formally captured by our model as follows. (Whenever we
use the variable t in the pseudo-code, it will refer to the length of the high portion of
the history.)

• Sets of possible high inputs, low inputs, observations, and exploits are encoded
as:

H = {0, · · · , 7}
L = {Stakeouti}7

i=0 ∪ {No-stakeout}
O = {Found,Not-found}
E = {Raidi}7

i=0 ∪ {No-raid}

• The high-input strategy depends on the parameter f that determines the fre-
quency of changing the stash location and is modeled by the function movef :

let movef :(H·h,A,O)7→
if t mod f = 0

then uniform H
else h

Hence Sη = {movef}. (We are not yet reasoning about worst- and best-case
loss, so we do not need to decompose the defender strategy into controllable
and imposed components as per Section 4.2.4.)

• The adversary is assumed to know the defender’s strategy. The adversary’s
prior knowledge Xη is equal to Xmovef .

Later in this section we will present an experiment in which the adversary does
not exactly know the defender’s strategy.

• The possibilistic basis αS for adversary strategies will vary in the first few
experiments. The most restricted will be an adversary that is non-adaptive and
cycles through low-inputs via some ordering of the 8 possible stash locations.
Given an ordering ord : L∗, the low input at time t will be to stakeout location
ord(t mod 8). This adversary will only exploit his knowledge at the final time T .
We will see in the second experiment that the order does not matter much and
we will use the ordering ord = id

def
= 0·1 · · · 7 for many of the experiments where

non-low-adaptive adversaries are modeled.

let act nonadaptord:(A,O) 7→
if t = T then E
else

{
Stakeoutord(t mod 8)

}
A low adaptive adversary will pick from among all low inputs up to time T at
which point they will pick an exploit:

45

let act lowadapt:(A,O) 7→
if t = T then E
else L

A wait-adaptive, but not low-adaptive adversary will pick low inputs according
to a fixed ordering but also have the option of exploiting at any time:

let act waitadaptord:(A,O)7→{
Stakeoutord(t mod 8)

}
∪ E

In the most general experiments, the adversary will be fully adaptive as defined
by act all :

let act all :(A,O)7→L ∪ E

• The system function, through which the adversary makes observations, is υ =
stakeout maybe, and it determines whether the adversary staked out the correct
location or not:

let stakeout maybe:(H·h,A·No-stakeout, O)7→
Not-found

let stakeout maybe:(H·h,A·Stakeout`, O)7→
if h = ` then Found else Not-found

• The adversary gain, γ = raid maybec, computes the cumulative cost incurred
for observations made by the adversary. If the adversary decides to raid, the
function adds to the cost a value of either 1 or 0 depending on whether the raid
was successful or not successful:

let raid maybec:(H·h,A·No-raid, O)7→
−c · count stakeouts(A)

(∗ count how many adversary actions were stakeouts ∗)
let raid maybec:(H·h,A·Raid`, O)7→

let raid gain ← (if h = ` then 1 else 0) in
let stakeouts ← count stakeouts(A) in

raid gain − c · stakeouts

The process is parameterized by the value c of the cost the adversary incurs for
each observation.

• In the first few experiments, we will only be concerned with the adversary gain.
Later we will separately define the defender loss, λ = raid success , that indicates
only the success of the raid if it occurred, ignoring the costs incurred by the
adversary.

let raid success :(H·h,A·no-raid, O)7→0
let raid success :(H·h,A·raid`, O)7→

if h = ` then 1 else 0

46

2-3.0
2-2.5
2-2.0
2-1.5
2-1.0
2-0.5
2-0.0

0 1 2 3 4 5 6 7 8 9 10 11 12

ex
pe

ct
ed

 r
ai

d
ga

in

T = max number of stakeouts before raid

dynamic, imperfect raid (3)
imperfect raid (2)

perfect raid (1)

Figure 4.3: Gain in experiment of Section 4.3.1
Expected raid gain over time given stakeouts stakeout maybe with (1) static stash
move∞ and perfect raids raid maybe0, (2) static stash and imperfect raids raid imperfect,
and (3) moving stash move4 and imperfect raids, all with non-adaptive adversaries
act nonadaptid.

4.3.1 How does gain differ for dynamic secrets, rather than static secrets?

Our first experiment considers the impact on information leakage due to a dynamic
secret (using high-input strategy movef). The adversary here will be non-adaptive
and for comparison we also consider a high-input strategy that does not change the
secret by setting f to infinity.

In this experiment the stakeout cost to the adversary, c, will be 0. We also consider
a variation of a raid that has a chance to fail even if the raid location is correct, and
has a chance to accidentally discover a “new” stash even if the raid takes place at the
wrong location. This can be modeled by the following gain function:

let raid imperfect :(H·h,A·Raid`, O)7→
let success ← (if h = ` then flip 0.8 else flip 0.2) in
if success then 1.0 else 0.0

Figure 4.3 plots how the gain differs when we have a static secret with perfect
raids, a static secret with imperfect raids, and a dynamic secret with imperfect raids.
The static portion (1) with perfect raid is an example of an analysis achievable by
a parallel composition of channels and the vulnerability metric [42]. Adding the
imperfect gain function (2) alters the shape of vulnerability over time though in a
manner that is not a mere scaling of the perfect raid case. The small chance of a
successful raid at the wrong location results in higher gains (compared to perfect raid)
when knowledge is low. With more knowledge, the perfect raid results in more gain
than the imperfect. Adding a dynamically changing stash (3) results in a periodic,
non-monotonic, gain; though gain increases in the period of unchanging secret, it falls
right after the secret changes. This, in effect, is a recovery of uncertainty, which is

47

thus not a non-renewable resource [42]. In the following sections we will refer to the
period of time in which the secret does not change as an epoch.

4.3.2 How does low adaptivity impact gain?

To demonstrate the power of low adaptivity we will use a system function that out-
puts whether the stash is east or west of the stakeout location. Assuming the stash
locations are ordered longitudinally, this function is just a comparison between the
stash and stakeout location. The non-adaptive adversary will pick the stakeouts in
a fixed order according to act nonadaptid (we will consider all permutations of the
set of locations as possible orders), whereas the low-adaptive adversary will use act
according to act lowadapt.

let stakeout eastwest:(H·h,A·Stakeout`, O) 7→
if h ≤ ` then Found else Not-found

Figure 4.4 demonstrates the expected gain of both types of attackers. For fixed-
order (non-adaptive) adversaries, we used all 8! permutations of the 8 stash locations
as possible orders and plotted them all as the wide light gray lines in the figure.
Though there are many possible orders, the only thing that makes any difference in
the gain over time is the position of 7 (the highest stash location) in the ordering
as the system function for this input reveals no information whatsoever. All other
stakeout locations reveal an equal amount of information in terms of the expected
gain. To demonstrate this behavior, we have specifically plotted in the figure the gain
for an ordering in which location 7 is staked-out at time 3 (labeled “a fixed strategy”).
Gain increases linearly with every non-useless observation. On the other hand, the
low-adaptive adversary performs binary search, increasing his gain exponentially.

4.3.3 How does wait adaptivity impact gain?

An adversary that can wait is allowed to attack at any time. Adaptive wait has a
significant impact on the gain an adversary might expect. In the simple stakeout/raid
example of Figure 4.5, it transforms an ever-bounded vulnerability to one that steadily
increases in time.

Roughly, the optimal behavior for a wait-adaptive adversary is to wait until a
successful stakeout before attacking. The more observations there are, the higher the
chance this will occur. This results in the monotonic trend in gain over time.

There are subtle decisions the adversary makes in order to determine whether to
wait and allow the secret to change. For example, in Figure 4.5, if the adversary
has to attack at time 5 or earlier and has not yet observed a successful stakeout by
time 3, they will wait until time 5 to attack, letting all their accumulated knowledge
be invalidated by the change that occurs at time 4. This seems counter-intuitive as
their odds of a successful raid at time 3 is 1/5 (they eliminated 3 stash locations from
consideration), whereas they will accumulate only 1 relevant stakeout observation by
time 5. Having 3 observations seems preferable to 1. The optimal adversary will wait
because the expected gain at time 5 is actually better than 1/5; there is 1/8 chance
that the stakeout at time 5 will pinpoint the stash, resulting in gain of 1, and 7/8

48

2-3.0
2-2.5
2-2.0
2-1.5
2-1.0
2-0.5
2-0.0

0 1 2 3 4 5 6 7 8

ex
pe

ct
ed

 r
ai

d
ga

in

T = max number of stakeouts before raid

all fixed strategies (1)
a fixed strategy (2)

adaptive (3)

Figure 4.4: Gain in experiment of Section 4.3.2
Expected raid raid maybe0 gain over time with static stash move∞ given stakeouts
stakeout eastwest with (1) all possible non-adaptive (act nonadaptord) orderings ord,
(2) one possible non-adaptive ordering (ord = 0·1·2·7·3·4·5·6), and (3) adaptive
(act lowadapt) stakeout locations.

2-3.0
2-2.5
2-2.0
2-1.5
2-1.0
2-0.5
2-0.0

0 1 2 3 4 5 6 7 8 9 10 11 12

ex
pe

ct
ed

 r
ai

d
ga

in

T = max number of stakeouts before raid

non-adaptive
adaptive wait

Figure 4.5: Gain in experiment of Section 4.3.3
Expected raid maybe0 gain with moving stash move4 given stakeouts stakeout maybe

with (1) non-adaptive adversary (act nonadaptid) and (2) wait-adaptive adversary
(act waitadaptid).

chance it will not, resulting in expected gain of 1/7. The expectation of gain is thus
1/8 · 1 + 7/8 · 1/7 = 1/4 > 1/5. The adversary thus has better expected gain if they have
to attack by time 5 as compared to having to attack by time 3 or 4, despite having to
raid with only one observation’s worth of knowledge. One can modify the parameters
of this experiment so that this does not occur, forcing the adversary to attack before
the secret changes. This results in a longer period of constant vulnerability after each
stash movement.

49

This ability to wait is the antithesis of moving-target vulnerability. Though a
secret that is changing with time serves to keep the vulnerability at any fixed point
low, the vulnerability for some point can only increase with time. The defender of our
running example would be foolhardy to believe that he is safe from a raid just because
it is unlikely to happen on Wednesday, or any other fixed day; if stakeouts continue
and the adversary is smart enough to not schedule raid before having performed the
stakeouts, the defender will be had. On the other hand, if there is a high enough cost
associated with making an observation, the vulnerability against raids can be very
effectively bounded (as we show in the next experiment).

In fact, the monotonically increasing vulnerability is a property of any scenario
where the adversary can decide when to attack.

Theorem 17. Gain is monotonically increasing with time:

Gt+1
γ (Xη,Sα, υ) ≥ Gt

γ (Xη,Sα, υ)

Proof. (Sketch) The theorem holds as an adversary attacking a system with max
iteration T = t+ 1 will have a chance to attack at time t, using the same exact gain
function that the adversary would attack were T = t, and using the same inputs.
Note that the gain functions we defined to model non-wait-adaptive adversaries were
actually parameterized by max iteration T , and hence were actually different gain
functions (see act nonadaptord for example). Naturally in the T = t + 1 case, the
attacker can also wait if the expectation of gain due to waiting one more time step is
higher.

4.3.4 Can gain be bounded by costly observations?

In this experiment we set the cost associated with making stakeouts to a non-zero
value. Thus the adversary here has an actual decision to make in regard to making
observations.

The results of this scenario are summarized in Figure 4.6 for stakeout costs ranging
from 0.00 to 0.12 and in Figure 4.7 for higher costs in the range 0.1400 to 0.1430. In
the top half of the first figure, the adversary does not have a choice of when to attack
and the optimal behavior is to only perform stakeouts in the epoch that the raid will
happen, resulting in the periodic behavior seen in the figure. Higher costs scale down
the expected gain.

For wait-adaptive adversaries the result is more interesting. For sufficiently small
stakeout costs, the adversary will keep performing stakeouts at all times except for
the time period right before the change in the stash location and attack only when the
stash is pinpointed. This results in the temporary plateau every 4 steps seen in the
bottom half of Figure 4.6. This behavior seems counter-intuitive as one would think
the stakeout costs will eventually make observations prohibitively expensive. Every
epoch, however, is identical in this scenario, the stash location is uniform in 0, ..., 7
at the start, and the adversary has 4 observations before it gets reset. If the optimal
behavior of the adversary in the first epoch is to stakeout (at most 3 times), then it

50

 0

 0.2

 0.4

 0.6

0 1 2 3 4 5 6 7 8 9 10 11 12

ex
pe

ct
ed

 r
ai

d
ga

in

T = max number of stakeouts before (maybe) raid

cost 0.12
cost 0.10
cost 0.08

cost 0.06
cost 0.04
cost 0.02

cost 0.00

 0

 0.2

 0.4

 0.6

 0.8

ex
pe

ct
ed

 r
ai

d
ga

in

Figure 4.6: Gain in experiment of Section 4.3.4
Expected raid maybec gain with costly stakeouts stakeout maybe and moving stash move4

with (top) non-wait-adaptive adversaries (act nonadaptid) and (bottom) wait-adaptive
adversaries (act waitadaptid).

is also optimal for them to do it during the second (if they have not yet pinpointed
the stash). It is still optimal on the (n+ 1)th epoch after failures in the first n. As it
is, the expectation of gain due to 3 stakeouts is higher than no guesses in any epoch,
despite the costs.

The optimal behavior is slightly different for high enough stakeout costs but the
overall pattern remains the same. Figure 4.7 shows the result of an adversary staking
out in an epoch only if he is allowed enough time to attack at the end of the epoch.
That is, for T equal to 1 or 2, the adversary would not stakeout at all, but if T is
3, he will stakeout at times 1,2, and 3. This is because the expected gain given 1
or 2 stakeouts is lower than 0, but for 3 stakeouts, it is greater than 0. As was the
case with the lower cost, since the expected gain of observing in an epoch (3 times)
is greater than not, the optimal adversary will continue to observe indefinitely if he
is given the time.

Note however, that observing indefinitely in these examples does not mean that
the expected gain approaches 1. Analytical analysis 5 of this scenario tells us that

5The quantity is the solution to the recurrence gn which computes the expected gain after n full
epochs, where g0

def
= 0 and gn

def
= 1

8 (1− 1 · c) + 1
8 (1− 2 · c) + 1

8 (1− 3 · c) + 5
8 (gn−1 − 3 · c).

51

 0

 0.01

 0.02

0 1 2 3 4 5 6 7 8 9 10 11 12

ex
pe

ct
ed

 r
ai

d
ga

in

T = max number of stakeouts before (maybe) raid

cost 0.1430
cost 0.1425
cost 0.1420
cost 0.1415

cost 0.1410
cost 0.1405
cost 0.1400

Figure 4.7: Gain detail in experiment of Section 4.3.4
Zoomed-in view of the same setting as Figure 4.6 (top).

after n full epochs, the expected gain is (1− 7c)
(
1−

(
5
8

)n)
and in the limit, this

quantity approaches 1 − 7c. The adversary’s gain is thus bounded by 1 − 7c for
varying stakeout costs c (the point at which it is optimal to not observe at all is
c = 1/7 ≈ 0.1429).

The fact that the adversary’s gain can be bounded arbitrarily close to 0, despite
their strategy of performing stakeouts indefinitely, highlights the need for separating
the notion of defender loss from that of adversary gain. We revisit this example using
a non-zero-sum loss/gain functions in Section 4.3.6.

4.3.5 Does more frequent change necessarily imply less gain?

In this example we demonstrate a counter-intuitive fact that more change is not always
better. So far we have used a high-input strategy that is known to the attacker but
here he will only know the distribution over a set of possible strategies. Furthermore,
guessing the full secret will require knowledge of the high-input strategy and therefore
will require change to occur sufficiently many times. To construct such an example we
will make part of the secret be a permutation which itself governs how (a second part
of) the secret changes over time. We will restrict observations to only reveal (that
second part of) the secret. Thus in this example the adversary will have to make
observations about that second part over several applications of the permutation in
order the learn the unobservable part. Delaying application of the permutation would
thus delay the adversary learning it.

The setup for this example differs somewhat from the running stakeouts example.
Let nbuilds be the number of buildings (in the example figure, nbuilds will be 5),
and nfloors = factorial (nbuilds−1) be the number of floors in each of these buildings.
The (nbuilds) buildings are in a city where stashes of gold tend to be found. Each
building has nfloors floors and each floor of each building is claimed by a pirate
gang. A single gang has the same-numbered floor in all the buildings. That is,

52

2-7.0
2-6.0
2-5.0
2-4.0
2-3.0
2-2.0
2-1.0
2-0.0

0 1 2 3 4 5 6 7 8 9 10 11 12

ex
pe

ct
ed

 r
ai

d
ga

in

T = max number of stakeouts before raid

2-5.0

2-4.0

2-3.0

2-2.0

2-1.0

2-0.0

0 1 2 3 4 5 6 7 8 9 10 11 12

[p
ro

b]
 v

ul
ne

ra
bi

lit
y

of
 h

ig
hf

un
c

T = max number of stakeouts before guess

r=5 r=4 r=3 r=2 r=1

Figure 4.8: Gain and strategy vulnerability in experiment of Section 4.3.5
Changing stash according to Xprior gangs () with stakeouts stakeout building quanti-

fying (top) expected raid raid apartment gain and (bottom) expected vulnerability of
defender strategy η, all with wait-adaptive adversaries (act all) and but with no low
choices.

gang 0 will have floor 0 claimed in every building, gang 1 will have floor 1 in every
building, and so on. Concretely, the set of high values in the experiment will be
H = {0, · · · , 4} × {0, · · · , 23}, where the first dimension is the building number and
the second is the floor/gang number.

The adversary knows there is a stash hidden on some floor in some building and
that every gang moves their stash once in a while from one building to another in
a predictable pattern (the floor does not change). They know all nbuilds gangs each
have a unique permutation π of 0, ..., nbuilds−1 as their stash movement pattern. The
adversary knows which floors belong to which gangs (and their permutation). Given r

as the stash movement rate parameter, the movement of the stash is governed by one
of the following functions, parameterized by gang/floor number gng and that gang’s
movement permutation π:

let gang movegng,π :(ε, A,O)7→

53

(uniform {0,· · ·,nbuilds−1}, gng)
let gang movegng,π:(H·(bldng, flr), A,O) 7→

if t mod r = 0
then (π (bldng), flr)
else (bldng, flr)

The prior belief that the adversary attributes to these strategies isXη = Xprior gangs ()
defined as follows:

prior gangs: () 7→
let gng ← uniform {0, · · ·, nfloors−1} in
let π ← (gen all permutations nbuilds)gng in

gang movegng,π

The function first picks a random gang and generates the permutation that rep-
resents that gang’s stash movement pattern. It then creates a high-input strategy as
defined by gang movegng,π that will perform that movement, keeping the gang/floor the
same, while moving from building to building (the function picks a random building
at time 0).

The adversary sets up stakeouts to observe all the buildings but is only suc-
cessful at detecting activity half the time, and he cannot tell on which floor the
stash activity takes place, just which building. Thus we have L = {Stakeout} and
O = {No-activity} ∪ {Activityi}i∈{0,··· ,nbuilds}.

let stakeout building : (H·(bldg, flr), L,O) 7→
if flip 0.5

then Activitybldg
else No−Activity

The adversary wants to raid the stash but cannot raid the whole building, he needs
to know the floor too. Exploits are thus E = H and the gain function is as follows:

raid apartment:(H·(bldg, flr), A·(bldg′, f lr′), O) 7→
if bldg = bldg’ and flr = flr ’ then 1.0 else 0.0

Now, the chances of a successful raid after a varying number of stakeouts depends
on the stash change rate r. Unintuitively, frequent stash changes lead the adversary
to the stash more quickly. Figure 4.8(top) shows the gain in the raid after various
number of stakeouts, for four different stash change rates (nbuilds = 5). The chances
of a failed observation in this example are not important and are used to demonstrate
the trend in gain over a longer period of time. Without this randomness, the gains
quickly reach 1.0 after r·(nbuilds−1) observations (exactly enough to learn the initially
unknown permutation).

The example has a property that the change function (the permutation π of the
gang) needs to be learned in order to determine the floor of the stash accurately.
Observing infinitely many stakeouts of the same building would not improve the ad-
versary’s chance beyond 1 in nfloors ; learning the high-input strategy here absolutely
requires learning how it changes the secret. One can see the expected progress in
learning the high-input strategy in Figure 4.8(bottom), note the clear association be-
tween knowing the strategy and knowing the secret. We theorize that this correlation
is a necessary part of examples that have the undesirable property that more change
leads to more vulnerability.

54

4.3.6 How does a non-zero-sum utility/gain impact information flow as
compared to zero-sum?

Here we analyze the experiment of Section 4.3.4 but now making a distinction between
the gain of the adversary and the loss to the defender. We use the separate loss
function raid success for this purpose.

Figure 4.9 demonstrates how adversary gain and defender utility behave in this
stakeouts example for varying lengths of time (T). Each line considers a different
cost value c: dotted lines show adversary gain, whereas solid ones show defender loss.
Lines incurring the same cost have the same color, for easier comparison. Notice that
gain very much depends on the cost of observations. With cost 0.00 the gain is highest,
and it steadily decreases as cost increases. At 0.15 it is no longer advantageous for
the adversary to observe at all, so the gain flattens at 1/8 (their initial gain without
any observations). On the other hand, defender loss is not as dependent on the
observation cost: it is essentially the same for costs 0.00, 0.05, and 0.10, and it
follows in magnitude the gain an adversary would receive were cost equal to 0.00.
When the cost is high enough (0.15) the loss drops abruptly to 1/8, since in this case
the adversary would opt to never observe.

We have already noted in Section 4.3.4 that adversary gain and the resulting
defender loss can be bounded at 0 as long as the cost for observations is high enough
(at least 1/7). For intermediate values of cost, the gain and loss are not identical.
There, the gain can be bounded in the limit by 1− c · 1/7 but even given this bound,
the loss for the defender approaches 1.

4.3.7 How can a defender be prevented from a catastrophic worst-case
behavior?

This experiment shows how to use worst- and best-case defender loss as a means of
quantifying secret vulnerability in the face of, respectively, a catastrophic defender
and a particularly lucky one. It shows, on one hand, that a scenario can be suffi-
ciently restricted that even the worst-case defender maintains security for some pe-
riod of time, and on the other hand, that even the most lucky defender will succumb
eventually under those same restrictions.

Best- and worst-case defender loss are extra tools in analyzing the information flow
of a system. Though the adversary is expecting to act optimally against a population
of defender strategies Xη, here we will look at the range of the resulting loss over
three, ever larger, sets of defender strategies Xη ⊂ Sη1 ⊂ Sη2 ⊂ Sη3. In effect this
provides some guarantees that no matter what strategy is chosen by the defender,
their loss will be bounded above and below by the worst case and best case loss. The
worst-case is perhaps more relevant as it provides a means of quantifying security
even in the face of catastrophic defender behavior (like users picking “password” as
their password).

To illustrate our point, consider a slight modification to the previous example.
Assume that now the adversary expects to be attacking a defender who may or may
not choose to move the secret stash every 4th time step. To model this variation

55

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12

ex
pe

ct
ed

 g
ai

n
/ l

os
s

T = max number of stakeouts before (maybe) raid

gain(c=0.15)
gain(c=0.10)
gain(c=0.05)

gain(c=0.00)
loss(c=0.15)
loss(c=0.10)

loss(c=0.05)
loss(c=0.00)

Figure 4.9: Gain and loss in experiment of Section 4.3.6
Expected raid maybec gain (dotted lines) and raid success loss (solid lines) with costly
stakeouts stakeout maybe and moving stash move4.

we decompose the defender strategies into controllable and imposed components, as
described in Section 4.2.4.

Recall that the controllable component produces a high action that the imposed
component uses as input when deciding on what high value to generate. Here we
define the high actions as follows:

H̄ = {Move,No-move} ∪ {Move-toi}7
i=0

In short, the defender can choose to move the stash (but cannot determine where),
leave it in place, or move it to a particular location. Assume the adversary thinks the
defender’s controllable strategy η̄ considers moving the stash every 4 time steps, but
will only do so half the time.

let decide move maybe:(H,A,O) 7→
let c ← flip 0.5 in

if t mod 4 = 0 and c then Move
else No-move

The imposed component of the defender strategy, ηf , controls the actual movement,
and is defined as follows:

let move act:(H,A,O,Move) 7→uniform H
let move act:(H·h,A,O,Move-to`)7→`
let move act:(H·h,A,O,No-move)7→h

let move maybe
def
=

(move act) ◦ (decide move maybe)

Though the adversary believes he is interacting with this kind of a defender (Xη =
Xmove maybe), we will also analyze defender loss with respect to three wider sets of

56

defender strategies, Sη1 ⊂ Sη2 ⊂ Sη3. We define the basis functions for these strategies
as follows.

For the first, the defender has the control to either change the stash every 4 time
steps or not but cannot decide where the stash gets changed to.

let η̄S1 :(H,A,O) 7→
if t mod 4 = 0

then {Move,No-move} else {No-move}

The second, wider set of defender strategies, also includes ones in which the de-
fender can move every 4 time steps to anywhere they want but cannot decide where
the initial stash is placed:

let η̄S2 :(H,A,O) 7→
if t = 0 then {Move}
else if t mod 4 = 0

then {Move-toi}7i=0 else {No-move}

The third, most permissive one, is the set of strategies like the above but also
giving the defender control over the initial stash location:

let η̄S3 :(H,A,O) 7→
if t mod 4 = 0

then {Move-toi}7i=0 else {No-move}

The three sets of strategies are generated from compositions of move act and one
of η̄1, η̄2, η̄3, with the extra addition of the sole strategy the adversary believes is
employed, move maybe.

Sη1

def
= gen(η̄1,move act) ∪ {move maybe}

Sη2

def
= gen(η̄2,move act) ∪ {move maybe}

Sη3

def
= gen(η̄3,move act) ∪ {move maybe}

Notice that Xη ⊂ Sη1 ⊂ Sη2 ⊂ Sη3.
Given the increasing range of defender strategies, the worst- and best-case will

likewise increase in the range between them. The results of this experiment can be
seen in Figure 4.10. The line shows the expected loss for the defender drawn from the
prior Xη, whereas the shaded regions show the range between worst- and best-case
defender loss for varying spaces of defender strategies; lighter regions denote more
permissive spaces.

The most permissive set of defender strategies allows the defender to set the
initial stash location to the one raided by the adversary at time 0 (before making
any observations). This results in the worst-case loss to immediately shoot up to its
maximum. On the other hand, the defender can also pick a stash location that the
optimal adversary will never check and never raid, keeping the best-case loss at 0.

The less permissive set of strategies prevents the defender from picking the initial
stash location. This makes worst- and best-case loss coincide with expected loss until
they get a chance to make a best or worst choice at time 4. Then the worst-case
shoots up to 1 for the same reason as in the previous case, and the best-case stays

57

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6 7 8 9 10 11 12

lo
ss

T = max number of stakeouts before (maybe) raid

Figure 4.10: Loss in experiment of Section 4.3.7
Expected, worst-, and best-case raid success loss against adversary with costly (c =
0.05) stakeouts stakeout maybe and raid raid maybec, with adversary expecting moving
stash according to Xmove maybe. Expected loss is solid line whereas the range between
worst- and best-case loss are shaded; they are shaded lighter for more permissive
defender behaviors.

near the level it has reached up to that point; the adversary will never get to observe
the correct stash location from here on and can only succeed by a lucky raid, as
opposed to having some chance to observe the stash while interacting with expected
defender (thus the slight drop in defender loss compared to expected loss).

Finally the most restricted set of strategies only allows the defender to choose to
move or not move, but not where to move to. In that situation the worst-case is to
not ever move, and the best-case is to move every 4 time steps. This results in the
worst-case loss increasing faster than the expected and the best-case loss increasing
slower than the expected. The expected itself has a 50/50 chance of moving and is
approximately between the worst- and best-case loss.

4.3.8 How can sound over-estimation of adversary gain impact defender
loss?

Our final experiment demonstrates the importance of carefully making sure adversary
goals are accurately defined if loss is to be correctly quantified. In particular, it is
not safe to over-approximate the adversary’s gain because doing so may lead to an
unsound calculation (i.e., an under-approximation) of loss.

Consider a variation of our introductory example in which the adversary does not
need to raid the stash’s exact location. Instead of being all-or-nothing, the adver-
sary receives gain proportional to how near the raid is to the stash (assuming stash

58

gainfar gainnear

0 1
2 3 4

5 6
7

e

 0 1 2 3 4 5 6 7

h

 0

 2

 4

 6

 8

ga
in

*(
h,

e)

Figure 4.11: Gain functions gainnear and gainfar

Two gain functions: gainnear is inversely proportional to distance between guess and
secret, and an over-approximation, gainfar, is proportional to distance but offset so
that gainfar ≥ gainnear on all inputs.

 0

 2

 4

 6

 8

0 1 2 3 4 5 6 7 8 9 10 11 12

ex
pe

ct
ed

 g
ai

n
/ l

os
s

T = max number of stakeouts before (maybe) raid

gainnear
lossnear vs. gainnear

gainfar
lossnear vs. gainfar

Figure 4.12: Gain and loss in experiment of Section 4.3.8
Expected gainnear gain with resulting (matching) lossnear loss (solid lines), and expected
gainfar gain with resulting (mismatched) lossnear loss (dashed lines).

locations wrap around at 0 and 7 so that distance between 0 and 7 is 1). 6 This is
modeled using the following modification to raid maybe function:

let dist :(x, y) 7→min{|x− y|, 8− |x− y|}

let gainnear:(H·h,A·Raide, O)7→
let raid gain ← 4 − dist(h, e) in
let stakeouts ← count stakeouts(A) in

raid gain − 0.05 · stakeouts

6Say that the pile of gold is so big that it falls into a pyramid-like shape, with a peak in the
middle and coins spreading around the area.

59

Thus, the adversary receives gain of 4 when raiding the exact stash location and
as little as 0 when raiding a location as far away from the real stash as possible. The
defender’s loss function lossnear is identical to gainnear above.

It may seem at first glance that we can better safeguard the secret by over-
estimating the adversary’s gain. For example, instead of choosing gainnear, we might
assume the adversary receives gain according to a function gainfar that is greater than
gainnear on all inputs (that is, overestimates adversary gain):

let gainfar:(H·h,A·Raide, O)7→
let raid gain ← 4 + dist(h, e) in
let stakeouts ← count stakeouts(A) in

raid gain − 0.05 · stakeouts

This function returns adversary gain proportional to the distance between the
stash and the raid location (instead of inversely). The two gain functions can be seen
in Figure 4.11, for all combinations of stash and raid locations assuming 0 incurred
observation costs. The function gainfar is plotted in black and is seen above the plot
for gainnear in gray.

Though the alternate gain function is indeed more conservative from the adver-
sary’s point of view, it results in very unsound conclusions about the defender’s loss.
Figure 4.12 demonstrates the adversary gain and defender loss under two different
scenarios; one in which the gain and loss functions are both gainnear, and one in which
the adversary acts to optimize gainfar instead, whereas the defender still loses accord-
ing to lossnear. It can be seen there, that indeed the expected gain is higher for gainfar

(thick dashed gray line) than for gainnear (thick solid gray line) and in that sense gainfar

does result in a more conservative gain calculation. The associated defender loss is
not soundly approximated, however. Instead it can be seen that using the gainfar gain
function for the adversary reduces the associated loss (dashed black line) as compared
to loss with a gainnear-optimized adversary (solid black line). Essentially, it does not
matter that gainfar is a more conservative gain function than gainnear in the absolute
sense. The relative gains for the adversary encoded in gainfar make him optimize his
actions so that he can raid as far from the stash as possible, the exact opposite of the
behavior induced by gainnear.

4.4 Related Work

In this Chapter we have presented a model for quantifying the information flow of
a system whose secrets evolve over time. Our model involves an adaptive adversary,
and characterizes the costs and benefits of attacks on the system. We showed that an
adaptive view of an adversary is crucial in calculating a system’s true vulnerability
which could be greatly underestimated otherwise. Likewise we have showed that
when the goals of the adversary and that of the defender do not align, both need
to be considered to properly estimate risk to the defender which could otherwise be
underestimated. We also showed that though adversary uncertainty can effectively
be recovered if the secret changes, if the adversary can adaptively wait to attack,

60

vulnerability can only increase in time. Also, contrary to intuition, we showed that
more frequent changes to secrets can actually make them more vulnerable.

Other works in the literature have considered systems with some notion of time-
passing. Massey [74] considers systems that can be re-executed several times, whereby
new secret and observable values are produced constantly. He conjectured that the
flow of information in these systems is more precisely quantified by directed informa-
tion, a form of Shannon entropy that takes causality into consideration, which was
later proved correct by Tatikonda and Mitter [103]. Alvim et al. use these works
to build a model for interactive systems [8], in which secrets and observables may
interleave and influence each other during an execution. The main differences be-
tween their model and ours are: (i) they see the secret’s information content growing
with time, rather than evolving; (ii) they consider Shannon-entropy as a metric of
information, rather than vulnerability metrics; and (iii) they only consider passive
adversaries.

Köpf and Basin [55] propose a model for adaptive attacks on deterministic systems,
and show how to calculate bounds on the information leakage of such systems. Our
model generalizes theirs in that we consider probabilistic systems. Moreover, we
distinguish between the adversarial production of low inputs and of exploits, and
allow adversaries to wait until the best time to attack, based on observations of the
system, which itself could be influenced by the choice of low inputs.

In the context of Location Based Services, the privacy of a moving individual
is closely related to the amount of time he spends in a certain area, and Marconi
et al. [65] demonstrate how an adversary with structured knowledge about a user’s
behavior across time can pose a direct threat to his privacy.

The work of Shokri et al. [97] strives to quantify the privacy of users of location-
based services using Markov models and various machine learning techniques for con-
structing and applying them. Location privacy is a useful application of our frame-
work, as a principal’s location may be private, and evolves over time in potentially
predictable ways. Shokri et al.’s work employs two phases, one for learning a model
of how a principal’s location could change over time, and one for de-anonymizing sub-
sequently observed, but obfuscated, location information using this model. Our work
focuses on information theoretic characterizations of security in such applications,
and permits learning the change function and the secrets in a continual, interleaved
(and optimized) fashion. That said, Shokri et al’s simpler model and approximate
techniques allows them to consider more realistic examples than those described in
our work. Subsequent work [98] considers even simpler models (e.g., that a user’s
locations are independent).

Classic models of QIF in general assume that the secret is fixed across multiple
observations, whereas we consider dynamic secrets that evolve over time, and that
may vary as the system interacts with its environment. Some approaches capture
interactivity by encoding it as a single “batch job” execution of the system. An early
work by Gray [52] models the behavior of a system as a probabilistic state machine
defining the next state of a system in terms of the prior state and its inputs. These
machines induce a probability measure incorporating high inputs and low outputs
over which channel capacity is measured. That work does not take into account the

61

optimization done by adversaries and measures only total information flow (not mov-
ing target). Desharnais et al. [35] model systems as a channel matrix of conditional
probabilities of whole output traces given whole input traces. Besides creating tech-
nical difficulties for computing maximum leakage [8], this approach does not permit
low-adaptive or wait-adaptive adversaries, because it lacks the feedback loop present
in our model.

O’Neill et al. [86], based on Wittbold and Johnson [104], improve on batch-job
models by introducing strategies. The strategy functions of O’Neill et al. are de-
terministic, whereas ours are probabilistic. And their model does not support wait-
adaptive adversaries. So our model of interactivity subsumes theirs.

Clark and Hunt [22], following O’Neill et al., investigate a hierarchy of strate-
gies. Stream strategies, at the bottom of the hierarchy, are equivalent to having
agents provide all their inputs before system execution as a stream of values. So
with stream strategies, adversaries must be non-adaptive. Clark and Hunt show
that, for deterministic systems, noninterference against a low-adaptive adversary is
the same as noninterference against a non-adaptive adversary. This result does not
carry over to quantification of information flow; low-adaptive adversaries derive much
more gain than non-adaptive ones as seen in Section 4.3.2. At the top of Clark and
Hunt’s hierarchy, strategies may be nondeterministic, whereas our model’s are prob-
abilistic. Probabilistic choice refines nondeterministic choice [77], so in that sense
our model is a refinement of Clark and Hunt’s. But probabilities are essential for
information-theoretic quantification of information flow. Clark and Hunt do not ad-
dress quantification, instead focusing on the more limited problem of noninterference.
Nor does their model support wait-adaptive adversaries. There are other, nonessen-
tial differences between our model and Clark and Hunt’s models: Clark and Hunt
allow a lattice of security levels, whereas we allow just high and low; our model only
produces low outputs, whereas theirs permits outputs at any security level.

62

Chapter 5

Symmetric Enforcement

Consider a scenario where N parties P1, . . . , PN wish to compute some (known) func-
tion f(s1, . . . , sN) of their respective inputs, while ensuring privacy of their inputs to
the extent possible. If these parties all trust some entity PT , then each party Pi can
simply send its input si to this trusted entity, who can in turn evaluate f(s1, . . . , sn)
and return the result to each party. In the more general case, where f is a vector-
valued function returning outputs out1, . . . , outN , the trusted entity gives outi to
party Pi.

Cryptographic protocols for secure multiparty computation (SMC) [44,105] allow
the parties to accomplish the same task without the involvement of any trusted en-
tity. (The reader can refer to a recent overview of SMC [59], or a textbook-level
treatment [43].) That is, by running a distributed protocol amongst themselves the
parties can learn the desired result f(s1, . . . , sN) (or, in the general case, each party
Pi learns the result outi) while ensuring that no information about other party’s input
is revealed beyond what is implied by the result(s).

Most work on SMC provides an answer to the question of how to compute f , but
does not address the complementary question of when it is “safe” to compute f in
the first place, i.e., when the output of f may reveal more information than parties
are comfortable with. The two exceptions that we know of [15, 40] decide f ’s safety
independently of the parties’ inputs and in isolation of any (known or assumed) prior
knowledge that parties have about each others’ inputs.

However, the information implied by a query’s result depends both on the parties’
inputs and their prior knowledge. As an example of the former, suppose two parties
want to compute the “less than or equal” function, f(s1, s2)

def
= s1 ≤ s2 with variables

ranging in {1, . . . , 10}. This function could reveal a lot about s1 to P2. If s2 = 1 and
f(s1, s2) returns true, then P2 learns that s1 can only be the value 1. However, if
s2 = 5 then regardless of the output of the function, P2 only learns that s1 is one of
5 possibilities, a lower level of knowledge than in the first case.

Additionally, we may deem a pair of queries acceptable in isolation, but allowing
their composition would be too revealing. For example, suppose the parties also want
to compute “greater than or equal”, f2(s1, s2)

def
= s1 ≥ s2. When s2 = 5, either

query in isolation narrows the values of s1 to a set of at least 4 possibilities from P2’s
perspective. But if f1 and f2 both return true, P2 can infer s1 = s2 = 5.

In Chapter 3 we developed an approach to judging query safety called based on
knowledge-threshold security policies. In this Chapter we show how threshold en-
forcement can be generalized to SMC to address the limitations of current techniques
listed above.

Knowledge threshold enforcement relies on reasoning about other parties’ knowl-
edge of one’s own private data in order to determine whether a given function f is
“safe” to compute in a given instance. Our previous work was in an asymmetric set-

63

ting where only one of the parties (say, P1) was concerned about privacy. The other
parties’ inputs could be revealed publicly, or at the very least be revealed to P1; as
such, the previous work did not involve SMC at all. At a high level, and specializing
to the two-party case, party P1 knows its own private data s1 along with P2’s input s2,
and also maintains a belief about P2’s knowledge of s1 (represented as a probability
distribution belief). Before agreeing to compute a function f(s1, s2), P1 determines
whether computing the residual function f(·, s2) would reveal “too much information”
as determined according to a threshold 0 < t1 ≤ 1 set by P1. In particular, P1 will
not compute the function if P2’s belief about the likelihood of a possible secret value
(including the actual secret s1) increases above h1. 1 If P1 does reveal f(s1, s2) then it
determines what P2 will learn from the output and revises its estimate belief 2 of P2’s
knowledge accordingly. It will use this new estimate when considering subsequent
functions.

In our prior work, P1’s determination as to whether it should agree to compute f
relied in an essential way on the fact that P1 knows the input s2 of the other party.
In the SMC setting the privacy of all parties’ inputs should be preserved, so our
prior techniques cannot be applied directly. In this chapter we combine knowledge
threshold security and SMC, in order to address the question of when it is safe to
compute some function f of multiple parties’ inputs.

We present two techniques (Section 5.1). The first, which we call the belief set
method, works as follows. Each Pi maintains a set of distributions Beliefs j for each
other principal Pj, one for each possible valuation of sj. Pj’s actual belief belief j is
assumed to be a member of the set Beliefs j. The same basic procedure as in the prior
work, lifted from distributions to sets of distributions, can then be applied by each Pi,
and if all participants conservatively agree to participate, they perform the function
evaluation via SMC.

The second technique we call SMC belief tracking. Rather than have each prin-
cipal Pi perform the knowledge enforcement procedure individually before the SMC
takes place, the enforcement is performed within the SMC itself. If the SMC-based-
enforcement determines that any of the thresholds hi will be exceeded by sending
a response to Pj then Pj receives a rejection, rather than the actual answer. How-
ever, because Pk’s knowledge will be different, it could receive a proper answer. By
performing enforcement within the SMC, we can look at the actual secret values of
each of the participants and by accepting/rejecting selectively, we can ensure that no
information is revealed by rejection. As we show in Section 5.2 using a series of ex-
periments with our proof-of-concept implementation, SMC belief tracking is strictly
more precise (in that fewer queries will be rejected) than belief sets. On the other
hand, SMC is known to be very slow, and so implementing enforcement as an SMC
could be quite costly.

The work in this chapter is based on a paper published in the 2012 Workshop on
Programming Languages and Analysis for Security [69]. The work was a collaboration
with Michael Hicks, Jonathan Katz, and Mudhakar Srivatsa.

1The release criterion considers all possible values for s1 — and not just the actual value of s1
— so that a refusal to participate does not leak any information about s1.

64

5.1 Enforcing knowledge thresholds for symmetric queries

In this section we show how to generalize knowledge threshold enforcement from
the single-secret scenario to the multi-secret setting of SMC. In this setting, there
are N principals, P1, ..., PN each with a secret s1, ..., sN . Each Pi maintains a belief
belief i about the possible values of the other participating principals’ secrets. In
addition, each Pi has a knowledge threshold hi that bounds the certainty that the
other principals can have about its secret’s value.

Next we present an example to illustrate how belief estimation is adapted to the
SMC case, and then we use this example to illustrate two possible methods we have
devised for enforcing the knowledge threshold, the belief set method (Section 5.1.2)
and the SMC belief tracking method (Section 5.1.4). We prove both methods are
sound and discuss their tradeoffs in Section 5.2.

5.1.1 Example

Suppose we have three principals, P1, P2, and P3, each with a net worth s1 = 20,
s2 = 15, and s3 = 17, in millions of dollars, respectively. Suppose they wish to
compute richest which determines whether P1 is the richest:

let richest : (s1, s2, s3) 7→
s1 ≥ s2 and s1 ≥ s3

Using the idealized view, each of P1, P2, and P3 can be seen as sending their
secrets to PT , which evaluates the query to produce the output true.

Now suppose that P1 believes that both P2 and P3 have at least $10 million, but
less than $100 million, with each case equally likely. We will write priori for the initial
belief of principal i, a distribution over the triple (s1, s2, s3). Thus principal P1’s belief
about the three secret variables is the distribution below:

Pr
(
Xprior1 = (20, v2, v3)

)
=

1

8281
for v2, v3 ∈ {10, · · · , 100}

The beliefs of P2 and P3 are defined similarly.
Belief revision proceeds as before: once PT performs the computation and sends

the result, each Pi revises its belief. Given that the output of the example query
richest is true, principal P1 would perform revision as below:

let post1 ← posterior prior1 richest true

This revised belief additionally disregards possibilities that ascribe s2 or s3 to
values greater than P1’s own wealth, which is $20M:

Pr
(
Xpost1 = (20, v2, v3)

)
=

1

121
for v2, v3 ∈ {10, · · · , 20}

65

The revised beliefs of P2 and P3 will be less specific, since each will simply know
that P1’s wealth is at least their own and no less than the rest of the parties. Notice
that in this example the other parties P2 and P3 do not know what P1’s prior or
posterior beliefs are. Given that it is they who need to decide whether P1 knows too
much, they will need to maintain some estimate of P1’s knowledge. In the following
sections, we will see beliefs written belief i to designate the actual belief of party i,
but also belief ji to designate Pi’s estimate of the belief of Pj.

5.1.2 Knowledge-based security with belief sets

Now we wish to generalize knowledge threshold enforcement, as described in Sec-
tion 3.4, to SMC. In the simpler setting P1 maintained an estimate belief 12 of P2’s
belief belief 2. In the SMC setting we might imagine that each Pj maintains a belief
estimate belief ji and then checks that V max (belief ji , q) ≤ h for some threshold h and
for all i 6= j. If each of these checks succeeds, then Pj is willing to participate.

The snag is that Pj cannot accurately initialize belief ji for all i 6= j because it
cannot directly represent what Pi knows about si—that is, its exact value. So the
question is: how can Pj estimate the potential gain in Pi’s knowledge about sj after
running query without knowing si?

One approach to solving this problem, which we call the belief set method, is the
following. Pj follows roughly the same procedure as above, but instead of maintaining
a single distribution belief ji for each remote party Pi, it maintains a set of distributions
where each distribution in the set applies to a particular valuation of si. Let belief be
a belief that represents the prior over the secrets of all the parties before taking into
account that each party knows their secret. Let valsi = support (Xsi) be set of values
of Pi’s secret that are possible according to belief . Then, each party Pj initializes this
Beliefs ji as follows:

let Beliefs ji ←
map valsi (λ v . condition beliefi = v in belief)

In the above belief i designates the ith projection from the tuple belief . Thus
Belief ji is a set of possible distributions, one per possible valuation of si. Using the
joint belief in this construction allows us to model correlations in secrets among the
various parties. For example, if it were known (by all principals) that only one of the
principals in the running example can have secret value equal to 15, then P2 would
know initially, based on this own secret s2 = 15, that P1’s value s1 cannot be 15.
However, P1 cannot arrive at this conclusion without knowing s2, which is, of course,
outside of its knowledge initially. Since we are starting from a globally held belief ,
there is no need to distinguish Beliefs ji from Beliefs ki—they are the same Beliefs i.

We extend the notion of worst-case posterior vulnerability to operate on sets of
beliefs and lift our pseudo-code semantics to operate on sets point-wise, that is, if
S = {s1,· · · ,sn} then f S

def
={f s1, · · · , f sn}.

Definition 18 (Worst-worst-case Posterior Vulnerability). The worst-worst-case pos-
terior vulnerability in a belief set Beliefs for query q is the worst of the worst-case

66

posterior vulnerabilities over all the beliefs in Beliefs :

V max (Beliefs , q)
def
= max

belief ∈Beliefs
V max (belief , q)

Now each Pj can use the worst-worst-case posterior vulnerability to gauge risk in
participating in a query execution. First the principals agree on the query q. Second,
every party Pj checks that no other party can learn too much about their secret (as
specified by threshold hj):

forall i ∈ {1, · · · , N} with i 6= j
V max((Beliefsi)j ,q) ≤ hj

In the third step, if the query is acceptable for all Pj, they participate in a SMC
computation to compute q s where s is the tuple of all of the parties’ secrets. As
the result o is sent back to each principal Pi, they revise Beliefs j, the belief sets
representing the knowledge of each party Pj:

let Postsj ← posterior Beliefs j q o

Recall that we “lifted” our pseudo-code semantics to operate on sets. Thus the
above applies posterior point-wise to each belief in Beliefs j. We will also assume that
any point-wise computation of posterior which includes a conditioning on an impos-
sible predicate does not return and hence does not contribute to the set Postsj. This
can occur since some of the beliefs in the prior Beliefs j might be inconsistent with q

returning o. In essence, this constitutes possibilistic conditioning.

5.1.3 Soundness of belief sets

Now we can show that the belief set procedure is sound, in that for all Pi, participating
or not participating in a query will never increase another Pj’s certainty about Pi’s
secret above its threshold hi.

Remark 19. Suppose principals P1, ..., PN wish to execute a query q. The secret
tuple s = (s1, ..., sN) contains all their secrets. Assume that for each Pi:

1. Pi has a belief priori.

2. Pi’s belief priori is consistent with s, that is s ∈ support
(
Xpriori

)
.

3. Pi knows the estimate Beliefs j of everyone else’s knowledge.

4. Pi’s belief priori is within the estimate of his knowledge, that is, priori ∈ Beliefs i.

Suppose o ← q s, is the actual output of the query q. Then, the belief of each agent,
after learning the output, is posterior priori q o, and is a member of the estimated set
posterior Beliefs i q o.

Proof. Lemma2 tells us that posti← posterior priori q o are the new beliefs of the prin-
cipals, having learned the output o. By assumption we had priori ∈ Beliefs i, and since
priori was consistent with s, it must be that posti is well-defined, therefore posti ∈
posterior Beliefs i q o.

67

This remark is merely a lifting of Lemma 2 to sets of beliefs. The more interesting
point arises when the principals are also interested in enforcing a knowledge threshold.

Lemma 20. Suppose the same premise as Remark 19. Also suppose that policy
thresholds hi are public and that each Pi learns either

• the output o of the query, or

• which principals Pj rejected the query.

Then, the revised belief of each agent, in the first case is posterior priori q o, and is
within the estimate posterior Beliefs i q o, or in the second case, remains unchanged at
priori.

Proof. The lemma effectively states that the policy decisions have no effect on the
beliefs; if a query is rejected, learning which principals rejected it reveals nothing.
Similarly, if the query is not rejected, the additional information each principal gets
(that no one rejected the query), also does not change the belief.

The lemma holds due to the simple fact that the policy decisions based on the
worst-worst-case posterior vulnerability do not depend on private information. Every
principal could determine, on their own, whether another principal would reject a
query (recall the thresholds are assumed to be public). Thus the policy decisions, as
a whole, are a simulatable procedure. The rest follows from Remark 19.

Some subtleties are worth mentioning. First, a premise of the lemma is that Beliefs i

are known by all principals. This fact needs to remain as the query is answered so
the same premise will hold for the next query. Fortunately this is the case, as the
revised belief sets in the case of policy success, posterior Beliefs i q o are also known by
all participants, as the query q, the output o and the priors Beliefs i are all known by
every party.

A second subtlety is that the queries themselves must be chosen independent of
anyone’s secret. In some situations, where the principals are actively attempting to
maximize their knowledge, and are allowed to propose queries to accomplish this, the
query choice can be revealing. This problem is beyond the scope of this work, and
we will merely assume the query choice is independent of secrets.

5.1.4 SMC belief tracking: ideal world

Now we present an alternative to the belief set method, in which the decision to
participate or not, involving checking thresholds after belief revision, takes place
within the SMC itself. As such, we call this method SMC belief tracking. We present
the method using the idealized world with a trusted third party PT whose function
is to stand in place of secure computation.

The first step is that each Pi presents its secret si and threshold hi to PT , along
with the collective belief . Principal PT then creates several pieces of data he will be
maintained as queries are processed according to init smc below.

68

Listing 5.1: Secret share initialization
let init smc: (s , h, belief) 7→

let beliefs ← map {1,· · · ,N} (λi. condition beliefi = si in belief) in
let secret share ← (s ,h, beliefs) in

secret share

The secret share stores the secret values, thresholds for policy enforcement, and the
initial beliefs of all the parties with beliefs i referring to the belief of party Pi. Notice
that here the belief attributed to party Pi is exact and not a set like it was in the
belief-sets approach.

Given the secret share and a query q, the task of the trusted third party is sum-
marized in the query smc function below.

Listing 5.2: Policy enforcement and query evaluation within SMC
let query smc ((s,h,priors), q) 7→

let o ← q s in
let results = map {1,· · · ,N} λ j .

if (forall i ∈ {1,· · · ,N} where i 6= j,
V max((priorsj)i, q) ≤ hi)

then (Accept o, posterior priorsj q o)
else (Reject, priorsj) in

(∗ return (results j)1 to party Pj ∗)
(∗ new secret share has (results j)2 as posterior beliefs ∗)

First, an output o is produced by running the query on the true secret tuple. Then
the output for each party Pj is computed along with that party’s posterior belief. The
process checks that revealing the output to Pj would not violate any other party Pi’s
threshold hi, using the same worst-case posterior vulnerability computation we used
in the asymmetric case. If all the thresholds pass, the actual output o is produced.
Otherwise a rejection is produced. In the first case the belief of party Pj is updated
and in the latter case, it is kept the same as it was initially. The trusted third party
then returns to each party their respective results.

Importantly, the fact that Pj receives a proper answer or Reject is not (directly)
observed by any other Pi; such an observation could reveal information to Pj about
si. For example, suppose q2

def
= s1 ≤ s2 and both secrets are (believed to be) between

0 and 9. If s2 = 0 then q 2 s will return true only when s1 is also 0. Supposing
h1 = 3/5, then P2 should receive Reject since there exists a valuation of s1 (that is,
0) such that P2 could guess s1 with probability greater than 3/5. Similar reasoning
would argue for reject if s2 = 9, but acceptance in all other cases. As such, if P1

observes that P2 receives Reject, it knows that s2 must be either 0 or 9, independent
of h2; as such, if h2 < 1/2 we have violated the threshold by revealing the result of
the query.

This asymmetry means that query smc may return a result for one participant but
not the other, e.g., P1 might receive Reject because h2 is too low while P2 receives the
actual answer because h1 is sufficiently high. Nonetheless each Pi’s threshold will be
respected.

69

5.1.5 SMC belief tracking: real world

Lacking a trusted third party in the real world, the participants can use secure multi-
party computation and some standard cryptographic techniques to implement PT ’s
functionality amongst themselves. There are two aspects of PT that they need to
handle: the computation PT performs, and the hidden state PT possesses in between
queries.

The first aspect is exactly what SMC is designed to do. For the second aspect,
we need a way for the participants to maintain PT ’s state amongst themselves while
preserving its secrecy. (Since we are using the semi-honest adversary model, we do not
concern ourselves with integrity; in the malicious setting, standard techniques could
be used to enforce integrity.) This state, initially constructed by init smc (Listing 5.1)
consists of (1) the parties’ secrets s, (2) policy thresholds h, and (3) the current beliefs
beliefs i. We will refer to this state as ΣT . We assume ΣT can be encoded by a binary
string of length (exactly) `, for some known `.

The initialization procedure formulated in the idealized world does not output
anything to the participants. In the real world, however, the secure computation of
init smc returns secret shares of ΣT to the parties. That is, the secure computation
implements the following (randomized) function after computing ΣT : choose random

c1, . . . , cN−1 ∈ {0, 1}` and set cN = ΣT ⊕
(⊕N−1

i=1 ci

)
. Then each party Pi is given ci.

The query-evaluation procedure query smc receives (c1, ..., cN) along with the query
Q. The procedure begins by reconstructing ΣT =

⊕N
i=1 ci, and then proceeds as usual.

Upon completion, query smc computes (new) shares c′1, . . . , c
′
N of Σ′T (as before), and

gives c′i to Pi along with the actual output. (At this point, each Pi can erase the old
share ci.)

Note that each time the sharing is done, nothing additional about ΣT is revealed
from any individual fragment (“share”) ci. (Indeed, each ci is simply a uniform binary
string of length `.) In particular, just as in the ideal world, Pi does not learn whether
its policy rejected another participant Pj.

Remark 21. Honest (but curious) participants can derive exactly the same knowl-
edge about each other’s secrets from the real-world SMC implementation of PT that
they do from interacting with PT in the idealized world.

There are no theoretical road-blocks to implementing knowledge tracking as an
SMC, assuming the shared state’s size can be bounded by a public constant like it is
assumed in this section. Some high-level languages for SMC such as Wysteria [94] al-
ready provide secret sharing at their core. There are, however, practical issues even if
a high-level language is used. First is the magnitude of the shared secret. Probability
distributions over large state spaces would naturally require significant storage space.
Using the approximation to probabilistic computation described in Chapter 6 could
help with this problem. Another issue stems from the possibility that the duration of
a secure computation, if it were not independent of the inputs, could leak information.
Loops, therefore, are usually treated as unrolled sequences of repeated steps, if they
are handled at all. Recursive data (like program statements or expressions) is usually
not handled at all. The probabilistic interpreter described in Chapter 6 is recursively

70

defined and the approximate implementation relies on non-trivial tools written us-
ing typical programming paradigms at odds with the restrictions of SMC. However,
SMC research is active and improvements to performance and convenient specifica-
tion are ongoing so it is not inconceivable that the practical problems preventing the
implementation of knowledge tracking in SMC will alleviate over time.

5.1.6 Soundness of SMC belief tracking

Suppose that no dishonest parties are detected during the runs of SMC belief tracking.
Then, by Remark 21, we can justify soundness in the real world by considering the
approach in the idealized world.

Lemma 22. Suppose principals P1, ..., PN wish to execute a query q. The secret tuple
s =(s1, · · · ,sN) contains all their secrets. Each has a public threshold hi for their policy
check. Assume the following for each Pi:

1. Pi has a belief priori about the secret tuple.

2. Pi’s belief is consistent with s. That is, s ∈ support
(
Xpriori

)
.

Suppose o ← q s is an output of the query on the true secret tuple. Then, for each
agent Pi:

• If Pi receives output o from PT , its revised belief is posterior priori q o.

• If Pi is rejected, its belief does not change.

Specifically, in either case, the procedure query smc maintains the correct beliefs.

Proof. The proof of this lemma reasons similarly Lemma 20: rejection reveals nothing
new, and acceptance tracks beliefs precisely. We can see from Listing 5.2, that the
procedure used to determine whether Pj will receive an answer or rejection depends
on four things:

• The query q, which is assumed to be public, and chosen independently of secrets.

• Pj’s belief, priorj, about the secrets. This is naturally known by Pj.

• Thresholds hi for i 6= j. These are also assumed to be publicly known.

Since Pj knows all these things, he could determine himself whether PT will reject
him or not. Hence a rejection reveals nothing. In the case Pj receives an answer, we
first note the acceptance itself reveals nothing due to the previous argument, and then
further, that its belief changes to posterior priorj q o as claimed due Lemma 2.

The lemma itself is only useful, however, when its premises hold. Specifically, we
require PT to possess the actual beliefs of the participants to start with. This, in turn,
means that the initial init smc procedure produced them. How the participants arrived
at belief , the common belief about the secret variables, used by init smc to compute
priorj, is beyond the scope of this work. Once the premises hold, however, Lemma 22
states that they will continue to hold; the tracked beliefs will remain correct and thus
the protections of the threshold policies will be maintained.

71

5.2 Experiments

The belief set method and the SMC belief tracking methods present an interesting
tradeoff. On the one hand, SMC belief tracking is clearly more precise than belief
sets for the simple reason that Pi’s estimate of the gain in the other principals’ beliefs
can consider their secret values exactly without fear that rejection will reveal any
information.

On the other hand, SMC belief tracking has two drawbacks. First, the estimate
belief i of what the other parties believe about Pi’s secret must be kept hidden from
Pi to avoid information leaks. This is unsatisfying from a usability point of view:
Pi can be sure that its threshold is not exceeded but cannot see exactly what others
know at any point in time. Second, while the performance of SMC has improved
quite a bit over time [51], computing a query q via SMC is still orders of magnitude
slower than computing it directly. The belief tracking computation of q would already
be magnitudes slower than computing q on the actual values, so performing this
computation as an SMC will be significantly slower still. Worse, belief tracking is a
recursive procedure, since it is an interpreter, and recursive procedures are hard to
implement with SMC. So it remains to be seen whether SMC belief tracking can be
implemented in a practical sense.

As a step towards a more thorough evaluation of the precision/performance trade-
off, the remainder of this section compares the precision of the belief set and SMC
belief tracking methods on three simple queries. We simulate the SMC belief tracking
computation by running our normal implementation in the ideal world setup. We find
that SMC belief tracking can be significantly more precise than belief sets, but that
belief sets can nevertheless be useful.

It is important to note that we use an approximate probabilistic interpreter we
describe later in Chapter 6. The inference using that approach is approximate but
sound in that the probability in the definition of vulnerability (see Definition 5) is
never underestimated (though it could be overestimated).

5.2.1 “Am I the richest?” example (richest).

Consider the running example query richest :

let richest : (s1, s2, s3) 7→
s1 ≥ s2 and s1 ≥ s3

If all the principals were to evaluate threshold policies to determine the safety of
richest , they would reason about possible revised beliefs of the participants, where the
possibilities vary in their valuation of those participants’ secret values, as is described
in Section 5.1.2. If the principals perform this policy check via SMC, they would do
so for only one of those possible valuations.

We can better understand the relationship between the two approaches by looking
at the range of possible revised beliefs achievable. For some secret values, a principal
might learn little; for others, they might learn a lot. We measure this range in terms of
the probability of the most probable secret in a principal’s belief, for a given valuation
of their own secret.

72

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

b1
s2 b1

s3 b2
s1 b2

s3 b3
s1 b3

s2

vu
ln

er
ab

ili
ty

belief median quartiles

Figure 5.1: Running example richest , plot of vulnerabilities

Figure 5.1 demonstrates the situation for the running example, query richest , start-
ing from the initial belief belief uniformly distributing values in 10 ≤ s1, s2, s3 ≤ 100.
There are 6 relationships considered, for each principal Pi, during their policy decision
to allow Pj, with j 6= i, to see the query output, they would compute Pj’s potential
belief about si (labeled bsij in the figures). These beliefs depend on sj; the figure shows
the potential belief for every possible sj, the median belief achievable over them as
well as the 1st and 3rd quartiles, showing the range of Pj’s likely knowledge. 2

Figure 5.2 focuses on the first column of Figure 5.1, the belief belief 1 projected to
the second party’s secret. It shows the extent of P1’s knowledge about s2, depending
on the value of their secret s1. At the very top, the most P1 could learn is when
s1 = 10 and the query returns true, meaning P1 was the richest, with the smallest
amount of wealth. This lets P1 conclude that s2 = 10 and s3 = 10. P1’s potential
knowledge of s2 decreases as P1’s wealth grows, up to s1 = 65. At 65, if P1 is the
richest, it is able to narrow s2 down to 56 values (10 through 65). Starting with
s1 = 66, however, P1 can learn more if the query returns true, stating that either P2

or P3 is richer than P1. Further increase in s1, increases its potential knowledge of s2,
culminating at s1 = 99 which lets P1 conclude that s2 = 100 with a probability close

2This imprecision due to use of approximate inference is the reason why belief sets representing
P2 and P3’s beliefs about each other, or about P1, in Figure 5.1 appear different, though in actuality
they are the same.

73

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

 10 20 30 40 50 60 70 80 90 100

vu
ln

er
ab

ili
ty

 o
f s

2

s1

Figure 5.2: Running example richest ; δx21 ; plot of P1’s max belief about x2 vs. values
of x1

to 0.5. At s1 = 100, the query can only return true, hence P1 learns nothing, keeping
its knowledge of s2 unchanged at 1/91.

We see that for this query, the belief sets approach would conservatively conclude
that all participants could learn s1 exactly, and that P1 could learn s2 and s3 exactly.
On the other hand, it is impossible for P2 and P3 to learn each other’s values to any
confidence.

The benefit of the SMC approach to policy enforcement is that it is free from the
overly conservative view of the belief sets approach. In 75% (observing the upper
extent of the quartile boxes) or more of the situations, the actual beliefs of the partic-
ipants do not exceed probability of 2−4 ≈ 0.06, which is comparable to the 1

91
≈ 0.01

probability each agent started with. In terms of utility, if the participants set their
policy thresholds to as little as 0.06, their policies would allow richest in most cases.
The belief sets approach would reject richest for all hi < 1.

Not all queries are pathological for the belief sets approach. We next look at a
parameterized query that offers a security vs. utility tradeoff.

5.2.2 “Similar” example

The query similarw, depicted at the bottom of Figure 5.3, determines whether each
principal’s secret is within w of the average. The choice of window size w determines

74

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

w=0 w=1 w=2 w=4 w=8 w=16

vu
ln

er
ab

ili
ty

belief median quartiles

let similarw: (s1, s2, s3) 7→
let avg ← (s1 + s2 + s3)/3 in
|s1 − avg| ≤ w and |s2 − avg| ≤ w and |s3 − avg| ≤ w

Figure 5.3: similarw example; plot of vulnerability for a variety of windows w sizes

how much the principals can learn. The plot at the top of the figure shows the possible
beliefs after evaluating similarw with a variety of window values w, with the initial
assumption that all values xi are in uniformly distributed in 1 ≤ si ≤ 100 (so each of
the 100 possibilities has probability 0.01). The scenario is thus completely symmetric
in respect to the agents, hence only one of the beliefs is shown in the figure.

When w = 0, the query can be completely revealing, as when it returns true,
all secrets are equal. Relaxing the window reduces how much each agent can learn.
At w = 2, each agent, in the worst case, learns every other principal’s secret with
confidence of 0.25. This worst case already allows non-trivial threshold policies. Going
further, with the window set to 16, the query becomes barely revealing, resulting in
confidence never reaching over 0.05, comparable to the initial 0.01. Further increase of
w can make the query even less revealing to the point of not releasing any information
at all, though of course also not providing any utility.

5.2.3 “Millionaires” example.

The common motivating example for SMC is a variant of richest involving a group of
millionaires wishing to determine which of them is the richest, without revealing their

75

exact worth. The query richestp, given at the bottom of Figure 5.4, accomplishes
this goal, determining which of 3 participants is (strictly) richer than the other two.
An addition to this query has been made to provide a means of injecting noise into its
answers to limit potential knowledge gain. The output 0 designates that none of the
three were strictly richest. The query is concluded with a step that noises the result.
Thus given the parameter p, this query will just randomly return, with probability p,
one of the 4 possible outputs.

A significant benefit of using probabilistic programming languages is that the
effect of non-determinism described using these probabilistic statements is taken into
account; we can determine exactly what a rational agent would conclude from learning
the output of such a noised query.

Figure 5.4 summarizes the beliefs of every agent assuming initially each is equally
likely to be worth between $10 and $100. This scenario is also symmetric hence only
the belief of one agent about a single other agent is shown.

With p = 0, that is, no chance of random output, the query is potentially fully
revealing, but in most cases still keeping the participants below 0.5 certainty. With
a 0.01 chance of random output, the worst case no longer results in absolute cer-
tainty, though close to it. Randomizing the output with p = 0.1, keeps the agents’
certainty almost below 0.5 in the worst case. Getting closer to p = 1 the beliefs ap-
proach the initial ones. At p = 1 the query reveals nothing, though our approximate
implementation does produce some variation in the upper bound.

5.3 Related Work

Almost all prior work on SMC treats the function f being computed by the par-
ties as given, and is unconcerned with the question of whether the parties should
agree to compute f in the first place. The only exceptions we are aware of are two
papers [15, 40] that consider SMC in conjunction with differential privacy [38, 41].
Dwork et al. [40] show that if f is a differentially private function, then the process
of running an SMC protocol that computes f is also differentially private (at least in
a computational sense). Beimel et al. [15] observe that if the end goal is a distributed
protocol that is differentially private for both parties, then SMC may be overkill to
possible, more efficient alternatives. Likewise McGregor et al. [76] show that for some
distributed protocols require a minimal amount of error in order to be differentially
private. They show, however, that computational relaxations of differential privacy
can reduce the required error. Some recent work on secure computation relies on
employing oblivious RAM [45] for better handling of large amounts of inputs to se-
cure computations. Oblivious RAM is used to hide memory access patterns which
can leak information about private information. Liu et al.’s work [60] attempts to
optimize the use of multiple oblivions RAM banks without compromising privacy of
the inputs.

The security goal in the symmetric setting of this chapter is the same vulnerability
limit that we used in Chapter 3. In that sense the rough relationship between our
goal and differential privacy that we described in Section 3.6 holds in the symmetric

76

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

p=0 p=0.01 p=0.1 p=1

vu
ln

er
ab

ili
ty

belief median quartiles

let richest p: (s1, s2, s3) 7→
let o ← if s1 > s2 and s1 > s3 then 1

else if s2 > s1 and s2 > s3 then 2
else if s3 > s1 and s3 > s2 then 3
else 0 in

if flip 0.5 then o else uniform {0,1,2,3}

Figure 5.4: richest p example; plot of vulnerabilities for a variety of noising probabil-
ities p

setting as well. The claim that differential privacy comes at a greater cost of utility
holds less strongly here in the case of enforcement using the very conservative belief
sets method we described in this chapter. On the other hand, it is still the case that
our methodology allows queries to be answered truthfully without additional noise,
which is something differentially private mechanisms do not allow.

5.4 Summary

In this chapter we have presented two methods that apply knowledge threshold en-
forcement to the problem of determining whether participating in a secure multiparty
computation could unsafely reveal too much about a participant’s secret input. Ours
are the first techniques that consider the actual secrets and prior knowledge of par-
ticipants (potentially gained from previous SMC’s) when making this determination,
making our approach more permissive (in accepting more functions), and potentially

77

safer, than techniques that disregard this information. Experiments with the two
methods show that the SMC belief tracking method is the more permissive of the
two, but it remains to be seen whether this method can be implemented efficiently.

78

Chapter 6

Probabilistic Programming

Consider how we might implement belief tracking and revision to enforce the threshold
security property based on Definition 6 (we consider only the trivial identity target in
this chapter, that is, we are protecting the whole secret as opposed to some predicate
about the secret). A natural choice would be to evaluate queries using a probabilistic
programming language with support for conditioning, of which there are many [18,
21, 47, 54, 78, 87, 89, 92]. Such languages are largely ineffective for use in ensuring
security guarantees. Approximate inference in these languages cannot ensure security
guarantees, while exact inference, due to its lack of abstraction facilities, can be too
inefficient when the state space is large.

In this chapter we revisit the computational aspect of modeling, tracking, and lim-
iting adversary knowledge. We present the work in a separate chapter as the most of
the technology developed here has wider use for probabilistic programming in general,
not restricted to knowledge tracking and policy enforcement. We briefly summarize
knowledge tracking and how this chapter related to probabilistic programming in
Section 6.1 for readers wishing to skip the prior three chapters. Next, in Section 6.2,
we take another perspective on the demographic birthday query example we saw in
Section 3.1. In this chapter we will not use pseudo-code to describe probabilistic
programs and instead use a limited syntax whose exact semantics we describe in Sec-
tion 6.3. We will then introduce our probability distribution abstraction which we
make precise in Section 6.4. We then show in Section 6.4.4 how to use the approxi-
mate probabilistic inference provided by the abstraction to soundly enforce knowledge
threshold we defined previously in Section 6. We make further refinement on our ab-
straction in Section 6.5 and perform numerous experiments using the implementation
of the approach in Section 6.6.

This chapter is based on the same papers that form the basis of Chapter 3. The
papers were published in the 2011 Computer Security Foundations Symposium [70],
a 2013 issue of the Journal of Computer Security [72], and a University of Maryland
technical report released in 2011 [71]. The work was done in collaboration with
Michael Hicks, Stephen Magill, and Mudhakar Srivatsa. In this chapter we focus on
the computational aspects of probabilistic programming and policy evaluation which
were omitted in Chapter 3.

6.1 Knowledge Tracking and Probabilistic Programming

In Section 2.2 we saw how we can use probabilistic programs to describe prior back-
ground knowledge of adversaries and how model the posterior knowledge after the ad-
versary learns the outputs of programs or queries. Additionally we saw in Section 2.1
how to measure the vulnerability or risk associated with adversary knowledge. Chap-

79

ter 3 applies these elements to the problem of determining when to answer a query
and when to reject it. The proposed approach rejects queries if there is a possibility
that the level of adversary knowledge after learning the output of the query would
constitute a vulnerability beyond a given threshold. This is done carefully to make
sure that the decision procedure involved is simulatable by the adversary, so that it
does not leak information by merely rejecting to answer a query.

Though large parts of Chapter 3 deal with issues specific to the problem of de-
ciding to answer a query, the core of the approach lies in the ability to perform
probabilistic inference given program outputs. This chapter focuses almost entirely
on the computational issues with performing this inference. The core is an approxi-
mate probabilistic semantics of programs with the addition of conditioning that has a
strong soundness guarantee. The approximation is based on interpretation and con-
ditioning of a set of distributions which generally has a more concise representation
that a single concrete one. Soundness (Theorem 27) tells us that the approximate
semantics over-approximate the concrete semantics. The design of the approximation
of distributions lets us compute an upper bound on the probability of any element.
Soundness, then, guarantees that the true probability cannot exceed this upper bound.

6.2 Example: Birthday revisited

An astute reader of our bday query example of Section 3.1 would have noticed many
regularities in the structure of probability distributions that represented adversary
beliefs. In this example we will again look at the query in conjunction with a slightly
more complex one in a manner that highlights the uniformities in beliefs. Our ap-
proach to approximate probabilistic inference will naturally follow.

Knowledge-based policies and beliefs User Bob would like to enforce a
knowledge-based policy on his data so that advertisers do not learn too much about
him. Suppose Bob considers his birthday of September 27, 1980 to be relatively
private; variable bday stores the calendar day (a number between 0 and 364, which
for Bob would be 270) and byear stores the birth year (which would be 1980). To
bday he assigns a knowledge threshold hd = 0.2 stating that he does not want an
advertiser to have better than a 20% likelihood of guessing his birth day. To the
pair (bday , byear) he assigns a threshold hdy = 0.05, meaning he does not want an
advertiser to be able to guess the combination of birth day and year together with
better than a 5% likelihood.

Bob runs an agent program to answer queries about his data on his behalf. This
agent models an estimated belief of queriers as a probability distribution δ, which
is conceptually a map from secret states to positive real numbers representing prob-
abilities (in range [0, 1]). Bob’s secret state is the pair (bday = 270, byear = 1980).
The agent represents a distribution as a set of probabilistic polyhedra. For now, we
can think of a probabilistic polyhedron as a standard convex polyhedron C with a
probability mass m, where the probability of each integer point contained in C is

80

m/#(C), where #(C) is the number of integer points contained in the polyhedron C.
Shortly we present a more involved representation.

Initially, the agent might model an advertiser X’s belief using the following rect-
angular polyhedron C, where each point contained in it is considered equally likely
(m = 1):

C = 0 ≤ bday < 365, 1956 ≤ byear < 1993

Enforcing knowledge-based policies safely Suppose X wants to identify
users whose birthday falls within the next week, to promote a special offer. X sends
Bob’s agent the following program.

Example 23.
today := 260;
if bday ≥ today ∧ bday < (today + 7) then

output := True;

This program refers to Bob’s secret variable bday , and also uses non-secret variables
today , which represents the current day and is here set to be 260, and output , which
is set to True if the user’s birthday is within the next seven days (we assume output
is initially False).

The agent must decide whether returning the result of running this program will
potentially increase X’s knowledge about Bob’s data above the prescribed threshold.
We explain how it makes this determination shortly, but for the present we can see
that answering the query is safe: the returned output variable will be False which
essentially teaches the querier that Bob’s birthday is not within the next week, which
still leaves many possibilities. As such, the agent revises his model of the querier’s
belief to be the following pair of rectangular polyhedra C1, C2 (see Figure 6.1(a)),
where again all points in each are equally likely (with probability masses m1 = 260

358
≈

0.726,m2 = 98
358
≈ 0.274):

C1 = 0 ≤ bday < 260, 1956 ≤ byear < 1993
C2 = 267 ≤ bday < 365, 1956 ≤ byear < 1993

Ignoring byear , there are 358 possible values for bday and each is equally likely.
Thus the probability of any one is 1/358 ≈ 0.0028 ≤ hd = 0.2. More explicitly,
the same quantity can be computed using the definition of conditional probability:
Pr(A|B) = Pr(A ∧ B)/Pr(B) where event A refers to bday having one particular
value (e.g., not in the next week) and event B refers to the query returning False.
Thus 1/358 = 1

365
/358

365
.

Suppose the next day the same advertiser sends the same program to Bob’s user
agent, but with today set to 261. Should the agent run the program? At first glance,
doing so seems OK. The program will return False, and the revised belief will be the
same as above but with constraint bday ≥ 267 changed to bday ≥ 268, meaning there
is still only a 1/357 ≈ 0.0028 chance to guess bday .

81

bday

by
ea
r

C1 C2

0 260 267 365

1956

1993

bday

by
ea
r

0 260 267 365

1956

1993

(a) output = False (b) output = True

Figure 6.1: Example 1: revised beliefs

But suppose Bob’s birth day was actually 267, rather than 270. The first query
would have produced the same revised belief as before, but since the second query
would return True (since bday = 267 < (261 + 7)), the querier can deduce Bob’s birth
day exactly: bday ≥ 267 (from the first query) and bday < 268 (from the second
query) together imply that bday = 267! But the user agent is now stuck: it cannot
simply refuse to answer the query, because the querier knows that with hd = 0.2 (or
indeed, any reasonable threshold) the only good reason to refuse is when bday = 267.
As such, refusal essentially tells the querier the answer.

The lesson is that the decision to refuse a query must not be based on the effect of
running the query on the actual secret, because then a refusal could leak information.
In Section 3.4 we proposed that an agent should reject a program if there exists
any possible secret that could cause a program answer to increase querier knowledge
above the threshold. As such we would reject the second query regardless of whether
bday = 270 or bday = 267. This makes the policy decision simulatable [53]: given
knowledge of the current belief model and the belief-tracking implementation being
used, the querier can determine whether his query will be rejected on his own.

Full probabilistic polyhedra Now suppose, having run the first query and
rejected the second, the user agent receives the following program from X. The pif
statement in the code below defines a non-deterministic conditional given a probabil-
ity of executing the branch.

Example 24.

age := 2011− byear ;
if age = 20 ∨ age = 30 ∨ ... ∨ age = 60 then output := True;
pif 0.1 then output := True;

This program attempts to discover whether this year is a “special” year for the given
user, who thus deserves a special offer. The program returns True if either the user’s

82

age is (or will be) an exact decade, or if the user wins the luck of the draw (one chance
in ten), as implemented by the probabilistic if statement.

Running this program reveals nothing about bday , but does reveal something
about byear . In particular, if output = False then the querier knows that byear 6∈
{1991, 1981, 1971, 1961}, but all other years are equally likely. We could represent this
new knowledge, combined with the knowledge gained from the first query, as shown in
Figure 6.2(a), where each shaded box is a polyhedron containing equally likely points.
On the other hand, if output = True then either byear ∈ {1991, 1981, 1971, 1961} or
the user got lucky. We represent the querier’s knowledge in this case as in Fig-
ure 6.2(b). Darker shading indicates higher probability; thus, all years are still pos-
sible, though some are much more likely than others. With the given threshold of
hdy = 0.05, the agent will permit the query; when output = False, the likelihood
of any point in the shaded region is

(
9
10
∗ 1

37∗358

)
/
(

9
10
∗ 33

37

)
= 1/(33 ∗ 358); when

output = True, the points in the dark bands are the most likely, with probability(
1

37∗358

)
/
(

9
10
∗ 4

37
+ 1

10

)
= 10/(73 ∗ 358) (this and the previous calculation are also

just instantiations of the definition of conditional probability). Since both outcomes
are possible with Bob’s byear = 1980, the revised belief will depend on the result of
the probabilistic if statement.

This example illustrates a potential problem with the simple representation of
probabilistic polyhedra mentioned earlier: when output = False we will jump from
using two probabilistic polyhedra to ten, and when output = True we jump to using
eighteen. Allowing the number of polyhedra to grow without bound will result in
performance problems. To address this concern, we need a way to abstract our belief
representation to be more concise.

Section 6.4 shows how to represent a probabilistic polyhedron P as a seven-tuple,
(C, smin, smax, pmin, pmax,mmin,mmax) where smin and smax are lower and upper bounds
on the number of points with non-zero probability in the polyhedron C (called the
support points of C); the quantities pmin and pmax are lower and upper bounds on
the probability mass per support point; and mmin and mmax give bounds on the total
probability mass. Thus, probabilistic polyhedra modeled using the simpler represen-
tation (C,m) given earlier are equivalent to ones in the more involved representation
with mmax = mmin = m, pmax = pmin = m/#(C), and smax = smin = #(C). The
representation of the convex polyhedra themselves is unimportant at this point. In
Section 6.4.1 we will look at them more closely and see how they are used for repre-
senting sets of program states.

With the seven-tuple representation, we could choose to collapse the sets of poly-
hedra given in Figure 6.2. For example, we could represent Figure 6.2(a) with two
probabilistic polyhedra P1 and P2 bounded by the C1 and C2 defined in Example 23
(see Figure 6.1(a)), respectively, essentially drawing a box around the two group-
ings of smaller boxes in the figure. The other parameters for P1 would be as follows

83

bday

by
ea
r

0 260 267 365

1956

1962

1972

1982

1991
1992
1993

1961

1971

1981

bday

by
ea
r

0 260 267 365

1956

1962

1972

1982

1991
1992
1993

1961

1971

1981

(a) output = False (b) output = True

Figure 6.2: Example 2: most precise revised beliefs

(explained below):

pmin
1 = pmax

1 = 9/135050 = 1
37∗365

∗ 9
10

smin
1 = smax

1 = 8580 = 260 ∗ 33
mmin

1 = mmax
1 = 7722/13505 = pmin

1 ∗ smin
1

Notice that smin
1 = smax

1 = 8580 < #(C1) = 9620, illustrating that the “bounding
box” of the polyhedron covers more area than is strictly necessary. The other thing
to notice is that the probabilities and probability mass are not normalized; we do this
for efficiency and precision considerations made clear in Section 6.4. Non-normalized
probabilities arise during conditioning—instead of performing Pr(A|B) = Pr(A ∧
B)/Pr(B) we instead only perform the Pr(A∧B) component and delay normalization
until making a security decision. In this representation, after Example 23 returns False
the probability of each bday , byear combination in the polyhedron would be stored
as 1

37∗365
instead of the full conditional probability 1

37∗365
/358

365
. After the next query,

Example 24, returns False, we would store 1
37∗365

∗ 9
10

, which is given above. This
probability corresponds to the probability Pr(A ∧ B ∧ C), where A is the event of
having a particular non-special bday , byear not within the next week, B corresponds
to the event that the first query returns False and C corresponds to the event that
the second query returns False. To compute probabilities Pr(A|B ∧C), we normalize
by dividing Pr(A ∧ B ∧ C) by Pr(B ∧ C), which we can conveniently recover from
the total mass components of the probabilistic polyhedron.

Now if we consider the representation of Figure 6.2(b) in a similar manner, using
the same two polyhedra C1 and C2, the other parameters for C1 are as follows:

pmin
1 = 1/135050 = 1

37∗365
∗ 1

10
pmax

1 = 10/135050 = 1
37∗365

smin
1 = 9620 = 260 ∗ 37 smax

1 = 9620 = 260 ∗ 37
mmin

1 = 26/185 mmax
1 = 26/185

(24.1)

84

In this case smin
1 = smax

1 = #(C1), meaning that all covered points are possible, but
pmin

1 6= pmax
1 as some points are more probable than others (i.e., those in the darker

band). An astute reader might notice that here mmin
1 6= pmin

1 ∗ smin
1 and mmax

1 6=
pmax

1 ∗ smax
1 . The benefit of these seemingly redundant total mass quantities in the

representation is that they can sometimes be computed precisely. In this case mmin
1 =

mmax
1 = 4

37
∗ 260

365
+ 1

10
∗ 33

37
∗ 260

365
. This quantity is the probability of the query returning

True while having a special year (first term) plus not having a special year (second
term).

The key property of probabilistic polyhedra, and a main technical contribution
of this chapter, is that this abstraction can be used to make sound security policy
decisions. To accept a query, we must check that, for all possible outputs, the querier’s
revised, normalized belief of any of the possible secrets is below the threshold t. In
checking whether the revised beliefs in our example are acceptable, the agent will try
to find the maximum probability the querier could ascribe to a state, for each possible
output. In the case output = True, the most probable points are those in the dark
bands, which each have probability mass 10/135050 = pmax

1 (the dark bands in P2 have
the same probability). To find the maximum conditional, or normalized, probability
of these points, we divide by the minimum possible total mass, as given by the lower
bounds in our abstraction. In our example, this results in pmax

1 /(mmin
1 + mmin

2) =
10

135050
/
(

26
185

+ 49
925

)
≈ 0.0004 ≤ hd = 0.05.

As just shown, the bound on minimum total mass is needed in order to soundly
normalize distributions in our abstraction. The maintenance of such lower bounds on
probability mass is a key component of our abstraction that is missing from prior work
on probabilistic programming, though the use of lower/upper probability measures
for modeling uncertain probability is an idea at least decades old [33]. Each of the
components of a probabilistic polyhedron play a role in producing the lower bound
on total mass. While smin

1 , smax
1 , pmin

1 , and mmax
1 do not play a role in making the final

policy decision, their existence allows us to more accurately update belief during the
query evaluation that precedes the final policy check. The choice of the number of
probabilistic polyhedra to use impacts both precision and performance, so choosing
the right number is a challenge.

Another precision/performance tradeoff coincides with the choice of the kind of
polyhedron used to represent constraints. If we restrict constraints to always form
intervals [27] (a.k.a. boxes) or octagons [79] we can speed up performance by simpli-
fying some of the abstract operations (e.g., counting points), but at the possible cost
of precision, since some polyhedral shapes are now approximated. For the queries
given in this section, using probabilistic polyhedra produces answers in a few sec-
onds, while using probabilistic intervals produces answers in a few milliseconds, with
no loss of precision. Details are given in Section 6.6. Probabilistic intervals are not
ideal for every query; in Section 6.6.4 we describe queries for which the probabilistic
octagons or polyhedra domains are necessary.

85

6.3 Tracking beliefs

This section reviews Clarkson et al.’s method of revising a querier’s belief of the
possible valuations of secret variables based on the result of a query involving those
variables [24]. We retain Clarkson et al.’s notation in lieu of the probabilistic program
code of the prior chapters. The language presented here will be formally defined,
though it is simpler. The various notations we present below let us carefully define
semantics of probabilistic programs without confusion stemming from the presence
of multiple distributions referring to the same variables. The main difference from
previous chapters is the use of probability distributions (noted as δ) represented by
and manipulated as functions from program states (noted by σ, τ) to real values.
When we wrote random variables of the form Xexp in the prior chapters we implicitly
assumed that the potentially probabilistic expression exp is evaluated to produce the
distribution governing the values of the random variable. The language in this chapter
is imperative. If the statement P has the same effect on some state variable as exp,
then we would write [[P]]δ to describe the equivalent of Xexp, explicitly designating
the evaluation and the environment (distribution of program states).

6.3.1 Core language

The programming language we use for queries is given in Figure 6.3. A computation
is defined by a statement S whose standard semantics can be viewed as a relation
between states: given an input state σ, running the program will produce an output
state σ′. States are maps from variables to integers:

σ, τ ∈ State
def
= Var→ Z

Sometimes we consider states with domains restricted to a subset of variables V , in
which case we write σV ∈ StateV

def
= V → Z. We may also project states to a set of

variables V :
σ � V

def
= λx ∈ VarV . σ(x)

The language is essentially standard, though we limit the form of expressions to
support our abstract interpretation-based semantics (Section 6.4). The semantics of
the statement form pif q then S1 else S2 is non-deterministic: the result is that of S1

with probability q, and S2 with probability 1− q.
Note that in our language, variables have only integer values and the syntax is

missing a division operator. Furthermore, we will restrict arithmetic expressions to
be of a linear forms only, that is, multiplication of two variables will be disallowed.
These restrictions ease implementation considerations. Easing these constraints is an
aspect of our future work.

6.3.2 Probabilistic semantics for tracking beliefs

To enforce a knowledge-based policy, an agent must be able to estimate what a querier
could learn from the output of his query. To do this, the agent keeps a distribution

86

Variables x ∈ Var
Integers n ∈ Z
Rationals q ∈ Q
Arith.ops aop ::= + | × | −
Rel .ops relop ::= ≤ | < | = | 6= | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool .exps B ::= E1 relop E2 |
B1 ∧ B2 | B1 ∨ B2 | ¬B

Statements S ::= skip | x := E |
if B then S1 else S2 |
pif q then S1 else S2 |
S1 ; S2 | while B do S

Figure 6.3: Core language syntax

δ that represents the querier’s belief of the likely valuations of the user’s secrets. A
distribution is a map from states to positive real numbers, interpreted as probabilities
(in range [0, 1]).

δ ∈ Dist
def
= State→ R+

We sometimes focus our attention on distributions over states of a fixed set of variables
V , in which case we write δV ∈ DistV to mean a function StateV → R+. The
variables of a state, written fv(σ) is defined by domain(σ), sometimes we will refer to
this set as just the domain of σ. We will also use the this notation for distributions;
fv(δ)

def
= domain(domain(δ)). In the context of distributions, domain will also refer to

the set fv(δ) as opposed to domain(δ).
Projecting distributions onto a set of variables is as follows: 1

δ � V
def
= λσV ∈ StateV .

∑
τ | τ�V=σV

δ(τ)

We will often project away a single variable. We will call this operation forget.
Intuitively the distribution forgets about a variable x.

fx(δ)
def
= δ � (fv(δ)− {x})

The mass of a distribution, written ‖δ‖ is the sum of the probabilities ascribed to
states,

∑
σ δ(σ). A normalized distribution is one such that ‖δ‖ = 1. A normalized

1The notation
∑
x | π ρ can be read ρ is the sum over all x such that formula π is satisfied (where

x is bound in ρ and π).

87

distribution can be constructed by scaling a distribution according to its mass:

normal(δ)
def
=

1

‖δ‖
· δ

Normalization requires the mass of a distribution to be non-zero. We will only be
dealing with distributions of finite mass but some of the theory presented later makes
use of zero-mass distributions. There is one such distribution for each domain; when
the domain is understood from the context we will label its zero-mass distribution as
0Dist.

The support of a distribution is the set of states which have non-zero probability:
support (δ)

def
= {σ | δ(σ) > 0}.

The agent evaluates a query in light of the querier’s initial belief using a prob-
abilistic semantics. Figure 6.4 defines a semantic function [[·]] whereby [[S]]δ = δ′

[[skip]]δ = δ
[[x := E]]δ = δ [x→ E]

[[if B then S1 else S2]]δ = [[S1]](δ ∧B) + [[S2]](δ ∧ ¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S]] = lfp [λf : Dist→ Dist. λδ.

f ([[S]](δ ∧B)) + (δ ∧ ¬B)]

where

δ [x→ E]
def
= λσ.

∑
τ | τ [x→[[E]]τ]=σ δ(τ)

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

δ ∧ B
def
= λσ. if [[B]]σ then δ(σ) else 0

p · δ def
= λσ. p · δ(σ)

‖δ‖ def
=
∑

σ δ(σ)
normal(δ)

def
= 1
‖δ‖ · δ

δ|B def
= normal(δ ∧B)

δ1 × δ2
def
= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

σ̇
def
= λτ. if σ = τ then 1 else 0

σ � V
def
= λx ∈ VarV . σ(x)

δ � V
def
= λσV ∈ StateV .

∑
τ | τ�V=σV

δ(τ)

fx(δ)
def
= δ � (fv(δ)− {x})

support (δ)
def
= {σ | δ(σ) > 0}

Figure 6.4: Probabilistic semantics for the core language and index of state/distribu-
tion operations

88

indicates that, given an input distribution δ, the semantics of program S is the out-
put distribution δ′. The semantics is defined in terms of operations on distributions.
Here we briefly explain the concrete probabilistic semantics.

The semantics of skip is straightforward: it is the identity on distributions. The
semantics of sequences S1 ; S2 is also straightforward: the distribution that results
from executing S1 with δ is given as input to S2 to produce the result.

The semantics of assignment is δ [x→ E], which is defined as follows:

δ [x→ E]
def
= λσ.

∑
τ | τ [x→[[E]]τ]=σ

δ(τ)

In other words, the result of substituting an expression E for x is a distribution where
state σ is given a probability that is the sum of the probabilities of all states τ that
are equal to σ when x is mapped to the distribution on E in τ .

The semantics for conditionals makes use of two operators on distributions which
we now define. First, given distributions δ1 and δ2 we define the distribution sum as
follows:

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

In other words, the probability mass for a given state σ of the summed distribution
is just the sum of the masses from the input distributions for σ. Second, given a
distribution δ and a boolean expression B , we define the distribution conditioned on
B to be

δ ∧ B
def
= λσ. if [[B]]σ then δ(σ) else 0

In short, the resulting distribution retains only the probability mass from δ for states
σ in which B holds.

With these two operators, the semantics of conditionals can be stated simply: the
resulting distribution is the sum of the distributions of the two branches, where the
first branch’s distribution is conditioned on B being true, while the second branch’s
distribution is conditioned on B being false.

The semantics for probabilistic conditionals is like that of conditionals but makes
use of distribution scaling, which is defined as follows: given δ and some scalar p in
[0, 1], we have

p · δ def
= λσ. p · δ(σ)

In short, the probability ascribed to each state is just the probability ascribed to that
state by δ but multiplied by p. For probabilistic conditionals, we sum the distributions
of the two branches, scaling them according to the odds q and 1− q.

The semantics of a single while-loop iteration is essentially that of if B then S else skip;
the semantics of the entire loop is the fixed point of a function that composes the
distributions produced by each iteration. As noted by Clarkson [24], the existence
of the fixed-point derives from the continuity of the semantics and the ordering on
distributions which was proved by Kozen [58]. For an implementation, however, the
evaluation of a loop can be performed näıvely, by repeatedly evaluating the loop

89

body until the mass of δ ∧ B becomes zero. This process has a chance of diverging,
signifying an infinite loop on some σ ∈ support (δ).

In Section 6.4 we make use of an additional convenience statement, uniform x n1 n2

(equivalent to a series of probabilistic conditionals) intended to assign a uniform value
in the range {n1, ..., n2} to the variable x.

[[uniform x n1 n2]]δ = fx(δ)× δ′

Here we use the distribution product operator, which is defined for two distributions
with disjoint domains (sharing no variables):

δ1 × δ2
def
= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

The notation (σ1, σ2) is the “concatenation” of two states with disjoint domains. In
the definition of uniform x n1 n2, δ′ is defined over just the variable x (removed from
δ by the forget operator) as follows.

δ′ = λσ. if n1 ≤ σ(x) ≤ n2 then
1

n2 − n1 + 1
else 0

6.3.3 Belief and security

Clarkson et al. [24] describe how a belief about possible values of a secret, expressed
as a probability distribution, can be revised according to an experiment using the
actual secret. Such an experiment works as follows.

The values of the set of secret variables H are given by the hidden state σH . The
attacker’s initial belief as to the possible values of σH is represented as a distribution
δH . A query is a program S that makes use of variables H and possibly other, non-
secret variables from a set L; the final values of L, after running S, are made visible
to the attacker. Let σL be an arbitrary initial state of these variables. Then we take
the following steps:

Step 1 Evaluate S probabilistically using the querier’s belief about the secret
to produce an output distribution δ′, which amounts to the attacker’s prediction of
the possible output states. This is computed as δ′ = [[S]]δ, where δ, a distribution
over variables H ∪ L, is defined as δ = δH × σ̇L. Here we write σ̇ to denote the point
distribution for which only σ is possible:

σ̇
def
= λτ. if σ = τ then 1 else 0

Thus, the initial distribution δ is the attacker’s belief about the secret variables com-
bined with an arbitrary valuation of the public variables.

90

Step 2 Using the actual secret σH , evaluate S “concretely” to produce an output
state σ̂L, in three steps. First, we have δ̂′ = [[S]]δ̂, where δ̂ = σ̇H×σ̇L. Second, we have
σ̂ ∈ Γ(δ̂′) where Γ is a sampling operator that produces a state σ from the domain of a
distribution δ with probability normal(δ)(σ). Finally, we extract the attacker-visible
output of the sampled state by projecting away the high variables: σ̂L = σ̂ � L. The
sampling here is needed because S may include probabilistic if statements, and so δ̂′

may not be a point distribution.

Step 3 Revise the attacker’s initial belief δH according to the observed output
σ̂L, yielding a new belief δ̂H = (δ′ ∧ σ̂L) � H. Here, δ′ is conditioned on the output
σ̂L, which yields a new distribution, and this distribution is then projected to the
variables H.

The conditioned distribution δ̂H is the non-normalized representation of the at-
tacker’s belief about the secret variables, after observing the final values of low vari-
ables. In can be turned into a true distribution by normalizing it.

Note that this protocol assumes that S always terminates and does not modify
the secret state. The latter assumption can be eliminated by essentially making a
copy of the state before running the program, while eliminating the former depends
on the observer’s ability to detect nontermination [24].

6.4 Belief revision via abstract interpretation

We have developed a new means to perform probabilistic computation based on ab-
stract interpretation. In this approach, execution time depends on the complexity of
the query rather than the size of the input space. In the next two sections, we present
two abstract domains. This section presents the first, denoted P, where an abstract
element is a single probabilistic polyhedron, which is a convex polyhedron [30] with
information about the probabilities of its points.

Because using a single polyhedron will accumulate imprecision after multiple
queries, in our implementation we actually use a different domain, denoted Pn (P), for
which an abstract element consists of a set of at most n probabilistic polyhedra (whose
construction is inspired by powersets of polyhedra [13, 91]). This domain, described
in the next section, allows us to retain precision at the cost of increased execution
time. By adjusting n, the user can trade off efficiency and precision. An important
element of our approach is the ability to soundly evaluate the knowledge-threshold
policies, even under approximate inference.

6.4.1 Polyhedra

We first review convex polyhedra, a common technique for representing sets of program
states. We use the meta-variables β, β1, β2, etc. to denote linear inequalities. We write
fv(β) to be the set of variables occurring in β; we also extend this to sets, writing
fv({β1, . . . , βn}) for fv(β1) ∪ . . . ∪ fv(βn).

91

Definition 25. A convex polyhedron C = (B, V) is a set of linear inequalities B =
{β1, . . . , βm}, interpreted conjunctively, over dimensions V . We write C for the set of
all convex polyhedra. A polyhedron C represents a set of states, denoted γC(C), as
follows, where σ |= β indicates that the state σ satisfies the inequality β.

γC((B, V))
def
= {σ | fv(σ) = V, ∀β ∈ B. σ |= β}

Naturally we require that fv({β1, . . . , βn}) ⊆ V . We write fv((B, V)) to denote
the set of variables V of a polyhedron.

Given a state σ and an ordering on the variables in fv(σ), we can view σ as a point
in an N -dimensional space, where N = |fv(σ)|. The set γC(C) can then be viewed
as the integer-valued lattice points in an N -dimensional polyhedron. Due to this
correspondence, we use the words point and state interchangeably. We will sometimes
write linear equalities x = f(~y) as an abbreviation for the pair of inequalities x ≤ f(~y)
and x ≥ f(~y).

Let C = (B, V). Convex polyhedra support the following operations.

• Polyhedron size, or #(C), is the number of integer points in the polyhedron,
i.e., |γC(C)|. We will always consider bounded polyhedra when determining
their size, ensuring that #(C) is finite.

• (Logical) expression evaluation, 〈〈B〉〉C returns a convex polyhedron containing
at least the points in C that satisfy B . Note that B may or may not have
disjuncts.

• Expression count, C#B returns an upper bound on the number of integer points
in C that satisfy B . Note that this may be more precise than #(〈〈B〉〉C) if B
has disjuncts.

• Meet, C1 uCC2 is the convex polyhedron containing exactly the set of points in
the intersection of γC(C1), γC(C2).

• Join, C1 tC C2 is the smallest convex polyhedron containing both γ(C1) and
γ(C2).

• Comparison, C1 vC C2 is a partial order whereby C1 vC C2 if and only if
γC(C1) ⊆ γC(C2).

• Affine transform, C [x→ E], where x ∈ fv(C), computes an affine transforma-
tion of C. This scales the dimension corresponding to x by the coefficient of x
in E and shifts the polyhedron. For example, ({x ≤ y, y = 2z}, V) [y → z + y]
evaluates to ({x ≤ y − z, y − z = 2z}, V).

• Forget, fx(C), projects away x. That is, fx(C) = πfv(C)−{x}(C), where πV (C) is a
polyhedron C ′ such that γC(C ′) = {σ | τ ∈ γC(C) ∧ σ = τ � V }. So C ′ = fx(C)
implies x 6∈ fv(C ′). The projection of C to variables V , written C � V is defined
as the forgetting of all the dimensions of C other than V .

92

• Linear partition CA ↘↙ CB of two (possibly overlapping) polyhedra CA, CB is
a set of equivalent disjoint polyhedra {Ci}ni=1. That is, ∪iγC(Ci) = γC(CA) ∪
γC(CB) and γC(Ci) ∩ γC(Cj) = ∅ for i 6= j. When CA and CB do not overlap
then CA ↘↙ CB = {CA, CB}.

We write isempty(C) iff γC(C) = ∅.

6.4.2 Probabilistic Polyhedra

We take this standard representation of sets of program states and extend it to a
representation for sets of distributions over program states. We define probabilistic
polyhedra, the core element of our abstract domain, as follows.

Definition 26. A probabilistic polyhedron P is a tuple (C, smin, smax, pmin, pmax,mmin,
mmax). We write P for the set of probabilistic polyhedra. The quantities smin and smax

are lower and upper bounds on the number of support points in the polyhedron C.
The quantities pmin and pmax are lower and upper bounds on the probability mass per
support point. The mmin and mmax components give bounds on the total probability
mass. Thus P represents the set of distributions γP(P) defined below.

γP(P)
def
= {δ | support (δ) ⊆ γC(C) ∧

smin ≤ |support (δ)| ≤ smax ∧
mmin ≤ ‖δ‖ ≤ mmax∧
∀σ ∈ support (δ) . pmin ≤ δ(σ) ≤ pmax}

We will write fv(P)
def
= fv(C) to denote the set of variables used in the probabilistic

polyhedron.

Note the set γP(P) is a singleton exactly when smin = smax = #(C) and pmin =
pmax, and mmin = mmax. In such a case γP(P) contains only the uniform distribution
where each state in γC(C) has probability pmin. In general, however, the concretiza-
tion of a probabilistic polyhedron will have an infinite number of distributions. For
example, the pair of probabilistic polyhedra in 6.2, Equation 24.1 admits an infinite
set of distributions, with per-point probabilities varied somewhere in the range pmin

1

and pmax
1 . The representation of the non-uniform distribution in that example is thus

approximate, but the security policy can still be checked via the pmax
1 (and mmax

2)
properties of the probabilistic polyhedron.

Distributions represented by a probabilistic polyhedron are not necessarily nor-
malized (as was true in Section 6.3.2). In general, there is a relationship between
pmin, smin, and mmin, in that mmin ≥ pmin · smin (and mmax ≤ pmax · smax), and the
combination of the three can yield more information than any two in isolation.

Our convention will be to use C1, smin
1 , smax

1 , etc. for the components associated
with probabilistic polyhedron P1 and to use subscripts to name different probabilistic
polyhedra.

93

Ordering Distributions are ordered point-wise [24]. That is, δ1 ≤ δ2 if and
only if ∀σ. δ1(σ) ≤ δ2(σ). For our abstract domain, we say that P1 vP P2 if and
only if ∀δ1 ∈ γP(P1). ∃δ2 ∈ γP(P2). δ1 ≤ δ2. Testing P1 vP P2 mechanically is non-
trivial, but is unnecessary. In Section B.8 we use an alternative, though equivalent,
semantics of loops defined as an infinite sum of distributions (which in the abstraction,
are represented as probabilistic polyhedra), with decreasing probability mass. In
the alternative semantics, reaching a fixed point is equivalent to reaching a term of
the infinite sum that has zero mass. Thus we need to test whether a distribution
represents only the zero distribution 0Dist

def
= λσ.0 in order to see that a fixed point

for evaluating 〈〈while B do S 〉〉P has been reached. Intuitively, no further iterations of
the loop need to be considered once the probability mass flowing into the nth iteration
is zero. More details about this can be found in the Appendix, Section B.8. The zero
condition can be detected as follows:

iszero(P)
def
=(

smin = smax = 0 ∧mmin = 0 ≤ mmax
)

∨
(
mmin = mmax = 0 ∧ smin = 0 ≤ smax

)
∨
(
isempty(C) ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

)
∨
(
pmin = pmax = 0 ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

)
If iszero(P) holds, it is the case that γP(P) = {0Dist}. This definition distinguishes
γP(P) = ∅ (if P has inconsistent constraints) from γP(P) = {0Dist}. Note that having
a more conservative definition of iszero(P) (which holds for fewer probabilistic poly-
hedra P) would simply mean our analysis would terminate less often than it could,
with no effect on security.

Following standard abstract interpretation terminology, we will refer to P (Dist)
(sets of distributions) as the concrete domain, P as the abstract domain, and γP : P→
P (Dist) as the concretization function for P.

6.4.3 Abstract Semantics for P

To support execution in the abstract domain just defined, we need to provide abstract
implementations of the basic operations of assignment, conditioning, addition, and
scaling used in the concrete semantics given in Figure 6.4. We will overload nota-
tion and use the same syntax for the abstract operators as we did for the concrete
operators.

As we present each operation, we will also state the associated soundness theorem
which shows that the abstract operation is an over-approximation of the concrete
operation. Proofs are given in Appendix B.

The abstract program semantics is then exactly the semantics from Figure 6.4,
but making use of the abstract operations defined here, rather than the operations
on distributions defined in Section 6.3.2. We will write 〈〈S〉〉P to denote the result of
executing S using the abstract semantics. The main soundness theorem we obtain is
the following.

94

Theorem 27. For all P, δ, if δ ∈ γP(P) and 〈〈S〉〉P terminates, then [[S]]δ terminates
and [[S]]δ ∈ γP(〈〈S〉〉P).

When we say [[S]]δ terminates (or 〈〈S〉〉P terminates) we mean that only a finite
number of loop iterations are required to interpret the statement on a particular
distribution (or probabilistic polyhedron). In the concrete semantics, termination
can be checked by iterating until the mass of δ ∧ B (where B is a guard) becomes
zero. (Note that [[S]]δ is always defined, even for infinite loops, as the least fixed-
point is always defined, but we need to distinguish terminating from non-terminating
loops for security reasons, as per the comment at the end of Section 6.3.3.) To check
termination in the abstract semantics, we check that upper bound on the mass of
P ∧ B becomes zero. In a standard abstract domain, termination of the fixed point
computation for loops is often ensured by use of a widening operator. This allows
abstract fixed points to be computed in fewer iterations and also permits analysis of
loops that may not terminate. In our setting, however, non-termination may reveal
information about secret values. As such, we would like to reject queries that may be
non-terminating.

We enforce this by not introducing a widening operator [26, 30]. Our abstract
interpretation then has the property that it will not terminate if a loop in the query
may be non-terminating (and, since it is an over-approximate analysis, it may also
fail to terminate even for some terminating computations). We then reject all queries
for which our analysis fails to terminate in some predefined amount of time. Loops
do not play a major role in any of our examples, and so this approach has proved
sufficient so far. We leave for future work the development of a widening operator
that soundly accounts for non-termination behavior.

The proof for Theorem 27 is a structural induction on S; the meat of the proof is in
the soundness of the various abstract operations. The following sections present these
abstract operations and their soundness relative to the concrete operations. The basic
structure of all the arguments is the same: the abstract operation over-approximates
the concrete one. The proofs for the various cases and the theorem can be found in
Appendix B.

Forget

We first describe the abstract forget operator fy(P1), which is used in implementing
assignment. Our abstract implementation of the operation must be sound relative to
the concrete one, specifically, if δ ∈ γP(P) then fy(δ) ∈ γP(fy(P)).

The concrete forget operation projects away a single dimension:

fx(δ)
def
= δ � (fv(δ)− {x})

= λσV ∈ StateV .
∑

τ | τ�V=σV

δ(τ) where V = fv(δ)− {x}

When we forget variable y, we collapse any states that are equivalent up to the value
of y into a single state.

95

To do this soundly, we must find an upper bound hmax
y and a lower bound hmin

y on
the number of integer points in C1 that share the value of the remaining dimensions
(this may be visualized of as the min and max height of C1 in the y dimension).
More precisely, if V = fv(C1) − {y}, then for every σV ∈ γC(C1 � V) we have
hmin
y ≤ |{σ ∈ γC(C1) : σ � V = σV }| ≤ hmax

y . Once these values are obtained, we have
that fy(P1)

def
= P2 where the following hold of P2.

C2 = fy(C1)

pmin
2 = pmin

1 ·max
[
hmin
y − (#(C1)− smin

1), 1
]

pmax
2 = pmax

1 ·min
[
hmax
y , smax

1

]
smin
2 = dsmin

1 /hmax
y e mmin

2 = mmin
1

smax
2 = min [#(fy(C1)), smax

1] mmax
2 = mmax

1

The new values for the under and over-approximations of the various parameters
are derived by reasoning about the situations in which these quantities could be the
smallest or the greatest, respectively, over all possible δ2 ∈ γP(P2) where δ2 = fy(δ1),
δ1 ∈ γP(P1). We summarize the reasoning behind the calculations below:

• pmin
2 : The minimum probability per support point is derived by considering a

point of P2 that had the least amount of mass of P1 mapped to it. Let us call this
point σV and the set of points mapped to it S = {σ ∈ γC(C1) | σ � V = σV }. S
could have as little as hmin

y points, as per definition of hmin
y and not all of these

points must be mass-carrying. There are at least smin
1 mass-carrying points in C1.

If we assume that as many as possible of the mass carrying points in the region
C1 are outside of S, it must be that S still contains at least hmin

y −(#(C1)−smin
1)

mass carrying-points, each having probability at least pmin
1 .

• pmax
2 : The maximum number of points of P1 that get mapped to a single point in
P2 cannot exceed smax

1 , the number of support points in P1. Likewise it cannot
exceed hmax

y as per definition of hmax
y .

• smin
2 : There cannot be more than hmax

y support points of P1 that map to a single
point in P2 and there are at least smin

1 support points in P1. If we assume that
every single support point of P2 had the maximum number of points mapped
to it, there would still be dsmin

1 /hmax
y e distinct support points in P2.

• smax
2 : The maximum number of support points cannot exceed the size of the

region defining P2. It also cannot exceed the number of support points of P1,
even if we assumed there was a one-to-one mapping between the support points
of P1 and support points of P2.

Figure 6.5 gives an example of a forget operation and illustrates the quantities
hmax
y and hmin

y . If C1 = (B1, V1), the upper bound hmax
y can be found by maximizing

y−y′ subject to the constraints B1∪B1[y′/y], where y′ is a fresh variable and B1[y′/y]
represents the set of constraints obtained by substituting y′ for y in B1. As our points

96

Figure 6.5: Example of a forget operation in the abstract domain P
In this case, hmin

y = 1 and hmax
y = 3. Note that hmax

y is precise while hmin
y is an under-

approximation. If smin
1 = smax

1 = 9 then we have smin
2 = 3, smax

2 = 4, pmin
2 = pmin

1 · 1,
pmax

2 = pmax
2 · 4.

are integer-valued, this is an integer linear programming problem (and can be solved
by ILP solvers). A less precise upper bound can be found by simply taking the extent
of the polyhedron C1 along y, which is given by #(πy(C1)).

For the lower bound, it is always sound to use hmin
y = 1. A more precise estimate

can be obtained by treating the convex polyhedron as a subset of Rn and finding the
vertex with minimal height along dimension y. Call this distance u. An example of
this quantity is labeled hmin

y in Figure 6.5. Since the shape is convex, all other points
will have y height greater than or equal to u. We then find the smallest number of
integer points that can be covered by a line segment of length u. This is given by
due−1. The final under-approximation is then taken to be the larger of 1 and due−1.
As this method requires us to inspect every vertex of the convex polyhedron and to
compute the y height of the polyhedron at that vertex, we can also look for the one
upon which the polyhedron has the greatest height, providing us with the estimate
for hmax

y .

Lemma 28. If δ ∈ γP(P) then fy(δ) ∈ γP(fy(P)).

We can define an abstract version of projection using forget:

Definition 29. Let f{x1,x2,...,xn}(P) = f{x2,...,xn}(fx1(P)). Then P � V ′ = f(fv(P)−V ′)(P).

That is, in order to project onto the set of variables V ′, we forget all variables not
in V ′.

97

Assignment

The concrete assignment operation is defined so that the probability of a state σ is
the accumulated probability mass of all states τ that lead to σ via the assignment:

δ [x→ E]
def
= λσ.

∑
τ | τ [x→[[E]]τ]=σ

δ(τ)

The abstract implementation of this operation strongly depends on the invert-
ibility of the assignment. Intuitively, the set {τ | τ [x→ [[E]]τ] = σ} can be obtained
from σ by inverting the assignment, if invertible. 2 Otherwise, the set can be obtained
by forgetting about the x variable in σ.

Similarly, we have two cases for abstract assignment. If x := E is invertible,
the result of the assignment P1 [x→ E] is the probabilistic polyhedron P2 such that
C2 = C1 [x→ E] and all other components are unchanged. If the assignment is not
invertible, then information about the previous value of x is lost. In this case, we
forget x thereby projecting (or “flattening”) onto the other dimensions. Then we in-
troduce dimension x back and add a constraint on x that is defined by the assignment.
More precisely the process is as follows. Let P2 = fx(P1) where C2 = (B2, V2). Then
P1 [x→ E] is the probabilistic polyhedron P3 with C3 = (B2 ∪ {x = E} , V2 ∪ {x})
and all other components as in P2.

The test for invertibility itself is simple as our system restricts arithmetic expres-
sions to linear ones. Invertibility relative to a variable x is then equivalent to the
presence of a non-zero coefficient given to x in the expression on the right-hand-side
of the assignment. For example, x := 42x+ 17y is invertible but x := 17y is not.

Lemma 30. If δ ∈ γP(P) then δ [v → E] ∈ γP(P [v → E]).

The soundness of assignment relies on the fact that our language of expressions
does not include division. An invariant of our representation is that smax ≤ #(C).
When E contains only multiplication and addition the above rules preserve this in-
variant; an E containing division would violate it. Division would collapse multiple
points to one and so could be handled similarly to projection.

Plus

The concrete plus operation adds together the mass of two distributions:

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

The abstract counterpart needs to over-approximate this semantics. Specifically,
if δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 + δ2 ∈ γP(P1 + P2).

2An assignment x := E is invertible if there exists an inverse function f : State → State
such that f ([[x := E]]σ) = σ for all σ. Note that the f here needs not be expressible as an
assignment in our (integer-based) language, and generally would not be as most integers have no
integer multiplicative inverses.

98

The abstract sum of two probabilistic polyhedra can be easily defined if their
support regions do not overlap. In such situations, we would define P3 as below:

C3 = C1 tC C2

pmin
3 = min

[
pmin

1 , pmin
2

]
pmax

3 = max [pmax
1 , pmax

2]
smin
3 = smin

1 + smin
2

smax
3 = smax

1 + smax
2

mmin
3 = mmin

1 + mmin
2

mmax
3 = mmax

1 + mmax
2

If there is overlap between C1 and C2, the situation becomes more complex. To
soundly compute the effect of plus we need to determine the minimum and maximum
number of points in the intersection that may be support points for both P1 and
for P2. We refer to these counts as the pessimistic overlap and optimistic overlap,
respectively, and define them below.

Definition 31. Given two distributions δ1, δ2, we refer to the set of states that are
in the support of both δ1 and δ2 as the overlap of δ1, δ2. The pessimistic overlap of
P1 and P2, denoted P1 / P2, is the cardinality of the smallest possible overlap for
any distributions δ1 ∈ γP(P1) and δ2 ∈ γP(P2). The optimistic overlap P1 , P2 is the
cardinality of the largest possible overlap. Formally, we define these as follows.

P1 / P2
def
= max

[
smin
1 + smin

2 −
(

#(C1) + #(C2)−#(C1 uC C2)
)
, 0
]

P1 , P2
def
= min

[
smax
1 , smax

2 ,#(C1 uC C2)
]

The pessimistic overlap is derived from the usual inclusion-exclusion principle:
|A ∩B| = |A|+ |B| − |A ∪B|. The optimistic overlap is trivial; it cannot exceed the
support size of either distribution or the size of the intersection.

We can now define abstract addition.

Definition 32. If not iszero(P1) and not iszero(P2) then P1 +P2 is the probabilistic
polyhedron P3 = (C3, s

min
3 , smax

3 , pmin
3 , pmax

3) defined as follows.

C3 = C1 tC C2

pmin
3 =

{
pmin

1 + pmin
2 if P1 / P2 = #(C3)

min
[
pmin

1 , pmin
2

]
otherwise

pmax
3 =

{
pmax

1 + pmax
2 if P1 , P2 > 0

max [pmax
1 , pmax

2] otherwise

smin
3 = max

[
smin
1 + smin

2 − P1 , P2, 0
]

smax
3 = min [smax

1 + smax
2 − P1 / P2, #(C3)]

mmin
3 = mmin

1 + mmin
2 | mmax

3 = mmax
1 + mmax

2

99

If iszero(P1) then we define P1 + P2 as identical to P2; if iszero(P2), the sum is
defined as identical to P1.

Lemma 33. If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 + δ2 ∈ γP(P1 + P2).

Product

The concrete product operation merges two distributions over distinct variables into
a compound distribution over the union of the variables:

δ1 × δ2
def
= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

When evaluating the product P3 = P1 × P2, we assume that the domains of P1

and P2 are disjoint, i.e., C1 and C2 refer to disjoint sets of variables. If C1 = (B1, V1)
and C2 = (B2, V2), then the polyhedron C1×C2

def
= (B1 ∪B2, V1 ∪ V2) is the Cartesian

product of C1 and C2 and contains all those states σ for which σ � V1 ∈ γC(C1) and
σ � V2 ∈ γC(C2). Determining the remaining components is straightforward since P1

and P2 are disjoint.

C3 = C1 × C2

pmin
3 = pmin

1 · pmin
2 pmax

3 = pmax
1 · pmax

2

smin
3 = smin

1 · smin
2 smax

3 = smax
1 · smax

2

mmin
3 = mmin

1 ·mmin
2 mmax

3 = mmax
1 ·mmax

2

Lemma 34. For all P1, P2 such that fv(P1)∩fv(P2) = ∅, if δ1 ∈ γP(P1) and δ2 ∈ γP(P2)
then δ1 × δ2 ∈ γP(P1 × P2).

In our examples we often find it useful to express uniformly distributed data
directly, rather than encoding it using pif. In particular, we extend statements S
to include the statement of the form uniform x n1 n2 whose semantics is to define
variable x as having a value uniformly distributed between n1 and n2.

〈〈uniform x n1 n2〉〉P1 = fx(P1)× P2

Here, P2 has pmin
2 = pmax

2 = 1
n2−n1+1

, smin
2 = smax

2 = n2 − n1 + 1, mmin
2 = mmax

2 = 1,
and C2 = ({x ≥ n1, x ≤ n2} , {x}).

We will say that the abstract semantics correspond to the concrete semantics of
uniform defined similarly as follows.

[[uniform x n1 n2]]δ = (δ � fv(δ)− {x})× δ2

where δ2 = (λσ.if n1 ≤ σ(x) ≤ n2 then 1
n2−n1+1

else 0).
The soundness of the abstract semantics follows immediately from the soundness

of forget and product.

100

Conditioning

The concrete conditioning operation restricts a distribution to a region defined by a
boolean expression, nullifying any probability mass outside it:

δ ∧ B
def
= λσ. if [[B]]σ then δ(σ) else 0

Distribution conditioning for probabilistic polyhedra serves the same role as meet
in the classic domain of polyhedra in that each is used to perform abstract evaluation
of a conditional expression in its respective domain.

Definition 35. Consider the probabilistic polyhedron P1 and Boolean expression
B . Let n, n be such that n = C1#B and n = C1#(¬B). The value n is an over-
approximation of the number of points in C1 that satisfy the condition B and n is an
over-approximation of the number of points in C1 that do not satisfy B . Then P1∧B
is the probabilistic polyhedron P2 defined as follows.

pmin
2 = pmin

1 smin
2 = max

[
smin
1 − n, 0

]
pmax

2 = pmax
1 smax

2 = min [smax
1 , n]

mmin
2 = max

[
pmin

2 · smin
2 , mmin

1 − pmax
1 ·min [smax

1 , n]
]

mmax
2 = min

[
pmax

2 · smax
2 , mmax

1 − pmin
1 ·max

[
smin
1 − n, 0

]]
C2 = 〈〈B〉〉C1

The maximal and minimal probability per point are unchanged, as conditioning
simply retains points from the original distribution. To compute the minimal number
of points in P2, we assume that as many points as possible from C1 fall in the region
satisfying ¬B . The maximal number of points is obtained by assuming that a maximal
number of points fall within the region satisfying B .

The total mass calculations are more complicated. There are two possible ap-
proaches to computing mmin

2 and mmax
2 . The bound mmin

2 can never be less than
pmin

2 · smin
2 , and so we can always safely choose this as the value of mmin

2 . Similarly, we
can always choose pmax

2 · smax
2 as the value of mmax

2 . However, if mmin
1 and mmax

1 give
good bounds on total mass (i.e., mmin

1 is much higher than pmin
1 · smin

1 and dually for
mmax

1), then it can be advantageous to reason starting from these bounds.
We can obtain a sound value for mmin

2 by considering the case where a maximal
amount of mass from C1 fails to satisfy B. To do this, we compute n = C1#¬B ,
which provides an over-approximation of the number of points within C1 but outside
the area satisfying B. We bound n by smax

1 and then assign each of these points
maximal mass pmax

1 , and subtract this from mmin
1 , the previous lower bound on total

mass.
By similar reasoning, we can compute mmax

2 by assuming a minimal amount of
mass m is removed by conditioning, and subtracting m from mmax

1 . This m is given
by considering an under-approximation of the number of points falling outside the
area of overlap between C1 and B and assigning each point minimal mass as given
by pmin

1 . This m is given by max
(
smin
1 − n, 0

)
.

101

Figure 6.6: Example of distribution conditioning in the abstract domain P.

Figure 6.6 demonstrates the components that affect the conditioning operation.
The figure depicts the integer-valued points present in two polyhedra—one represent-
ing C1 and the other representing B (shaded). As the set of points in C1 satisfying B is
convex, this region is precisely represented by 〈〈B〉〉C1. By contrast, the set of points
in C1 that satisfy ¬B is not convex, and thus 〈〈¬B〉〉C1 is an over-approximation. The
icons beside the main image indicate which shapes correspond to which components
and the numbers within the icons give the total count of points within those shapes.

Suppose the components of P1 are as follows.

smin
1 = 19 pmin

1 = 0.01 mmin
1 = 0.85

smax
1 = 20 pmax

1 = 0.05 mmax
1 = 0.9

Then n = 4 and n = 16. Note that we have set n to be the number of points in
the non-shaded region of Figure 6.6. This is more precise than the count given by
#(〈〈B〉〉C), which would yield 18. This demonstrates why it is worthwhile to have a
separate operation for counting points satisfying a boolean expression. These values
of n and n give us the following for the first four numeric components of P2.

smin
2 = max(19− 16, 0) = 3 pmin

2 = 0.01
smax
2 = min(20, 4) = 4 pmax

2 = 0.05

For the mmin
2 and mmax

2 , we have the following for the method of calculation based on

p
min/max
2 and s

min/max
2 .

mmin
2 = 0.01 · 3 = 0.03 mmax

2 = 0.05 · 4 = 0.2

For the method of computation based on m
min/max
1 , we have

mmin
2 = 0.85− 0.05 · 16 = 0.05

mmax
2 = 0.9− 0.01 · (19− 4) = 0.75

In this case, the calculation based on subtracting from total mass provides a tighter
estimate for mmin

2 , while the method based on multiplying pmax
2 and smax

2 is better for
mmax

2 .

102

Lemma 36. If δ ∈ γP(P) then δ ∧B ∈ γP(P ∧B).

Scalar Product

The scalar product is straightforward both in the concrete and abstract sense; it just
scales the mass per point and total mass:

p · δ def
= λσ. p · δ(σ)

Definition 37. Given a scalar p in (0, 1], we write p · P1 for the probabilistic poly-
hedron P2 specified below.

smin
2 = smin

1 pmin
2 = p · pmin

1

smax
2 = smax

1 pmax
2 = p · pmax

1

mmin
2 = p ·mmin

1 C2 = C1

mmax
2 = p ·mmax

1

If p = 0 then p · P2 is defined instead as below:

smin
2 = 0 pmin

2 = 0
smax
2 = 0 pmax

2 = 0
mmin

2 = 0 C2 = 0C
mmax

2 = 0

Here 0C refers to a convex polyhedra (over the same dimensions as C2) whose
concretization is empty.

Lemma 38. If δ1 ∈ γP(P1) then p · δ1 ∈ γP(p · P1).

Normalization

The normalization of a distribution produces a true probability distribution, whose
total mass is equal to 1:

normal(δ)
def
=

1

‖δ‖
· δ

If a probabilistic polyhedron P has mmin = 1 and mmax = 1 then it represents
a normalized distribution. We define below an abstract counterpart to distribution
normalization, capable of transforming an arbitrary probabilistic polyhedron into one
containing only normalized distributions.

Definition 39. Whenever mmin
1 > 0, we write normal(P1) for the probabilistic poly-

hedron P2 specified below.

pmin
2 = pmin

1 /mmax
1 smin

2 = smin
1

pmax
2 = pmax

1 /mmin
1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1

103

When mmin
1 = 0, we set pmax

2 = 1. Note that if P1 is the zero distribution then
normal(P1) is not defined.

The normalization operator illustrates the key novelty of our definition of prob-
abilistic polyhedron: to ensure that the overapproximation of a state’s probability
(pmax) is sound, we must divide by the underapproximation of the total probability
mass (mmin).

Lemma 40. If δ1 ∈ γP(P1) and normal(δ1) is defined, then normal(δ1) ∈ γP(normal(P1)).

6.4.4 Policy Evaluation

Here we show how to implement the vulnerability threshold test of Definition 6 using
probabilistic polyhedra. To make the definition simpler, let us first introduce a bit of
notation.

Notation 41. If P is a probabilistic polyhedron over variables V , and σ is a state
over variables V ′ ⊆ V , then P ∧ σ def

= P ∧ B where B =
∧
x∈V ′ x = σ(x).

Recall that we define δ|B in the concrete semantics to be normal(δ ∧ B). The
corresponding operation in the abstract semantics is similar: P|B def

= normal(P ∧ B).

Definition 42. Given some probabilistic polyhedron P1 and statement S, with low
security variables L and high security variables H, where 〈〈S〉〉P1 terminates, let
P2 = 〈〈S〉〉P1 and P3 = P2 � L. If, for every σL ∈ γC(C3) with ¬iszero(P2 ∧ σL), we
have P4 = (P2|σL) � H with pmax

4 ≤ h, then we write tsecureh(S, P1).

The computation of P3 involves only abstract interpretation and projection, which
are computable using the operations defined previously in this section. If we have
a small number of outputs (as for the binary outputs considered in our examples),
we can enumerate them and check ¬iszero(P2 ∧ σL) for each output σL. When this
holds (that is, the output is feasible), we compute P4, which again simply involves the
abstract operations defined previously. The final threshold check is then performed
by comparing pmax

4 to the probability threshold h.
Now we state the main soundness theorem for abstract interpretation using proba-

bilistic polyhedra. This theorem states that the abstract interpretation just described
can be used to soundly determine whether to accept a query.

Theorem 43. Let δ be an attacker’s initial belief. If δ ∈ γP(P1) and tsecureh(S, P1),
then S is threshold secure for threshold h when evaluated with initial belief δ.

The proof of this theorem follows from the soundness of the abstraction (Theo-
rem 27), noting the direct parallels of threshold security definitions for distributions
(Definitions 6) and probabilistic polyhedra (Definition 42).

6.4.5 Supporting Other Domains, Including Intervals and Octagons

Our approach to constructing probabilistic polyhedra from normal polyhedra can
be adapted to add probabilities any other abstract domain for which the operations

104

defined in Section 6.4.1 can be implemented. Most of the operations listed there are
standard to abstract domains in general, except for the size operation and the related
expression count. Adopting an abstract domain to our system would therefore only
require designing these counting methods for the new domain.

Two domains that are very easy to adapt that are in common use are intervals and
octagons. Intervals [27], CI, are convex shapes that can be described as a set of closed
intervals, one for each dimension. Alternatively they can be thought of a restricted
form of polyhedra in which the constraints I all have the form a ≤ x ≤ b. Operations
on intervals are much faster than on polyhedra. Specific to our requirements, counting
the integer points inside interval regions and determining their height for the forget
operation are both trivial computations.

Octagons [79], CO, are formed by constraints O that have the form ax + by ≤ c
where a, b ∈ {−1, 0, 1}. In two dimensions these shapes, appropriately, have at most 8
sides. If the number of dimensions is fixed, the number of constraints and the number
of vertices of an octagon are bounded. Furthermore, the operations on octagons have
lower computational complexity than those for polyhedra, though they are not as
efficient as those for intervals.

Any interval or octagon is also a polyhedron. Conversely, one can over-approximate
any polyhedron by an interval or octagon. Naturally the smallest over-approximation
is of greatest interest. Examples are illustrated in Figure 6.7. This fact is relevant
when computing the various equivalent operations to those listed for polyhedra in
Section 6.4.1: applying the definitions given there on octagons/intervals may not nec-
essarily result in octagons/intervals, and so the result must be further approximated.
For example, consider the evaluation operation 〈〈B〉〉 I. This must compute a region
that contains at least the points in I satisfying B . Thus, if a non-octagon/interval is
produced, it can simply be over-approximated. Another example is the affine trans-
form operation I [x→ E], which should contain at least the points τ = σ [x→ E]
with σ ∈ γCI(I), where σ [x→ E] is a single state transformed by the expression E .
In general the operations for simpler domains are much faster than those for more
complex domains. Though the imprecision and thus the need to approximate expres-
sion evaluation might make it occasionally slower, for our experiments any slowdown
is typically overshadowed by the reduced complexity overall.

Figure 6.7: The (over)approximation of a polyhedron using an octagon (left) and an
interval (right).

105

Thus we can construct abstractions of probability distributions based on these
simpler domains instead of polyhedra. The domain of probabilistic intervals I (oc-
tagons O) is defined as in Section 26, except using an interval (octagon) instead of
polyhedron for the region constraint. The abstract semantics described in this sec-
tion can then be soundly implemented in terms of these simpler shapes in place of
polyhedra.

Remark 44. If δ ∈ γP(P) then δ ∈ γI(I) and δ ∈ γO(O), where I and O are
identical to P except P has region constrained by C, a convex polyhedron, while I is
constrained by interval CI and O is constrained by octagon CO, with γC(C) ⊆ γCI(CI)
and γC(C) ⊆ γCO(CO).

6.5 Powerset of Probabilistic Polyhedra

This section presents the Pn (P) domain, an extension of the P domain that abstractly
represents a set of distributions as at most n probabilistic polyhedra, elements of P.

Definition 45. A probabilistic (polyhedral) set ∆ is a set of probabilistic polyhedra,
or {Pi} with each Pi over the same variables. 3 We write Pn (P) for the domain of
probabilistic polyhedral powersets composed of no more than n probabilistic polyhe-
dra.

Each probabilistic polyhedron P is interpreted disjunctively: it characterizes one of
many possible distributions. The probabilistic polyhedral set is interpreted additively.
To define this idea precisely, we first define a lifting of + to sets of distributions. Let
D1, D2 be two sets of distributions. We then define addition as follows.

D1 +D2 = {δ1 + δ2 | δ1 ∈ D1 ∧ δ2 ∈ D2}

This operation is commutative and associative and thus we can use
∑

for summations
without ambiguity as to the order of operations. The concretization function for
Pn (P) is then defined as:

γPn(P)(∆)
def
=
∑
P∈∆

γP(P)

Following Monniaux’s formulation of a finite sums abstraction [81], elements of
∆ need not be disjoint. While enforcing disjointness would simplify determining the
most probable points for policy evaluation (see Section 6.5.2), it would necessitate
splitting of probabilistic polyhedra when overlaps arise. Repeated splitting of already
approximate probabilistic polyhedra decreases their precision and can hurt perfor-
mance by increasing the number of regions to track during abstract interpretation.

We can characterize the condition of ∆ containing only the zero distribution,
written iszero(∆), via the condition that all of the member probabilistic polyhedra

3We write {Xi} as shorthand for a set of n elements of type X, for some n. We write {Xi}ni=1

when the choice of n is important.

106

are zero.
iszero(∆)

def
=
∧
P∈∆

iszero(P)

6.5.1 Abstract Semantics for Pn (P)

The semantics for the powerset abstraction we describe in this section is designed to
soundly approximate the concrete semantics.

Theorem 46. For all δ, S,∆, if δ ∈ γPn(P)(∆) and 〈〈S〉〉∆ terminates, then [[S]]δ
terminates and [[S]]δ ∈ γPn(P)(〈〈S〉〉∆).

The proof for this theorem follows the same form as the corresponding soundness
theorem for probabilistic polyhedra (Theorem 27), via soundness of the individual
abstract operations in relation to their concrete versions. The full proof is shown in
appendix C.

To bound the size of the set of probabilistic polyhedra that will arise from the
various operations that will follow, we introduce a simplification operation.

Definition 47. The powerset simplification transforms a set containing potentially
more than n elements into one containing no more than n, for n ≥ 1. The simplest
approach involves repeated use of abstract plus in the base domain P.

b{Pi}mi=1cn
def
=

{
{Pi}mi=1 if m ≤ n

b{Pi}m−2
i=1 ∪ {Pm−1 + Pm}cn otherwise

Lemma 48. γPn(P)(∆) ⊆ γPn(P)(b∆cm) where m ≤ n.

Note that the order in which individual probabilistic polyhedra are simplified has
no effect on soundness but may impact the precision of the resulting abstraction. We
explore the variation in precision due to these choices in Section 6.6.3.

Many of the operations and lemmas for the powerset domain are simple liftings
of the corresponding operations and lemmas for single probabilistic polyhedra. For
these operations (the first four, below) we simply list the definition; we elaborate on
the remaining four.

Forget fy(∆)
def
= {fy(P) | P ∈ ∆}

Project ∆ � V
def
= {P � V | P ∈ ∆}

Assignment ∆ [x→ E]
def
= {P [x→ E] | P ∈ ∆}

Scalar product p ·∆ def
= {p · P | P ∈ ∆ ∧ ¬iszero(p · P)}

107

Conditioning Recall that for probabilistic polyhedra, conditioning P ∧ B
is defined in terms of logical expression evaluation for convex polyhedra, 〈〈B〉〉C.
This operation returns a convex polyhedron that contains at least the points in C
that satisfy the logical expression B . This operation is tight if B does not contain
disjuncts. When B does have disjuncts whose union does not define a convex region
then the operation will be approximate. Consider Example 24. The condition age =
20 ∨ age = 30 ∨ ... ∨ age = 60, were it be approximated using a single convex region,
would be equivalent to the condition age ≥ 20 ∨ age ≤ 60.

In the powerset domain we keep track of multiple convex regions hence can better
approximate the conditioning operation. The approach we take is to convert the logi-
cal expression into a disjoint disjunctive normal form: ddnf (B)

def
= {B1, B2, · · · , Bm},

such that {σ | σ |= B} = {σ | σ |= B1 ∨ · · · ∨ Bm}, each disjunct Bi contains no fur-
ther disjunctions, and {σ | σ |= Bi ∧ Bj} = ∅ for all i 6= j (Bi are disjoint).

Conditioning is thus defined as follows:

∆ ∧ B
def
= b{P ∧ Bi | P ∈ ∆ ∧ Bi ∈ ddnf (B) ∧ ¬iszero(P ∧ Bi)}cn

The powerset simplification here reduces the set of probabilistic polyhedra to no
more than n. Before the simplification, the number of probabilistic polyhedra could
be as large as |∆| · |ddnf (B)|. The number of disjuncts itself can be exponential in
the size of B .

Product The product operation is only required for the special uniform state-
ment and only applies to the product of a probabilistic set with a single probabilistic
polyhedron. ∆×P ′ def

= {P × P ′ | P ∈ ∆} (where we assume that fv(∆)∩ fv(P ′) = ∅).

Plus The abstract plus operation involves simplifying the combined contributions
from two sets into one bounded set: ∆1 + ∆2

def
= b∆1 ∪∆2cn, whenever ¬iszero(∆1)

and ¬iszero(∆2). Alternatively, if iszero(∆1) (or iszero(∆2)) then ∆1 + ∆2 is defined
to be identical to ∆2 (or ∆1).

The definition of abstract plus given above is technically sound but for an imple-
mentation it would make sense to assuming that ∆1 contains probabilistic polyhedra
that are somewhat more related to each other than those in ∆2. It is preferable
to merge regions that close together rather than those further apart. Therefore our
implementation performs abstract plus heuristically as follows.

∆1 + ∆2 = b∆1cbn/2c ∪ b∆2cn−bn/2c

This may not always be the best grouping of probabilistic polyhedra to merge. There
is quite a lot of arbitrary choice that can be made in order to evaluate this heuristic
or the base definition of abstract plus without this heuristic.

108

Normalization Since in the Pn (P) domain the over(under) approximation of the
total mass is not contained in any single probabilistic polyhedron, the normalization
must scale each component of a set by the overall total. The minimum (maximum)
mass of a probabilistic polyhedron set ∆ = {P1, . . . , Pn} is defined as follows.

Mmin(∆)
def
=
∑n

i=1 mmin
i Mmax(∆)

def
=
∑n

i=1 mmax
i

Definition 49. The normalization a probabilistic polyhedra P1 relative to a prob-
abilistic polyhedron set ∆, written normal∆(P1), is the probabilistic polyhedron P2

defined as follows whenever Mmin(∆) > 0.

pmin
2 = pmin

1 /Mmax(∆) smin
2 = smin

1

pmax
2 = pmax

1 /Mmin(∆) smax
2 = smax

1

mmin
2 = mmin

1 /Mmax(∆) C2 = C1

mmax
2 = mmax

1 /Mmin(∆)

Whenever Mmin(∆) = 0 the resulting P2 is defined as above but with pmax
2 = 1

and mmax
2 = 1.

Normalizing a set of probabilistic polyhedra is then defined as follows

normal(∆)
def
= {normal∆(P) | P ∈ ∆}

Powersets of Intervals and Octagons

Following the probabilistic extensions to the interval and octagon domains described
in Section 6.4.5, we can also define powersets of probabilistic intervals and octagons:
Pn (I) is composed of at most n probabilistic intervals and Pn (O) is composed of at
most n probabilistic octagons. The operations have the same form as those described
above.

6.5.2 Policy Evaluation

Determining the bound on the probability of any state represented by a single prob-
abilistic polyhedron is as simple as checking the pmax value in the normalized version
of the probabilistic polyhedron. In the domain of probabilistic polyhedron sets, how-
ever, the situation is more complex, as polyhedra may overlap and thus a state’s
probability could involve multiple probabilistic polyhedra. A simple estimate of the
bound can be computed by abstractly adding all the probabilistic polyhedra in the
set, and using the pmax value of the result.

Lemma 50. If δ ∈ γPn(P)(∆) and P1 =
∑

P∈∆ P then maxσ δ(σ) ≤ pmax
1 .

This approach has an unfortunate tendency to increase the max probability bound
as one increases the bound on the number of probabilistic polyhedra allowed. A more

109

complicated method, which is used in our implementation, computes a partition of
the polyhedra in the set into another set of disjoint polyhedra and determines the
maximum probable point among the representatives of each region in the partition.
In order to present this method precisely we begin with some definitions.

Definition 51. The maximum probability of a state σ according to a probabilistic
polyhedron P1, written Pmax

1 (σ), is as follows.

Pmax
1 (σ)

def
=

{
pmax

1 if σ ∈ γC(C1)
0 otherwise

Likewise the maximum probability of σ according to a probabilistic polyhedron
set ∆ = {Pi}, written ∆max (σ), is defined as follows.

∆max (σ)
def
=
∑
i

Pmax
i (σ)

A mere application of the various definitions allows one to conclude the following.

Remark 52. If δ ∈ γPn(P)(∆) then for every σ, δ(σ) ≤ ∆max (σ), and therefore
maxτ δ(τ) ≤ maxτ ∆max (τ).

Notice that in the case of a single probabilistic polyhedron, Pmax
1 (σ) = Pmax

1 (τ)
for every σ, τ ∈ γC(C1). That is, every supported state has the same maximum
probability. On the other hand, this is not the case for sets of probabilistic polyhedra,
∆max (σ) is not necessarily equal to ∆max (τ), for supported states σ, τ ∈

⋃
Pi∈∆ γC(Ci),

or even for states σ, τ ∈ γC(Ci), supported by a single probabilistic polyhedron Pi ∈ ∆.
This is the case as there might be one set of probabilistic polyhedra in ∆ that supports
a state σ, while a different set supports τ .

Taking advantage of the polyhedra domain, we will produce a set of representative
points {σj}mj=1 with maxmj=1 ∆max (σj) = maxσ ∆max (σ). This set will thus let us
determine the maximum probability over all points, without having to look at all
points. To do this, we first need to define a linear partition.

Definition 53. A poly partition of a set of polyhedra {Pi}ni=1 is another set of poly-
hedra {Lj}mj=1, usually of larger size, with the following properties.

1. γC(Li) ∩ γC(Lj) = ∅ for every i 6= j.

2. ∪mj=1γC(Lj) = ∪ni=1γC(Pi)

3. For every i, j, either γC(Li) ⊆ γC(Pj) or γC(Li) ∩ γC(Pj) = ∅.

We call any set R = {σj}mj=1 a representative set of partition L = {Lj}mj=1 when
the jth element σj ∈ R is in the concretization of the respective element Lj ∈ L; i.e.,
σj ∈ γC(Lj).

110

Figure 6.8: Example of a poly partition of two overlapping convex polyhedra
(shaded), resulting in 5 disjoint convex polyhedra (outlined).

We can now determine the maximal probability using only representative points,
one from each piece of the poly partition.

Lemma 54. maxσ∈R ∆max (σ) = maxσ ∆max (σ) where L is a poly partition of ∆ and
R is a representative set of L.

Note that the set of representatives R is not unique and the lemma holds for any
such set and the maximal state probability is the same, regardless of which set of
representatives is used, or even which poly partition is computed. Also note that the
process of producing the poly partition would be unnecessary if somehow we kept
the regions defined by probabilistic polyhedra in ∆ disjoint from each other, as they
would already define a poly partition. Doing so would simplify our task here, but
would significantly complicate matters in the abstract interpretation of a program,
as well as reducing the precision of the final result.

The process of producing a poly partition from a set of polyhedra is achieved
via repeated use of the linear partition operation for polyhedra, which splits two
polyhedra into disjoint pieces. Our implementation does this in the most näıve way
possible: we maintain a bag of polyhedra, splitting any overlapping pairs, until no
overlapping regions remain, as in the pseudo-code below.

poly-partition(Φ)
def
=

while ∃ C1, C2 ∈ Φ | ¬isempty(C1 uC C2)

Φ← (Φ− {C1, C2}) ∪ (C1 ↘↙ C2)

return Φ

We will write maxpp (∆) for maxσ ∆max (σ) to make explicit the method with
which this value can be computed according to the lemma above.

Notation 55. If ∆ is a probabilistic polyhedron set over variables V , and σ is a state
over variables V ′ ⊆ V , then ∆ ∧ σ def

= ∆ ∧ B where B =
∧
x∈V ′ x = σ(x).

Definition 56. Given some probabilistic polyhedron set ∆1 and statement S where
〈〈S〉〉∆1 terminates, let ∆2 = 〈〈S〉〉∆1 and ∆3 = ∆2 � L = {P ′i}. If for every σL ∈
γP(C)({C ′i}) with ¬iszero(∆2 ∧ σL) we have ∆4 = (∆2|σL) � H and maxpp (∆4) ≤ h,
then we write tsecureh(S,∆1).

111

Below we state the main soundness theorem for abstract interpretation using
probabilistic polyhedron sets. This theorem states that the abstract interpretation
just described can be used to soundly determine whether to accept a query.

Theorem 57. Let δ be an attacker’s initial belief. If δ ∈ γPn(P)(∆) and tsecureh(S,∆),
then S is threshold secure for threshold h when evaluated with initial belief δ.

Note that the process described in computing threshold security involves merg-
ing probabilistic polyhedra via the simplification operation (Definition 47); the order
in which these polyhedra are combined has no effect on soundness, but could affect
precision. We explore the variation possible in the precision due to ordering in Sec-
tion 6.6.3. The heuristic used for simplification in the abstract plus operation aims to
optimize some of these choices; further optimizations are part of our ongoing work.

6.6 Experiments

We have implemented an interpreter for the language in Figure 6.3 based on the
probabilistic polyhedra powerset domain as well the simpler probabilistic domains
constructed from the interval and octagon base domains. The manipulations of base
domain regions are done using the Parma Polyhedra Library [4] (ppl-0.11.2). Count-
ing calculations are done using the LattE [32] tool (LattE macchiato 1.2-mk-0.9.3) in
the case of polyhedra and octagons. The trivial counting calculation for the interval
domain we implemented ourselves as part of the abstract interpreter, which itself is
written in OCaml (3.12.0). While many of the abstract operations distribute over
the set of probabilistic regions and thus could be parallelized, our implementation is
currently single-threaded.

This section presents an experimental evaluation of our implementation on several
benchmark programs. Overall, the use of the octagonal and polyhedral domains
results in running times ranging from a few seconds to a few minutes. Compared
to enumeration-based approaches to probabilistic computation, using probabilistic
polyhedra improves running times by up to 1–2 orders of magnitude. Intervals do even
better, with running times ranging from tens to hundreds of milliseconds, constituting
an additional 1–2 orders of magnitude improvement. For our particular experiments,
exact precision is reached by all domains if the bound on the number of regions is
sufficiently large.

Our experiments were conducted on a Mac Pro with two 2.26 GHz quad-core Xeon
processors using 16 GB of RAM and running OS X v10.6.7.

6.6.1 Benchmark Programs

We applied our implementation to several queries. The timings measure, for each
query, the construction of a prebelief, the probabilistic evaluation of a query, and
finally a policy check over all secret variables. We describe each query here, and show
the complete source code, prebelief, and further details in Appendix A.

112

Birthday We benchmark the birthday queries described in Section 6.2:

• bday 1 The first birthday query (Example 23).

• bday 1+2+special The sequence of the first two birthday queries (Example 23
and then the same code, but with today increased by 1) followed by the special
birthday query (Example 24). Below we refer to this benchmark as the birthday
query sequence.

We consider small and large variants of these two queries: the former assumes the
birth year ranges from 1956 to 1992, while the latter uses the range 1910 to 2010.

Pizza This query evaluates whether a user might be interested in a local
pizza parlor. To do this, the code checks whether the user’s location is within a
certain square area and whether they match an age or current education criteria
most associated with pizza-eating habits (18-28 year old or currently undergrad or
above). The modeled secret variables thus include: the user’s birth year, the level
of school currently being attended, and their address latitude and longitude (scaled
by 106 and represented as an integer). The last two variables have large magnitudes.
The true values used in the benchmark were 39003178 and 76958199 for latitude and
longitude, respectively.

Photo This query is a direct encoding of a real targeted advertisement that
Facebook includes on their information page [2]. The query itself checks whether
the user is female, engaged, and is in a certain age range, indicative of interest in
(wedding) photography service. There are three secret variables in this example:
gender, relationship status, and birth year.

Travel This query is another adaptation of a Facebook advertisement case
study [1], based on a campaign run by a tourism agency. The aim of the query is to
determine whether the user lives in one of several relevant countries, speaks English,
is over the age of 21, and has completed a high level of education. The secret variables
thus include four dimensions: the user’s country of residence, birth year, highest level
of completed education, and primary language.

Is Target Close, Who is Closer These queries were designed to demonstrate
the need for relational abstractions. They perform simple (Manhattan) distance cal-
culations over points defined by 2D coordinates. Is Target Close checks whether
an unknown point is within some distance of a given point and Who is Closer de-
termines which of two unknown points is closer to a given point. The nature of these
queries is further discussed in Section 6.6.4 and their full specification is shown in
Appendix A.5.

113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16

m
ax

 b
el

ie
f

running time [s]

prob-scheme prob-poly-set

(a) birthday query bday 1 (small)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20 24 28 32 36

m
ax

 b
el

ie
f

running time [s]

(b) birthday query, larger state space - bday 1 (large)

Figure 6.9: Query evaluation comparison

6.6.2 Comparison to Enumeration

Figure 6.9(a) illustrates the result of running the bday 1 (small) query using our
implementation and one using Probabilistic Scheme [92], which is capable of sound
probability estimation after partial enumeration. Each × plots prob-scheme’s max-
imum probability value (the y axis)—that is, the probability it assigns to the most
likely secret state—when given a varying amount of time for sampling (the x axis).
We can see the precision improves steadily until it reaches the exact value of 1/259
at around 17 seconds. Each + plots our implementation’s maximum probability
value when given an increasing number of probabilistic polyhedra; with a polyhedral
bound of 2 (or more), we obtain the exact value in less than one second. The timing
measurements are taken to be the medians of 20 runs.

The advantage of our approach is more evident in Figure 6.9(b) where we use
the same program but allow byear to span 1910 to 2010 rather than 1956 to 1992

114

(this is bday 1 (large)). In this case prob-scheme makes little progress even after a
minute. Our approach, however, is unaffected by this larger state space and produces
the exact maximum belief in less than one second when using only 2 probabilistic
polyhedra.

We can push the advantage much further with the use of the simpler interval
domain which can compute the exact probabilities in both the smaller and larger
birthday examples, using only 2 intervals, in around 0.008 seconds. These benchmarks
can be seen in Figure 6.10, discussed shortly.

6.6.3 Performance analysis

Figures 6.10-6.14 summarize the performance results for all the benchmarks programs
and for each of the three base domains. The raw data producing these figures are
found in Table A.1 in the appendix. The bottom graph of each figure zooms in on
the results for the interval domain which can also be seen in the upper graphs.

The timing benchmarks in the figures are based on 20 runs, the median of which is
denoted by one of three symbols: a box, a diamond, and a pentagon for the interval,
octagon, and polyhedron domains, respectively. The symbols are scaled based on
the precision in max probability, relative to exact, the analysis achieves; a tiny dot
signifies exact probability and increasing symbol size signifies worsening precision.
Note, however, that the sizes of the symbols are not proportional to precision. The
vertical gray boxes range from the 1st to 3rd quartiles of the samples taken while the
vertical lines outside of these boxes represent the full extent of the samples.

We discuss the performance and precision aspects of these results in turn.

Performance. Overall, the use of the octagonal base domain results in slightly
improved performance over the polyhedral base domain. The interval domain, how-
ever, is much faster than both due to the simpler counting and base domain opera-
tions. Though the performance gains from the use of octagons are meager, we note
that it is likely they can be greatly improved by implementing a octagon-specialized
counting method instead of using the general polyhedron counting tool (LattE).

As the number of base domain regions increases, the running time generally in-
creases, though there are exceptions to this trend. A good example can be seen with
intervals in Figure 6.11. Specifically, when there is no interval set size bound, the
analysis takes a less time than with a bound of 40 (and even produces a more pre-
cise answer). In such situations the additional computational cost of manipulating
a larger number of regions is less than the cost that would have been incurred by
having to merge them to maintain some (large) bound.

In the cases of polyhedron and octagon base domains, the running time oddities are
due to the difficulty of accurately counting points in complex regions. We measured
that, when evaluating the various queries in Figures 6.10-6.14, 95% or more of the
running time is spent in LattE, performing counting. Figure 6.15 plots the running
time of LattE against the number of constraints used to define a polyhedron (we used
the polyhedra that arose when evaluating the above queries). Note that the y-axis
is a log scale, and as such we can see the running time is super-exponential in the

115

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8 910 15 20 25 30 35 40

tim
e

[s
ec

on
ds

]

polygons octagons intervals

 0.48
 0.49

 0.5
 0.51
 0.52
 0.53
 0.54

tim
e

[s
ec

on
ds

]

set size bound

Figure 6.10: birthday query sequence benchmarks

number of constraints. As such, overall running time is sensitive to the complexity of
the polyhedra involved, even when they are few in number.

It turns out that when merging to respect the total bound can result in complicated
shapes which then, unintuitively, increase the running time. Two very stark examples
of this phenomenon are seen for in the pizza and travel queries (Figures 6.12 and 6.14
respectively). With a region bound of one, the analysis of both these queries takes
much longer than with the bound of two; the large amount of region merging in these
instances resulted in a single, but highly complex region. Using octagons in both these
instances does not result in complex regions which explains the massive performance
improvement. These observations suggest a great deal of performance improvement
can be gained by simplifying the polyhedra if they become too complex.

Precision. The figures (and Table A.1 in the appendix) generally show the
trend that the maximum belief improves (decreases) as the region bound increases,
though there are exceptions. A good example appears in Figure 6.10 which depicts
the performance of the birthday query sequence; with a set size bound of 3, the
analysis is able to produce the exact max belief. Allowing 4 probabilistic polyhedra

116

 0

 5

 10

 15

1 2 3 4 5 6 7 8 910 15 20 25 30 35 40

tim
e

[s
ec

on
ds

]

polygons octagons intervals

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

tim
e

[s
ec

on
ds

]

set size bound

Figure 6.11: birthday (large) query sequence benchmarks

(or intervals, octagons), however, does not produce the exact belief anymore. The
same occurs in Figure 6.11 for the larger state space bday sequence benchmark.

The data also demonstrate that, as expected, the use of polyhedra is more precise
then use of octagons which itself is more precise than the use of intervals. For the
birthday queries, this difference manifests itself rarely, in particular for the set size
bound of 20 and 25 in Figure 6.10. In the pizza query benchmarks, polyhedra provide
a precision advantage over the other two domains when the region set size bound is
between 5 and 10. Based on these sample queries, the precision advantage of using
polyhedra or octagons over intervals seems insignificant. This is due to a general
lack, in these queries, of conditionals that cannot be expressed exactly when using
intervals (or octagons) exactly. Section 6.6.4 shows two queries that demonstrate the
precision advantages of polyhedra and octagons more clearly.

Impact of merge order. Another reason for the the lack of a steady improve-
ment of precision as the region bound increases is due to order in which polyhedra
are merged. That is, when simplifying a set of m probabilistic polyhedra to n < m
requires that we iteratively merge pairs of polyhedra until the bound is reached. But
which pairs should we use? The choice impacts precision. For example, if we have

117

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8 910 15 20 25 30 35 40

tim
e

[s
ec

on
ds

]

polygons octagons intervals

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

tim
e

[s
ec

on
ds

]

set size bound

Figure 6.12: pizza query benchmarks

two largely overlapping polyhedra, we would preserve more precision if we merge
them rather than merging one of them with some other, non-overlapping one. We
used a deterministic strategy for the benchmarks in this section, producing identical
precision, though some timing variations. The question is how well might we have
done with a better strategy?

To test the precision variation possible due to these arbitrary choices, we ana-
lyzed the birthday query sequence, for each interval set size bound, but with 200
different random seeds for randomized merging decisions. The results can be seen
in Figure 6.16. The median max belief is included, as well as the lower and upper
quartiles (shaded). Note that we did not use the merging heuristic for the abstract
plus operation described in Section 6.5.1 for these measurements (but we do use it in
the results given up to this point).

Naturally there are few arbitrary choices to make when the set size bound is very
low, or very high. In the middle, however, there are many possibilities. Turning to
the figure, we can see the variation possible is significant except for when the set size
bound is at least 36 (at which point there is no merging occurring). For n ≤ 7 it is
more likely than not to conclude max belief is 1, with 1 being the median. On the
other hand, from as little as n = 2, it is possible to do much better, even computing

118

 0

 1

 2

 3

 4

1 2 3 4 5 6 7 8 910 15 20 25 30 35 40

tim
e

[s
ec

on
ds

]

polygons octagons intervals

 0.014
 0.016
 0.018

 0.02
 0.022
 0.024
 0.026
 0.028

 0.03

tim
e

[s
ec

on
ds

]

set size bound

Figure 6.13: photo query benchmarks

the exact belief (lowest sample for n = 3). This itself suggests that our heuristic for
the merging order in abstract plus is useful, as it managed to result in this exact
max belief, against all odds. Also, even though it did not produce exact beliefs for
n > 3, it did a lot better than the trivial median one would get by performing merging
randomly. Nevertheless, the merging order is an aspect of the implementation that
has room for improvement, we consider some options in Section 6.8.

From n = 8, the random merging order starts producing non-trivial results, on
average. Increasing n further makes it less and less likely to merge poorly; at n = 30
for example, no random merge order out of the 200 samples managed to do terribly,
all samples had belief below 0.01. Overall, the median max-belief is more or less
monotonically improving as n increases as one would expect.

An interesting feature of Figure 6.16 is the best max-belief achieved for each n
(the bottom mark of each column). This quantity seems to be getting worse from
n = 3 all the way to around n = 14 before it starts coming down again. We expect
this is due to two counteracting effects:

• Larger powerset size bound allows for more precise representation of distribu-
tions, for some merging order.

119

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 910 15 20 25 30 35 40

tim
e

[s
ec

on
ds

]

polygons octagons intervals

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

tim
e

[s
ec

on
ds

]

set size bound

Figure 6.14: travel query benchmarks

• It is easier to find a good merging order if there are only a few options. For low
values of n, most merging orders are explored in the 200 samples, hence good
orders are found.

6.6.4 Relational queries

The examples presented to this point are handled well by the interval-based abstrac-
tion, assuming a sufficient number of intervals are used. The simple interval-based
abstraction does not work so well programs that introduce relational constraints on
variables. Such constraints can arise due to simple distance computations, which
we would expect to be found in many useful queries. We provide examples of such
computations here (the full specification of the queries appears in Appendix A.5).

Consider an initial belief composed of two pairs of 2-dimensional coordinates,
specifying the location of two objects: (x1, y1), (x2, y2). The Is Target Close query
checks whether the first of the objects is within a specified distance d from a specified
coordinate (x, y). Distance is measured using Manhattan distance, that is |x− x1|+
|y − y1| ≤ d.

120

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

tim
e

[s
]

num constraints

quartiles median

Figure 6.15: LattE benchmarks

2-3

2-2

2-1

20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

m
ax

 b
el

ie
f

interval set size bound n

median samples

Figure 6.16: birthday query sequence precision variation

Notice that if the first object is indeed within d of the target coordinate, we learn
a relational constrains involving both x1 and y1, the coordinates of the first object:

x1 + y1 ≤ d+ x+ y ∧
x1 − y1 ≤ d+ x− y ∧
−x1 + y1 ≤ d− x+ y ∧

121

−x1 − y1 ≤ d− x− y

Intervals are incapable of exact representation of relational constraints like x1 +
y1 ≤ C. Octagons, however, are a suitable representation. Thus using our implemen-
tation, the Is Target Close query fails (that is, overapproximates the probability of
all secret values to be 1) if interval base domain is used, regardless of the bound on
number of intervals used, but is exactly handled using only a few octagons.

The next query, Who Is Closer, determines which of the two given objects is
closer to the target: |x−x1|+ |y−y1| ≤ |x−x2|+ |y−y2|. The truth of this equation
implies the disjunction of 4 constraints. One among them is the below.

x1 + y1 + x2 + y2 ≤ 2 ∗ x+ 2 ∗ y ∧
x1 − y1 + x2 + y2 ≤ 2 ∗ x ∧
−x1 + y1 + x2 + y2 ≤ 2 ∗ y ∧
−x1 − y1 + x2 + y2 ≤ 0

While x and y can be treated as constants, such a constraint still involves four secret
dimensions, x1, y1, x2, y2 and hence cannot be represented exactly using an octagon,
which can express relational constraints of at most two dimensions. For this reason,
our implementation fails when octagons are used (no matter their number), whereas
the polyhedra-based domain performs exact analysis with just a few polyhedra.

It is important to mention that our implementation does not split regions unless
performing a conditioning operation. It might be beneficial in some cases to split an
interval into pieces so that their union is capable of better approximating relational
constraints. We are considering such options for future work but several aspects of
our implementation need to be improved to take advantage of this idea.

6.7 Related work

The core of our methodology relies on probabilistic computation. A variety of tools
exist for specifying random processes as computer programs and performing inference
on them.

Implementations based on partial sampling [47,87] or full enumeration [92] of the
state space are unsuitable in our setting. Such tools are either too inefficient or too
imprecise. Works based on smarter representations of probability distributions are
promising alternatives. Projects based on algebraic decision diagrams [21], graphical
models [78], and factor graphs [18, 89] translate programs into convenient structures
and take advantage of efficient algorithms for their manipulation or inference.

Our implementation for probabilistic computation and inference differs from exist-
ing works in two main ways. Firstly, we are capable of approximation and hence can
trade off precision for performance, while maintaining soundness in terms of a strong
security policy. The second difference is the nature of our representation of probabil-
ity distributions. Our work is based on numerical abstractions: intervals, octagons,

122

and polyhedra. These abstractions are especially well suited for analysis of imper-
ative programs with numeric variables and linear conditionals. Other probabilistic
languages might serve as better choices when nominal, rather than numeric, variables
are used in queries. The comparative study of the power and effectiveness of various
representations in probabilistic computation is a topic of our ongoing research.

We are not the first to propose probabilistic abstract interpretation. Monni-
aux [81] gives an abstract interpretation for probabilistic programs based on over-
approximating probabilities of points. Di Pierro describes abstract interpretation for
probabilistic lambda calculus [36]. Smith [101] describes probabilistic abstract in-
terpretation for verification of quantitative program properties. Cousot [31] unifies
these and other probabilistic program analysis tools. However, these do not deal with
sound distribution conditioning, the unique element of our approach, which is crucial
for belief-based information flow analysis.

6.8 Improving Performance

While the performance of probabilistic polyhedra compares favorably to alternative
approaches, it can nevertheless be improved; this will be important for applying it to
the deployment scenarios listed above. Here we present several ideas for improving
the implementation that we hope to explore in future work.

Handling nominal values. Our probabilistic domains are based on polyhe-
dra, octagons, and intervals, which are best for analyzing programs with numeric
variables, that contain linear conditionals. Most of the variables in the benchmark
programs were of the numeric variety. However, some were nominal, e.g., the vari-
able encoding a user’s language in the travel query, and these are unordered. Some
variables are nominal but partially ordered, like education level in the pizza query.
While we can encode nominal values as integers, they may be better handled via other
means, perhaps even via näıve enumeration. Handling of large quantities of nomi-
nal values could be performed symbolically using some of the tools used by other
probabilistic languages: [21], graphical models [78], or factor graphs [18, 89]. Ideally
abstract domains like used in our system and ones better suited for nominal values,
could be integrated (i.e. via reduced product [29]) to effectively process programs
that contain both types of variables.

Region splitting. As the performance experiments in the previous section
show, intervals can be far more efficient than polyhedra. While a single interval may
be more imprecise than a single polyhedron, an interesting idea is consider splitting
a polyhedron into many intervals, aiming for the best of both worlds. The simplest
means of implementing this idea is to modify the handling of the uniform statement
for the powerset domains to result not in one, but several intervals. Though a single
interval is sufficient to exactly represent distributions produced by uniform, it would be
insufficient if, later, the program introduces relations not representable by intervals.

123

The challenge is to find the right tradeoff—increasing the number of intervals will
slowly degrade performance and may hurt precision if we use an unfortunate merging
order at join points, as seen in Figure 6.16. Heuristically picking the right merge
order is a known challenge in abstract interpretation-based analyses.

124

Chapter 7

Conclusion

In this thesis we showed how to use explicit models of adversary knowledge to address
the issue of query safety in information sharing thereby addressing the main goal of
this thesis: which queries are safe?

In Chapter 3 we showed how a user wishing to protect private information can
maintain these models of adversary knowledge and determine when queries are safe to
answer. This incorporates a measure of risk based on adversary knowledge, thereby
providing an answer to Question 1: How does one measure information? Using the
approach the user can answer queries in an on-line manner, as they come, without
having to know anything about past or future queries. A user does this by actively
maintaining the knowledge of the adversary and how it changes due to learning an-
swers to queries. This addresses Question 2: How does the adversary obtain informa-
tion? Finally the approach gives the user a simulatable means of refusing to answer
a query in order to maintain a risk bound. This addresses Question 3: How can a
user make sure that the adversary does not attain too much information?

In Chapter 5 we showed how the same approach and similar though extended
answers to the three questions can apply to collaborative queries with multiple par-
ties interested in protecting their private information, yet still performing queries
over it. We showed two approaches that limit adversary knowledge in this setting,
both designed to overcome the inability of the parties to directly model each other’s
knowledge: one based on tracking sets of adversary beliefs, and one that uses secure
computations to enforce knowledge limits. We experimentally showed that though
the first of these is very conservative, it can still allow safe information sharing in
some cases.

In Chapter 4 we showed how the knowledge models can be applied in settings
where the secrets change over time. The work provided a more nuanced answer to
Questions 1 and 2 for this setting. In particular we saw how to make predictions about
risks at future points in time, incorporating the intervening evolution of secrets and
interactions with the adversary. We considered adaptive adversaries that can decide
when to exploit their knowledge as well as decide the parameters of the queries they
observe, both based on their prior observations. We showed that adaptability results
in significantly higher risk that monotonically increases with time. We also showed
that, counter to intuition, more frequent changes to the secret can lead to higher risk.

Finally, in Chapter 6 we presented an approach for modeling knowledge and limit-
ing risk that is approximate but sound, letting users trade off precision (and in some
sense utility) for performance. We extended abstract interpretation techniques to
consider probabilities and carefully defined a sound abstract semantics and a condi-
tioning operation. We experimentally evaluated an implementation of the approach
relative to näıve probabilistic interpretation by enumeration showing how our tech-
nique is resistant to the state-space explosion problem. We also demonstrated the

125

precision/performance tradeoff with an evaluation of abstractions of various complex-
ities.

7.1 Future Directions

There are two main avenues along which the work presented in this thesis can be
extended and refined: modeling and implementation.

Models A big part of this thesis, particularly in Chapter 4, dealt with pre-
senting a suitable model for some real-world information-sharing setting. We have
showed in that chapter how important it is to take into account the capability of the
adversary in such models but stopped short of fully accounting for the behavior of
the user or defender, who was assumed to be passive. One of the outcomes we hope
from our work in the future is useful lessons that can be implemented by defenders.
But the restricted power of defenders in our models limits the range of scenarios we
can presently explore. Integrating defender choice into our model brings technical
difficulties but also potential for useful results.

Implementation Experimentation is a vital tool in exploring the consequences
of the models we presented. As such, the computational aspects of the evaluation of
our models cannot be overlooked. Our work on approximate but sound probabilistic
programming has been our first attempt to addressing those computational aspects
but yet is still severely limited both in terms of performance and expressibility of the
programs it applies to. To incorporation of a widening operator 1 is an opportunity
we have yet to take advantage of. Our restriction to linear expressions can potentially
be alleviated by using linearization techniques or incorporating abstractions that side-
step the issue like bit-vectors.

7.2 Final Remarks

In general our work lacks considerations for human factors. The bigger hurdle to our
proposal for personal data control may not be technical but social. Lacking proper
incentives and understanding, typical computer users rarely take the effort to take
security into account. Even if they do, the most strict of security guarantees can be
broken by users not following directions. Related branches of research consider how
best to address social issues inherent in information security (or how to address them
at all). Bridging those works to our approaches on modeling adversary knowledge
may reveal new opportunities.

We have motivated our work with a speculative goal for automated techniques
to which we (the humans) can offload our security decisions. This work, however,
can be a tool for exploration in which the humans take a big role. The scenarios we
demonstrated in this thesis are only few instances of quite general models. It is our

1Widening is a technique in abstract interpretation that greatly aids in the analysis of loops.

126

hope that this thesis will make it easier for other researchers or security experts to
develop information security scenarios, interpret their results, and inform the human
behavior that is the source of one of the biggest problems in information security
today.

127

Appendix A

Example queries

We provide here the queries and prebeliefs we used for the experiments in Section 6.6.
The queries are described as functions from some set of inputs to some set of outputs.
The exact syntax is as follows.

querydef queryname in1 · · · inn → out1 · · · outm :
querybody

Query definitions that follow sometimes include preprocessing statements of the
form:

#define x = exp

Such statements result in any occurrence of a variable x being replaced by the ex-
pression exp. This is used for convenience to refer to common expressions without
actually requiring the analysis to track additional variables/dimensions.

To specify a query invocation we use the following syntax.

query queryname :
in1 := val1;
· · ·
inn := valn

Each experiment must also specify the values of the secrets being queried, and the
querier’s prebelief. Each specification is a merely a program that sets the values of
these variables. For the actual secret values this program begins with the declaration
secret; the resulting state of executing program is taken to be the secret state. The
program to set the prebelief begins belief and has the same format; note that this
program will use pif or uniform x n1 n2 to give secrets different possible values with
different probabilities.

We now give the content of the queries used in the experiments.

A.1 Birthday

For the small stateset size birthday experiments we used the following secret and
prebelief.

secret :

s bday := 270 ;
s byear := 1980

belief :

128

uniform s bday 0 364 ;
uniform s byear 1956 1992

The two queries used were as follows.

querydef bday : c day → out

if s bday ≥ c day ∧ c day + 7 > s bday then
out := 1

else
out := 0

querydef spec : c year → out

#define age = c year − s byear
if age = 10 ∨ age = 20 ∨ age = 30 ∨ age = 40
∨ age = 50 ∨ age = 60 ∨ age = 70 ∨ age = 80
∨ age = 90 ∨ age = 100 then
out := 1

else
out := 0 ;

pif 1/10 then
out := 1

The statistics described in comparison to the enumeration approach (Section 6.6.2)
include the time spent processing this initial setup as well as time processing one
birthday query. Figure 6.11 benchmarks two bday queries followed by a spec year
query.

• A single bday query alone.
query bday :

c day := 260

• Two bday queries followed by a spec query.

query bday :

c day := 260

query bday :

c day := 261

query spec :

c year := 2011

129

A.2 Birthday (large)

For the larger statespace birthday example we used the following secret and prebelief
generators.

secret :

s bday := 270 ;
s byear := 1980

belief :

uniform s bday 0 364 ;
uniform s byear 1910 2010

The queries used were identical to the ones for the smaller statespace birthday ex-
ample. For our benchmarks we analyzed the vulnerability of the pair of secrets
s bday, s byear.

A.2.1 Pizza

The pizza example is slightly more complicated, especially in the construction of
the prebelief. This example models a targeted Facebook advertisement for a local
pizza shop. There are four relevant secret values. The level of school currently being
attended by the Facebook user is given by s_in_school_type, which is an integer
ranging from 0 (not in school) to 6 (Ph.D. program). Birth year is as before and
s_address_lat and s_address_long give the latitude and longitude of the user’s
home address (represented as decimal degrees scaled by a factor of 106 and converted
to an integer).

The initial belief models the fact that each subsequent level of education is less
likely and also captures the correlation between current educational level and age.
For example, a user is given an approximately 0.05 chance of currently being an
undergraduate in college, and college attendees are assumed to be born no later than
1985 (whereas elementary school students may be born as late as 2002).

secret :

s in school type := 4 ;
s birth year := 1983 ;
s address lat := 39003178 ;
s address long := −76958199

belief :

130

pif 4/24 then
uniform s in school type 1 1 ;
uniform s birth year 1998 2002

else
pif 3/19 then

uniform s in school type 2 2 ;
uniform s birth year 1990 1998

else
pif 2/15 then

uniform s in school type 3 3 ;
uniform s birth year 1985 1992

else
pif 1/12 then

uniform s in school type 4 4 ;
uniform s birth year 1980 1985

else
uniform s in school type 0 0 ;
uniform s birth year 1900 1985 ;

uniform s address lat 38867884 39103178 ;
uniform s address long −77058199 − 76825926

The query itself targets the pizza advertisement at users who are either in college
or aged 18 to 28, while living close to the pizza shop (within a square region that is
2.5 miles on each side and centered on the pizza shop). If this condition is satisfied,
then the query returns 1, indicating that the ad should be displayed. The full text of
the query is given below.

querydef pizza : → out

131

#define age = 2010− s birth year
#define lr lat = 38967884
#define ul lat = 39003178
#define lr long = −76958199
#define ul long = −76925926
if s in school type ≥ 4 then
in school := 1

else
in school := 0 ;

if age ≥ 18 ∧ age ≤ 28 then
age criteria := 1

else
age criteria := 0 ;

if s address lat ≤ ul lat
∧ s address lat ≥ lr lat
∧ s address long ≥ lr long
∧ s address long ≤ ul long

then
in box := 1

else
in box := 0 ;

if (in school = 1 ∨ age criteria = 1)
∧ in box = 1 then
out := 1

else
out := 0

A.3 Photo

The photo query is a direct encoding of a case study that Facebook includes on their
advertising information page [2]. The advertisement was for CM Photographics, and
targets offers for wedding photography packages at women between the ages of 24
and 30 who list in their profiles that they are engaged. The secret state consists of
birth year, as before, gender (0 indicates male, 1 indicates female), and “relationship
status,” which can take on a value from 0 to 9. Each of these relationship status
values indicates one of the status choices permitted by the Facebook software. The
example below involves only four of these values, which are given below.

0 No answer

1 Single

2 In a relationship

3 Engaged

The secret state and prebelief are as follows.

secret :

132

s birth year := 1983 ;
s gender := 0 ;
s relationship status := 0

belief :

uniform s birth year 1900 2010 ;
uniform s gender 0 1 ;
uniform s relationship status 0 3

The query itself is the following.

querydef cm advert : → out

#define age = 2010− s birth year
if age ≥ 24 ∧ age ≤ 30 then
age sat := 1

else
age sat := 0 ;

if s gender = 1
∧ s relationship status = 3
∧ age sat = 1 then
out := 1

else
out := 0

A.4 Travel

This example is another Facebook advertising case study [1]. It is based on an ad
campaign run by Britain’s national tourism agency, VisitBritain. The campaign tar-
geted English-speaking Facebook users currently residing in countries with strong ties
to the United Kingdom. They further filtered by showing the advertisement only to
college graduates who were at least 21 years of age.

We modeled this using four secret values: country, birth year, highest completed
education level, and primary language. As with other categorical data, we represent
language and country using an enumeration. We ranked countries by number of Face-
book users as reported by socialbakers.com. This resulted in the US being country
number 1 and the UK being country 3. To populate the list of countries with “strong
connections” to the UK, we took a list of former British colonies. For the language
attribute, we consider a 50-element enumeration where 0 indicates “no answer” and
1 indicates “English” (other values appear in the prebelief but are not used in the
query).

secret :

country := 1 ;
birth year := 1983 ;
completed school type := 4 ;
language := 5

133

belief :

uniform country 1 200 ;
uniform birth year 1900 2011 ;
uniform language 1 50 ;
uniform completed school type 0 5

querydef travel : → out

#define age = 2010− birth year
if country = 1 ∨ country = 3
∨ country = 8 ∨ country = 10
∨ country = 18 then
main country := 1

else
main country := 0 ;

if country = 169 ∨ country = 197
∨ country = 194 ∨ country = 170
∨ country = 206 ∨ country = 183
∨ country = 188 then
island := 1

else
island := 0 ;

if language = 1
∧ (main country = 1 ∨ island = 1)
∧ age ≥ 21
∧ completed school type ≥ 4 then
out := 1

else
out := 0

A.5 Relational Queries

The two queries below, is target close and who is closer introduce relations between
variables after revision, even though the example initial belief had no such relations.
The initial belief stipulates the location of 2 objects is somewhere within a rectangular
region. The is target close query determines if a given location is within dist of the
first object, measured using Manhattan distance. This query introduces relations
between only 2 variables (latitude and longitude) which can be exactly represented
using octagons but cannot using intervals.

The who is closer query performs a similar computation, but instead determines
which of the two objects in the initial belief is closer to the new target location. The
post belief can be handled by use of polyhedra, but not octagons, as it introduces
relationships between more than 2 variables (latitudes and longitudes of 2 different
objects).

belief :

134

uniform loc lat1 29267245 36332852 ;
uniform loc long1 41483216 46405563 ;
uniform loc lat2 29267245 36332852 ;
uniform loc long2 41483216 46405563

querydef is target close : target location lat target location long dist → is close

is close := 0 ;
dist lat := loc lat1− target location lat ;
dist long := loc long1− target location long ;
if dist lat < 0 then
dist lat := −1× dist lat ;

if dist long < 0 then
dist long := −1× dist long ;

if dist lat+ dist long ≤ dist then
is close := 1

querydef who is closer : target location lat target location long → who closer

diff lat1 := loc lat1− target location lat ;
diff long1 := loc long1− target location long ;
diff lat2 := loc lat2− target location lat ;
diff long2 := loc long2− target location long ;
if diff lat1 < 0 then
diff lat1 := −1× diff lat1 ;

if diff long1 < 0 then
diff long1 := −1× diff long1 ;

if diff lat2 < 0 then
diff lat2 := −1× diff lat2 ;

if diff long2 < 0 then
diff long2 := −1× diff long2 ;

dist1 := diff long1 + diff lat1 ;
dist2 := diff long2 + diff lat2 ;
if dist1 ≤ dist2 then
who closer := 0

else
who closer := 1

A.6 Benchmark Results

Table A.1 tabulates performance results for all of the benchmark programs, for each
possible base domain (intervals, octagons, and polyhedra labeled 2, 3, and D respec-
tively). Each column is the maximum size of the permitted powerset, whereas each
grouping of rows contains, respectively, the wall clock time in seconds (median of 20

135

runs), the running time’s semi-interquartile range (SIQR) with the number of outliers
in parentheses (which are defined to be the points 3× SIQR below the first quartile
or above the third), and the max belief computed (smaller being more accurate).

136

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 ∞
bday 1

2
0.008
0.000(3)
1

0.008
0.004(3)
0.0039

0.009
0.000(1)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(2)
0.0039

0.009
0.002(4)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(3)
0.0039

0.009
0.002(4)
0.0039

0.009
0.000(4)
0.0039

0.009
0.006(3)
0.0039

3
0.484
0.011(3)
1

0.443
0.012(3)
0.0039

0.530
0.018(2)
0.0039

0.524
0.020(3)
0.0039

0.529
0.015(3)
0.0039

0.524
0.012(3)
0.0039

0.538
0.073(4)
0.0039

0.533
0.024(4)
0.0039

0.537
0.325(2)
0.0039

0.532
0.036(3)
0.0039

0.524
0.010(2)
0.0039

0.530
0.164(3)
0.0039

0.539
0.035(3)
0.0039

0.528
0.007(2)
0.0039

0.540
0.021(3)
0.0039

0.529
0.010(2)
0.0039

0.537
0.014(1)
0.0039

D
0.713
0.487(0)
1

0.688
0.020(2)
0.0039

0.744
0.016(4)
0.0039

0.745
0.022(4)
0.0039

0.740
0.549(0)
0.0039

0.744
0.605(0)
0.0039

0.734
0.015(2)
0.0039

0.737
0.045(2)
0.0039

0.747
0.059(4)
0.0039

0.732
0.039(4)
0.0039

0.771
0.480(0)
0.0039

0.745
0.054(4)
0.0039

0.750
0.203(3)
0.0039

0.736
0.022(4)
0.0039

0.760
0.791(0)
0.0039

0.742
0.322(3)
0.0039

0.744
0.026(3)
0.0039

bday 1+2+special

2
0.478
0.001(3)
1

0.477
0.005(3)
1

0.489
0.002(1)
3.84e-4

0.490
0.002(1)
4.22e-4

0.492
0.002(1)
4.22e-4

0.494
0.003(3)
4.22e-4

0.496
0.002(2)
4.22e-4

0.499
0.002(3)
8.06e-4

0.500
0.001(2)
8.06e-4

0.504
0.002(2)
8.06e-4

0.514
0.002(2)
4.60e-4

0.530
0.002(1)
0.0013

0.537
0.002(1)
0.0011

0.539
0.002(3)
9.82e-4

0.522
0.003(2)
4.22e-4

0.512
0.003(2)
3.84e-4

0.514
0.007(2)
3.84e-4

3
2.189
0.618(1)
1

2.286
0.787(0)
1

3.453
0.964(0)
3.84e-4

3.927
0.906(0)
4.22e-4

4.969
0.941(0)
4.22e-4

4.463
1.650(0)
4.22e-4

4.007
0.861(0)
4.22e-4

4.652
1.701(0)
8.06e-4

5.489
1.856(0)
8.06e-4

4.043
1.552(0)
8.06e-4

6.278
1.331(0)
4.60e-4

6.625
1.420(0)
0.0013

5.559
1.588(0)
0.0011

7.361
1.702(0)
9.82e-4

5.797
0.818(3)
4.22e-4

5.025
1.452(0)
3.84e-4

5.812
1.909(0)
3.84e-4

D
4.578
0.856(0)
1

4.767
1.024(0)
1

6.292
0.958(0)
3.84e-4

4.575
1.160(1)
4.22e-4

6.510
1.549(0)
4.22e-4

6.391
2.029(0)
4.22e-4

5.875
1.587(0)
4.22e-4

7.404
1.899(0)
8.06e-4

7.722
1.987(0)
8.06e-4

7.777
2.595(0)
8.06e-4

7.763
2.010(0)
4.60e-4

8.233
2.177(0)
4.60e-4

7.532
1.896(0)
4.60e-4

6.681
1.705(0)
4.60e-4

9.821
1.605(0)
4.22e-4

6.512
0.890(1)
3.84e-4

6.800
1.674(0)
3.84e-4

bday large 1

2
0.008
0.000(2)
1

0.008
0.000(1)
0.0014

0.009
0.000(1)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(1)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(2)
0.0014

3
0.500
0.035(4)
1

0.470
0.273(1)
0.0014

0.552
0.549(0)
0.0014

0.546
0.510(1)
0.0014

0.533
0.037(4)
0.0014

0.551
0.466(0)
0.0014

0.535
0.041(4)
0.0014

0.536
0.041(3)
0.0014

0.541
0.258(2)
0.0014

0.532
0.038(2)
0.0014

0.535
0.065(4)
0.0014

0.541
0.063(4)
0.0014

0.535
0.019(3)
0.0014

0.538
0.021(3)
0.0014

0.531
0.020(2)
0.0014

0.533
0.016(1)
0.0014

0.550
0.066(4)
0.0014

D
0.693
0.027(4)
1

0.699
0.024(1)
0.0014

0.747
0.397(2)
0.0014

0.757
0.307(2)
0.0014

0.736
0.023(4)
0.0014

0.733
0.025(4)
0.0014

0.739
0.057(4)
0.0014

0.735
0.015(3)
0.0014

0.754
0.513(0)
0.0014

0.791
0.658(0)
0.0014

0.742
0.017(3)
0.0014

0.757
0.283(3)
0.0014

0.756
0.034(3)
0.0014

0.740
0.263(4)
0.0014

0.742
0.494(0)
0.0014

0.734
0.027(3)
0.0014

0.728
0.013(1)
0.0014

bday large 1+2+special

2
0.483
0.001(2)
1

0.482
0.001(1)
1

0.497
0.001(1)
1.47e-4

0.499
0.002(2)
1.61e-4

0.500
0.001(2)
1.61e-4

0.501
0.002(2)
1.61e-4

0.505
0.003(1)
1.61e-4

0.508
0.001(2)
3.08e-4

0.509
0.001(2)
3.08e-4

0.513
0.003(4)
3.08e-4

0.528
0.002(2)
1.76e-4

0.542
0.001(1)
3.08e-4

0.554
0.002(2)
3.08e-4

0.567
0.002(3)
3.08e-4

0.572
0.002(1)
1.76e-4

0.594
0.004(1)
3.08e-4

0.556
0.001(4)
1.47e-4

3
4.860
1.207(0)
1

5.122
1.464(0)
1

7.126
1.636(0)
1.47e-4

7.966
1.643(0)
1.61e-4

7.250
1.646(0)
1.61e-4

5.742
0.904(3)
1.61e-4

8.254
2.613(0)
1.61e-4

5.980
1.626(0)
3.08e-4

7.855
1.409(1)
3.08e-4

6.810
1.729(0)
3.08e-4

10.32
1.968(0)
1.76e-4

8.887
2.293(0)
3.08e-4

9.578
3.165(0)
3.08e-4

8.262
1.696(0)
3.08e-4

11.77
2.673(0)
1.76e-4

11.16
3.067(0)
3.08e-4

13.52
2.109(2)
1.47e-4

D
5.769
1.414(0)
1

4.850
0.841(2)
1

10.90
2.680(0)
1.47e-4

10.81
2.000(0)
1.61e-4

8.010
1.766(1)
1.61e-4

8.017
2.388(0)
1.61e-4

11.45
2.102(0)
1.61e-4

10.73
2.191(0)
3.08e-4

11.71
1.642(1)
3.08e-4

10.26
2.011(0)
3.08e-4

12.76
1.474(1)
1.76e-4

15.01
2.102(1)
3.08e-4

13.89
1.359(0)
3.08e-4

14.73
1.598(1)
3.08e-4

16.16
1.509(1)
1.76e-4

16.95
1.509(2)
3.08e-4

17.91
1.140(0)
1.47e-4

pizza

2
0.060
0.002(4)
1

0.071
0.000(3)
1

0.086
0.000(3)
1

0.100
0.000(3)
1.63e-9

0.117
0.001(3)
1

0.135
0.001(4)
4.60e-10

0.175
0.003(4)
4.60e-10

0.226
0.005(3)
2.14e-10

0.182
0.001(3)
2.14e-10

0.272
0.000(3)
2.14e-10

0.212
0.005(3)
1.08e-10

0.289
0.001(3)
6.00e-11

0.368
0.001(2)
6.00e-11

0.348
0.001(1)
6.00e-11

0.258
0.001(1)
6.00e-11

0.278
0.001(1)
6.00e-11

0.279
0.001(3)
6.00e-11

3
19.07
1.780(0)
1

12.15
1.573(0)
1

18.83
1.331(0)
1

14.29
1.640(1)
1.63e-9

26.41
2.097(0)
1

16.72
1.233(0)
4.60e-10

29.92
0.808(1)
4.60e-10

27.49
0.731(0)
2.14e-10

21.08
1.553(0)
2.14e-10

25.93
1.044(0)
2.14e-10

24.36
0.654(2)
1.08e-10

29.33
1.049(1)
6.00e-11

37.08
1.719(0)
6.00e-11

38.09
1.311(0)
6.00e-11

40.51
1.211(1)
6.00e-11

45.69
1.098(2)
6.00e-11

43.98
1.962(1)
6.00e-11

D
127.7
1.392(3)
1

33.24
1.100(1)
1

39.59
1.596(1)
1

25.30
0.873(0)
8.66e-10

46.22
1.486(1)
4.95e-10

28.87
1.474(0)
1.50e-10

38.34
2.058(0)
1.50e-10

33.75
1.271(1)
1.37e-10

59.07
1.461(2)
1.37e-10

33.64
1.308(1)
1.37e-10

41.38
1.853(0)
6.00e-11

41.72
1.204(1)
6.00e-11

47.59
1.303(2)
6.00e-11

53.36
1.195(0)
6.00e-11

58.39
1.957(1)
6.00e-11

64.71
1.774(2)
6.00e-11

65.47
2.291(0)
6.00e-11

photo

2
0.015
0.000(3)
1

0.016
0.000(2)
0.1429

0.020
0.000(2)
0.1429

0.020
0.000(4)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(1)
0.1429

0.022
0.000(4)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(4)
0.1429

0.022
0.000(2)
0.1429

0.022
0.004(3)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(4)
0.1429

0.022
0.000(1)
0.1429

0.022
0.000(2)
0.1429

0.022
0.000(3)
0.1429

3
1.238
0.712(1)
1

1.228
0.745(0)
0.1429

1.343
0.290(3)
0.1429

2.855
0.795(2)
0.1429

2.529
0.828(0)
0.1429

1.526
0.772(1)
0.1429

1.539
0.660(1)
0.1429

1.573
0.675(1)
0.1429

1.911
0.786(1)
0.1429

1.540
0.776(0)
0.1429

1.541
0.541(1)
0.1429

1.545
0.100(4)
0.1429

1.643
0.824(1)
0.1429

1.533
0.733(0)
0.1429

1.626
0.805(1)
0.1429

1.685
0.771(0)
0.1429

1.606
0.789(1)
0.1429

D
1.840
0.824(0)
1

1.666
0.607(1)
0.1429

1.856
0.866(0)
0.1429

3.473
0.855(1)
0.1429

2.011
0.805(0)
0.1429

2.054
0.898(0)
0.1429

2.068
0.874(0)
0.1429

3.226
1.191(0)
0.1429

3.281
1.294(0)
0.1429

2.038
0.792(0)
0.1429

2.048
0.885(1)
0.1429

2.178
0.823(0)
0.1429

2.055
0.819(1)
0.1429

2.056
0.826(2)
0.1429

2.617
0.851(0)
0.1429

2.729
0.841(0)
0.1429

2.041
0.845(0)
0.1429

travel

2
0.186
0.000(3)
1

0.189
0.001(3)
1

0.203
0.000(3)
1

0.220
0.000(3)
1

0.234
0.001(2)
1

0.246
0.002(4)
1

0.271
0.001(2)
0.0278

0.284
0.001(4)
0.0139

0.298
0.001(1)
0.0139

0.319
0.002(3)
0.0042

0.419
0.001(3)
0.0037

0.422
0.001(2)
0.0025

0.458
0.001(3)
5.05e-4

0.564
0.001(2)
5.05e-4

0.493
0.002(2)
5.05e-4

0.576
0.001(3)
5.05e-4

0.516
0.005(4)
5.05e-4

3
12.72
1.688(0)
1

8.111
2.268(0)
1

8.142
1.720(0)
1

8.849
1.169(0)
1

12.58
1.668(2)
1

10.79
1.191(0)
1

14.31
1.151(1)
0.0167

14.90
1.408(1)
0.0083

17.06
0.944(2)
0.0083

17.73
1.544(0)
0.0042

28.80
1.498(0)
0.0025

34.17
1.217(1)
0.0015

37.61
1.391(0)
5.05e-4

40.87
1.240(1)
5.05e-4

42.59
1.814(1)
5.05e-4

45.33
0.735(2)
5.05e-4

60.81
1.003(2)
5.05e-4

D
225.7
2.232(0)
1

11.31
2.884(0)
1

15.74
0.869(2)
1

16.79
0.936(0)
1

23.48
1.017(2)
1

21.73
1.373(0)
1

32.47
1.950(0)
0.0056

29.31
1.750(2)
0.0028

39.40
1.348(1)
0.0028

34.25
1.197(1)
0.0028

60.11
1.755(0)
0.0012

64.85
1.961(1)
0.0010

69.79
1.441(1)
5.05e-4

71.61
2.037(1)
5.05e-4

71.81
2.169(0)
5.05e-4

73.26
2.252(0)
5.05e-4

83.74
2.150(0)
5.05e-4

Table A.1: Query evaluation benchmarks

137

Appendix B

Soundness proofs for P

B.1 Projection

The proof of projection relies heavily on splitting up the support of a distribution
into equivalence classes based on the states they project to. We will have σ, σ′ ∈
support (δ) belonging to the same equivalence class iff σ � V = σ′ � V . The details
are formalized in the following definition.

Definition 58. Equivalence classes under projection.

• [σV]Vδ is an equivalence class of elements of support (δ) that project to σV (when

projected to variables V). Formally, [σV]Vδ
def
= {σ ∈ support (δ) | σ � V = σV }.

• [σV]
V

δ is a subset of support (δ) that project to anything but σV or formally

[σV]
V

δ

def
= {σ ∈ support (δ) | σ � V 6= σV }.

• [σV]VC is a subset of γC(C) that project to σV (when projected to variables V).

Formally, [σV]VC
def
= {σ ∈ γC(C) | σ � V = σV }.

• [σV]
V

C is a subset of γC(C) that project to anything but σV or formally [σV]
V

C

def
=

{σ ∈ γC(C) | σ � V 6= σV }.

Remark 59. Let V ⊆ V ′ ⊆ fv(δ), σ ∈ support (δ), and σV , σ
′
V ∈ support (δ � V).

(i) (σ � V ′) � V = σ � V

The sets of
{

[σV]Vδ

}
σV ∈support(δ�V)

form a partition of support (δ), equivalently the

following two claims.

(ii) support (δ) =
⋃
σV ∈support(δ�V) [σV]Vδ

(iii) [σV]Vδ ∩ [σ′V]Vδ = ∅ whenever σV 6= σ′V

Likewise, for any σV ∈ support (δ � V), the sets of
{

[σV ′]
V ′

δ

}
σV ′∈[σV]Vδ�V ′

form a

partition of [σV]Vδ , implying also the following claim.

(iv) [σV]Vδ =
⋃
σV ′∈[σV]Vδ�V ′

[σV ′]
V ′

δ

The equivalence classes in terms of the concrete support sets as related to the
abstract support sets are expressed in the following manner.

(v) [σV]Vδ ⊆ [σV]VC and [σV]
V

δ ⊆ [σV]
V

C whenever support (δ) ⊆ γC(C)

Finally, the concrete projection operation can be rewritten in terms of the equiv-
alence classes, a fact we will repeatedly use in the proofs to follow without explicitly
stating it.

138

(vi) δ � V = λσV .
∑

σ∈[σV]Vδ
δ(σ)

Proof. All of these are merely expansions of the various definitions involved. Note

that the two parts of Remark 59(v) are not contradictory as [σV]Vδ and [σV]
V

δ are
not set complements of each other when viewed as subsets of γC(C), though they are
complements when viewed as subsets of support (δ).

Lemma 60 (Conservation of Mass). If V ⊆ fv(δ) then ‖δ‖ = ‖δ � V ‖.

Proof. Let us consider the terms of the projected mass sum.

‖δ � V ‖ =
∑

σV ∈support(δ�V)

 ∑
σ∈[σV]Vδ

δ(σ)

=

∑
σ∈support(δ)

δ(σ)

= ‖δ‖

The terms in the double sum are the same as those in the single sum as all terms
of the first are accounted for in the second due to Remark 59(ii) and none are double
counted due to Remark 59(iii).

Definition 61. Concrete forget can be defined in terms of a projection to all but one
variable. That is, fx(δ)

def
= δ � fv(δ)− {x}. Also, fx1,··· ,xn(δ)

def
= fx2,··· ,xn(fx1(δ)).

The correspondence between repeated concrete forget and a projection involving
removal of more than one variable will be demonstrated shortly.

Lemma 62 (Order of Projection). If V ⊆ V ′ ⊆ fv(δ) then (δ � V ′) � V = δ � V .

Proof. Let σV ∈ δ � V .

((δ � V ′) � V) (σV) =
∑

σV ′∈[σV]Vδ�V ′

 ∑
σ∈[σV ′]

V ′
δ

δ(σ)

 (62.1)

=
∑

σ∈
⋃
σV ′∈[σV]Vδ�V ′

δ(σ) (62.2)

=
∑

σ∈[σV]Vδ

δ(σ) (62.3)

= (σ � V) (σV) (62.4)

The collapse of the double sums on (62.1) to (62.2) is due to the correspondence
between the terms of the double sum and the single sum due to Remark 59(ii) and
Remark 59(iii). The equality of the union of equivalence classes, (62.2) to (62.3) is
due to Remark 59(iv).

139

Corollary 63. δ � V = fx1,··· ,xn(δ) where fv(δ)− V = {x1, · · · , xn}.

Proof. Let us show this by induction on the size of V
def
= fv(δ)− V . When

∣∣V ∣∣ = 0 or∣∣V ∣∣ = 1, the claim holds vacuously or by definition of concrete forget, respectively.

Let us assume the claim for
∣∣V ∣∣ = m − 1 < n and consider the case when

∣∣V ∣∣ =
m ≤ n.

δ � V = (δ � V ∪ {x1}) � V [by Lemma 62]

= fx1(δ) � V

= fx2,··· ,xm(fx1(δ)) [by induction]

= fx1,··· ,xm(δ)

Thus, by induction, the claim holds for m = n.

Remark 64 (Counting Variations). Two simple counting arguments are required for
the further proofs.

(i) If m objects are distributed fully into two bins, with one of the bins having space
for no more than a objects, then the other must have at least m− a objects in
it.

(ii) If m objects are to be packed into bins of sizes a1, · · · , an, with
∑

i ai ≥ m, the
least number of bins that can be used to fit all m objects is greater or equal to
dm/a∗e where a∗ ≥ maxi ai.

Proof. Part (i) is immediate. For part (ii), consider some optimal set of bins used to
pack the m objects. This set of bins would also let one pack m items assuming each
bin had space for exactly a∗ objects as this is an upper bound on the size of each
bin. Thus the space of solutions to the original packing problem is a subset of the
space of solutions to the altered packing problem where all bins are increased to fit
a∗ items. Thus the solution for the original cannot use fewer bins than the optimal
solution for the altered problem. For this alternate problem, the minimum number of
bins used to pack all m items is exactly dm/a∗e by a generalization of the pigeonhole
principle.

Lemma 28 (Soundness of Forget). If δ ∈ γP(P) then fy(δ) ∈ γP(fy(P)).

Proof. Let δ ∈ γP(P), V = fv(δ) − {y}, and δ2 = δ � V . By assumption δ has the
following properties.

support (δ) ⊆ γC(C) (64.1)

smin ≤ |support (δ)| ≤ smax (64.2)

mmin ≤ ‖δ‖ ≤ mmax (64.3)

∀σ ∈ support (δ) . pmin ≤ δ(σ) ≤ pmax (64.4)

140

Let P2 = fy(P). P2 thus has the following properties.

C2 = fy(C) (64.5)

pmin
2 = pmin ·max

[
hmin
y −

(
#(C)− smin

)
, 1
]

(64.6)

pmax
2 = pmax ·min

[
hmax
y , smax

]
(64.7)

smin
2 = dsmin/hmax

y e (64.8)

smax
2 = min [#(C2), smax] (64.9)

mmin
2 = mmin (64.10)

mmax
2 = mmax (64.11)

The quantities hmin
y and hmax

y are defined to exhibit the following properties.

hmin
y ≤ min

σV ∈γC(C2)

∣∣∣[σV]VC

∣∣∣ (64.12)

hmax
y ≥ max

σV ∈γC(C2)

∣∣∣[σV]VC

∣∣∣ (64.13)

To show that δ2 ∈ γP(fy(P)) we need to show the following.

support (δ2) ⊆ γC(C2) (64.14)

smin
2 ≤ |support (δ2)| ≤ smax

2 (64.15)

mmin
2 ≤ ‖δ2‖ ≤ mmax

2 (64.16)

∀σV ∈ support (δ2) . pmin
2 ≤ δ2(σV) ≤ pmax

2 (64.17)

Let us show each of these in turn.

Claim 64.14 – Support. Let σV ∈ support (δ2). Thus δ2(σV) =
∑

σ∈[σV]Vδ
δ(σ) > 0

so there exists σ ∈ [σV]Vδ with δ(σ) > 0. So σ ∈ support (δ). Therefore, by (64.1),
σ ∈ γC(C), therefore σV ∈ γC(C2) by definition of polyhedron forget. Therefore
support (δ2) ⊆ γC(C2).

Claim 64.15 Support points. First let us show the following claim.

max
σV ∈support(δ2)

∣∣∣[σV]Vδ

∣∣∣ ≤ hmax
y (64.18)

By construction of hmax
y , we have hmax

y ≥ maxσV ∈γC(C2)

∣∣∣[σV]VC

∣∣∣. Now,

support (δ2) ⊆ γC(C2) by (64.14). Also for any σV ∈ support (δ2), we have [σV]Vδ ⊆
[σV]VC by Remark 59(v). Therefore maxσV ∈γC(C2)

∣∣∣[σV]VC

∣∣∣ ≥ maxσV ∈support(δ2)

∣∣∣[σV]VC

∣∣∣ ≥
maxσV ∈support(δ)

∣∣∣[σV]Vδ

∣∣∣. Thus concluding hmax
y ≥ maxσV ∈support(δ2)

∣∣∣[σV]Vδ

∣∣∣.
141

Consider the elements of support (δ) as they map via state projection to ele-
ments of support (δ2). Let us view the elements of the later as bins, with the el-
ements of the former as objects to pack into the bins. By (64.18), we know no
bin has more than hmax

y objects, thus we can apply Remark 64 to conclude there
are at least d|support (δ)| /hmax

y e non-empty bins, or in other words, |support (δ2)| ≥
d|support (δ)| /hmax

y e. This is itself at least as large as dsmin/hmax
y e = smin

2 by (64.2).
Therefore |support (δ2)| ≥ smin

2 .
For the other side of the inequality, note that the number of bins used, or

|support (δ2)| cannot exceed |support (δ)| ≤ smax itself. It also cannot exceed
|γC(C2)| = #(C2) given (64.14). Therefore support (δ2) ≤ min [#(C2), smax], con-
cluding requirement (64.15).

Claim 64.16 Mass. This requirement holds trivially due to Lemma 60 and as-
sumption (64.3).

Claim 64.17 Probability. Let us first show the following claim.

min
σV ∈support(δ2)

∣∣∣[σV]Vδ

∣∣∣ ≥ hmin
y + smin −#(C) (64.19)

Let σV ∈ support (δ2). Let us consider the size of [σV]
V

δ .

∣∣∣[σV]
V

δ

∣∣∣ ≤ ∣∣∣[σV]
V

C

∣∣∣ [by Remark 59(v)]

= #(C)−
∣∣∣[σV]VC

∣∣∣
≤ #(C)− min

τV ∈γC(C2)

∣∣∣[τV]VC

∣∣∣
≤ #(C)− hmin

y [by (64.12)]

Let us view now the elements of support (δ) as mapping (via projection) into two

bins, [σV]Vδ and [σV]
V

δ . By the argument above, we know the second bin cannot hold
more than #(C) − hmin

y elements, thus, by Remark 64 (i), it must be the case that

the first bin contains at least |support (δ)| −
(
#(C)− hmin

y

)
elements. This itself is

no smaller than smin−#(C) + hmin
y by (64.2). Therefore

∣∣∣[σV]Vδ

∣∣∣ ≥ smin−#(C) + hmin
y

and thus claim (64.19) holds.
Consider now σV ∈ support (δ2). By (64.4) and the concrete projection definition,

it must be the case that δ2(σV) =
∑

σ∈[σV]Vδ
δ(σ) ≥ pmin. Also,

δ2(σV) =
∑

σ∈[σV]Vδ

δ(σ)

≥
∑

σ∈[σV]Vδ

pmin [by (64.4)]

142

=
∣∣∣[σV]Vδ

∣∣∣ · pmin

≥
(
hmin
y + smin −#(C)

)
· pmin [by (64.19)]

Therefore, δ2(σV) ≥ pmin · min
[
1, hmin

y + smin −#(C)
]

= pmin
2 , concluding one

inequality of the last condition.
For the other inequality, let us once more consider a general σV ∈ support (δ2).

δ2(σV) =
∑

σ∈[σV]Vδ

δ(σ)

≤
∑

σ∈[σV]Vδ

pmax [by (64.4)]

=
∣∣∣[σV]Vδ

∣∣∣ · pmax

≤ hmax
y · pmax [by (64.18)]

Since [σV]Vδ ⊆ support (δ), we have
∣∣∣[σV]Vδ

∣∣∣ ≤ |support (δ)| ≤ smax (by (64.2)).

Thus we can also bound δ2(σV) by smax·pmax. Therefore, δ2(σV) ≤ pmax·min
[
hmax
y , smax

]
,

completing the last claim.

Lemma 65 (Soundness of Projection). If δ ∈ γP(P) then δ � V ∈ γP(P � V).

Proof. Let us show this by induction on the size of V
def
= fv(δ) − V . When

∣∣V ∣∣ = 0

there is no projection to be done, when
∣∣V ∣∣ = 1, the claim holds by Lemma 28. Let

us assume the claim holds for
∣∣V ∣∣ = n− 1 and look at the case where

∣∣V ∣∣ = n.

Let us write V = {x1, · · · , xn}. Thus δ � V = fx1,··· ,xn(δ) by Corollary 63.
By definition of forget, we also have fx1,··· ,xn(δ) = fx2,··· ,xn(fx1(δ)) and fx1,··· ,xn(P) =
fx2,··· ,xn(fx1(P)). By Lemma 28, we know that fx1(δ) ∈ γP(fx1(P)), therefore, by induc-
tion, δ � V = fx2,··· ,xn(fx1(δ)) ∈ fx2,··· ,xn(fx1(P)) = P � V .

B.2 Assignment

We begin with some useful notation.

Notation 66. Let σ be a state, E be an expression, x be a variable, S ⊆ State,
V ⊆ Var.

• σ [x→ E]
def
= σ [x→ [[E]]σ]

• S [x→ E]
def
= {σ [x→ E] | σ ∈ S}.

• S � V
def
= {σ � V | σ ∈ S}

143

Definition 67. A state σ is feasible for x → E iff σ ∈ State [x→ E]. We will say
that σ is merely feasible if the assignment is clear from the context.

Definition 68. tx→E is the function from State to feasible states (for x→ E) defined
by tx→E : σ 7→ σ [x→ E]

Definition 69. The inverted equivalence class for σ under assignment x→ E is the
set of states that map to σ. We define two varieties, one over all possible states and
one for just the states in the support of a distribution.

• 〈σ〉x→E def
= {τ | τ [x→ E] = σ}

• 〈σ〉x→Eδ
def
= {τ ∈ support (δ) | τ [x→ E] = σ}

Note that σ is feasible iff 〈σ〉x→E 6= ∅.

Definition 70. An assignment x → E is invertible iff tx→E is invertible. We will
denote t−1

x→E as the inverse of tx→E, if it is invertible. The invertability of tx→E is
characterized by the existence of the inverse, having the property, that for every
σ ∈ State, we have t−1

x→E (tx→E (σ)) = σ. Equivalently, for every feasible state σ,
tx→E

(
t−1
x→E (σ)

)
= σ.

We can also characterize invertability via inverted equivalence classes. x → E is
invertible iff for every feasible σ,

∣∣〈σ〉x→E∣∣ = 1.
We will say E is invertible if the variable is clear from the context.

Note that since tx→E only changes the x component of a state, the inverse, t−1
x→E,

also only changes the x component, if the inverse exists. This doesn’t mean, however,
that the inverse can be represented by an assignment of some E ′ to x. Further-
more, since our language for expressions lacks division and non-integer constants, no
assignment’s inverse can be represented by an assignment.

Definition 71. The expression E is integer linear iff E = n1 × x1 + · · ·+ nm × xm,
where ni are integer constants, and xi are variables. We assume that all the variables
in a given context are present. We will generally use xi and ni to refer to the contents
of a integer linear expression.

From now on, we will assume all expressions E are integer linear. Programs
containing non-linear expressions are just not handled by our system at this stage
and linear expressions not fully specified are equivalent to integer linear expressions
with ni = 0 for variables unused in the original expression.

Lemma 72. x1 → E is non-invertible iff n1 = 0. In other words, x1 → E is non-
invertible iff E doesn’t depend on x1.

Proof. (⇒) Assume otherwise. Thus E is non-invertible but n1 6= 0. So we have a
feasible state σ with

∣∣〈σ〉x1→E∣∣ 6= 1. Since feasible states have non empty inverted
equivalence sets, it must be that

∣∣〈σ〉x1→E∣∣ ≥ 2. So let τ, τ ′ ∈ 〈σ〉x1→E with τ 6= τ ′.
So τ [x1 → E] = τ ′ [x1 → E] = σ. Since assignment to x1 doesn’t change the state
other than in its value of x1, τ and τ ′ can only differ in their value for x1.

144

But since τ and τ ′ are identical after the assignment, we have,

τ [x1 → E] (x1) = n1τ(x1) + n2τ(x2) + · · ·+ nmτ(xm)

= n1τ(x1) + n2τ
′(x2) + · · ·+ nmτ

′(xm)

= n1τ
′(x1) + n2τ

′(x2) + · · ·+ nmτ
′(xm)

= τ ′ [x1 → E] (x1)

Canceling out the common τ ′(xi) terms, we have n1τ(x1) = n1τ
′(x1) and since

n1 6= 0, we conclude τ(x1) = τ ′(x1), contradicting τ 6= τ ′.
(⇐) Let σ be a feasible state and let τ ∈ 〈σ〉x1→E. Let τ ′ = τ [x1 → τ(x1) + 1].

Since E doesn’t depend on x1, we have [[E]]τ = [[E]]τ ′ and therefore τ ′ [x1 → E] =
τ [x1 → E] = σ and so we have τ, τ ′ ∈ 〈σ〉x1→E with τ 6= τ ′, therefore E is non-
invertible.

Lemma 73. Assume x→ E is non-invertible. σ is feasible iff σ [x→ E] = σ.

Proof. (⇒) Let σ be feasible. Thus σ = τ [x→ E] for some τ ∈ State. Since E
doesn’t depend on x by Lemma 72, we have (τ [x→ E]) [x→ E] = τ [x→ E] = σ.
So σ [x→ E] = σ.

(⇐) Assume σ [x→ E] = σ. Thus σ ∈ State [x→ E] by definition.

Lemma 74. Assume x→ E is non-invertible. Let δ be a distribution with x ∈ fv(δ)
and let V = fv(δ)− {x}. If σ is feasible, then 〈σ〉x→Eδ = [σ � V]Vδ .

Proof. Let τ ∈ 〈σ〉x→Eδ . So τ [x→ E] = σ and τ ∈ support (δ). But the assignment
only changes x, thus τ � V = σ � V , therefore τ ∈ [σ � V]Vδ . Thus 〈σ〉x→Eδ ⊆ [σ � V]Vδ .

Let τ ∈ [σ � V]Vδ . So τ ∈ support (δ) and τ � V = σ � V . Since E doesn’t depend
on x, we have τ [x→ E] = σ [x→ E] = σ; the second equality follows from Lemma 73

as σ is feasible by assumption. So τ ∈ 〈σ〉x→Eδ . Therefore [σ � V]Vδ ⊆ 〈σ〉x→Eδ .

Remark 75. Assume x → E is invertible. For every feasible σ, we have 〈σ〉x→E ={
t−1
x→E(σ)

}
.

Proof. Invertability tells us that 〈σ〉x→E has only one element. The function t−1
x→E,

given the feasible σ, produces an element of 〈σ〉x→E, as
(
t−1
x→E(σ)

)
[x→ E] = σ.

Definition 76. We define an alternate means of assignment, δ〈x → E〉. Let V =
fv(δ)− {x}.

• If x→ E is invertible, then

δ〈x→ E〉 = λσ. if σ is feasible

then δ
(
t−1
x→E(σ)

)
else 0

145

• If x→ E is not invertible, then

δ〈x→ E〉 = λσ. if σ is feasible

then δ � V (σ � V)

else 0

Lemma 77. For any δ, δ [x→ E] = δ〈x→ E〉.

Proof. Let δ′ = δ [x→ E] and δ′′ = δ〈x→ E〉.

δ′(σ) =
∑

τ | τ [x→E]=σ

δ(τ)

=
∑

τ∈〈σ〉x→Eδ

δ(τ)

Case 1: x→ E is invertible
If σ is feasible, 〈σ〉x→E has only one element, σ−1 = t−1

x→E(σ), by Remark 75. So
δ′(σ) = δ(σ−1) = δ′′(σ). Note that when σ−1 is not in support (δ) then δ′(σ) = 0 =
δ′′(σ).

If σ is not feasible then 〈σ〉x→E = ∅ so δ′(σ) = 0 = δ′′(σ).
Case 2: x→ E is non-invertible
If σ is feasible, then by Lemma 74 we have 〈σ〉x→Eδ = [σ � V]Vδ .

δ′(σ) =
∑

τ∈〈σ〉x→Eδ

δ(τ)

=
∑

τ∈[σ�V]Vδ

δ(τ)

= (δ � V) (σ � V)

= δ′′(σ)

If σ is not feasible then 〈σ〉x→Eδ = ∅ so δ′(σ) = 0 = δ′′(σ).

Lemma 78. Assume x→ E is invertible, then support (δ) ={
t−1
x→E(σ) | σ ∈ support (δ〈x→ E〉)

}
.

Proof. Let δ2 = δ〈x → E〉. Let τ ∈ support (δ). So σ
def
= τ [x→ E] ∈ support (δ2)

and t−1
x→E(σ) = τ . So τ ∈

{
t−1
x→E(σ) | σ ∈ support (δ2)

}
.

Let τ ∈
{
t−1
x→E(σ) | σ ∈ support (δ2)

}
. So τ = t−1

x→E(σ) for some σ ∈ support (δ2).
So there exists τ ′ ∈ support (δ) such that τ ′ [x→ E] = σ. But t−1

x→E(σ) =
t−1
x→E(tx→E(τ ′)) = τ ′ so τ ′ = τ as τ = t−1

x→E(σ). So τ ∈ support (δ).

Lemma 30 (Soundness of Assignment). If δ ∈ γP(P) then δ [x→ E] ∈ γP(P [x→ E]).

146

Proof. Let V = fv(δ)− {x}. By assumption, we have the following.

support (δ) ⊆ γC(C) (78.1)

smin ≤ |support (δ)| ≤ smax (78.2)

mmin ≤ ‖δ‖ ≤ mmax (78.3)

∀σ ∈ support (δ) . pmin ≤ δ(σ) ≤ pmax (78.4)

Let P2 = P [x→ E] and δ2 = δ [x→ E] = δ〈x → E〉. Lemma 77 lets us use
δ [x→ E] or δ〈x→ E〉 interchangeably.

We consider two cases. Case 1: x→ E is invertible
In this case, P2 is defined with C2 = C [x→ E] and all other parameters as in P.

Thus we need to show the following.

support (δ2) ⊆ γC(C2) (78.5)

smin = smin
2 ≤ |support (δ2)| ≤ smax

2 = smax (78.6)

mmin = mmin
2 ≤ ‖δ2‖ ≤ mmax

2 = mmax (78.7)

∀σ ∈ support (δ2) . pmin = pmin
2 ≤ δ2(σ) ≤ pmax

2 = pmax (78.8)

Claim 78.5 Support. By definition, γC(C2) = {σ [x→ E] | σ ∈ γC(C)}. Let τ ∈
support (δ2), so we have σ ∈ support (δ) ⊆ γC(C) with σ [x→ E] = τ . So τ ∈ γC(C2).
So τ ∈ γC(C2) and thus support (δ2) ⊆ γC(C2).

Claim 78.6 Support points. By Lemma 78 we have support (δ) ={
t−1
x→E(σ) | σ ∈ support (δ2)

}
. Inverse functions are necessarily injective over their

domain, and since support (δ2) are all feasible (thus in the domain of the in-
verse), we have

∣∣{t−1
x→E(σ) | σ ∈ support (δ2)

}∣∣ = |support (δ2)|. So |support (δ)| =
|support (δ2)|. This, together with (78.2), completes the claim.

Claim 78.7 Mass. Note again that support (δ2) ⊆ State [x→ E]. That is, all
possible states are feasible. So we can write:

‖δ2‖ =
∑

σ∈support(δ2)

δ2(σ)

=
∑

σ∈support(δ2)

δ(t−1
x→E(σ)) [by defn. of δ2]

=
∑

τ∈support(δ)

δ(τ) [by Lemma 78]

= ‖δ‖

The above, together with (78.3), completes this claim.

Claim 78.8 Probability. Since support (δ2) are feasible, we have, for every σ ∈
support (δ2), δ2(σ) = δ(t−1

x→E(σ)). But also, t−1
x→E(σ) ∈ support (δ). Taking this, and

(78.4), completes this claim, and soundness in the invertible case.

147

Case 2: x → E is non-invertible In this case, P2 is defined via the forget
operation. If P1 = fx(P) and C1 = (B1, V1), then P2 = P [x→ E] has C2 = (B1 ∪
{x = E} , V1 ∪ {x}), and all other parameters as in P1.

We need to show the following four claims.

support (δ2) ⊆ γC(C2) (78.9)

smin
1 = smin

2 ≤ |support (δ2)| ≤ smax
2 = smax

1 (78.10)

mmin
1 = mmin

2 ≤ ‖δ2‖ ≤ mmax
2 = mmax

1 (78.11)

∀σ ∈ support (δ2) . pmin
1 = pmin

2 ≤ δ2(σ) ≤ pmax
2 = pmax

1 (78.12)

Recall the definition of δ2:

δ〈x→ E〉 = λσ. if σ is feasible

then δ � V (σ � V)

else 0

Claim 78.9 Support. Let σ ∈ support (δ2). So σ � V ∈ support (δ � V). so there
exists τ ∈ support (δ) ⊆ γC(C) with τ � V = σ � V . So τ � V ∈ γC(fx(C)) = γC(C1).
So τ ∈ γC((B1, V1∪{x})) as the add dimension operation leaves x unconstrained. The
non-constraint of x also tells us that σ ∈ γC((B1, V1∪{x})) as we have σ � V = τ � V .

Since σ ∈ support (δ2), σ is feasible so σ satisfies the x = E constraint as σ =
τ [x→ E] for some τ . Thus, overall, we have σ ∈ γC((B1 ∪ {x = E} , V1 ∪ {x})) =
γC(C2).

Claim 78.10 Support points. Let δ1 = δ � V = fx(δ). By soundness of forget
(Lemma 28), we have the following.

smin
1 = smin

2 ≤ |support (δ1)| ≤ smax
2 = smax

1

All we need to show, then, is the following.

|support (δ1)| = |support (δ2)| (78.13)

Let us show this by establishing a bijection f between the two sets. Let us define
f : support (δ1)→ support (δ2) via f : σV 7→ σV ∪ {x = [[E]]σV }.

To show f is injective, let σV , σ
′
V be such that f(σV) = f(σ′V). Since f does not

change any part of the state other than adding x, it must be that σV = σ′V .
To show that f is surjective, consider σ ∈ support (δ2). So σ is feasible, so

σ [x→ E] = σ by Lemma 73. Also σ � V ∈ support (σV), considering the definition
of σ2. Since E doesn’t depend on x, we can write [[E]]σ = [[E]]σ � V , therefore
f(σ � V) = σ � V ∪ {x = [[E]]σ � V } = σ [x→ E] = σ.

Since f is injective and surjective, it is a bijection and thus |support (δ1)| =
|support (δ2)|.

148

Claim 78.11 Mass. Let δ1 = δ � V = fx(δ). Let us show the following claim.

LHS = support (δ1) = {σ � V | σ ∈ support (δ2)} = RHS (78.14)

Let σV ∈ support (δ1). So there exists σ ∈ support (δ) with σ � V = σV . So
σ [x→ E] ∈ support (δ2). But the assignment doesn’t change anything but x, so it
must be that (σ [x→ E]) � V = σ � V , therefore σV = σ � V ∈ {τ � V | τ ∈ support (δ2)}.
Thus LHS ⊆ RHS.

On the other side, let σ ∈ support (δ2), so σ = τ [x→ E] for some τ ∈ support (δ),
by the original definition of distribution assignment. So τ � V ∈ support (δ1). But
(τ [x→ E]) � V = τ � V as the assignment doesn’t change anything but x. So
σ � V = (τ [x→ E]) � V = τ [x→ E] ∈ support (δ1), concluding that RHS ⊆ LHS,
and thus LHS = RHS.

Note that this, together with (78.13), show that not only are the sets equal, but
also no two elements of support (δ2) can map, via projection to V , to the same element
of support (δ1).

By soundness of forget (Lemma 28), we have the following.

mmin
1 = mmin

2 ≤ ‖δ1‖ ≤ mmax
2 = mmax

1

Again, we proceed to show that ‖δ1‖ = ‖δ2‖.

‖δ1‖ =
∑

σV ∈support(δ1)

δ1(σV)

=
∑

σ∈support(δ2)

δ1(σ � V) [by (78.13) and (78.14)]

=
∑

σ∈support(δ2)

δ2(σ) [by defn. of δ2]

= ‖δ2‖

Claim 78.12 Probability. Let σ ∈ support (δ2). So σ is feasible, so δ2(σ) =
(δ � V) (σ � V) > 0. Therefore σ � V ∈ support (δ � V). Thus, by soundness of forget
(Lemma 28), we have pmin

2 = pmin
1 ≤ (δ � V) (σ � V) ≤ pmax

1 = pmax
2 , concluding the

claim and the lemma.

B.3 Plus

Definition 79. Let overlap(δ1, δ2) = support (δ1) ∩ support (δ2).

Lemma 80. If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then P1 / P2 ≤ |overlap(δ1, δ2)| ≤ P1 ,
P2.

149

Proof. We first note that for any sets A,B, it is the case that |A ∪B| = |A|+ |B| −
|A ∩B| (often called the “inclusion-exclusion principle”). Rearranging the equation
we also have |A ∩B| = |A|+ |B| − |A ∪B|.

We will make use of this formula with A = support (δ1), B = support (δ2), and
U = support (δ1) ∪ support (δ2).

Lower Bound We first show the lower bound. Expanding the definitions of
P1 / P2 and overlap(δ1, δ2), this reduces to showing the following.

max((smin
1 − n1) + (smin

2 − n2)− n3, 0) ≤ |support (δ1) ∩ support (δ2)|

Clearly we have 0 ≤ |support (δ1) ∩ support (δ2)|, so it remains to show that the
following holds.

(smin
1 − n1) + (smin

2 − n2)− n3 ≤ |support (δ1) ∩ support (δ2)|

Expanding the definitions of n1, n2 from Definition 31, we obtain

(smin
1 − (#(C1)− n3)) + (smin

2 − (#(C2)− n3))− n3 ≤ |support (δ1) ∩ support (δ2)|

and rearranging yields the following.

smin
1 + smin

2 − (#(C1) + #(C2)− n3) ≤ |support (δ1) ∩ support (δ2)|

This follows from the rearranged inclusion-exclusion principle provided we can
show smin

1 ≤ |support (δ1)|, smin
2 ≤ |support (δ2)|, and #(C1) + #(C2) − n3 ≥

|support (δ1) ∪ support (δ2)|. The first two follow directly from our assumptions that
δ1 ∈ γP(P1) and δ2 ∈ γP(P2). For the third condition, we reason as follows.

We have from our assumptions that γC(C1) ⊇ support (δ1) and γC(C2) ⊇
support (δ2). Thus, we have

γC(C1) ∪ γC(C2) ⊇ support (δ1) ∪ support (δ2)

and finally
|γC(C1) ∪ γC(C2)| ≥ |support (δ1) ∪ support (δ2)|

Utilizing the inclusion-exclusion principle, we have

|γC(C1)|+ |γC(C2)| − |γC(C1) ∩ γC(C2)| ≥ |support (δ1) ∪ support (δ2)|

Since we have |γC(C)| = #(C), we can rewrite this to the following.

#(C1) + #(C2)− |γC(C1) ∩ γC(C2)| ≥ |support (δ1) ∪ support (δ2)|

It remains to show that |γC(C1) ∩ γC(C2)| = n3. We have that γC(C1 uC C2) =
γC(C1) ∩ γC(C2) (that is, uC is precise). This allows us to complete the final step,
concluding that n3, which is defined as #(C1 uC C2) is equal to |γC(C1) ∩ γC(C2)|.

150

Upper Bound We next show that the upper bound holds. Our goal is to show
the following.

P1 , P2 ≥ |overlap(δ1, δ2)|

Expanding our definitions yields the following formula.

min(smax
1 , smax

2 , n3) ≥ |support (δ1) ∩ support (δ2)|

We first note that the following holds.

|support (δ1) ∩ support (δ2)| ≤ |support (δ1)| ≤ smax
1

Thus smax
1 is a sound upper bound. Similarly, we have

|support (δ1) ∩ support (δ2)| ≤ |support (δ2)| ≤ smax
2

which shows that smax
2 is a sound upper bound. Finally, we note that our assumptions

give us support (δ1) ⊆ γC(C1) and support (δ1) ⊆ γC(C1). Thus we have the following.

support (δ1) ∩ support (δ2) ⊆ γC(C1) ∩ γC(C2)

We showed previously that n3 = |γC(C1) ∩ γC(C2)|. Thus we have

|support (δ1) ∩ support (δ2)| ≤ n3

which shows that n3 is a sound upper bound.
Since all of smax

1 , smax
2 , and n3 are sound upper bounds, their minimum is also a

sound upper bound.

Lemma 81.

|support (δ1 + δ2)| = |support (δ1)|+ |support (δ2)| − |overlap(δ1, δ2)|

Proof. First we note that support (δ1 + δ2) = {σ | δ1(σ)+δ2(σ) > 0}. Since the range
of δ1 and δ2 is [0, 1], we have that δ1(σ) + δ2(σ) > 0 if and only if either δ1(σ) > 0
or δ2(σ) > 0. Thus, we have σ ∈ support (δ1 + δ2) if and only if σ ∈ support (δ1) or
σ ∈ support (δ2), which implies support (δ1 + δ2) = support (δ1) ∪ support (δ2).

Next, we note that for any sets A,B we have |A ∪B| = |A| + |B| − |A ∩B|.
Utilizing this statement with A = support (δ1) and B = support (δ2) completes the
proof.

Lemma 33 (Soundness of Plus). If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 + δ2 ∈
γP(P1 + P2).

151

Proof. Suppose δ1 ∈ γP(P1) and δ2 ∈ γP(P2). Then we have the following.

support (δ1) ⊆ γC(C1) (81.1)

smin
1 ≤ |support (δ1)| ≤ smax

1 (81.2)

mmin
1 ≤ ‖δ1‖ ≤ mmax

1 (81.3)

∀σ ∈ support (δ1) . pmin
1 ≤ δ1(σ) ≤ pmax

1 (81.4)

and

support (δ2) ⊆ γC(C2) (81.5)

smin
2 ≤ |support (δ2)| ≤ smax

2 (81.6)

mmin
2 ≤ ‖δ2‖ ≤ mmax

2 (81.7)

∀σ ∈ support (δ2) . pmin
2 ≤ δ2(σ) ≤ pmax

2 (81.8)

The definition of abstract plus has special cases when either of the arguments are
zero, that is, if iszero(P1) or iszero(P2). Without the loss of generality, let us assume
iszero(P2) and thus by definition P1 + P2 = P1. Since γP(P2) = {0Dist}, where 0Dist

is the distribution assigning probability of 0 to every state. Therefore δ2 = 0Dist and
thus δ1 + δ2 = δ1. But we already have δ1 ∈ γP(P1) by assumption, hence we are done
in this case.

In the case when not iszero(P1) and not iszero(P2) we must show the following.

support (δ1 + δ2) ⊆ γC(C1 tC C2) (81.9)

max
[
smin
1 + smin

2 − P1 , P2, 0
]
≤ |support (δ1 + δ2)| (81.10)

|support (δ1 + δ2)| ≤ min [smax
1 + smax

2 − P1 / P2,#(C3)] (81.11)

mmin
1 + mmin

2 ≤ ‖δ1 + δ2‖ ≤ mmax
1 + mmax

2 (81.12)

We also must show the conditions on pmin and pmax for the sum.
Condition (81.9) follows from (81.1) and (81.5) and the fact that tC over-approximates

union. The key step is noting that support (δ1 + δ2) = support (δ1)∪ support (δ2). To
show this we consider some σ ∈ support (δ1 + δ2). We have that (δ1 + δ2)(σ) > 0
which, expanding the definition of +, yields δ1(σ) + δ2(σ) > 0. Since the range of δ1

and δ2 is [0, 1], this implies that either δ1(σ) > 0 or δ2(σ) > 0 and thus σ ∈ support (δ1)
or σ ∈ support (δ2).

Conditions (81.10) and (81.11) follow from (81.2) and (81.6) and Lemmas 80 and
81. We have smin

1 ≤ |support (δ1)| from (81.2) and smin
2 ≤ |support (δ2)| from (81.6).

Monotonicity of addition then gives us

smin
1 + smin

2 ≤ |support (δ1)|+ |support (δ2)|

From Lemma 80 we have |overlap(δ1, δ2)| ≤ P1 , P2 and thus

−P1 , P2 ≤ − |overlap(δ1, δ2)|

152

Combining with the above yields

smin
1 + smin

2 − P1 , P2 ≤ |support (δ1)|+ |support (δ2)| − |overlap(δ1, δ2)|

We can then rewrite the right-hand side according to Lemma 81 to obtain

smin
1 + smin

2 − P1 , P2 ≤ |support (δ1 + δ2)|

which is condition (81.10).
Condition (81.11) follows the same reasoning. We have |support (δ1)|+|support (δ2)| ≤

smax
1 +smax

2 by (81.2) and (81.6). We then apply Lemma 80 and 81 to obtain condition
(81.11).

For Condition (81.12), note that

‖δ1 + δ2‖ =
∑
σ

(
δ1(σ) + δ2(σ)

)
=
∑
σ

δ1(σ) +
∑
σ

δ2(σ)

This is then equivalent to ‖δ1‖+ ‖δ2‖. We have shown that ‖δ1 + δ2‖ = ‖δ1‖+ ‖δ2‖.
Condition (81.12) then follows from monotonicity of addition applied to (81.3) and
(81.7)

We now consider the pmin and pmax conditions. Let P3 = P1 +P2 and δ3 = δ1 + δ2.
We must show.

∀σ ∈ support (δ3) . pmin
3 ≤ δ3(σ) ≤ pmax

3

The values pmin
3 and pmax

3 are defined by cases and we consider these cases sepa-
rately. In one case, we have that pmin of the sum is min(pmin

1 , pmin
2). This is always

a sound choice. To see why, suppose σ ∈ support (δ1 + δ2). Then σ ∈ support (δ1)
or σ ∈ support (δ2). If σ ∈ support (δ1), then (δ1 + δ2)(σ) = δ1(σ) + δ2(σ) is at least
pmin

1 . Similarly, if σ ∈ support (δ2) then (δ1 + δ2)(σ) ≥ δ2(σ).
Similarly, the value pmax

1 + pmax
2 is always a sound choice for pmax

3 . Consider
σ ∈ support (δ3). Then σ ∈ support (δ1) or σ ∈ support (δ2). If σ ∈ support (δ1) and
σ 6∈ support (δ2), then we have

δ3(σ) = δ1(σ) + δ2(σ) = δ1(σ)

By (81.4) we then have δ3(σ) ≤ pmax
1 and thus δ3(σ) ≤ pmax

1 + pmax
2 as desired.

Similarly, if σ 6∈ support (δ1) and σ ∈ support (δ2) then by (81.8) we have

δ3(σ) = δ2(σ) ≤ pmax
2 ≤ pmax

1 + pmax
2

Finally, if σ ∈ support (δ1) and σ ∈ support (δ2) then by (81.4) we have δ1(σ) ≤
pmax

1 . By (81.8) we have δ2(σ) ≤ pmax
2 . Combining these we have δ1(σ) + δ2(σ) ≤

pmax
1 + pmax

2 which is equivalent to δ3(σ) ≤ pmax
3 as desired.

153

Next we consider the P1 / P2 = #(C3) case for pmin
3 . We must show that

pmin
1 + pmin

2 is a sound lower bound on δ3(σ) for σ ∈ support (δ3). We have by
Lemma 80 that P1 / P2 ≤ |overlap(δ1, δ2)|. Since P1 / P2 = #(C3) and #(C3) ≥
|overlap(δ1, δ2)|, we have that #(C3) = |overlap(δ1, δ2)|. Expanding the definition of
overlap(δ1, δ2) yields

|support (δ1) ∩ support (δ2)| = #(C3) (81.13)

We have from (81.9) that support (δ1 + δ2) ⊆ γC(C3) and from the proof of (81.9)
we have that support (δ1 + δ2) = support (δ1) ∪ support (δ2). Combining these yields

|support (δ1) ∪ support (δ2)| ≤ #(C3)

Combining this with (81.13) yields

|support (δ1) ∪ support (δ2)| ≤ |support (δ1) ∩ support (δ2)|

For any sets A,B, we have that |A ∪B| ≥ |A ∩B| and thus the above inequality
implies the following.

|support (δ1) ∪ support (δ2)| = |support (δ1) ∩ support (δ2)|

The fact that the size of the intersection and the size of the union of support (δ1) and
support (δ2) is identical implies that support (δ1) = support (δ2). This implies that
for all σ, we have σ ∈ support (δ1) if and only if σ ∈ support (δ2).

Now consider σ ∈ support (δ3). We have σ ∈ support (δ1) or σ ∈ support (δ2), as
before, but now we can strengthen this to σ ∈ support (δ1) and σ ∈ support (δ2). By
(81.4) we have pmin

1 ≤ δ1(σ) and by (81.8) we have pmin
2 ≤ δ2(σ). Thus we have

pmin
1 + pmin

2 ≤ δ1(σ) + δ2(σ)

which was our goal.
Finally we consider the P1 , P2 = 0 case for pmax

3 (the “otherwise” case in Defini-
tion 32). Consider a σ ∈ support (δ3). We must show that δ3(σ) ≤ max(pmax

1 , pmax
2).

We have that either σ ∈ support (δ1) or σ ∈ support (δ2). We cannot have both
since P1 , P2 = 0 which, by Lemma 80 implies that |overlap(δ1, δ2)| = 0. If
σ ∈ support (δ1) then by (81.4) we have δ1(σ) ≤ pmax

1 . We have σ 6∈ support (δ2)
and thus δ2(σ) = 0. Thus we reason that

δ1(σ) + δ2(σ) = δ1(σ) ≤ pmax
1 ≤ max(pmax

1 , pmax
2)

Similarly, if σ ∈ support (δ2) then we apply (81.8) to obtain

δ1(σ) + δ2(σ) = δ2(σ) ≤ pmax
2 ≤ max(pmax

1 , pmax
2)

154

B.4 Product

Lemma 34 (Soundness of Product). If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 × δ2 ∈
γP(P1 × P2).

Proof. By assumption, we have the following for i = 1, 2.

support (δi) ⊆ γC(Ci) (81.14)

smin
i ≤ |support (δi)| ≤ smax

i (81.15)

mmin
i ≤ ‖δi‖ ≤ mmax

i (81.16)

∀σ ∈ support (δi) . pmin
i ≤ δ(σi) ≤ pmax

i (81.17)

Let δ3 = δ1 × δ2 and P3 = P1 × P2. Recall the definition of P3.

C3 = C1 × C2

pmin
3 = pmin

1 · pmin
2 pmax

3 = pmax
1 · pmax

2

smin
3 = smin

1 · smin
2 smax

3 = smax
1 · smax

2

mmin
3 = mmin

1 ·mmin
2 mmax

3 = mmax
1 ·mmax

2

We must show the following four claims.

support (δ3) ⊆ γC(C3) (81.18)

smin
3 ≤ |support (δ3)| ≤ smax

3 (81.19)

mmin
3 ≤ ‖δ3‖ ≤ mmax

3 (81.20)

∀σ ∈ support (δ3) . pmin
3 ≤ δ3(σ) ≤ pmax

3 (81.21)

Also, recall the definition of concrete product.

δ1 × δ2 = λ(σ1, σ2). δ1(σ1) · δ2(σ2)

Let V1 = fv(δ1) and V2 = fv(δ2).

Claim 81.18 – Support. Let σ = (σ1, σ2) ∈ support (δ3). Thus it must be that
δ1(σ1) > 0 and δ2(σ2) > 0, thus, by (81.14), σ1 ∈ support (δ1) ⊆ γC(C1) and σ2 ∈
support (δ2) ⊆ γC(C2), therefore σ ∈ γC(δ3).

Claim 81.19 – Support points. Using (81.15) we get the following.

smin
1 · smin

2 ≤ |support (δ1)| · |support (δ2)| ≤ smax
1 · smax

2

Likewise, the size of support (δ3) can be equated as follows.

|support (δ3)| =
∣∣∣∣{(σ1, σ2)

∣∣∣∣ σ1 ∈ support (δ1) ,
σ2 ∈ support (δ2)

}∣∣∣∣
155

= |support (δ1)| · |support (δ2)|

This completes the claim as smin
3 = smin

1 · smin
2 and smax

3 = smax
1 · smax

2 .

Claim 81.20 – Mass.

‖δ3‖ =
∑

σ∈support(δ3)

δ(σ)

=
∑

(σ1,σ2)∈support(δ3)

δ1(σ1) · δ2(σ2)

=
∑

σ1∈support(δ1)

 ∑
σ2∈support(δ2)

δ1(σ1) · δ2(σ2)

=

∑
σ1∈support(δ1)

δ1(σ1)
∑

σ2∈support(δ2)

δ2(σ2)

=
∑

σ1∈support(δ1)

δ1(σ1) · ‖δ2‖

= ‖δ1‖ · ‖δ2‖

Likewise, by (81.16), we have the following.

mmin
1 ·mmin

2 ≤ ‖δ1‖ · ‖δ2‖ ≤ mmax
1 ·mmax

2

This completes the claim as mmin
3 = mmin

1 ·mmin
2 and mmax

3 = mmax
1 ·mmax

2 .

Claim 81.21 – Probability. Let σ = (σ1, σ2) ∈ support (δ3). Thus σ1 ∈ support (δ1)
and σ2 ∈ support (δ2). Also, δ3 (σ) = δ1(σ1) · δ2(σ2). By (81.17), we have pmin

1 ≤
δ1(σ1) ≤ pmax

1 and pmin
2 ≤ δ2(σ2) ≤ pmax

2 . Therefore

pmin
3 = pmin

1 · pmin
2 ≤ δ3(σ) ≤ pmax

1 · pmax
2 = pmax

3

This completes the claim and the proof.

B.5 Conditioning

Definition 82. Given a set of states S and a boolean expression B , let S|B be the
subset of S that satisfy the condition B and S|B be the subset of S that do not
satisfy the condition. Formally,

S|B def
= {σ ∈ S | [[B]]σ = true }

S|B def
= {σ ∈ S | [[B]]σ = false }

156

Lemma 36 (Soundness of Conditioning). If δ ∈ γP(P) then δ ∧B ∈ γP(P ∧B).

Proof. Let δ2 = δ ∧B. Recall the definition of the conditional distribution:

δ ∧ B = λσ. if [[B]]σ then δ(σ) else 0

Let P2 = P ∧B. The construction of P2 produces the following parameters.

pmin
2 = pmin smin

2 = max
[
smin − n, 0

]
pmax

2 = pmax smax
2 = min [smax, n]

mmin
2 = max

[
pmin

2 · smin
2 , mmin − pmax ·min [smax, n]

]
mmax

2 = min
[
pmax

2 · smax
2 , mmax − pmin ·max

[
smin − n, 0

]]
C2 = 〈〈B〉〉C

The quantities n and n are defined in such a way that n over-approximates the
number of support points of δ that satisfy B , whereas n over-approximates the number
of support points of δ that do not satisfy B . Also, 〈〈B〉〉C is defined to contain at
least the points in C that satisfy B . Making these properties precise gives us the
following.

|support (δ) |B | ≤ n (82.1)∣∣support (δ) |B
∣∣ ≤ n (82.2)

γC(C)|B ⊆ γC(〈〈B〉〉C) (82.3)

By assumption we have the following.

support (δ) ⊆ γC(C) (82.4)

smin ≤ |support (δ)| ≤ smax (82.5)

mmin ≤ ‖δ‖ ≤ mmax (82.6)

∀σ ∈ support (δ) . pmin ≤ δ(σ) ≤ pmax (82.7)

We need to show the following four claims.

support (δ2) ⊆ γC(C2) (82.8)

smin
2 ≤ |support (δ2)| ≤ smax

2 (82.9)

mmin
2 ≤ ‖δ2‖ ≤ mmax

2 (82.10)

∀σ ∈ support (δ2) . pmin
2 ≤ δ2(σ) ≤ pmax

2 (82.11)

Claim 82.8 – Support. Let σ ∈ support (δ2). Thus it must be that σ ∈ support (δ)
and [[B]]σ = true . By (82.4), we have σ ∈ γC(C), therefore σ ∈ γC(C2) as
{σ ∈ γC(C) | [[B]]σ = true } ⊆ γC(C2) by construction of C2.

157

Claim 82.9 – Support points. Let us write support (δ) as a union of two disjoint
sets.

support (δ) = support (δ) |B ∪ support (δ) |B

Given the disjointness of the two, we also have the following.

|support (δ)| = |support (δ) |B |+
∣∣support (δ) |B

∣∣
Now note that support (δ2) = support (δ) |B . Thus we can write |support (δ2)| =

|support (δ)| −
∣∣support (δ) |B

∣∣. We can therefore estimate the size of the support of
δ2 in the following manner.

|support (δ2)| = |support (δ)| −
∣∣support (δ) |B

∣∣
≤ |support (δ)|
≤ smax [by (82.5)]

Therefore, using (82.1) and the above, we have |support (δ2)| ≤ min [smax, n] =
smax
2 .

Going in the other direction, we can write as follows.

|support (δ2)| = |support (δ)| −
∣∣support (δ) |B

∣∣
≥ smin −

∣∣support (δ) |B
∣∣ [by (82.5)]

≥ smin − n [by (82.2)]

Since all sets are trivially of size at least 0, we have |support (δ2)| ≥ max
[
smin − n, 0

]
=

smin
2 .

Claim 82.11 – Probability. Note that we will show the probability claim before
the mass as we will use the truth of the probability claim in the mass arguments.

Let σ ∈ support (δ2). By definition of δ2, we have δ2(σ) = δ(σ). Thus σ ∈
support (δ) so by (82.7) we have:

pmin
2 = pmin ≤ δ(σ) = δ2(σ) ≤ pmax = pmax

2

Claim 82.10 – Mass. Let us first show the following bound on the size of support (δ) |B .

max
[
smin − n, 0

]
≤
∣∣support (δ) |B

∣∣ ≤ min [smax, n] (82.12)

Since |support (δ)| = |support (δ) |B |+
∣∣support (δ) |B

∣∣, we can say
∣∣support (δ) |B

∣∣ =
|support (δ)| − |support (δ) |B | and continue to the bound in the following manner.

∣∣support (δ) |B
∣∣ = |support (δ)| − |support (δ) |B |

158

≥ smin − |support (δ) |B | [by (82.5)]

≥ smin − n [by (82.1)]

Therefore
∣∣support (δ) |B

∣∣ ≥ max
[
smin − n, 0

]
as claimed. For the other end of

the inequality, note that we have
∣∣support (δ) |B

∣∣ ≤ |support (δ)| ≤ smax by (82.5).

Also, by (82.2),
∣∣support (δ) |B

∣∣ ≤ n. Therefore
∣∣support (δ) |B

∣∣ ≤ max [smax, n],
completing our bound.

Now, let us write ‖δ‖ in two parts.

‖δ‖ =
∑

σ∈support(δ)

δ(σ)

=
∑

σ∈support(δ)|B

δ(σ) +
∑

σ∈support(δ)|B

δ(σ)

= ‖δ2‖+
∑

σ∈support(δ)|B

δ(σ)

Therefore ‖δ2‖ = ‖δ‖ −
∑

σ∈support(δ)|B δ(σ).

‖δ2‖ = ‖δ‖ −
∑

σ∈support(δ)|B

δ(σ)

≤ mmax −
∑

σ∈support(δ)|B

δ(σ) [by (82.6)]

≤ mmax −
∑

σ∈support(δ)|B

pmin [by (82.7)]

= mmax −
∣∣support (δ) |B

∣∣ · pmin

≤ mmax −max
[
smin − n, 0

]
· pmin [by (82.12)]

Also, we can bound the mass using our other already proven conditions.

‖δ2‖ =
∑

σ∈support(δ2)

δ2(σ)

≤
∑

σ∈support(δ2)

pmax
2 [by (82.11)]

= |support (δ2)| · pmax
2

≤ smax
2 · pmax

2 [by (82.9)]

Combining the bounds, we have half of our probability condition.

‖δ2‖ ≤ mmax
2

159

= min
[
pmax

2 · smax
2 ,mmax − pmin ·max

[
smin − n, 0

]]
For the other half, we proceed similarly.

‖δ2‖ = ‖δ‖ −
∑

σ∈support(δ)|B

δ(σ)

≥ mmin −
∑

σ∈support(δ)|B

δ(σ) [by (82.6)]

≥ mmin −
∑

σ∈support(δ)|B

pmax [by (82.7)]

= mmin −
∣∣support (δ) |B

∣∣ · pmax

≥ mmin −min [smax, n] · pmax [by (82.12)]

And likewise another bound using our other conditions.

‖δ2‖ =
∑

σ∈support(δ2)

δ2(σ)

≥
∑

σ∈support(δ2)

pmin
2 [by (82.11)]

= |support (δ2)| · pmin
2

≥ smin
2 · pmin

2 [by (82.9)]

Combining the two bounds, we have the final element of our proof.

‖δ2‖ ≥ mmin
2

= max
[
pmin

2 · smin
2 ,mmin − pmax ·min [smax, n]

]

B.6 Scalar product

Lemma 38. If δ1 ∈ γP(P1) then p · δ1 ∈ γP(p · P1).

Proof. By assumption we have the following.

support (δ1) ⊆ γC(C1)

smin
1 ≤ |support (δ1)| ≤ smax

1

mmin
1 ≤ ‖δ1‖ ≤ mmax

1

160

∀σ ∈ support (δ1) . pmin
1 ≤ δ1(σ) ≤ pmax

1

Let δ2 = p · δ1 and P2 = p · P1. Let us assume that p 6= 0. In this case we need to
show the following.

support (δ1) = support (δ2) ⊆ γC(C2) = γC(C1)

smin
1 = smin

2 ≤ |support (δ2)| = |support (δ2)| ≤ smax
2 = smax

1

p ·mmin
1 = mmin

2 ≤ ‖δ1‖ ≤ mmax
2 = p ·mmax

1

∀σ ∈ support (δ2) .

p · pmin
1 = pmin

2 ≤ δ2(σ) ≤ pmax
2 = p · pmax

1

The first two conditions are trivially satisfied given the lack of change in the various
parameters. For the mass condition, note that ‖δ2‖ =

∑
σ δ2(σ) =

∑
σ p · δ1(σ) =

p · ‖δ1‖. The probability condition is also trivially satisfied as δ2(σ) = p · δ1(σ).
In the case that p = 0, the abstract scalar product is defined with smin

2 = smax
2 =

pmin
2 = pmax

2 = mmin
2 = mmax

2 = 0 and C2 = ∅C. In this case note that support (δ2) =
∅ = γC(∅C), and thus the conditions hold trivially.

B.7 Uniform

Lemma 83 (Soundness of Uniform). If δ ∈ γP(P) and S = uniform x n1 n2 then
[[S]]δ ∈ γP(〈〈S〉〉P).

Proof. Recall the semantics of the statement.

[[uniform x n1 n2]]δ = (δ � fv(δ)− {x})× δ2

The distribution δ2 is defined as follows.

δ2 = λσ. if n1 ≤ σ(x) ≤ n2 then
1

n2 − n1 + 1
else 0

The abstract semantics are similar.

〈〈uniform x n1 n2〉〉P = (fx(P))× P2

Here P2 is defined with pmin
2 = pmax

2 = 1
n2−n1+1

, smin
2 = smax

2 = n2 − n1 + 1,

mmin
2 = mmax

2 = 1, and C2 = ({x ≥ n1, x ≤ n2} , {x}).
By construction, we have δ2 ∈ P2 thus the lemma follows from Lemma 28 (Sound-

ness of Forget) and Lemma 34 (Soundness of Product).

161

B.8 While loops

Definition 84. First we have some preliminary definitions. Given some set of vari-
ables, we have the following, where each distribution or state in each statement is
understood to be defined over the same set of variables.

• Two distributions are ordered, or δ1 ≤ δ2 iff for every state σ, δ1(σ) ≤ δ2(σ).

• Two probabilistic polyhedra are ordered, or P1 vP P2 iff for every δ1 ∈ γP(P1),
there exists δ2 ∈ γP(P2) with δ1 ≤ δ2.

• The zero distribution δ is the unique distribution with δ(σ) = 0 for every σ. We
will use 0Dist to refer to this distribution.

• A zero probabilistic polyhedron P is one whose concretization contains only the
zero distribution, that is γP(P) = {0Dist}. We write iszero(P) when P is a zero
probabilistic polyhedron.

Lemma 85. Let Pi be consistent probabilistic polyhedra, that is, γP(Pi) 6= ∅. Then,
P1 + P2 vP P1 iff iszero(P2).

Proof. In the forward direction, we have P1 + P2 vP P1. Now, let us consider a P2

with not iszero(P2). Thus there is δ2 ∈ γP(P2) with ‖δ2‖ > 0. Let δ1 ∈ γP(P1) be the
distribution in γP(P1) maximizing mass, that is ‖δ1‖ ≥ ‖δ′1‖ for every δ′1 ∈ γP(P1).
By Lemma 33, δ1 + δ2 ∈ γP(P1 + P2) and by the definition of P1 + P2 vP P1, there
must be δ3 ∈ γP(P1) with δ1 + δ2 ≤ δ3. Thus ‖δ3‖ ≥ ‖δ1 + δ2‖ = ‖δ1‖+ ‖δ2‖ > ‖δ1‖.
This contradicts that δ1 was mass maximizing in γP(P1).

In the backward direction, our definition of abstract plus makes P1 + P2 identical
to P1. Thus P1 + P2 = P1 vP P1.

Definition 86. Given a statement S = while B do S ′, a distribution δ and a proba-
bilistic polyhedron P, let us define a few useful items.

• ω(f)
def
= λδ. f([[S ′]](δ ∧ B)) + δ ∧ ¬B

• δ1
def
= δ

• δi+1
def
= [[S ′]](δi ∧ B)

• ∆n
def
=
∑n

i=1 (δi ∧ ¬B)

• ⊥Dist is the function that takes in any distribution and produces the zero dis-
tribution 0Dist, that is ⊥Dist(δ) = 0Dist.

Similarly we have the abstract versions of the definitions.

• Ω(F)
def
= λP. F (〈〈S ′〉〉 (P ∧ B)) + P ∧ ¬B

• P1
def
= P

162

• Pi+1
def
= 〈〈S ′〉〉 (Pi ∧ B)

• Φn
def
=
∑n

i=1 (Pi ∧ ¬B)

• ⊥P is a function that takes in any probabilistic polyhedron and produces a zero
probabilistic polyhedron, that is iszero(⊥P(P)) for every P.

The semantics of while loops are defined as such:

[[S]] = [[while B do S ′]] = lfp(ω)

〈〈S〉〉 = 〈〈while B do S ′〉〉 = lfp(Ω)

While such definitions are of theoretical interest, they are not particularly useful
for implementations, given our lack of a widening operator. Thus, our security checks
will always be conditioned on termination of the abstract interpretation, defined be-
low. We show that termination of the abstract interpretation implies termination of
all corresponding concrete executions. This is crucial, as our concrete semantics (due
to Clarkson et al. [24]) assumes termination to avoid leaks. To make this termination
condition explicit, we provide an alternate concrete semantics for terminating while
loops and show that this gives results equivalent to those of the original semantics.

Definition 87. The termination of [[S]]δ is defined as follows.

• If S is an elementary statement (assignment, skip, uniform), then [[S]]δ termi-
nates.

• If S is a sequence, if statement, or a probabilistic choice statement, then [[S]]δ
terminates iff the various evaluations steps to evaluate S terminate. This de-
pends on the statement type, for S = S1 ; S2, for example, it means that [[S1]]δ
terminates and so does [[S2]]([[S1]]δ).

• If S = while B do S1 is a while statement, then [[S]]δ terminates iff there exists
n with δn = 0Dist and the evaluation steps as per definition of δi terminate for
all i up to n.

The termination of 〈〈S〉〉P is framed similarly, except in the while case, we require
the existence of n with iszero(Pn) and the termination of the abstract evaluations as
in the definitions of Pi for all i up to n.

The ∆i and Φi capture exactly the concrete and abstract values when termination
is assumed.

ω1(⊥Dist)(δ) = δ ∧ ¬B

= ∆1

ω2(⊥Dist)(δ) = ([[S ′]](δ ∧ B)) ∧ ¬B + δ ∧ ¬B

163

= δ2 ∧ ¬B + δ1 ∧ ¬B

= ∆2

ωi(⊥Dist)(δ) = ωi−1(⊥Dist)([[S
′]]δ ∧ B) + δ ∧ ¬B

= ∆i−1 + δ ∧ ¬B

= ∆i

Likewise Ωi(⊥P)(P) = Φi.

Definition 88. Terminating semantics of while loops are as follows.

[[while B do S1]]δ = ∆n

Where n is the least index with δn = 0Dist. Likewise for the abstract case.

〈〈while B do S1〉〉P = Φn

Where n is the least index with iszero(Pn).

Lemma 89. If [[while B do S1]]δ is terminating, then ∆n = (lfp(ω)) (δ), noting that
lfp(ω) is the original semantics of a while loop.

Proof. As noted in [80], the evaluation of a while loop on a distribution is equal to
an infinite sum:

[[S]]δ =
∞∑
i=1

δi ∧ ¬B

By the termination assumption we have an n with δn = 0Dist. Now, since δi+1 =
[[S ′]]δi ∧ B hence the mass of δi+1 cannot exceed the mass of δi, it is the case that
if δn = 0Dist, then δi = 0Dist for every i ≥ n. Thus the infinite sum above can be
shortened.

[[S]]δ =
∞∑
i=1

δi ∧ ¬B

=
n∑
i=1

δi ∧ ¬B + 0Dist

= ∆n

Remark 90 (Composition of Termination). If 〈〈S〉〉P terminates, then so must the
evaluation of all of its components as defined by the semantics. This is immediate
from the definition of termination.

164

B.9 Soundness of Abstraction

Theorem 27. For all P, δ, if δ ∈ γP(P) and 〈〈S〉〉P terminates, then [[S]]δ terminates
and [[S]]δ ∈ γP(〈〈S〉〉P).

Proof. Let us show this by structural induction on S. As base cases we have the
following.

• S = skip. In this case we have [[S]]δ = δ and 〈〈S〉〉P = P. Termination is not an
issue and the claim holds by assumption.

• S = x := E. Here non-termination is also not a possibility given non-recursive
definition of assignment. Also, by Lemma 30 (Soundness of Assignment) we
have [[S]]δ ∈ γP(〈〈S〉〉P).

• S = uniform x n1 n2. Again, there is no termination issues and the claim follows
from Lemma 83 (Soundness of Uniform).

Let us thus assume the claim for sub-statements of S and show it for S itself.
Note that the inductive assumption is general for all δ, P with δ ∈ γP(P). S has
several cases.

• S = S1 ; S2. By the termination remark, we know 〈〈S1〉〉P terminates and
thus by induction [[S1]]δ terminates and is in γP(〈〈S1〉〉P). We then apply in-
duction once more with S2 to find that [[S2]]([[S1]]δ) = [[S]]δ terminates and is in
γP(〈〈S2〉〉 (〈〈S1〉〉P)) = γP(〈〈S〉〉P).

• S = if B then S1 else S2. By the termination remark, we know that 〈〈S1〉〉 (P ∧ B)
and 〈〈S2〉〉 (P ∧ ¬B) terminate. By Lemma 36 (Soundness of Conditional) we
have δ ∧ B ∈ γP(P ∧ B) and δ ∧ ¬B ∈ γP(P ∧ ¬B). We thus apply induc-
tion to both sub-statements to conclude that [[S1]](δ ∧ B) and [[S2]](δ ∧ ¬B)
both terminate and are in γP(〈〈S1〉〉 (P ∧ B)) and γP(〈〈S2〉〉 (P ∧ ¬B)) respec-
tively. Finally we apply Lemma 33 (Soundness of Plus) to conclude [[S]]δ =
[[S1]](δ ∧ B) + [[S2]](δ ∧ ¬B) ∈ γP(〈〈S1〉〉 (P ∧ B) + 〈〈S2〉〉 (P ∧ ¬B)) = γP(〈〈S〉〉P).

• S = pif p then S1 else S2. This case is identical to the previous except we use
Lemma 38 (Soundness of Scalar Product) in place of Lemma 36 (Soundness of
Conditional).

• S = while B do S1.

For this last case we must first show a claim. For every δ′, P ′ with δ′ ∈ γP(P ′), and
every i we have the following.

δ′i ∈ γP(P ′i) (90.1)

∆′i ∈ γP(Φ′i) (90.2)

165

Let us show this claim by induction on i. As the base case we have δ′1 = δ′ and
∆′1 = δ′1∧¬B = δ′∧¬B . Also P ′1 = P ′ and Φ′1 = P ′1∧¬B = P ′∧¬B . By assumption
we had δ′ ∈ γP(P ′) so the first part of our claim holds trivially. For the other we
apply Lemma 36 (Soundness of Conditional) to conclude ∆′1 ∈ γP(Φ′1).

Let us assume the claim holds for all i < n and show that it holds for n.
We have, by definition, δ′n = [[S1]]

(
δ′n−1 ∧ B

)
and P ′n = 〈〈S1〉〉

(
P ′n−1 ∧ B

)
. By the

(inner) induction assumption, we have δ′n−1 ∈ γP(P ′n−1) so by Lemma 36 we have
δ′n−1 ∧ B ∈ γP(P ′n−1 ∧ B). Since 〈〈S〉〉P terminates, then so must 〈〈S1〉〉P ′n−1 ∧ B by
the termination remark. Thus, by the (outer) induction hypothesis, we know that
[[S1]]

(
δ′n−1 ∧ B

)
= δ′n ∈ γP(〈〈S1〉〉

(
P ′n−1 ∧ B

)
) = γP(P ′n).

For the second part of the claim, we have ∆′n = ∆′n−1 + δ′n ∧ ¬B and Φ′n =
Φ′n−1 + P ′n ∧ ¬B . By (inner) induction we know ∆′n−1 ∈ γP(Φ′n−1). By the first part
of the claim above we know δ′n ∈ γP(P ′n) so by Lemma 36 (Soundness of Conditional)
we have δ′n ∧ ¬B ∈ γP(P ′n ∧ ¬B). Now we apply Lemma 33 (Soundness of Plus) to
conclude ∆′n = ∆′n−1 + δ′n ∧¬B ∈ γP(Φ′n−1 + P ′n ∧¬B) = γP(Φ′n), finishing the claim.

Now, since 〈〈S〉〉P ′ terminates, it must be that 〈〈S〉〉P ′ = Φ′n for some n, according
to the terminating semantics. Furthermore we have the following, also by definition
of termination.

iszero(P ′n ∧ ¬B) (90.3)

This is the case since iszero(P ′n) and the fact that the conditioning operation
preserves iszero(·).

Therefore by (90.1) we can conclude that δn = 0Dist as γC(Pn) = {0Dist}. There-
fore [[S]]δ terminates and by Lemma 89 we have [[S]]δ = ∆n. The issue of whether n is
the least index with δn = 0Dist is irrelevant as if it were not, the larger sum includes
only additional 0Dist terms. By (90.2), we have ∆n ∈ γP(Φn) and we are done as
Φn = 〈〈S〉〉P according to the terminating semantics.

B.10 Normalization

Lemma 40. If δ1 ∈ γP(P1) then normal(δ1) ∈ γP(normal(P1)).

Proof. By assumption we have the following.

support (δ1) ⊆ γC(C1)

smin
1 ≤ |support (δ1)| ≤ smax

1

mmin
1 ≤ ‖δ1‖ ≤ mmax

1

∀σ ∈ support (δ1) . pmin
1 ≤ δ1(σ) ≤ pmax

1

If ‖δ1‖ = 0 then normal(δ1) is undefined. Since mmin
1 ≤ ‖δ1‖, it must be that

mmin
1 = 0 as well, and thus normal(P1) is likewise undefined.

166

Let us now assume ‖δ1‖ > 0. Let δ2 = normal(δ1) and P2 = normal(P1). We have
two sub-cases, either mmin

1 = 0 or mmin
1 > 0. In the first sub case, P2 is defined as

follows.
pmin

2 = pmin
1 /mmax

1 smin
2 = smin

1

pmax
2 = 1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1

Since support (δ2) = support (δ1), it must be that support (δ2) ⊆ γC(C2) as C2 =
C1. Likewise, the number of support point is is unchanged in both the concrete
operation and the abstract one, hence the number of support points condition for
soundness are satisfied as well. Also, the probability per point in any distribution
does not exceed 1 hence the pmax

2 condition is satisfied. As for pmin
2 , note that if σ ∈

support (δ2) = support (δ1), we have δ2(σ) = δ1(σ)/‖δ1‖ ≥ pmin
1 /‖δ1‖ ≥ pmin

1 /mmax
1 ,

by assumption. Finally, ‖δ2‖ = 1 hence the mmin
2 and mmax

2 conditions are satisfied.
In the other case, we have pmin

1 > 0. Here P2 is defined as follows.

pmin
2 = pmin

1 /mmax
1 smin

2 = smin
1

pmax
2 = pmax

1 /mmin
1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1

The support, support points, total mass, and pmin
2 conditions are satisfied for the

same reason as in the previous case. For pmax
2 , let σ ∈ support (δ2) = support (δ1)

and we have the following.

δ2(σ) = δ1(σ)/‖δ1‖
≤ pmax

1 /‖δ1‖
≤ pmax

1 /mmin
1

B.11 Security

Before we prove the security theorem, let us show that the definition of abstract
conditioning on a state is sound.

Lemma 91. If δ ∈ γP(P) and σV ∈ StateV with V ⊆ fv(δ) then δ ∧ σV ∈ γP(P ∧ σV)

Proof. Recall the definition of P ∧ σV .

P ∧ σV = P ∧ B

With B =
∧
x∈V (x = σV (x)). Let us show that δ∧σV = δ∧B , the rest will follow

from Lemma 36.
The definition of δ ∧ σV is as follows.

δ ∧ σ = λσ. if σ � V = σV then δ(σ) else 0

167

Meanwhile, δ ∧ B is defined as follows.

δ ∧ B = λσ. if [[B]]σ = true then δ(σ) else 0

The correspondence is immediate as [[B]]σ = true if and only if σ � V = σV as
per construction of B .

Theorem 43. Let δ be an attacker’s initial belief. If δ ∈ γP(P) and tsecuret(S, P),
then S is threshold secure for threshold t when evaluated with initial belief δ.

Proof. Let us consider the contrapositive. That is, assuming δ ∈ γP(P), if S is not
threshold secure for t and initial belief δ, then it is not the case that tsecuret(S, P).

Let δ2 = [[S]]δ and δ3 = δ2 � L. Since S is not secure, we have σL ∈ support (δ3) and
σ′H ∈ StateH with (normal((δ2 ∧ σL) � H))(σ′H) > t. This implies that (δ2 ∧ σL) �
H 6= 0Dist and therefore δ2 ∧ σL 6= 0Dist as projection preserves mass.

If 〈〈S〉〉P is not terminating, then we are done as termination is a condition for
tsecuret(S, P). So let us assume 〈〈S〉〉P is terminating. Let P2 = 〈〈S〉〉P. By The-
orem 27, we have δ2 ∈ γP(P2). By Lemma 91, δ2 ∧ σL ∈ γP(P2 ∧ σL). Therefore
not iszero(P ∧ σL) as δ2 ∧ σL 6= 0Dist. Continuing, by Lemma 65, (δ2 ∧ σL) �
H ∈ γP((P2 ∧ σL) � H) and finally, by Lemma 40, we have normal((δ2 ∧ σL) �
H) ∈ γP(normal((P2 ∧ σL) � H)). Let δ4 = normal((δ2 ∧ σL) � H) and P4 =
normal((P2 ∧ σL) � H). Since σ′H ∈ support (δ4), we have δ4(σ′H) ≤ pmax

4 . Since
δ4(σ′H) > t, we have t < pmax

4 .
Also, let P3 = P2 � L. By Lemma 65, we have δ3 ∈ γP(P3) so σL ∈ γC(C3). We

already had that not iszero(P ∧ σL) above. Thus σL is indeed the witness to the
failure of tsecuret(S, P1).

168

Appendix C

Soundness proofs for Pn (P)

C.1 Useful Lemmas

We begin with some lemmas that give properties of the concretization function for
powersets of probabilistic polyhedra and addition on sets.

Lemma 92. If ∆ = ∆1 ∪∆2 then γPn(P)(∆) = γPn(P)(∆1) + γPn(P)(∆2).

Proof. From the definition of γPn(P)(∆) we have

γPn(P)(∆) =
∑
P∈∆

γP(P)

Applying ∆ = ∆1 ∪∆2 and associativity of + allows us to conclude

γPn(P)(∆) =
∑
P1∈∆1

γP(P1) +
∑
P1∈∆2

γP(P2)

Again applying the definition of γPn(P)(. . .), we have

γPn(P)(∆) = γPn(P)(∆1) + γPn(P)(P2)

Lemma 93. If D1 ⊆ D′1 and D2 ⊆ D′2 then D1 +D2 ⊆ D′1 +D′2.

Proof. According to the definition of addition for sets, we have

D1 +D2 = {δ1 + δ2 | δ1 ∈ D1 ∧ δ2 ∈ D2}

Consider some δ ∈ D1 + D2. We have δ = δ1 + δ2 with δ1 ∈ D1 and δ2 ∈ D2. Since
D1 ⊆ D′1, we have δ1 ∈ D′1. Similarly, since D2 ⊆ D′2, we have δ2 ∈ D′2. Since

D′1 +D′2 = {δ′1 + δ′2 | δ′1 ∈ D′1 ∧ δ′2 ∈ D′2}

we have δ = δ1 + δ2 ∈ D′1 +D′2.

169

C.2 Bounding Operation

Lemma 48 (Soundness of Bounding Operation). γPn(P)(∆) ⊆ γPn(P)(b∆cn).

Proof. According to Definition 47, there are two cases for b∆cn. If |∆| ≤ n then we
have b∆cn = ∆ and thus γPn(P)(∆) = γPn(P)(b∆cn).

If |∆| > n, we reason by induction on |∆|. Since n ≥ 1, we have that |∆| ≥ 2
and thus we can partition ∆ into ∆1∪{P1, P2}. Applying Definition 47 we then have
b∆cn = b∆1 ∪ {P1 + P2}cn. The inductively-passed set has size one less than the
original, allowing us to apply the inductive hypothesis to conclude the following.

γPn(P)(∆1 ∪ {P1 + P2}) ⊆ γPn(P)(b∆1 ∪ {P1 + P2}cn)

Our conclusion will follow provided we can show

γPn(P)(∆) ⊆ γPn(P)(∆1 ∪ {P1 + P2})

Lemma 92 allows us to rewrite this to

γPn(P)(∆) ⊆ γPn(P)(∆1) + γPn(P)({P1 + P2}) (93.1)

We have ∆ = ∆1 ∪ {P1, P2} and thus by Lemma 92 we have

γPn(P)(∆) = γPn(P)(∆1) + γPn(P)({P1, P2})

By Lemma 93, we will have (93.1) provided we can show

γPn(P)(∆1) ⊆ γPn(P)(∆1)

which is immediate, and

γPn(P)({P1, P2}) ⊆ γPn(P)({P1 + P2})

The latter is proven by applying the definitions of γPn(P)({P1, P2}) and γPn(P)({P1 + P2}),
resulting in a goal of

γP(P1) + γP(P2) ⊆ γP(P1 + P2)

which follows directly from Lemma 33.

C.3 Distributive Operations

The soundness proofs for the majority of the operations on elements of Pn (P) are
sound for exactly the same reason: the operations distribute over +, allowing us to re-
duce soundness for the powerset case to soundness for the case of a single probabilistic
polyhedron. We start with the Lemma that is used to structure such a proof.

170

Lemma 94. Consider f : P → P, F : Pn (P) → Pn (P), and f [: Dist → Dist.
Suppose the following all hold for all δi, Pi.

1. f [(δ1 + . . .+ δn) = f [(δ1) + . . .+ f [(δn)

2. F ({P1, . . . , Pn}) = {f(P1), . . . , f(Pn)}

3. δ ∈ γP(P)⇒ f [(δ) ∈ γP(f(P))

Then δ ∈ γPn(P)(∆) implies f [(δ) ∈ γPn(P)(F (∆)).

Proof. Suppose δ ∈ γPn(P)(∆) and ∆ = {P1, . . . , Pn}. We have the following by
definition of γPn(P)(∆).

γPn(P)(∆) = γP(P1) + . . .+ γP(Pn)

Applying the definition of addition on sets, we obtain

γP(P1) + . . .+ γP(Pn) = {δ1 + . . .+ δn | δi ∈ γP(Pi)}

Thus, we have that δ = δ1 + . . . + δn where δi ∈ γP(Pi). By premise 3 we then have
f [(δi) ∈ γP(f(Pi)) for all i.

We now consider γPn(P)(F (∆)). By premise 2 we have that this is
γPn(P)({f(P1), . . . , f(Pn)}). Applying the definition of γPn(P), this is equal to
γP(f(P1)) + . . .+ γP(f(Pn)).

Expanding the definition of + for sets, we have that

γPn(P)(F (∆)) = {δ1 + . . .+ δn | δi ∈ γP(f(Pi))}

Since f [(δi) ∈ γP(f(Pi)) for all i we have
∑

i(f
[(δi)) ∈ γPn(P)(F (∆)) and thus, by

premise 1 we have f [(
∑

i δi) ∈ γPn(P)(F (∆)) and thus f [(δ) ∈ γPn(P)(F (∆)) as desired.

Lemma 95 (Soundness of Forget). If δ ∈ γPn(P)(∆) then fy(δ) ∈ γPn(P)(fy(∆)).

Proof. We will apply Lemma 94 with f [= λδ. δ � (fv(δ) − {y}), f = λP. fy(P),
and F = λ∆. fy(∆). Lemma 28 gives us premise 3. The definition of fy(∆) satisfies
premise 2. Let V = fv(δ)− {y}. It remains to show premise 1, which states

(δ1 + . . .+ δn) � V = δ1 � V + . . .+ δn � V

We show this for the binary case, from which the n-ary version above follows.

(δ1 + δ2) � V = δ1 � V + δ2 � V

171

Expanding the definition of projection, we then obtain the following goal.

λσV ∈ StateV .
∑

σ′|(σ′�V=σV)

(δ1 + δ2)(σ′) =λσV ∈ StateV .
∑

σ′|(σ′�V=σV)

δ1(σ′)

+

λσV ∈ StateV .
∑

σ′|(σ′�V=σV)

δ2(σ′)

We can now apply the definition of + for distributions to the right-hand side to obtain
a goal of

λσV ∈ StateV .
∑

σ′|(σ′�V=σV)

(δ1 + δ2)(σ′) =

λσV ∈ StateV .

(∑
σ′|(σ′�V=σV)

δ1(σ′) +
∑

σ′|(σ′�V=σV)

δ2(σ′)

)
These functions are equal if they give equal results for all inputs. Thus, we must
show the following for all σV .

∑
σ′|(σ′�V=σV)

(δ1 + δ2)(σ′) =

(∑
σ′|(σ′�V=σV)

δ1(σ′) +
∑

σ′|(σ′�V=σV)

δ2(σ′)

)
Finally, applying the definition of + for distributions to the left-hand side of the
equality yields

∑
σ′|(σ′�V=σV)

(
δ1(σ′) + δ2(σ′)

)
=

(∑
σ′|(σ′�V=σV)

δ1(σ′) +
∑

σ′|(σ′�V=σV)

δ2(σ′)

)
This follows by associativity and commutativity of +.

Lemma 96 (Soundness of Projection). If δ ∈ γPn(P)(∆) and V ⊆ fv(δ) then δ � V ∈
γPn(P)(∆ � V).

Proof. Inductive application of Lemma 95 (Soundness of Forget) as was the case in
the base domain.

Lemma 97 (Soundness of Assignment). If δ ∈ γPn(P)(∆) then δ [x→ E] ∈
γPn(P)(∆ [x→ E]).

Proof. As in Lemma 95, we apply Lemma 94. We have premises 3 (by Lemma 30)
and 2 (by definition) and must show premise 1. This means showing that

(δ1 + δ2) [x→ E] = δ1 [x→ E] + δ2 [x→ E]

172

Expanding the definition of assignment, we must show that the following

λσ.
∑

τ | τ [x→[[E]]τ]=σ

(δ1 + δ2)(τ)

is equal to (
λσ.

∑
τ | τ [x→[[E]]τ]=σ

δ1(τ)

)
+

(
λσ.

∑
τ | τ [x→[[E]]τ]=σ

δ1(τ)

)
Again applying the definition of + for distributions and using extensional equality for
functions yields the following goal, which follows by associativity and commutativity
of +.

∀σ.

(∑
τ | τ [x→[[E]]τ]=σ

(
δ1(τ) + δ2(τ)

)
=

∑
τ | τ [x→[[E]]τ]=σ

δ1(τ) +
∑

τ | τ [x→[[E]]τ]=σ

δ1(τ)

)

Lemma 98 (Soundness of Scalar Product). If δ ∈ γPn(P)(∆) then p ·δ ∈ γPn(P)(p ·∆).

Proof. This proof follows the same format as the others in this section. We apply
Lemma 30 with the definition of scalar product for powersets and Lemma 38. We
must show

p · (δ1 + δ2) = p · δ1 + p · δ2

Expanding according to the definition of scalar product and + for distributions, we
obtain the following as a goal.

λσ. p · (δ1(σ) + δ2(σ)) = λσ. p · δ1(σ) + p · δ2(σ)

The result follows by distributivity of · over +.

Lemma 99 (Soundness of Conditioning). If δ ∈ γPn(P)(∆) then δ∧B ∈ γPn(P)(∆∧B).

Proof. Again we apply Lemma 30, this time using Lemma 36 to satisfy premise 3.
We let f [= λδ. δ ∧B, f = λP. P ∧B, and F = λ∆. ∆ ∧B. We must show

(δ1 + δ2) ∧B = δ1 ∧B + δ2 ∧B

Applying the definition of conditioning and addition for distributions, we have to
show the following for all σ.

if [[B]]σ then (δ1 + δ2)(σ) else 0 =
(
if [[B]]σ then δ1(σ) else 0

)
+(

if [[B]]σ then δ2(σ) else 0
)

173

We proceed via case analysis. If [[B]]σ = false then we have 0 = 0 + 0, which is a
tautology. If [[B]]σ = true , we have to show

(δ1 + δ2)(σ) = δ1(σ) + δ2(σ)

which follows directly from the definition of + on distributions.

C.4 Other Powerset Lemmas

We now show the lemmas for operations in the powerset domain that do not imme-
diately follow from distributivity over plus of the operations in the base domain.

Lemma 100 (Soundness of Product). If δ ∈ γPn(P)(∆) and δ′ ∈ γPn(P)(P
′) and

fv(∆) ∩ fv(P ′) = ∅ then δ × δ′ ∈ γPn(P)(∆ × P ′).

Proof. Let ∆ = {P1, . . . , Pn}. We first expand definitions in our goal, obtaining

δ × δ′ ∈ γP(P1 × P ′) + . . .+ γP(Pn × P ′)

Applying the definition of addition for sets, we obtain a goal of

δ × δ′ ∈
{∑

i

δi | δi ∈ γP(Pi × P ′)
}

This holds provided we can find δi ∈ γP(Pi × P ′) such that δ × δ′ =
∑

i δi. We
have from δ ∈ γPn(P)(∆) that δ =

∑
j δj for some δj ∈ γP(Pj). We then have from

Lemma 34 and δ′ ∈ γPn(P)(P
′) and fv(∆) ∩ fv(P ′) = ∅ that δj × δ′ ∈ γP(Pj × P ′) for

all j. We now show that the δi we were searching for are these δj × δ′. To do so, we
must show that δ × δ′ =

∑
j(δj × δ′). We have δ =

∑
j δj and thus the result follows

by distributivity of × over +, which we show now.

Goal: × distributes over + We want to show the following when domain(δ1) =
domain(δ2) and domain(δ1) ∩ domain(δ′) = ∅.

(δ1 + δ2)× δ′ = δ1 × δ′ + δ2 × δ′

Expanding the definition of + and of ×, we obtain

λ(σ, σ′).
(
δ1(σ) + δ2(σ)

)
· δ′(σ′) = λ(σ, σ′).

(
δ1(σ) · δ′(σ′) + δ2(σ) · δ′(σ′)

)
This holds due to distributivity of · over +.

Lemma 101 (Soundness of Addition). If δ1 ∈ γPn(P)(∆1) and δ2 ∈ γPn(P)(∆2) then
δ1 + δ2 ∈ γPn(P)(∆1 + ∆2).

174

Proof. First let us take care of the special cases that occur when iszero(∆1) or
iszero(∆2). Without the loss of generality let us say iszero(∆2). The sum is de-
fined to be identical to ∆1. Since iszero(∆2), it must be that γPn(P)(∆2) contains
only the zero distribution 0Dist, therefore δ2 = 0Dist. Therefore δ1 + δ2 = δ1 and by
assumption, δ1 ∈ γPn(P)(∆1) = γPn(P)(∆1 + ∆2).

In the case where ∆1 and ∆2 are both non-zero, we have ∆1 + ∆2 = b∆1 ∪∆2cn.
Suppose δ1 ∈ γPn(P)(∆1) and δ2 ∈ γPn(P)(∆2). By Lemma 92 we have γPn(P)(∆1) +
γPn(P)(∆2) = γPn(P)(∆1 ∪ ∆2). The set γPn(P)(∆1) + γPn(P)(∆2) is {δ′1 + δ′2 | δ′1 ∈
γPn(P)(∆1) ∧ δ′2 ∈ γPn(P)(∆2)}. Our distributions δ1 and δ2 satisfy these conditions
and thus are in γPn(P)(∆1∪∆2). It remains to show that γPn(P)(∆1∪∆2) ⊆ γPn(P)(b∆1∪
∆2cn), but this is exactly Lemma 48.

C.5 Main Soundness Theorem for Powerset Domain

The main soundness theorem is an identical restatement of the main soundness the-
orem in the base domain and the proof is likewise identical, save for replacement of
the relevant base domain definitions and lemmas with the powerset ones. The only
corresponding lemma which has not yet been proven follows below.

Lemma 102. Let ∆i be consistent probabilistic polyhedron sets, that is, γPn(P)(∆i) 6=
∅. Then, ∆1 + ∆2 vP ∆1 iff iszero(∆2).

Proof. The proof is identical to the Lemma 85, replacing the base domain lemmas
and definitions with the powerset ones.

Theorem 46 (Soundness of Abstraction). For all δ, S,∆, if δ ∈ γPn(P)(∆) and 〈〈S〉〉∆
terminates, then [[S]]δ terminates and [[S]]δ ∈ γPn(P)(〈〈S〉〉∆).

Proof. The proof is identical to the main soundness proof for the base domain (The-
orem 27), replacing definitions and lemmas about the base domain abstraction with
the corresponding definitions and lemmas about the powerset domain.

Lemma 103 (Soundness of Normalization). If δ ∈ γPn(P)(∆) then normal(δ) ∈
γPn(P)(normal(∆)).

Proof. Whenever ‖δ‖ = 0, the normalization in the concrete sense is undefined, like-
wise it is undefined in the abstract sense. So let us assume ‖δ‖ > 0.

Let m =
∑

i m
min
i and m =

∑
i m

max
i . By assumption we have δ =

∑
i δi with

δi ∈ γP(Pi) (103.1)

Thus we have ‖δ‖ =
∑

i ‖δi‖ and we conclude m =
∑

i m
min
i ≤ ‖δ‖ ≤

∑
i m

max
i =

m via (103.1).

m ≤ ‖δ‖ ≤ m (103.2)

175

Let δ′ = normal(δ) = 1
‖δ‖δ =

∑
i

1
‖δ‖δi, due to linearity of scalar product. Let us

thus show that 1
‖δ‖δi ∈ γP(normal(Pi)(m,m)) = γP(normal(∆)) which would conclude

the proof. Let us write Pi′ = normal(Pi)(m,m) and δi′ = 1
‖δ‖δi. We must thus show

the following.

support (δi′) ⊆ γC(Ci′) (103.3)

smin
i′ ≤ |support (δi′)| ≤ smax

i′ (103.4)

mmin
i′ ≤ ‖δi′‖ ≤ mmax

i′ (103.5)

∀σ ∈ support (δi′) . pmin
i′ ≤ δi′(σ) ≤ pmax

i′ (103.6)

Claim (103.3) holds trivially as support (δi′) = support (δi), Ci′ = Ci, and (103.1).
Claim (103.4) holds due to the same reasoning.

For (103.5), in the case where m > 0, we reason, via (103.2), as follows.

mmin
i ≤ ‖δi‖ ≤ mmax

i

mmin
i

m
≤ 1

‖δ‖
‖δi‖ ≤

mmax
i

m

mmin
i

m
≤ ‖ 1

‖δ‖
δi‖ ≤

mmax
i

m

mmin
i′ =

mmin
i

m
≤ ‖δi′‖ ≤

mmax
i

m
= mmax

i′

If m = 0, the definition of normalization makes mmax
i′ = 1, which is also sound as

all distributions have mass no more than 1.
The (103.6) claim is shown using reasoning identical to the mass claim above.

Lemma 50 (Soundness of Simple Maximal Bound Estimate). If δ ∈ γPn(P)({Pi})
and P =

∑
i Pi then maxσ δ(σ) ≤ pmax.

Proof. By assumption we have δ =
∑

i δi with δi ∈ γP(Pi) thus by Lemma 33 (Sound-
ness of Plus), we have δ ∈ γP(

∑
i Pi) = γP(P), thus for every σ ∈ support (δ),

δ(σ) ≤ pmax, hence maxσ δ(σ) ≤ pmax.

The above lemma shows soundness of the very simple method of estimating the
maximum probability but in the implementation we use the method based on poly
partitioning and the following lemma.

Lemma 54. maxpp (∆)
def
= maxσ∈R ∆max (σ) = maxσ ∆max (σ) where L is a poly

partition of ∆ and R is a representative set of L.

Proof. Let L be the poly partition of ∆ = {Ci} as in the statement of the lemma.
Let us first show a claim: if σ, σ′ ∈ L ∈ L then

A
def
= {C ∈ ∆ | σ ∈ γC(C)} = {C ∈ ∆ | σ′ ∈ γC(C)} def

= B (103.7)

176

Let C ∈ A. Thus σ ∈ γC(C) so by Definition 53 (2), we have σ ∈ γC(L′) for some
L′ ∈ L. By (1) it must be that L = L′ and by (3), we have γC(L) = γC(L′) ⊆ γC(C).
Therefore σ′ ∈ γC(C) and thus C ∈ B, showing A ⊆ B. The other direction is
identical, concluding A = B as claimed. .

Now we can get back to the main lemma. Let σ∗ be the state with ∆max (σ∗) =
maxσ ∆max (σ). Thus σ∗ ∈ γC(L) for some L ∈ L, by Definition 53 (2). Let σL be
any representative of L, that is σL ∈ γC(L).

∆max (σ∗) =
∑
i

Pmax
i (σ∗)

=
∑

i | σ∗∈γC(Ci)

pmax
i

=
∑

i | σL∈γC(Ci)

pmax
i [by (103.7)]

=
∑
i

Pmax
i (σL)

= ∆max (σL)

Now we see that maxσ ∆max (σ) = ∆max (σ∗) = ∆max (σL) = maxpp (∆) as claimed.

Before we prove the security theorem, let us show that the definition of abstract
conditioning on a state is sound.

Lemma 104. If δ ∈ γP(∆) and σV ∈ StateV with V ⊆ fv(δ) then δ∧σV ∈ γPn(P)(∆∧
σV)

Proof. Recall the definition of ∆ ∧ σV .

∆ ∧ σV = ∆ ∧ B

With B =
∧
x∈V (x = σV (x)). Let us show that δ∧σV = δ∧B , the rest will follow

from Lemma 99.
The definition of δ ∧ σV is as follows.

δ ∧ σ = λσ. if σ � V = σV then δ(σ) else 0

Meanwhile, δ ∧ B is defined as follows.

δ ∧ B = λσ. if [[B]]σ = true then δ(σ) else 0

The correspondence is immediate as [[B]]σ = true if and only if σ � V = σV as
per construction of B .

177

Theorem 57 (Soundness for Threshold Security). Let δ be an attacker’s initial belief.
If δ ∈ γPn(P)(∆) and tsecuret(S,∆), then S is threshold secure for threshold t when
evaluated with initial belief δ.

Proof. Let us consider the contrapositive. That is, assuming δ ∈ γPn(P)(∆), if S is not
threshold secure for t and initial belief δ, then it is not the case that tsecuret(S,∆).

Let δ2 = [[S]]δ and δ3 = δ2 � L. Since S is not secure, we have σL ∈ support (δ3) and
σ′H ∈ StateH with (normal((δ2 ∧ σL) � H))(σ′H) > t. This implies that (δ2 ∧ σL) �
H 6= 0Dist and therefore δ2 ∧ σL 6= 0Dist as projection preserves mass.

If [[S]]∆ is not terminating, then we are done as termination is a condition for
tsecuret(S,∆). So let us assume 〈〈S〉〉∆ is terminating. Let ∆2 = 〈〈S〉〉∆. By
Theorem 46, we have δ2 ∈ γPn(P)(∆2). By Lemma 104, δ2 ∧ σL ∈ γPn(P)(∆2 ∧
σL). Therefore not iszero(∆2 ∧ σL). Continuing, by Lemma 96, (δ2 ∧ σL) � H ∈
γPn(P)((∆2 ∧ σL) � H) and finally, by Lemma 103, we have δ4

def
= normal((δ2 ∧ σL) �

H) ∈ γPn(P)(normal((∆2 ∧ σL) � H)). Let ∆4 = normal((∆2 ∧ σL) � H).
By Remark 52, we have δ4(σ′H) ≤ maxσ ∆max

4 (σ) and by Lemma 54 we have
maxσ ∆max

4 (σ) = maxpp (∆4). But δ4(σ′H) > t so maxpp (∆4) > t, a potential failure
of tsecuret(S,∆).

To finish the proof we need to make sure that σL was indeed a valid witness to
the failure of tsecuret(S, P1). Let ∆3 = {P ′′i } = ∆2 � L. By Lemma 96, we have δ3 ∈
γPn(P)(∆3) so δ3 =

∑
i δ
′
i with δ′i ∈ γP(P ′′i). Since σL ∈ support (δ3) it must be that

δ3(σL) > 0 and thus δ′i(σL) > 0 for at least one i. Thus σL ∈ support (δ′i) ⊆ γC(C ′′i)
for at least one i and therefore σL ∈ γP(C)({C ′′i }). Also, we have already shown that
not iszero(∆2 ∧ σL), thus σL is indeed the witness as needed.

178

Bibliography

[1] Facebook ads: A guide to targeting and reporting.
https://www.americanexpress.com/us/small-business/openforum/
articles/facebook-ads-a-guide-to-targeting-and-reporting-1, 2011.

[2] Facebook ads: Case studies. http://socialfresh.com/facebook-advertising
-examples, 2011.

[3] Facebook developers. http://developers.facebook.com, 2011. see the
policy and docs/guides/canvas directories for privacy information.

[4] PPL: The Parma polyhedral library. http://www.cs.unipr.it/ppl/, 2011.

[5] Statement of rights and responsibilities. http://www.facebook.com/legal/terms,
November 2013.

[6] 3 million teens leave facebook in 3 years: The 2014 facebook demographic re-
port. http://istrategylabs.com/2014/01/3-million-teens-leave-facebook-in-3-years-the-
2014-facebook-demographic-report, January 2014.

[7] Nathanael Leedom Ackerman, Cameron E Freer, and Daniel M Roy. Noncom-
putable conditional distributions. In Proceedings of the IEEE Symposium on
Logic in Computer Science (LICS), 2011.

[8] Mário S. Alvim, Miguel E. Andrés, and Catuscia Palamidessi. Quantitative
information flow in interactive systems. Journal of Computer Security, 20(1):3–
50, 2012.

[9] Mário S. Alvim, Konstantinos Chatzikokolakis, Pierpaolo Degano, and Catuscia
Palamidessi. Differential privacy versus quantitative information flow. Com-
puting Research Repository (CoRR), 2010.

[10] Mário S. Alvim, Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Ge-
offrey Smith. Measuring information leakage using generalized gain functions.
In Proceedings of the IEEE Computer Security Foundations Symposium (CSF),
2012.

[11] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic discovery
and quantification of information leaks. In IEEE Security and Privacy, 2009.

[12] Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee, and Daniel
Starin. Persona: an online social network with user-defined privacy. In Proceed-
ings of the ACM SIGCOMM Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM), 2009.

179

https://www.americanexpress.com/us/small-business/openforum/articles/facebook-ads-a-guide-to-targeting-and-reporting-1
https://www.americanexpress.com/us/small-business/openforum/articles/facebook-ads-a-guide-to-targeting-and-reporting-1
http://socialfresh.com/facebook-advertising-examples
http://socialfresh.com/facebook-advertising-examples
http://developers.facebook.com
policy
docs/guides/canvas
http://www.cs.unipr.it/ppl/
http://www.facebook.com/legal/terms
http://istrategylabs.com/2014/01/3-million-teens-leave-facebook-in-3-years-the-2014-facebook-demographic-report
http://istrategylabs.com/2014/01/3-million-teens-leave-facebook-in-3-years-the-2014-facebook-demographic-report

[13] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Widening operators
for powerset domains. 8(4):449–466, 2006.

[14] Gilles Barthe and Boris Köpf. Information-theoretic bounds for differentially
private mechanisms. In Proceedings of the IEEE Computer Security Foundations
Symposium (CSF), 2011.

[15] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis:
Simultaneously solving how and what. In International Cryptology Conference
(CRYPTO), 2008.

[16] Frédéric Besson, Nataliia Bielova, and Thomas Jensen. Browser randomisation
against fingerprinting: A quantitative information flow approach. In Proceedings
of the Nordic Conference in Secure IT Systems (NordSec).

[17] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre.
User tracking on the web via cross-browser fingerprinting. In Proceedings of the
Nordic Conference in Secure IT Systems (NordSec), 2011.

[18] Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Marget-
son, and Jurgen Van Gael. Measure transformer semantics for bayesian machine
learning. In Proceedings of the European Symposium on Programming (ESOP),
2011.

[19] Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
Quantitative notions of leakage for one-try attacks. In Proceedings of the Confer-
ence on Mathematical Foundations of Programming Semantics (MFPS), volume
249, pages 75–91, 2009.

[20] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panangaden.
Anonymity protocols as noisy channels. Information and Computation, 206(2–
4):378–401, 2008.

[21] Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon,
and Johannes Borgstroem. Bayesian inference for probabilistic programs via
symbolic execution. Technical Report MSR-TR-2012-86, Microsoft Research,
2012.

[22] David Clark and Sebastian Hunt. Non-interference for deterministic interactive
programs. In Proceedings of the, 2008.

[23] David Clark, Sebastian Hunt, and Pasquale Malacaria. Quantitative informa-
tion flow, relations and polymorphic types. Journal of Logic and Computation,
15:181–199, 2005.

[24] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Quantifying
information flow with beliefs. Journal of Computer Security, 17(5):655–701,
2009.

180

[25] Michael R. Clarkson and Fred B. Schneider. Quantification of integrity. Math-
ematical Structures in Computer Science, 25:207–258, 2015.

[26] Agostino Cortesi. Widening operators for abstract interpretation. In Proceed-
ings of the IEEE International Conference on Software Engineering and Formal
Methods (SEFM), 2008.

[27] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties
of programs. In Proceedings of the International Symposium on Programming,
1976.

[28] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation of
fixpoints. In Proceedings of the ACM SIGPLAN Conference on Principles of
Programming Languages (POPL), 1977.

[29] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In Proceedings of the International Symposium on Programming,
1979.

[30] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the ACM SIGPLAN Conference
on Principles of Programming Languages (POPL), 1978.

[31] Patrick Cousot and Michael Monerau. Probabilistic abstract interpretation. In
Proceedings of the European Symposium on Programming (ESOP), 2012.

[32] Jesus A. De Loera, David Haws, Raymond Hemmecke, Peter Huggins, Jeremy
Tauzer, and Ruriko Yoshida. Latte. http://www.math.ucdavis.edu/latte,
2008.

[33] Arthur P. Dempster. Upper and lower probabilities induced by a multivalued
mapping. The Annals of Mathematical Statistics, 38(2):325–339, 1967.

[34] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, Read-
ing, Massachusetts, 1982.

[35] Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden.
The metric analogue of weak bisimulation for probabilistic processes. In Pro-
ceedings of the IEEE Symposium on Logic in Computer Science (LICS), 2002.

[36] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic
lambda-calculus and quantitative program analysis. Journal of Logic and Com-
putation, 15(2):159–179, 2005.

[37] Do not track. https://www.eff.org/issues/do-not-track, 2012.

[38] Cynthia Dwork. Differential privacy. In Proceedings of the International Collo-
quium on Automata, Languages and Programming (ICALP), 2006.

181

http://www.math.ucdavis.edu/latte
https://www.eff.org/issues/do-not-track

[39] Cynthia Dwork. A firm foundation for private data analysis. Communications
of the ACM, 54(1):86–95, 2011.

[40] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation.
In International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 486–503, 2006.

[41] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of the Theory of
Cryptography Conference (TCC), 2006.

[42] Barbara Espinoza and Geoffrey Smith. Min-entropy as a resource. In Informa-
tion and Computation, 2013.

[43] Oded Goldreich. Foundations of Cryptography, vol. 2: Basic Applications. Cam-
bridge University Press, Cambridge, UK, 2004.

[44] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game, or a completeness theorem for protocols with honest majority. In Pro-
ceedings of the ACM Symposium on Theory of Computing (STOC), 1987.

[45] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. Journal of the ACM, 43:431–473, 1996.

[46] Philippe Golle. Revisiting the uniqueness of simple demographics in the us
population. In Proceedings of the Workshop on Privacy in the Electronic Society
(WPES), 2006.

[47] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. Church: a language for generative models. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI),
2008.

[48] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Ra-
jamani. Probabilistic programming. In Proceedings of the International Con-
ference on Software Engineering (ICSE), 2014.

[49] Saikat Guha, Bin Cheng, and Paul Francis. Challenges in measuring online
advertising systems. In Proceedings of the Internet Measurement Conference
(IMC), 2010.

[50] Saikat Guha, Bin Cheng, and Paul Francis. Privad: Practical privacy in online
advertising. In Proceedings of the Symposium on Networked Systems Design
and Implementation (NSDI), March 2011.

[51] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-
party computation using garbled circuits. In Proceedings of the USENIX Secu-
rity Symposium, 2011.

182

[52] James W. Gray III. Toward a mathematical foundation for information flow
security. In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
1991.

[53] Krishnaram Kenthapadi, Nina Mishra, and Kobbi Nissim. Simulatable auditing.
In Proceedings of the ACM SIGMOD Symposium on Principles of Database
Systems (PODS), 2005.

[54] Oleg Kiselyov and Chung-Chieh Shan. Embedded probabilistic programming.
In Proceedings of the Working Conference on Domain Specific Languages (DSL),
2009.

[55] Boris Köpf and David Basin. An Information-Theoretic Model for Adaptive
Side-Channel Attacks. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2007.

[56] Boris Köpf and Andrey Rybalchenko. Approximation and randomization for
quantitative information-flow analysis. In Proceedings of the IEEE Computer
Security Foundations Symposium (CSF), 2010.

[57] Boris Köpf and Geoffrey Smith. Vulnerability bounds and leakage resilience of
blinded cryptography under timing attacks. In Proceedings of the, 2010.

[58] Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and
System Sciences, 22(3):328–350, 1981.

[59] Yhuda Lindell and Benny Pinkas. Secure multiparty computation for privacy-
preserving data mining. Journal of Privacy and Confidentiality, 1(1):59–98,
2009.

[60] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks. Au-
tomating efficient ram-model secure computation. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2014.

[61] Ashwin Machanavajjhala, Aleksandra Korolova, and Atish Das Sarma. Per-
sonalized social recommendations: accurate or private. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2011.

[62] Pasquale Malacaria. Assessing security threats of looping constructs. In Pro-
ceedings of the ACM SIGPLAN Conference on Principles of Programming Lan-
guages (POPL), 2007.

[63] Pasquale Malacaria. Algebraic foundations for information theoretical, prob-
abilistic and guessability measures of information flow. Computing Research
Repository (CoRR), abs/1101.3453, 2011.

[64] Pasquale Malacaria and Han Chen. Lagrange multipliers and maximum infor-
mation leakage in different observational models. In Úlfar Erlingsson and Marco
Pistoia, editor, Proceedings of the ACM SIGPLAN Workshop on Programming

183

Languages and Analysis for Security (PLAS), pages 135–146, Tucson, AZ, USA,
June 2008. ACM.

[65] Luciana Marconi, Roberto Di Pietro, Bruno Crispo, and Mauro Conti. Time
warp: How time affects privacy in lbss. In Proceedings of the International
Conference on Information & Communications Security (ICICS), pages 325–
339, 2010.

[66] Piotr Mardziel, Mario Alvim, Michael Hicks, and Michael Clarkson. Quantifying
information flow for time-varying data. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2014.

[67] Piotr Mardziel, Mário S. Alvim, and Michael Hicks. Adversary gain vs defender
loss in quantified information flow. In Workshop on Foundations of Computer
Security (FCS), July 2014.

[68] Piotr Mardziel, Mário S. Alvim, Michael Hicks, and Michael R. Clarkson. Quan-
tifying information flow for dynamic secrets. Technical report, University of
Maryland, College Park, 2014. (extended technical report).

[69] Piotr Mardziel, Michael Hicks, Jonathan Katz, and Mudhakar Srivatsa.
Knowledge-oriented secure multiparty computation. In Proceedings of the ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS), 2012.

[70] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa. Dy-
namic enforcement of knowledge-based security policies. In Proceedings of the
IEEE Computer Security Foundations Symposium (CSF), 2011.

[71] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa. Dy-
namic enforcement of knowledge-based security policies. Technical Report CS-
TR-4978, University of Maryland Department of Computer Science, 2011.

[72] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa. Dy-
namic enforcement of knowledge-based security policies using abstract interpre-
tation. Journal of Computer Security, 21(4):463–532, 2013.

[73] Massey. Guessing and entropy. In Proceedings of the IEEEInternational Sym-
posium on Information Theory (ISIT), 1994.

[74] James L. Massey. Causality, feedback and directed information. In Proceedings
of the International Symposium on Information Theory and its Applications
(ISITA), 1990.

[75] Stephen McCamant and Michael D. Ernst. Quantitative information flow as
network flow capacity. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2008.

184

[76] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Tal-
war, and Salil Vadhan. The limits of two-party differential privacy. In Pro-
ceedings of the IEEESymposium on Foundations of Computer Science (FOCS),
2010.

[77] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, New York, 2005.

[78] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong,
and Andrey Kolobov. Blog: Probabilistic models with unknown objects. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI), 2005.

[79] Antoine Miné. The octagon abstract domain. In Proceedings of the Working
Conference on Reverse Engineering (WCRE), 2001.

[80] David Monniaux. Abstract interpretation of probabilistic semantics. In Pro-
ceedings of the Static Analysis Symposium (SAS), 2000.

[81] David Monniaux. Analyse de programmes probabilistes par interprétation ab-
straite. Thèse de doctorat, Université Paris IX Dauphine, 2001.

[82] Ira S. Moskowitz, Richard E. Newman, Daniel P. Crepeau, and Allen R. Miller.
Covert channels and anonymizing networks. In Workshop on Privacy in the
Electronic Society 2003, pages 79–88, 2003.

[83] Ira S. Moskowitz, Richard E. Newman, and Paul F. Syverson. Quasi-anonymous
channels. In Proceedings of the International Conference on Communication,
Network, and Information Security (CNIS), pages 126–131. IASTED, 2003.

[84] Chunyan Mu and David Clark. An interval-based abstraction for quantifying in-
formation flow. Electronic Notes in Theoretical Computer Science, 253(3):119–
141, 2009.

[85] George C. Necula. Proof-carrying code. In Proceedings of the ACM SIGPLAN
Conference on Principles of Programming Languages (POPL), pages 106–119,
1997.

[86] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow
security for interactive programs. In Proceedings of the IEEE Computer Security
Foundations Symposium (CSF), 2006.

[87] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language
based on sampling functions. ACM Transactions on Programming Languages
and Systems (TOPLAS), 31(1):4:1–4:46, 2008.

[88] Thomas Paul, Antonino Famulari, and Thorsten Strufe. A survey on decen-
tralized online social networks. Computer Networks, 75, Part A(0):437 – 452,
2014.

185

[89] Avi Pfeffer. The design and implementation of IBAL: A general-purpose prob-
abilistic language. In Lise Getoor and Benjamin Taskar, editors, Statistical
Relational Learning. MIT Press, 2007.

[90] Pliam. On the incomparability of entropy and marginal guesswork in brute-
force attacks. In Proceedings of the International Conference in Cryptology in
India (INDOCRYPT), number 1977 in Lecture Notes in Computer Science,
pages 67–79. Springer-Verlag, 2000.

[91] Corneliu Popeea and Wei-ngan Chin. Inferring disjunctive postconditions. In
Proceedings of the Asian Computing Science Conference (ASIAN), 2006.

[92] Alexey Radul. Report on the probabilistic language Scheme. In Proceedings of
the Dynamic Languages Symposium (DLS), 2007.

[93] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In Proceedings of the ACM SIGPLAN Conference on
Principles of Programming Languages (POPL), 2002.

[94] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A pro-
gramming language for generic, mixed-mode multiparty computations. In Pro-
ceedings of the IEEE Symposium on Security and Privacy (Oakland), 2014.

[95] Vibhor Rastogi, Michael Hay, Gerome Miklau, and Dan Suciu. Relationship
privacy: output perturbation for queries with joins. In Proceedings of the ACM
SIGMOD Symposium on Principles of Database Systems (PODS), 2009.

[96] Seok-Won Seong, Jiwon Seo, Matthew Nasielski, Debangsu Sengupta, Sudheen-
dra Hangal, Seng Keat Teh, Ruven Chu, Ben Dodson, and Monica S. Lam. PrPl:
a decentralized social networking infrastructure. In Proceedings of the Work-
shop on Mobile Cloud Computing & Services: Social Networks and Beyond,
2010. Invited Paper.

[97] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre
Hubaux. Quantifying Location Privacy. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 247–262, 2011.

[98] Reza Shokri, George Theodorakopoulos, Carmela Troncoso, Jean-Pierre
Hubaux, and Jean-Yves Le Boudec. Protecting location privacy: optimal strat-
egy against localization attacks. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2012.

[99] Kapil Singh, Sumeer Bhola, and Wenke Lee. xBook: Redesigning privacy con-
trol in social networking platforms. In Proceedings of the USENIX Security
Symposium, 2009.

[100] Geoffrey Smith. On the foundations of quantitative information flow. In Pro-
ceedings of the Conference on Foundations of Software Science and Computation
Structures (FoSSaCS), 2009.

186

[101] Michael J. A. Smith. Probabilistic abstract interpretation of imperative pro-
grams using truncated normal distributions. Electronic Notes in Theoretical
Computer Science, 220(3):43–59, 2008.

[102] Latanya Sweeney. Simple demographics often identify people uniquely. Tech-
nical Report LIDAP-WP4, Carnegie Mellon University, School of Computer
Science, Data Privacy Laboratory, 2000.

[103] Sekhar Tatikonda and Sanjoy K. Mitter. The capacity of channels with feed-
back. IEEETransactions on Information Theory, 55(1):323–349, 2009.

[104] J. Todd Wittbold and Dale Johnson. Information flow in nondeterministic sys-
tems. In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
pages 144–161, 1990.

[105] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings
of the IEEESymposium on Foundations of Computer Science (FOCS), 1986.

187

	Abstract
	Title
	Copyright
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Organization of Thesis
	Dynamic enforcement setting
	Predictive setting
	Symmetric setting
	Probabilistic programming

	Background
	Quantitative Information Flow
	Example: Birthday query
	Static vs. Dynamic
	Example: Second birthday query
	Relative vs. Absolute

	Probabilistic Programming
	Secure Multiparty Computation

	Dynamic enforcement
	Example: Dynamic birthday queries
	Knowledge tracking
	Risk assessment
	Knowledge Threshold enforcement
	Discussion
	Initial belief
	Collusion
	Querier belief tracking
	Further applications

	Related work

	Predicting Risk with Evolving Secrets
	Model for dynamic secrets
	Iterated rounds
	Context
	Full scenario and evaluation

	Metrics
	Defining the metrics
	Expressing existing metrics
	Computing optimal adversary gain and associated defender loss
	Computing worst- and best-case defender loss

	Experiments
	How does gain differ for dynamic secrets, rather than static secrets?
	How does low adaptivity impact gain?
	How does wait adaptivity impact gain?
	Can gain be bounded by costly observations?
	Does more frequent change necessarily imply less gain?
	How does a non-zero-sum utility/gain impact information flow as compared to zero-sum?
	How can a defender be prevented from a catastrophic worst-case behavior?
	How can sound over-estimation of adversary gain impact defender loss?

	Related Work

	Symmetric Enforcement
	Enforcing knowledge thresholds for symmetric queries
	Example
	Knowledge-based security with belief sets
	Soundness of belief sets
	SMC belief tracking: ideal world
	SMC belief tracking: real world
	Soundness of SMC belief tracking

	Experiments
	``Am I the richest?'' example (!richest!).
	``Similar'' example
	``Millionaires'' example.

	Related Work
	Summary

	Probabilistic Programming
	Knowledge Tracking and Probabilistic Programming
	Example: Birthday revisited
	Tracking beliefs
	Core language
	Probabilistic semantics for tracking beliefs
	Belief and security

	Belief revision via abstract interpretation
	Polyhedra
	Probabilistic Polyhedra
	Abstract Semantics for P
	Policy Evaluation
	Supporting Other Domains, Including Intervals and Octagons

	Powerset of Probabilistic Polyhedra
	Abstract Semantics for Pn(P)
	Policy Evaluation

	Experiments
	Benchmark Programs
	Comparison to Enumeration
	Performance analysis
	Relational queries

	Related work
	Improving Performance

	Conclusion
	Future Directions
	Final Remarks

	Example queries
	Birthday
	Birthday (large)
	Pizza

	Photo
	Travel
	Relational Queries
	Benchmark Results

	Soundness proofs for P
	Projection
	Assignment
	Plus
	Product
	Conditioning
	Scalar product
	Uniform
	While loops
	Soundness of Abstraction
	Normalization
	Security

	Soundness proofs for Pn(P)
	Useful Lemmas
	Bounding Operation
	Distributive Operations
	Other Powerset Lemmas
	Main Soundness Theorem for Powerset Domain

