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Abstract

The categorical abstract machine (CAM) is a well-known environment-based architecture for
implementing strict functional languages. Existing literature about the CAM presumes more or
less a category-theoretical background. Although we appreciate the firm grounds on which the
CAM is built, we try to motivate the components of the CAM from an implementor’s point of
view. This undertaking is facilitated by the conceptional simplicity of the CAM and its proximity
to conventional stack architectures.

We describe the translation of an augmented A-calculus into CAM instructions. The basic
compilation scheme has its didactic virtues but for a real implementation many improvements are
necessary (and applicable). A first improvement concerns the treatment of subexpressions which
do not access the environment. Further improvements are achieved via simple local transforma-
tions of the generated CAM code—this is one of the novel features presented in this report. They
include @-reduction at compile-time, improving calls to local functions, and last call optimization.

1 Introduction

Since we want to introduce a particular implementation technique for functional programming lan-
guages, we should first say

1. what we mean by “functional” programming languages and
2. why such languages require a special implementation technique.

The first question is easy to answer. To deserve the attribute “functional”, a programminglanguage
should treat functions as first-class citizens, 1.e., functions should not be subject to any restrictions.
In a functional language there are expressions to denote functions and functions can be passed as
parameters or obtained as results. Without entering a discussion about the usefulness of this feature
we would like to name one of its advantages. First-class functional values allow the unrestricted
application of the abstraction principle. A sorting function can be made more widely usable by
abstracting from a particular ordering relation (functions as parameters). We may abstract from
frequently occurring recursion schemes such as applying a function to every member of a list (map) or
inserting a binary operation between two adjacent list elements (fold) using higher order functions!.
Special instances of these schemes are obtained by partially parameterizing the corresponding functions
(functions as results). For a broader discussion of this topic we refer to standard textbooks about
functional programming [2, 11, 13, 21, 24].

1The function f : ¢ — 7 is called higher order if & or T contains a functional type.



In this report we are only concerned with so-called pure functional languages, which adhere to the
principle of referential transparency. This principle is a very fundamental property of mathematical
reasoning and can be summarized as follows [27].

The only thing that matters about an expression is its value. Moreover, in the same context
the expression has the same value wherever it occurs.

Referential transparency precludes any side-effects (assignment, imperative I/O, exceptions), which
in turn offers the possibility of rearranging the standard left to right order of evaluation.

Let us turn to the second question. Many imperative languages such as Pascal, which are imple-
mented using conventional stack-based techniques, also allow functions to be passed as parameters.
The crucial difference to functional languages lies in the possibility of returning functions as results
of other functions. The following example illustrates the point.

add = de—Xdy—+zxy

If the function add 1s called with only one parameter, say add 3, we obtain a function which adds 3 to
its argument. On a conventional stack machine the arguments of a function are pushed onto the stack
prior to the call and are popped upon return. Thus, if the resulting nameless function is applied, the
value of the free variable x no longer rests on the stack. Figuratively speaking, the free variable z
is torn out of its context. This situation can never occur in languages where functions or procedures
may only be passed as parameters.

The techniques which have been proposed to circumvent this problem can roughly be divided into
two categories.

1. Graph-based implementation techniques (SK graph-reduction [30], G-machine [1, 16], TIM [10],
ABC-machine [26]).

2. Environment-based implementation techniques (SECD machine [19], FAM [3], CAM [4, 5, 28]).

Despite the apparent differences; the two approaches have many things in common as a closer inspec-
tion reveals (cf. Section 5).

The idea underlying graph-based techniques is simple but radical: Since (free) variables pose
problems, get rid of them. So-called bracket abstraction algorithms can be used to turn a (functional)
expression into a variable free form. The origin of these algorithms must be traced back a long
way in time [8]. They were rediscovered by Turner [30]. Bracket abstraction algorithms use a fixed
set of combinators? to accomplish their task. Alternatively, one can transform a source program
into a set of (super-) combinators using a technique called A-lifting [23]. A combinator may be
interpreted as a first-order rewrite rule. Thus the evaluation of an expression amounts to rewriting
the corresponding combinatorial expression. In order to facilitate the sharing of expressions, graphs are
used to represent combinator expressions, hence the name of the technique. Graph-based techniques
are best suited for the implementation of non-strict functional languages like Miranda® [29] or Haskell
[14]. Lazy evaluation is easy to achieve via normal order reduction of the graph; the sharing of
subgraphs guarantees that expressions are evaluated at most once.

The idea underlying environment-based techniques is equally simple and radical: Since popping
of values from the stack causes problems, never pop values. The resulting book-keeping mechanism
is of course no longer called stack but environment instead, hence the name of the technique. A
functional value is represented using a pair consisting of a pointer to the code and a pointer to
the environment which records the values of the free variables. This bears a strong resemblance to
stack-based implementations of imperative languages where procedure parameters are represented by a
pointer to the code and a pointer into the stack (link to the activation record of the static predecessor).
The first abstract machine which realized these ideas was the SECD machine by Landin [19]. The
CAM resembles the SECD machine in many respects but it is conceptionally simpler and easier to

2A function not containing any free variables is called a combinator. Consequently a local function which refers to
non-local variables is not a combinator.
3Miranda is a trademark of Research Software Ltd.



understand. It should be noted that, although the CAM and the SECD machine are environment-
based, both of them also use stacks albeit for other purposes (remember that conventional machines
also employ the stack for different purposes like the evaluation of arithmetic expressions). The fact
that the environment contains the values of the free variables indicates that this technique is best-
suited for the implementation of strict languages like SML [12]. Nevertheless, lazy evaluation can be
built on top of eager evaluation.

The origins of the CAM can be traced back to the work of Lambek about the interpretation of
A-expressions in cartesian closed categories [18]. The ideas upon which the design of the CAM is based
are due to Curien, who introduced categorical combinatory logic* [7]. When Cousineau and Curien
realized that categorical combinators could be interpreted as instructions of a von Neumann machine,
these ideas lead to the publication of the seminal paper about the CAM [4]. Due to its origin the
CAM is tailored for the extreme, i.e., programs which make intensive use of higher-order functions. To
be feasible for the normal case, i.e., many first order functions, improvements are necessary. Various
optimizations were described by Sudrez [28]. It is mainly his work this report is based upon.

The interesting point about the CAM lies in its conceptional proximity to classical stack archi-
tectures deviating only in the management of variable access. It 1s this proximity to classical stack
architectures that makes many optimization techniques developed for the implementation of impera-
tive languages (tail recursion optimization and its generalization last call optimization) practicable for
the CAM as well. One of the objectives of this report is to point out this potential for optimization. In
addition, we try to motivate the components of the CAM starting from first principles. Consequently
a large part of the material presented is tutorial in nature. We largely ignore the category-theoretical
background and introduce the ingredients from an implementor’s point of view.

The report is organized as follows. Section 2 gives an account of the source language, which is
essentially an augmented A-calculus. Section 3 shows that once some fundamental design decisions
have been made, the structure of the CAM develops quite naturally. The core of the CAM is presented
in Section 4. A first improvement concerns the compilation of subexpressions which do not access the
environment (Section 5). Further improvements instrumented through simple local transformations of
the CAM code are presented in Section 6. Amongst others they include g-reduction at compile-time,
improving calls to local functions, and last call optimization.

2 The Source Language

The source language which serves as a starting point for the compilation process is fairly conventional.
It is essentially an augmented A-calculus simple enough to be compiled directly into CAM code and
expressive enough to translate a pure functional language into it. Readers familiar with the topic may
safely skip this section.

The syntactic domains of the language are shown in Table 1. The domain var contains variables.

category comment meta variables
var variables z
SYS(n) predefined functions of arity 0 <n <2 s(,)

con constructors c
exp expressions e
pat patterns p

Table 1: Syntactic domains for the source language

We do not bother how variables are represented, we simply assume that there are enough of them.

4Categorical combinatory logic can be viewed as “classical” combinatory logic augmented with products. Categorical
combinators have been proposed as an alternative to SK combinators by Lins [20] revealing once again the close
interconnection between graph-based and environment-based approaches.



Every realistic programming language offers predefined constants and functions, which constitute
the domains SYS(n)- The arity of a predefined function is indicated using bracketed subscripts, i.e.,
5(2) Is a 2-argument function. In the remainder we require that the domain sys ,, contains at least
(the representations of) the natural numbers, characters, and the truth values true and false. The
elements of the domain con are used to represent constructed values.

The domain exp contains the various syntactic constructs of the source language and will be further
specified below. Finally, the domain pat comprises patterns which may be used in formal parameter
positions—we permit ourselves this luxury because patterns of this kind can be easily translated into
CAM code. We use z, s(,), ¢, €, and p as syntactic metavariables ranging over variables, predefined
functions, constructors, expressions, and patterns.

The abstract syntax of the source language is given in Table 2. The source language contains the

exp = var variable
| SYS(n) €XPy " €XPy, application of a predefined function
| 0 empty tuple
|  (exp;,exp,) pair
| con exp constructed value
|  exp; exp, application
| Apat — exp abstraction
| if exp; then exp, else exp; conditional
| case exp of con; pat, — exp, | --- | con, pat, — exp, case analysis
| let pat, = exp; in exp local definition
| letrec pat; = exp; in exp recursive local definition
pat = var variable
| 0 empty pattern
| (patq,pat,) pair
| var as pat layered pattern

Table 2: Abstract syntax of the source language

A-calculus as a sublanguage, i.e., we are able to denote functional values. The expression

Af = de—f(fx)

denotes a function which applies its first argument twice to its second. Function application is written
without special syntax simply by sequencing the function and its argument. The expression Ap — e
called abstraction corresponds to the function f with f(p) = e but there is no need to invent a name
for 1t. The formal parameter of an abstraction may be a very simple pattern composed of variables
and pairs with the restriction that a variable may occur only once in a pattern, i.e., (a,b) is a legal
pattern, (a, a) is not. We restrict ourselves to linear patterns of this kind (irrefutable patterns) because
they cannot fail to match a (well-typed) argument obviating the need for a complex pattern matching
process. The expression

M) = f(f @)

denotes a function which applies the first component of its argument twice to the second component
of its argument. Note: There is a fundamental difference between

Aa,b) =+ ab and Aa—Mb—+ab.

The first expression maps a pair to a natural number whereas the second maps a natural number to
a function over the natural numbers.® Pairs may of course also appear in the body of an abstraction.

Ala, b) — (b, a)

5As a matter of fact the CAM is based on the correspondence between these two function definitions. We will see in
the sequel that the CAM code generated for the bodies of the abstractions is identical.



is a function which swaps the components of a pair. The possibility of using pairs in patterns obviates
the need for projection functions. With the help of layered patterns we can simultaneously access a
pair and its components. In the expression

Az as (w,y) =+ (f )

the variable z serves as a shortcut for the pair (z,y).

The expression Ap — e is a variable binding construct very much like quantifiers in predicate logic.
The variables in p are said to be bound by the A-abstraction. A variable which is not bound is called
free. In the expression (A(z,y) — * x y) (x, z) the variable y occurs bound, z occurs free and # occurs
both free and bound. We postpone a rigorous definition of these terms until Section 5.1.

Predefined functions must always be applied to the correct number of arguments. Partial param-
eterization, however, can be achieved using abstractions. So we are forced to write

Ar — + 1 x 1instead of + 1.

Local definitions are introduced by let- or letrec-expressions. As the name indicates, letrec-
expressions must be used for recursive definitions. The scope of the defined variables extends over the
definiens as well as over the definiendum. In analogy to patterns in formal parameter positions a local
definition may define a variable only once, i.e., let (#,y) = (1,2) in z is legal, let (z,2) = (1,2) in x
is not. We shall see in Section 6.5 that it 1s advantageous to use letrec for the binding of non-
recursive abstractions as well. Hence a functional program or rather script can be simply represented
by a letrec-expression. Note: Due to the evaluation strategy recursively defined non-functional
values usually fail to terminate.

Most modern functional languages offer the possibility to define new datatypes, often called al-
gebraic datatypes. A datatype definition describes essentially how elements of the datatype can be
constructed. The SML definition of integer sequences

datatype sequence = nil | cons of int*sequence

tells us that the constructor nil is a sequence and cons applied to a pair consisting of an integer
and a sequence 1s again a sequence. Elements of a datatype can be translated almost literally into
constructed values of the source language with the slight exception that nullary constructors such as
nil have to take the empty tuple as a dummy argument.

Functions over algebraic datatypes are usually defined via pattern matching. The test, whether a
sequence contains a certain number, could be specified in SML as follows.

fun contains nil ¢ = false
| contains (cons(d,s)) ¢ = if c=d then true
else contains s ¢

If the patterns are exclusive and not nested we can translate them directly into a case-expression.

letrec contains = M — Ac— caset of
nil () —  false
cons (d,s) — if = ¢ d then true else contains s c
in ...

Each alternative of the case-expression describes how to handle the corresponding constructed value.
Note: The if-construct could be defined in terms of the case-expression but for reasons of efficiency
we include the former as a primitive.

To improve the readability of expressions we will make use of the abbreviations listed in Table 3.

3 Towards the CAM

Imperative languages can be implemented using a stack for storage management. We have seen in the
introduction that this technique is not applicable to functional languages because a non-local variable
may escape from its scope. Since a non-local variable is by definition a variable which occurs free



derived form | equivalent form
expressions
(e1,€2,...,€n_1,€p) ((...(e1,€2) ..., €n1),€n)
cel ey e (- ((eer) e2) - en)

ApL - P — € Apt— (- (Apn —€) )
letpi=e1;...;pp=¢, ine let (p1,...,pn) =(€1,...,65) ine
letrec py =e1; ...;pn =€, in e | letrec (p1,...,pn) = (€1,...,6,) in e
patterns
(P1,P2, - Pn=1,Pn) | (.- (pr,p2) - Pn—1),Pn)

Table 3: Derived forms of expressions

in an abstraction, we must essentially decide how to deal with free variables. Note: Every variable
eventually becomes free as A-abstractions are traversed.

The classical approach also employed in the CAM is to maintain a data structure at run-time,
the so-called environment, which records the bindings of the free variables. In contrast to a stack
an environment is a monotonic data structure: It never shrinks. Nonetheless we have considerable
freedom in representing the environment. It could be represented by a vector or by a list. Each choice
has 1ts pros and cons: Environments-as-lists are easy to extend whereas environments-as-vectors
support constant time access to variables. We decide for the former: Environments are represented
by lists or rather by nested pairs (the FAM uses vectors). For historical reasons pairs are nested in
the left component, i.e., (((),1),4) is an example for an environment. At compile-time we maintain
a formal image of the environment which tells us how to access variables at run-time. To distinguish
run-time from compile-time environments we use angle brackets for the latter, e.g., ({{},y), z).

An environment looks very much like an ordinary value, so why not treat it as such. Applying
this 1dea we use the same register to store the environment and the computed value of an expression.
The CAM code generated for the expression e in the compile-time environment p (notation: C[e] p)
always satisfies the following invariant:

If the register contains the run-time environment, then after the execution of the code it
holds the value of the expression.

The CAM code may be interpreted as a mapping from environments to values. Because the envi-
ronment is overwritten by a value, we are faced with a problem if the environment is required twice
during a computation. We need a mechanism for saving and restoring environments. A suitable data
structure for this purpose is a stack. The CAM code generated for an expression satisfies the further
constraint:

The stack may be used during the execution of the CAM code but afterwards it is in the
same state as before.®

These invariants should be kept in mind when the compilation schemes are studied.
By now we have introduced all the components of the CAM. Let us summarize: The environment
holds the values of the free variables and is organized as a list. The CAM comprises

e a register (for the environment and the computed value),
e a stack (for saving and restoring environments), and
e a code area.

The triple consisting of the register, the stack, and the pointer into the code area constitutes a CAM
configuration. In the sequel we introduce the most important CAM instructions and show how to
compile the expression (Ax — + z y) 4 into CAM code (do not worry about the free variable y).

6This is what the warden of a youth hostel continues to tell.



3.1 Compiling a Variable

For a variable code which accesses the run-time environment is generated. The instruction Acc n
fetches the n'® component of the environment. The CAM instructions are defined via their effects
on a configuration. Every row of the following table specifies a transition (CAM instructions are
separated by 7).

register stack code register stack code
(v1,v2) S Acc 0;C vy S C
(v1,v2) S Acc (n+1);C | v S Acen; C

The instruction Acc 0 expects the register to contain a pair and replaces it by its second component
leaving the stack unchanged. The “program counter” is moved to the next instruction.
In the environment p = {{{}, y), ) the variables # and y get translated to:

Clz p = AccO
Clyl p = Aecl

The argument of Acc coincides with the de Bruijn number of a variable, i.e., the number of A-

abstractions between a variable and its binding place.

3.2 Compiling a Predefined Function

Nullary predefined functions or constants may safely ignore the environment.

register stack code register stack code

v S Quote s(g); U | 5(0) S C

The Quote instruction corresponds to a load immediate operation.
C[4] p = Quoted

Binary operators expect their first argument on top of the stack and their second in the register.
This is reminiscent of conventional stack architectures especially if we consider the register as a cache
for the topmost element of the stack. As the environment may be required for both arguments, the
stack must be used for intermediate storage. For saving and restoring the environment the instructions
Push and Swap are provided (“.” prefixes an element to a stack).

register stack code register stack code
1 ve: S +;C ve+v1 S C
v S Push;C | v v:S C
1 vy 1S Swap;C | vg v:S C

The instruction Push copies the contents of the register onto the stack; Swap interchanges the contents
of the register and the topmost element of the stack.

Cl+ zyl p = Push;Clz] p;Swap; Cly] p; +
= Push;Acc 0;Swap; Acc 1;+

The initial Push instruction copies the environment onto the stack providing it for the computation
of the second summand. The code for the first summand destroys the environment mapping it to a
value; Swap restores the environment and simultaneously moves the first argument’s value onto the
stack. After the execution of the second argument’s code, the configuration is such as the binary
operation “+” expects 1t to be.



3.3 Compiling an Abstraction

Though we know that an abstraction denotes a function, it 1s not quite clear what the computed
value of an abstraction should be. The answer 1s very simple: An abstraction evaluates to a frozen
computation waiting to be applied to an argument later on.” Because an abstraction may contain free
variables it is represented by a pair consisting of

e the current environment and
e a pointer to the CAM code of the body.

This pair (notation: [s : £]) is traditionally called closure. The CAM instruction Cur builds a closure;
Return is used to return from a subroutine call.

register stack code register stack code
v S Cur £; C [v:{] S C
v C:S Return;(C’ | v S C

Closure building is a very cheap operation. This is the main reason why the CAM is well suited
for the execution of highly functional programs where closure building occurs very frequently. Let

7 ={(),y), then

Clhe —+zy]py = Cur/’
[E:C[[—I—J:y]] (p’,x);Return]
= Cur/
[E:Push;AccO;Swap;Acc1;+;Return]

The square brackets indicate that the generated code is not consecutive. The bracketed code has
rather the status of a subroutine, which is addressed via the label put at the beginning. The body of
the abstraction must be compiled in an extended environment because the bound variable x appears
free in the body.

The more abstractions are processed the deeper the nesting of the environment becomes. The
access time grows linear to the depth of the environment. But since in practice the nesting of definitions
is rather small, little run-time penalty is caused.

3.4 Compiling an Application

The application is treated like a binary operator. The instruction App melts a frozen computation and
performs an indirect jump to the body of the abstraction. The code sequence of the body is executed
in the environment which is stored in the closure extended with the argument’s value.

register stack code register stack code

[1:€] wv2:S App;C | (v1,v2) C:S O

The notation C denotes the subroutine labeled with £.

Cl(Ax =+ xzy) 4] ¢/ = Push;C[4] p';Swap; C[Az — + z y] p’; App
= Push; Quote 4; Swap; Cur /; App
[ £ :Push; Acc 0; Swap; Acc 1;+;Return]

Note: The function and the argument are processed in reversed order. This compilation scheme
deviates from the original description of the CAM but it facilitates code optimizations (cf. Section

6.4).

"That is to say, an abstraction is not evaluated at all. This fact is employed in some SML implementations of lazy
lists. Functions with a dummy argument A\() — e serve as means to freeze a computation. A frozen computation is
melted by applying it to the dummy value ().



3.5 Execution of the Code

Because our running example contains a free variable, we must supply an non-empty initial environ-
ment, e.g., v = ((), 1). The consecutively numbered code and the execution of this code is displayed in
Table 4. The empty stack is denoted by ¢, the operator “:” prefixes an element to a stack. Fortunately
the expected value of the expression coincides with the computed one.

| CAM configuration || CAM code |
register stack code
v € 2l {1 : Push
v Ve 2 {5 : Quote 4
4 Ve l3 f3: Swap
v 4:¢ N fy: Cur {7
[v:t7] 4:¢ Ly l5: App
(v,4) ls : € L7 ls: Stop
(v,4) (v,4) 1 lg 1 e Ug f7 : Push
4 (v,4) 1 lg e Ly fg: Acc O
(v,4) 4:0s ¢ L1o Ly : Swap
1 4: £6 & Ell EIO : Accl
5 £6 & £12 Ell L4+
5 € 2 {12 : Return

Table 4: A sample execution

4 The Core of the Machine
4.1 More Details of the CAM

So far we have been rather vague about the values the register and the stack hold. A precise charac-
terization of these values is displayed in Tables 5 and 6. The domain lab contains labels which are

domain comment meta variables
lab labels y4
val values v
env o environments p
ins CAM instructions [
cam CAM code C

Table 5: Syntactic domains for CAM values, formal environments, and CAM code

used to address CAM code sequences. (Intermediate) results of computations make up the domain
val. Some of its constituents (constants, pairs, and closures) have already been used in the previous
example. Tagged values are the semantic counterpart of algebraic datatypes. The first component of
a tagged value called tagfield indicates which constructor was used; the second component contains
the argument of the constructor. The expression (of type sequence)

cons (3, cons (2, cons (1, nil ())))
is represented by:

(cons : (3, (cons : (2, (cons : (1, (nal : ())))))))



val = SYS(0) constant

| 0 empty tuple

| (val,val) pair

| (com:val) tagged value

| [val:lab] closure

| [lab] closure of a combinator

enva = () empty environment
| {env «a,pat) constructed environment

| (env a,pat+— )  annotated environment

cam = ins single instruction
| cam;cam sequence

| lab:cam labeled sequence

Table 6: Abstract syntax of CAM values, formal environments, and CAM code

Functions not containing free variables are represented simply by a pointer into the code, i.e., [€] is
a closure with an empty environment. Note: In principle there are only two kinds of values, namely
scalars and pairs. The domain env « comprises formal or compile-time environments parameterized
with the domain « of annotations. The domain ins contains CAM instructions (cf. Table 7); the
domain cam consists of sequences of CAM instructions.

As shown in Table 7, the CAM instructions can be roughly divided into four groups. This clas-
sification i1s not always as straightforward as the table suggests but it may help in memorizing the
different instructions. To access values stored in the environment, access instructions are used. A
quick glance shows that in principle two of them would suffice, namely Fst and Snd, because Acc and
Rest can be defined in terms of them.

Accn := Fst";

Snd
Rest n := Fst”

The stack operations Push and Swap realize the saving mechanism. The register operations com-
prise commands which change the contents of the register possibly using values on the stack. The
control operations affect the flow of control. The Skip instruction—sometimes called NOP—is only
included because it simplifies the presentation of the compilation schemes.

4.2 Compiling an Expression

We present the translation of a source expression into a sequence of CAM instructions using a set of
compilation schemes. The different schemes, £, P, C, 7, and R, are described in Tables 8 and 9. We
consider each of them in turn.

4.2.1 Compiling pure A-expressions

Because patterns may occur in formal parameter positions, environments are LISP-like binary trees
rather than lists. The body of the multiple abstraction

Ala,b) — Ale,d) — e
is compiled in the formal environment:

P = <<<>’ (a’ b)>’ (C, d))

The pictorial representation of the environment displayed in figure 1 shows its tree-like structure.
The code generation for a variable boils down to a non-deterministic search in the formal en-
vironment. The sequence of access instructions—Acc n followed by a sequence of Fst and Snd

10



register stack code register stack code
access instructions
(v1,v2) S Fst; C vy S C
(v1,v2) S Snd; C Vg S C
(v1,v2) S Acc 0 C Vg S C
(v1,v2) S Acc (n+1);C vy S Acen; C
v S Rest 0; C v S C
vi,v2) S Rest (n+1);C vy S Rest n; C
stack operations
v S Push; v v:S C
1 vy 1S  Swap; C V9 v:S C
register operations
S Quote s(g); U 5(0) S C
S Clear; C O S C
S Prim s(1); C s1)(v) S C
vy vy 1S Prim s); C se2)(v2,v1) S C
on vy : S Coms;(C (va,v1) S C
v S Cur £; C [v:{] S C
v S Pack ¢; C (c:v) S C
control instructions
v S Skip; C' v S C
v S Stop; ¢ all systems stop
[v1:€ wve:S App;C (v1,v2) c:5 O
v C":S Return;C v S o
v S Call (; C v c:5 O
true v:S Gotofalse !;C v S C
false :S  Gotofalse (; ( v S C
(¢;:v1) wa:S Switchlep 1€ ... ¢ 4,];C | (va,v1) S Cy,
v S Goto £; (' v S &)

Table 7: The instructions of the CAM

~
=

Figure 1: Graphical representation of the environment {{{}, (a, )}, (¢, d))
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E[z] p n generates code which accesses the variable 2 in the environment p at nesting level n.
Before the execution of the code the register contains an instance of the environment, afterwards
it holds the value of .

£ : var — env lab — nat — cam
Elz] ) n = fail
El=] {(p,p) n = (hccn;Plx]p)? Efx] p (n+1)
El=] (p,p— ) n = (Restn;Call {;Px]p)? &[] pn

P[] p generates code which accesses the variable # in the pattern p. Before the execution of the
code the register contains an instance of the pattern, afterwards it holds the value of .

P : var — pat — cam
PLLO = fail
Pl=]ly = Skip ife=y
= fail otherwise
Plx] (p1,p2) = (Fst;Plz] p1) 7 (Snd; Pla] p2)
Pl=] (v as p) = Skip fr=y
= Ple]p otherwise

Table 8: The £ and P compilation schemes

instructions—mirrors the access path to the variable. The non-deterministic search is realized via
the (meta-) operations “fail” and “?”. If the search is successful, a sequence of CAM instructions is
returned, otherwise the special value “fa:l”. The binary operation “7” returns the value of its first
argument if it is not equal to “fail”, otherwise the value of its second argument. Thus a sequential
left to right search can be implemented with “?”.

The compilation scheme E[z] p n compiles the access of # in the environment p. The parameter
n records the current depth of the environment. The scheme P[] p compiles the access within the
pattern p. For the above environment we get:

Cledp = £ P

hce 0;P[c] (¢, d)
Acc 0;Fst

Ell p 0

ED {0 (o)) 1
= Acc 1; P[] (a,b)
= Acc 1;Snd

CIol p

We postpone the discussion of the third equation in the definition of £ until Section 4.2.4.

Since we can view function application and construction of pairs as special binary operations, their
compilation is very similar to the treatment of predefined binary functions. We use the binary scheme
T e, e2] p to generate code which pushes the value of e; onto the stack and stores the value of e5 into
the register. Remember that function application is processed in reversed order. Thus the arguments
of a curried function are evaluated from right to left.

C[f e1 ea es] p = Push;Cles] p; Swap; Push; Clez] p; Swap;
Push; Clle1] p; Swap; C[f] p; App; App; App

Rearranging the order of evaluation poses no problems since we are only concerned with languages
which adhere to the principle of referential transparency.

The compilation scheme R generates code for a subroutine, i.e., the “normal” code sequence
followed by a Return instruction. In Section 6.6 we will define a more sophisticated variant of this

12



Me] is the CAM code for the closed expression e.

M : exp — cam

M[e] = C[e] (); Stop

C[e] p compiles code which evaluates the expression e in the environment p. Before the execution
of the code the register contains an instance of the environment, afterwards it holds the value of e.

C : exp—env—cam
Clzlp = Elz]p0
C[[S(o)]] p = Quote s
Clsayel p = Cle] p; Prim sy

Tler,e2] p; Prim s(z)
Clear
Te1,e2] p; Cons

Cllsz) e1 e2] p
clol »
Cl(ex, e2)] p

Clee] p = C[e] p;Packe
Cler ex] p = Tlez,ea] p; App
Clhp—e]p = Cur/
[ £:R[eD (p,p) ]
C[if e; then ey else es] p = Push;C[e;] p; Gotofalse ¢ ; Clles] p; Goto £y
Ly : Cles] p; ¢z : Skip
Clcaseeof ey p1 —e1 | | enpn —en]p
= Push;C[e] p; Switch [er 1 41,...,cn: bn];
£y 2 Cllea] {p,p1); Goto £
by Cllen] (pypn) s
£ : Skip
Cllet p1 =e; ine] p = Push;C[e1] p; Cons; Clle] {p,p1)
Clletrec pr =erine] p = C[e] (p,p1 —¢)

[ £:Rea]l (p,p1 —0) ]

Tle1,e2] p compiles code which pushes the value of e onto the stack and stores the value of e
into the register.

T . exp X exp — env — cam
Tlei,ea] p = Push;Clei] p; Swap; Clleo] p

R[e] p is—at least for the moment—the code produced by C[e] p followed by a Return instruction.

R : exp— env— cam
Rlel p = C[e] p; Return

Table 9: The M, C, T, and R compilation schemes
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scheme, which has the property that each ezecution of the code ends in a Return instruction. The R
scheme 1s employed to compile the body of an abstraction. It should be clear that for each invocation
of a compilation rule fresh labels must be used. The CAM code for some simple source expressions is
shown below (the CAM code of an expression is arranged column-wise from left to right).

Ar—+ 1z Afe—f(fx) Alf,z) = f (f =)
Cur ¢ Cur {4 Acc 1 Cur ¢ Fst
Stop Stop App Stop App

£: Push £y : Cur fly Swap £: Push Swap
Quote 1 Return Acc 1 Push Acc O
Swap ly: Push App Acc O Fst
Acc O Push Return Snd App
Prim + Acc O Swap Return
Return Swap Acc O

The example in the first column demonstrates how to translate partially parameterized, predefined
functions. Multiple abstractions result in sequences of Cur instructions (second column); the use of
pairs in abstractions complicates the access of variables (third column). Tt should be noted, however,
that the access time is the same regardless to the use of multiple abstractions or pairs.

4.2.2 Compiling an alternative

Conditional and unconditional jumps are used to implement the if-then-else-construct. The com-
pilation scheme for the alternative bears a strong resemblance to code schemes for the if-statement
in imperative languages.

An — if > n 0 then n else — n
Cur Acc O Gotofalse /- Prim —
Stop Swap Acc O l3: Return
{1 : Push Quote 0 Goto f3
Push Prim > | {5 : Acc0

Note: Lazy variants of the logical conjunction and disjunction can also be implemented via conditional
jumps (short-circuited evaluation).

e1 ANes = 1if ey then es else false

e1 Ves = 1if ey then {rue else e,

4.2.3 Compiling algebraic datatypes

We have already seen how elements of an algebraic datatype are represented at run-time. The tagfield
1s set with the instruction Pack and is discriminated via the Switch instruction, which behaves like
a multi-way jump. The compilation scheme of the case-expression generalizes the rule for the if-
then-else-construct: There are in general more alternatives and each alternative includes a variable
binding mechanism (for the constructor’s argument).

As — case s of nil () — nil () | cons (e,t) —1¢
Cur Acc O Pack nil Snd
Stop Switch [nil : £y, cons : {3] Goto £4 | f4: Return
{1 : Push | ¥f3: Clear f3: Acc O

4.2.4 Compiling a local definition

A non-recursive local definition can be understood as a combination of functional abstraction and
application, i.e., the expression

let p1 = €1 in ey

14



is equivalent to the [-redex
(Ap1 — e2) €1
The equivalence suggests a first compilation rule for the let-construct.

Cllet p1 = ey iney] p = Push;C[e1] p; Swap; Cur ¢; App
[ £:Clez] {p,p1); Return ]
The generated code sequence can be easily improved if we take a closer look at the operational behavior
of the code. When the body of the abstraction i1s executed, the register contains an instance of the

formal environment {p, p1). The indirect call of the subroutine is obviously unnecessary, so we content
ourselves with the construction of the environment.

C[let p1 =e; ines] p = Push;Clei] p; Cons; Clex] (p, p1)

This is already an example for a simple code transformation, a topic we will pursue further in Section
6. It should be noted that local definitions are evaluated whether they are needed or not.

leta=5in*aa
Push Cons Acc () Acc ()
Quote 5 Push Swap Prim *

The most difficult thing to explain is the compilation of recursive local definitions. A recursive
definition can be viewed as a finite description of an infinite expression. The generated CAM code
has the same flavor: It is in principle infinite but is represented finitely using labels and references.
The defining expression of the letrec-construct is compiled as a subroutine marked with label £. The
association between the label £ and the defined pattern p is recorded in the environment (notation:
(p,p — £)). The use of the extended environment for the translation of both expressions reflects the
scoping rules.

At run-time the generated subroutine is addressed via an ordinary subroutine call. Prior to the
call, the proper environment must be restored. Because the environment only grows, we must simply
forget the entries which have been added since the code was entered. This i1s instrumented by the
Rest n instruction, which is equal to a sequence of n Fst instructions. An example for the compilation
of a recursive definition is given below.

letrec even = An — if = n 0 then true
else — even (dec n)

in even 56
Push {1 Cur {s Prim = Swap
Quote 56 Return Gotofalse /3 Rest 1
Swap {5 : Push Quote true Call ¢,
Rest 0 Push Goto /4 App
Call /; Acc O {3 : Push Prim —
App Swap Acc O l4: Return
Stop Quote 0 Prim dec

The first call to the defining expression is executed in the initial environment (Rest 0 is equal to
Skip). For the recursive call, which is situated in the body of the abstraction, the environment must
be reduced by one entry.

In contrast to the let-construct, which is evaluated in a call by value fashion, the letrec-construct
realizes a call by name regime. That is to say, the defining expression is evaluated as many times
as the defined variables are accessed. The letrec-construct should be used whenever the defining
expression is an abstraction, because an abstraction is never evaluated—there is no loss in time—and
the code is addressed directly not using the environment—there is a gain in space efficiency.

The code generated for multiple recursive definitions like letrec p1 = e1; ... ; p, = €, in e is
rather clumsy. One can do better by directly addressing the functions instead of building pairs and
subsequently accessing the components. From now on we will use the generalized scheme shown in

Table 10.
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Clletrecpi =e1; ...;pn =€, ine] p
= Cle] ¢/
4 Red] ¢
Ly Rlen] ¢
where
p={.App1—0). .. ,pn— L)

Table 10: The C scheme revisited for multiple recursive definitions

5 r-Closed Expressions

The compilation schemes which we have introduced in the last section are conceptionally very simple
but they are of course too simple-minded to be used in a real implementation. In the following we
will introduce several techniques which aim at improving the quality of the generated code (classically
called code optimizations).

A first improvement concerns the compilation of subexpressions which do not access the environ-
ment. Consider the following example.

Cl[+ = 3] p = Push;C[z] p;Swap; Quote 3; Prim +

The Push instruction copies the initial environment onto the stack to make it available for the evalu-
ation of the second summand. But once the environment has been restored, it 1s overwritten by the
Quote instruction. The saving of the environment is obviously unnecessary and we can improve the
code as follows.

C[+ = 3] p = C[z] p;Move; Quote 3; Prim +

The Move instruction moves the contents of the register onto the stack. The example shows that the
improved translation essentially saves Push instructions. The elimination of some Pushes may not
seem worth the effort but it should be kept in mind that the generated CAM code is usually further
expanded into real machine code. If the target machine belongs to the von Neumann class, then
the Push instruction corresponds to an allocation of a register or a memory cell, an operation which
should occur as seldom as possible. The innocent looking Push instruction has another interesting
implication. As Push is the only operation which duplicates a value, 1t necessitates the implementation
of some form of garbage collection.

For those readers familiar with graph-based implementation techniques (for non-strict functional
languages), a comparison between SK combinator code and CAM code might be helpful. With the
help of the combinators S, K, and [ it is possible to simulate a -reduction, i.e., the substitution of
an argument for a bound variable. The combinator S moves or rather copies the argument to the
leaves of the expression® in the body, I accepts the argument, and K rejects it. The procedure is
reminiscent of the CAM’s saving mechanism. The instructions Push and Swap move the environment
to the leaves, Acc uses the environment, and Quote rejects it. The only difference lies in the number
of arguments which are moved: The SK machine takes only one argument at a time, the CAM takes
all arguments simultaneously.

A first improvement of the combinator code introduces the combinators B and C'; they are used
to move the argument only to the positions where it is needed. The improvement we are concerned
with in this section aims at the same purpose. The effect on the code size is of course not equally
impressive.

8We appeal to the abstract syntax tree of an expression rather than to its linear representation.
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5.1 r-Closedness

A closed expression, i.e., an expression not containing free variables, can be computed without any
reference to the environment. Since letrec-bound variables are not addressed via the environment,
we need the more technical notion of r-closedness.

An expression is called r-closed if the environment is not necessary® for its computation.
The following expression exemplifies the difference between closed and r-closed terms.

letrec twice =Af x— f (f 2);
mec=An—+1n
in twice twice tnc (

The expression twice twice inc 0 and each of its subexpressions are (in the given context) r-closed but
not closed because the letrec-bound variables fwice and inc are compiled to simple subroutine calls
for the execution of which the initial environment is unnecessary. It should be noted that the notion
of r-closedness is intentionally defined very operationally adapted to the improvements we have in
mind.

Furthermore, observe that the improved compilation of r-closed expressions may benefit from
optimizations which aim at using registers or stack positions instead of the environment, 1.e., the
fewer variables are held in the environment the more the technique becomes applicable.

Let us turn to the question of determining whether an expression satisfies the property of r-
closedness or not. In analogy to the notion of closed expressions, we call an expression r-closed if it
does not contain r-free variables—this second definition is consistent with the one given earlier.

A variable x occurs r-free in the expression e if z is held in in the environment and if it is
necessary for the computation of e.

Note that a variable need not be part of an expression to occur r-free in the expression. In the
subexpression * y y of

Ar — letrecy=+ lazinxyy

the variable z occurs r-free (imagine that the occurrences of y are in-line expanded to + 1 z). Tt
should be clear by now that the notion of r-closedness is context dependent, e.g., in the context of

A —lety=4+lzinxyy

only the variable y occurs r-free in * y y. We obtain the set of r-free variables from the set of free
variables by

e subtracting the letrec-bound variables and by

e adding for each subtracted letrec-bound variable the r-free variables of the defining right hand
side.

This procedure precisely reflects the operational behavior of the CAM code. A formal definition of
r-closedness can be found in Table 11 (IPS denotes the powerset of S). The function r-freefe] »
computes the r-free variables of the expression e relative to the environment 7. The environment
associates letrec-bound patterns with the r-free variables of their corresponding right hand sides.
By means of the environment we can distinguish between letrec-bound variables (second equation)
and A-, let-, or case-bound variables (first equation).

The last equation of r-free needs a bit of explanation. Due to the scoping rules the extended
environment must already be employed in its definition. Consequently the new environment 7’ is

9The word “necessary” should not be taken too literally. The body of the abstraction
An — if true then O else n

is not r-closed although the else branch is never entered.
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vars[p] denotes the set of variables occurring in p.

vars : pat — IP var
vars[z] = {a}
vars[()] = 0
vars(p1, p2)] vars[p; ] U vars[p2]
varsf[z as p] = {z} U varsp]

r-freefe] n computes the set of r-free variables occurring in e relative to the environment 7.

r-free  : exp — env (IP var) — P var
r-freefz] (n,p) = {x} if @ € vars[p]
= r-freefz] n otherwise
r-freefz] (n,p—V) = V if € vars[p]
= r-freefz] n otherwise

r-freefsin) €1 - en]l m
eee()] 7
r-free[(e1, e2)] n

r-freefer] nU - - - Ur-freefe,] n
0

r-freefe1] n U r-freefe2] n

r-freefe e] n = r-freefe] n
r-freefey ea]l B = r-freefer] n U r-freefes] n
r-free[Ap — €] n = r-freefe] (n,p) \ vars[p]

r-free[if ey then ey else es] 7
r-freefe1] n U r-freefes] n U r-freefes] n
"|cnpn_>en]]77
r-freefe] n U r-freefe1] (n, p1) \ varspiJU - --
U r-freefen]] (0, pn) \ vars[p,]
(r-freefe] (n,p1) \ vars[p1]) U r-freefe1] n
n = €, ine] p
r-freefe] n'
where
7' ={ .. {n,p1 —r-freefer] 7'} ..., pn — r-freefe,] 0"

r-freefcase e of ¢1 p1 — €1

r-freeflet py = e; in €] p
r-free[letrec p1 =e1; ...

(IsA

r-closed[[e] n defines the property of r-closedness relative to the environment 7.

r-closed : exp — env (IP var) — bool
r-closed[e] n = r-freefe] n =10

Table 11: The computation of r-free variables
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defined with the help of a recursive equation and denotes the least fixed point of the following chain
of environments.

n = (..(gp—0)....p,—0)

M1 = {...(n,p1—r-freefer]] nn) ..., pn — r-freefen] nn)

Since r-free is monotone with respect to the environment and the domain under consideration is finite
(an expression contains only a finite number of variables), a least fixed point always exists and is finite
itself (the number of iterations is equal to the longest acyclic path in the static calling graph of the
letrec-expression). For the expression e with

e=Xab— letrec f=...a...9...;
g=...h...;
h=...b...9...
in ...

we obtain the following chain (r-freefe] (}):

o = ({0, f—=0),9—0)h—0)
mo= (0, f—{a}), g —0),h—{b})
2 = (O, fr—=Aa}), g —A{b}), h—{b})
ns = ((((),fr—=Aab}),g—{b}), h—{b})
na = 13

After the third iteration the fixed point is reached.

The expensive determination of the fixed point can be simplified if the letrec-definition satisfies
the following property: The equations are mutually recursive, i.e., each defining expression depends
on every remaining definition (the static calling graph consists of a single maximal strong component).
The source code transformation which establishes this property is called dependency analysis. If the
source language has a polymorphic type system (& la Hindley and Milner [22]), the analysis must be
carried out anyway prior to the type inference process. The above example i1s transformed to the
nested expression:

e=Xab— letrec g=...h...;
h=...b...¢g... in
letrec f=...a...9...
in ...

For expressions of this kind the last equation of r-free can be simplified as indicated in Table 12. The

r-free[letrec p1 =e1; ... ;pp =€, ine] 7
= r-freefe] m
where
no={..(mp=0)....,p,=0)
V = r-freefe1] no U - - - Ur-freefe, ] no
m = <<77ap1 = V)apn = V>

Table 12: The definition of r-free revisited for truly recursive definitions

modified definition reflects the fact that the defining expressions are truly recursive.
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5.2 Compiling an Expression

We have seen that the property of r-closedness depends on the context. In the remainder we mark the
parts of an expression that are r-closed with a star, i.e., ¢* identifies the subexpression e as r-closed
(relative to the given context).

The new instructions which are required for the compilation of r-closed expressions are displayed
in table 13. Table 14 shows the modified compilation schemes. Again we will consider each of them

register stack code | register stack code
stack operations

v S Move; C 0 v:S C

1 vy : S Pop;C V9 S C
register operations

on vy :S Snoc; C (v1,v2) S C

v S Comb ¢; C [4] S C
control instructions

[4] v:S App; C v c:5 G

true S Gotoifalse /; (' true S C

false S Gotoifalse /; (' false S C

(¢;:v) S Switchi ey 1 €y,...,¢n: 4,];C | v S Cy,

Table 13: Some more instructions

in turn.

ENx] § = faul
&[] (p.p) & =] p
Ez] {p,p— O (Call ¢; Pz p) ? &[] p
Elx] (p",p) n Rest n; Pllx] p

Cle’]p = EM=]p
Clet ea] p = Clea] p; Move; Clled] p" ; App
Cler 3] p = Move; Clea] p* ; Swap; Cler] p; App
Cl(Ap —e)*] p = Comb{

T RED )
C[[if e; then e} else €3] p
= C([e1] p; Gotoifalse £y ; Clle2] p*; Goto €a;
Ly : Cles] p*; £2 : Skip
Clcase e of (¢c1 p1 —e1)* |- | (cn pn — €n)*] p
= Cle] p;Switchi [e1 : £y, ..., ¢n : bp];
£y 2 Cllex] {p*,p1); Goto £

by Clen] (0, pn)
£ : Skip
Cl[let p1 = ey ine] p = Clex] p; Clel {p*,p1) if Apy — e 1s r-closed
Cllet p1 =€ ine] p Move; C[le1] p* ; Cons; Cle] {p,p1)
Tlev, es] p Cle1] p; Move; Ceo] p*
Tlei,eo]l p = Cleo] p;Move; Cled]] p* ; Swap

Table 14: The &%, &€, C, and 7 compilation schemes for r-closed expressions
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5.2.1 Compiling pure A-expressions

An r-closed expression does not make use of the environment at run-time. Consequently we do not
need the environment at compile-time with the exception of letrec-caused-entries (p — ¢). The
annotation p* indicates that only entries of the form p — ¢ are valid in p. The formal environment
(p*,p), which is called simple environment, represents the run-time environment consisting only of
an instance of p. The CAM code generated for the expression e in the restricted environment p*
(notation: C[e] p*) satisfies the following invariant.

The register may contain an arbitrary value. After the execution of the code it holds the
value of the expression.

The compilation scheme C[e] {p*, p) has a special reading as well.

If the register contains an instance of the pattern, then after the execution of the code it
holds the value of the expression.

An r-closed variable must be letrec-bound. Furthermore, the defining expression of the variable
does not contain any external references. The simplified compilation scheme £* takes these facts into
account: Only entries of the form p — /£ are examined and the subroutine is called directly without
prior restoration of the environment. The original £ scheme must be extended for the case of simple
environments. The access path for a variable in p is shortened by a Snd instruction (Rest n is used
instead of Acc n).

The 7 scheme distinguishes between two situations: The second argument is r-closed (or both) or
only the first argument is r-closed. In the former case the first expression i1s compiled in the initial
environment, the value is moved from the register onto the stack and the second expression is compiled
in an undefined environment. In the latter case the order of the evaluation is reversed and the reversal
is compensated by a Swap instruction.

The Move instruction resembles a Push instruction with the difference that Push duplicates a value
whereas Move actually moves a value. After a Push instruction the register is “alive”, after a Move
instruction it 1s “dead”. The distinction is important if the CAM code is further expanded to machine
code or for compile-time garbage collection.

Function application is treated differently from pairs and predefined functions because we do not
want function and argument to be reordered (in view of further improvements in Section 6.4).

An r-closed abstraction, classically called combinator, evaluates to a very simple closure (notation:
[4]), which contains only a reference to the CAM code of the body. This closure is created by the
Comb instruction. The App instruction must distinguish between a normal and a simple closure. In the
latter case the App instruction boils down to an indirect jump. This distinction facilitates further code
improvements as described in Section 6.4 but complicates the expansion of CAM code into machine
code. The examples of Section 4.2.1 get compiled to the following code (we omit Skip and Rest 0).

e —+ 1z Mae—f(f=) Afw) = f(f=2)
Comb £ Comb {4 Swap Comb £ App
Stop Stop Rest 1 Stop Swap

£: Move £y : Cur fly App £: Push Fst
Quote 1 Return Swap Push App
Swap £y : Push Rest 1 Snd Return
Prim + Push App Swap
Return Acc O Return Fst

Note that if we bear in mind that Acc 0 is equal to Snd and Rest 1 is equal to Fst, the code generated
for the function bodies in the second and third example is 1dentical.

5.2.2 Compiling an alternative

If neither of the branches needs the environment, the initial Push instruction can be omitted. The
Gotoifalse (branch immediate) instruction acts like a Gotofalse without restoring the environment.
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The Heaviside function exemplifies the new compilation scheme.

An — if < n 0 then 0 else 1
Comb Quote 0 Quote 0 | f3: Return
Stop Prim < Goto /3
{1 : Move Gotoifalse /5 | {5 : Quote 1

5.2.3 Compiling algebraic datatypes

In analogy to the if-construct we can save a Push instruction if neither of the branches contains other
references than to the arguments of the corresponding constructor. The example of 4.2.2 benefits from
this improvement.

As — case s of nil () — nil () | cons (e,t) —1¢
Comb ¢ l5: Quote () | £5: Snd
Stop Pack nil | £4 : Return
£y Switchi [nil : lo, cons : £s] Goto {4

5.2.4 Compiling a local definition

The CAM code for the expression let p; = e; in e can be drastically simplified if e contains only
references to variables in p; by just sequencing the code fragments of e; and e. The first example of
Section 4.2.4 1s a candidate for this improvement.

leta=5in*xa a
Quote 5 Swap
Push Prim %

As a final example, we give the improved code for the even function of Section 4.2.4.

letrec even = An — if = n 0 then {rue
else — even (dec n)
in even H6

Quote 56 | £ : Comb /- Prim = Move
Move Return Gotofalse {3 Call ¢,
Call ¢, {5 : Push Quote true App
App Move Goto {4 Prim —
Stop Quote 0 | f3: Prim dec {4 : Return

6 Peephole Optimization

The purpose of this section i1s to show how the generated CAM code can be further improved. The
technique we employ is a very simple one called peephole optimization and works as follows: We
examine a short sequence of the code and try to replace it by an equivalent sequence which is either
shorter or faster. This process is repeated until no more improvements are applicable. Typically one
improvement spawns opportunities for additional improvements.

The improvements with the exception of last call optimization are already described elsewhere
[28] but they are tightly coupled with the compilation process in the cited paper. We hope that a
separation of the phases (code generation and optimization) helps towards a better understanding of
the topic. Note that most of the optimizations are only applicable because we reversed the order in
which functions and arguments are compiled.
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6.1 Replacement Systems

Before we look at the different sources of improvements, we would like to give a short account of
the theoretical background. Peephole optimizations can be viewed as an instance of what we call a
replacement system.

Replacement systems are similar to string rewriting systems [9] and Markov algorithms [25]. For-
mally, a replacement system is a pair (X, R), where X is an alphabet and P C ¥* x ¥* is a set of
ordered pairs of words over . The elements of R are called optimization rules and are denoted by
a — 3. We assume that the optimization rules are given in a linear order.

0[1—>61,...,Oén—>6n

Note that since we want to view a single CAM instruction as a letter of the alphabet, we do not
demand the alphabet to be finite (of course it must be decidable). Consequently the set of rules
need not be finite as well (albeit given a word o we must be able to determine effectively whether R
contains a rule of the form o — 3).

A replacement system translates a word u into a word v. At each step of the replacement process
the leftmost subword which matches a left hand side is replaced by the corresponding right hand
side. The rules are tried in the order given. The process terminates if none of the rules is applicable.
Formally, the relation « = v (u yields directly v) holds iff

1. there is a rule a; — 3; € R and there are words u; and us such that v = uja;us and v = uy B;us
and

2. there is no rule o; — B; € R such that there are words v; and vs with v = viojvs and
lva] < fua] V (Jor] = |us| A § <d).

The second condition implies that the leftmost occurrence of the left hand side in « must be re-
placed. As an immediate consequence of the definition, there i1s at most one word v with the property
u =" v A—=Jw v = w. If there is no such word, the replacement system loops.

In contrast to string rewriting systems replacement systems are deterministic. The former must
satisfy non-trivial properties like confluence to guarantee that the final outcome is determined. Markov
algorithms first impose an order on the rules and then on the position of the left hand sides in the
string, whereas the situation is reversed with replacement systems.

A naive implementation of a replacement system would repeatedly scan a given word from left
to right looking for instances of left hand sides. Of course there is a more efficient way. After a
replacement has taken place, we may in some cases safely ignore the left context in search of the next
replacement. To be more precise, let

Uiy = Uy Sus
be the last step. The position where the next search may safely start is given by the current position

(first letter of ) plus an offset k. The offset k& depends only on the last rule which was applied and
can be determined in advance (the definition actually underestimates the possible offset).

k= min( {—|w]|Fy—=8€ R Jwi,wa,wy €T*
with wy fws = yws and |wq| < ||}
U{|ws| |3y =6 € R Fws, ws, wy € T*
with fws = waywa and |ws| < 8]}

SRV

The offset is negative if there is a left hand side 4 with which § overlaps from the right (there must
be an overlap, otherwise o was not the leftmost occurrence of a left hand side in the preceding step).
In the worst case, k is equal to the length of the longest left hand side minus 1. If there is no such
overlap but an overlap from the left, the offset is positive but smaller than |§|. If the right hand side
(4 has nothing in common with the left hand sides, we may safely start the search at the first letter of
Ug.

Since the optimization rules we will introduce in the subsequent sections consider at most two
instructions at a time, the offset & has a lower bound of —1.
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6.2 Converse Operations

Algebraic properties of predefined operations can be used to improve the code. Let us take a look at
the 7 scheme. If the first argument is r-closed but not the second, the arguments are compiled in
reversed order. The reversal is compensated by a trailing Swap instruction. This instruction is clearly
unnecessary if the subsequent operation is commutative.

Cl+ 3] p = C[x] p;Move; Quote 3; Swap; Prim +
= C([«] p; Move; Quote 3; Prim +
Many operations possess a simple converse operation (f¢ is called the converse operations of f iff

f(z1,22) = f°(x2,21)), which can be used instead of the sequence Swap; Prim s(3). The converse
operations of some primitives are displayed below with sub(m,n) = n — m and div(m,n) = n/m.

sy |+ — + / < < = > > AV
5(02) 4+ sub x div > > = < < AV
Consequently we get the following optimization rules.
code improved code | offset
Swap ; Cons Snoc -1
Swap ; Snoc Cons -1
Swap; Prim s(2) | Prim 5(02) -1

Attention must be paid not to modify parts marked with a label. It is not safe to replace Swap; £ : Cons
by ¢ : Snoc.

6.3 Access Instructions

The optimization rules presented in this section are mainly of cosmetic nature and could be built
directly into the compilation schemes albeit with a loss of clarity. The improvements only affect the
size of the CAM code but have little or no impact on the run-time behavior.

The Skip instruction and the Rest 0 instructions (camouflaged Skip) are clearly superfluous. We
have already omitted them in the preceding sections. The Rest 1 and Acc 0 instructions have simpler
variants Fst and Snd which can be used instead.

code | improved code | offset
Skip -1
Rest 0 -1
Rest 1 | Fst -1
Acc 0 | Snd -1

Tuples are represented by nested pairs. The structure of the nesting was chosen carefully so that
the instructions Acc and Rest can be used to access components of a tuple.

C[M (1,22, 73,24,25) — 1] p = Comb ¢
[ {:Fst;Fst;Fst;Fst;Return ]
C[M (1,22, 73,24,%5) — @3] p = Comb ¢

[ f:Fst;Fst;Snd; Return ]

The sequence of access instructions can be condensed into a Rest 4 respectively an Acc 2 instruction.
The following rules will do the job.

code improved code offset
Fst;Fst Rest 2 0
Fst; Snd Acc 1 1
Rest n;Fst |Rest (n+1) ifn>2 0
Rest n; Snd Acen ifn>2 1
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Note that these rules suffice—a rule like Rest m; Rest n — Rest (m + n) is not necessary—as the
compiler generates only access sequences of the following form.

(Acc n | Rest n); (Fst | Snd)*

6.4 Abstraction and Application

The biggest potential for optimizations lies in the combination of functional abstraction and applica-
tion. In Section 4.2.4 we have already used the equivalence of

let p1 = €1 in ey
with the S-redex
(/\Pl - 62) €1

for the derivation of a compilation rule for the let-construct. Nevertheless, the generated CAM code
for the two expressions differs significantly in size and speed.

Cl(Ap1 — e2) e1] p = Push;C[e1] p; Swap; Cur £; App
[ £:Clez] {p,p1); Return ]
C[let p1 =e; ines] p = Push;Clei] p; Cons; Clex] (p, p1)

In what follows we will show how to derive the second sequence from the first one. It 1s instructive
to follow the execution of Cur £; App (left column). The value of e; is located on the stack (v2); the
register contains the current environment (vy).

register stack code register stack code

vy vy 1S Cur £; App; C || v1 vy 1S Snoc;Call ¢; C
[ : 4] wve:S App;C (v1,v2) S Call (; C

(1}1, 1}2) c:S Cg (1}1, Uz) c:S Cz

The code fragment effectively cons’es the environment with the value and calls the subroutine labeled
with £. The intermediate building of the closure [vy : £] can be spared if one uses the Snoc and the
Call instruction instead (right column). The App instruction is a very complex operation and should
be avoided whenever possible. Thus we obtain the following code for (Ap; — e2) €.

= Push; Cfe1] p; Swap; Snoc; Call ¢
[ £:Clez] {p,p1); Return ]
Push; C[e1] p; Cons; Call ¢
[ £:Clez] {p,p1); Return ]

Since the Call instruction is the only one which refers to the subroutine, we could replace Call by the
code of the subroutine (exclusive Return) and dispose the subroutine itself. We resist the temptation
to do so because the inline expansion would require some sort of bookkeeping mechanism (how many
instructions refer to a label) and because it does not go well together with a further optimization we
have in mind (cf. Section 6.6).

If the abstraction is r-closed, the combination of abstraction and application gets compiled to the
following code.

Cl(Apr — e2)" e1] p = Cle1] p; Move; Comb £; App
[ £:Cle2] {p,p1); Return ]

The sequence Comb ¢; App may be improved in a similar way as Cur ¢; App. At this point the Pop
instruction comes into play.

register stack code register stack code

vy vy 1S Comb ¢; App; C || v1 vy 1S Pop;Calld; C
[4] va 1S App; C vy S Call ¢; C

V9 c:5 O V9 c:s ¢
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The Pop instruction is inverse to Push and Move, that is to say, Pop compensates the effect of Push
and Move. Thus we obtain:
= C[e1] p; Move; Pop; Call ¢
[ £:Clez] {p,p1); Return ]
= C(Clei] p; Call £
[ £:Clez] {p,p1); Return ]
If we expanded the subroutine call, we would obtain exactly the code sequence which is generated by

the optimized C scheme for the let-construct.
Iterated applications and abstractions require iterated application of the optimization rules.

Cl(Aab— —ba) 78] p
= Quote 8; Move; Quote 7; Move; Comb ¢ ; App; App
[ £y : Cur £, ; Return ]
[ £y :Push; Acc 0; Swap; Rest 1; Prim —; Return ]
= Quote 8; Move; Quote 7;Move; Pop; Call {;; App
= Quote 8; Move; Quote 7; Call ¢; ; App
The body of the subroutine labeled with £; consists only of a single instruction. In this special case
we replace Call by the respective instruction.
= Quote 8; Move; Quote 7; Cur {»; App
= Quote 8; Move; Quote 7; Snoc; Call /s

The code corresponds with a minor exception (the order of the arguments 7 and 8 is reversed) exactly
to the code generated for the uncurried variant.

Cl(A(a,b) — —ba) (7,8)] p
= Quote 7; Move; Quote §; Cons; Call /s
[ £y : Push; Snd; Swap; Fst; Prim — ; Return ]
The example shows that curried functions can be used without loss of efficiency. Again, if we expanded
the subroutine call, we would obtain the code sequence the following expressions get compiled to.
Cllet a=7;b=8in—bd] p
= (C[leta=T7inletb=8in—ba] p
= Quote 7; Move; Quote 8; Cons; Push; Snd; Swap; Fst; Prim —

The optimization rules introduced in this section are summarized below.

code improved code offset

Move ; Pop -1

Cur /; App Snoc; Call / -1

Comb ¢ ; App Pop; Call / -1
Callﬁ[ﬁ:I;Return] I[E:I;Return] -1

Note that the expanded Call instruction must not be identical with I (this restriction is necessary to
guarantee the termination of the replacement process).

6.5 Local Function Definitions

A letrec-bound function applied to arguments is a combination of functional abstraction and appli-
cation in disguise. Hence all of the optimizations introduced in the last section are also applicable in
this context. Let us assume that the local function satisfies the property of r-closedness.
Clletrec f* = Ap— ey in [ es] p

= Clez] {p, f — ¢1); Move; Call ¢ ; App
[ {1 : Comb £, ; Return ]
[ Uy Cler] ({p, f — £1)*,p); Return ]
Clle=] {p, f — 1) ; Move; Comb {5 ; App
Cllez=] {p, f — 1) ; Move; Pop; Call ¢
= Clez] {p, f — ¢1); Call £y
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The calling sequence resembles the one on a conventional stack architecture: The single parameter is
loaded into the register, which serves as a cache for the topmost stack element, and the subroutine is
called. If f 1s not r-closed, we obtain the following code sequence.

Clletrec f = Ap —e1 in f es] p
= Push;Cfes] {p,f — ¢1); Swap; Rest 0; Call ¢; ; App
[ £y : Cur £, ; Return ]

| > :Clex] {{p, f — £1),p); Return |
= Push;Cfez] {p, f — ¢1); Swap; Call ¢ ; App
Push; Clle2] {(p, f — ¢1); Swap; Cur {5 ; App
( )5
( )

Push; C[es] (p, f — £1); Swap; Snoc; Call /5
= Push; Cfes] {p, f— £1); Cons; Call ¢5

The parameter is paired with the current environment, then the subroutine is called. If the call to f
is situated 1n an abstraction, the environment must be restored by an Rest n instruction with n > 0,
which prevents the application of the Swap; Snoc rule resulting in a slightly longer code sequence.

Thus, after expanding the first call instruction we carry out the same simplifications as in Section
6.4 with the minor difference that Rest n possibly prevents some optimizations.'°

We have said in Section 2 that non-recursive functions should also be bound by letrec rather
than let. We are now in a position to justify the advice by looking at the code sequence generated
for a let-bound function.

Cllet f=Ap—e1in fes]p
= Push; Cur ¢; Cons; Push; C[e2] {(p, f); Swap; Acc 0; App
[ £y : C[e1] {p,p); Return ]

The code does not offer any opportunity for improvements and is consequently inferior to the code
generated for the letrec-construct.
Functions with multiple arguments can be improved by applying the optimization rules repeatedly.

letrec f=Adryz—+ (x2y)zin f345
Quote 5 Snoc Push Swap
Move Snoc Rest 2 Snd
Quote 4 Call / Swap Prim +
Move Stop Acc 1 Return
Quote 3 | /: Push Prim *

Note that we have omitted the subroutines which are not addressed anywhere (dead code elimination).
The code is nearly identical to the code generated for letrec f = A(x,y,2) — + (x 2z y) z in f (3,4,5)
the only difference being the order in which the arguments are processed. Thus the use of curried
functions, which are superior to their uncurried counterparts because of their greater flexibility, does
not result in a loss of efficiency. The code of the even function (cf. Section 5.2.4) also benefits from

1OWith the following exception our technique subsumes the optimizations described in [28]. If the call to f lies within
an abstraction (the nesting level n is indicated by the bracketed superscript f(")) and the argument is r-closed, we get
the following code sequence,

ClF™ e*] p = HMove; C[e] p*; Swap; Rest n; Snoc; Call ¢
whereas Suarez obtains:
C[[f(") e*Tp = Restn;HMove;C[e] p*;Cons;Call ¢
A Swap instruction is saved by reversing the argument and the restoration of the environment. This improvement is

difficult to achieve in our framework because we must insist on the special order in which the argument and the function
call are compiled. Otherwise, the Cur £; App rule would no longer be applicable.
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the improvements described in this section.

letrec even = An — if = n 0 then {rue
else — even (dec n)
in even H6

Quote 56 | 1 : Push Gotofalse /- Call ¢,

Call ¢, Move Quote true Prim —

Stop Quote 0 Goto f3 {3 : Return
Prim = | f5: Prim dec

6.6 Last Call Optimization

If the last instruction executed in the body of a function is a call to the same function, the call is
termed tail recursive. It 1s well-known that tail recursive calls can be replaced by jumps. After this
transformation, a tail recursive function, i.e., a function where every recursive call is tail recursive,
runs with constant stack space. On conventional stack architectures this behavior is achieved by
deallocating the stack used by the function prior to the recursive call. This technique is commonly
called tail recursion optimization. If the technique is generalized to arbitrary calls in a tail position,
it 1s termed last call optimization.

Last call optimization is particularly easy to achieve in our setting because we must deal only with
single argument functions—the environment being the only argument. The single argument is placed
into the register, no additional stack space is allocated. The following example illustrates the point
(we do not bother that f never terminates).

Clletrec f* = Ap— f e ines] p
= Cle= {p, [ = &)
[ {1 : Comb £, ; Return ]
[ Uy Cler] ({p, f— £1)*,p); Call {5 ; Return ]

Upon the entry of the subroutine labeled with /5 the register contains an instance of p. Prior to the
recursive call the instance is replaced by the value of e; (the stack is unchanged). Thus the CAM
automatically supports the stack recovery mechanism of last call optimization. If the code sequence
Call /5 ; Return is replaced by a single Goto ¢5 instruction, we obtain a (nonterminating) loop.

.[.22 :Clea] ((p, f — &1)*,p) ; Goto {5 |

It is easy to see that the above transformation is correct. We may assume that the body of a subroutine
(C) only affects the register (mapping vy to vg) leaving the stack unchanged.

register stack code register stack  code

v1 Ch: 5 Call /; Return v1 Ci1:5 Gotol
[E:C’;Return] [E:C’;Return]

v1 Return: (7 :S5 (' Return v1 Cy:S (C;Return

Vg Return: (5 : S Return Vg C1:5 Return

V9 Ch: 5 Return V9 S i

(25} S 01

Thus we achieve last call optimization simply by applying the following optimization rule.

code improved code | offset
Call ¢; Return | Goto £ 1

In order to improve the applicability of this rule, we have to change the R scheme. The Return
instruction is moved into the branches of alternatives and case-expressions (Table 15).
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R[if e; then e} else €] p
= C([e1] p; Gotoifalse £y ; Rfez] p*; €1 : Rles] p*
R[if e; then ey else e3] p
= Push; C[e;] p; Gotofalse £1; Rfez] p; 1 : Rles] p
Rlcase e of (¢c; pr —e))* |- | (cn pn — €en)*] p
= C[e] p;Switchi [y : £y,...,cn : 6p];
b2 Rea] (p7,p1);

Lo Rlen] (7, pn);
Rlcasecof ey pr—e1 | | enpn—en] p
= Push; C[e] p; Switch ey : by, . .., cn: ln];
6 Rfea] {p, p1);

£ Rlea] {popn)
Rle]l p = C[e] p; Return

Table 15: The R compilation scheme for last call optimization

The mutual recursive definitions of even and odd serve as an example for the effects of last call
optimization.

letrec even = An — if = n 0 then true
else odd (dec n);
odd = An — 1if = n 0 then false

else even (dec n)
in even H6

Quote 56 Prim = {3 : Push Return

Call /5 Gotofalse {5 Move {4 Prim dec

Stop Quote {rue Quote 0 Goto /1
{1 : Push Return Prim =

Move {5 : Prim dec Gotofalse {4

Quote 0 Goto f3 Quote false

6.7 Miscellaneous

The optimization rules should be chosen very carefully in order to improve the most frequently gener-
ated code sequences. Many algebraic properties of CAM instructions do not serve well as optimization
rules because the code schemes never generate the respective sequences.

code improved code | offset
Push; Pop -1

The above rule is never applicable. In some cases it 1s questionable whether the effect is worth the
effort because the code sequences in question are seldom generated.

code improved code | offset
Push; Swap | Push 0

The following expression shows one of the rare chances to apply the rule above.

Clx n (+ 0 D] (o7, n)
= Push; Swap; Move; Quote 1; Prim + ; Prim *
= Push; Move; Quote 1;Prim + ; Prim *
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The optimization rules are summarized 1

n Table 16.

code | improved code | offset
access instructions
Skip -1
Rest 0 -1
Rest 1 Fst -1
Acc 0 Snd -1
Fst; Fst Rest 2 0
Fst; Snd Acc 1 1
Rest n; Fst Rest (n+ 1) ifn>2 0
Rest n; Snd Acen ifn>2 1
stack operations
Push ; Swap Push
Move ; Pop -1
register operations
Swap ; Cons Snoc -1
Swap ; Snoc Cons -1
Swap; Prim s(2) Prim 5(02) -1
control instructions
Cur /; App Snoc; Call / -1
Comb ¢ ; App Pop; Call / -1
Callﬁ[ﬁ:I;Return] I[E:I;Return] -1
Call /; Return Goto ¢ 1

Table 16: Optimization rules

In the remainder we name some of the advantages and disadvantages of peephole optimizations in
contrast to source code transformations like partial evaluation.

It 1s obvious that the compilation of a A-expression to a sequence of CAM instructions is a structure
loosing mapping. Consequently it is much harder—although not impossible—to mimic source code
transformations like fst(e1, e2) = €1 on the level of CAM instructions.

Since the granularity of CAM instructions is much finer, peephole optimizations sometimes do not
correspond to a transformation on the source code level. Furthermore, a single optimization rule may
be applicable to code sequences stemming from different compilation schemes.

The optimization rules introduced in Section 6.2 serve as an example. The Swap instruction does
not only appear in the optimized 7 scheme but also in the ordinary 7 scheme. If the second argument
of T compiles to the empty sequence, the code can be further improved.

C[let a=b5inxaa]l p = QuoteH;Push;Swap;Prim *
= Quote H;Push;Prim %

In general, source code transformations such as common subexpression elimination, reduction in
strength and code motion are complementary to target code transformations rather than compet-
ing.

7 Perspectives

We have seen in the introduction that free variables occurring in an abstraction prevent us from using
a conventional stack architecture. The solution was to dispose the stack as a bookkeeping-mechanism
for variables and to use environments instead. This reaction is quite extreme, 1t should be clear that
the stack could be used nonetheless in many cases. A variable which has a free occurrence in an
abstraction is held in the environment (access time linear to the nesting level), otherwise it is put onto
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the stack (constant access time). This distinction is already made in Cardelli’s FAM, where variables
are classified as global or local. Suarez similarly distinguishes between persistent and ephemeral
variables. Note that this improvement does not only reduce the size of the environment (speeding up
the access to persistent variables) but as a side-effect also increases the number of r-closed expressions
(cf. Section 5) resulting in a more compact code.

The notion of persistency 1s relative. If the body of an abstraction is entered, a persistent variable
may turn to an ephemeral one. In case the variable is accessed three or more times it may be worthwhile
to copy it onto the stack. This also opens new perspectives in optimizing (local) function calls. Let
us assume that all the variables occurring in the body of a (local) function are ephemeral. Thus
they can safely be copied onto the stack. Fully parameterized (recursive) calls to this function can
be compiled more efficiently by directly pushing the arguments onto the stack and entering the code
of the body after the initial copy sequence. This scheme corresponds to the usual calling mechanism
in stack-based implementations. Function calls implemented in this fashion can be optimized even
more by a general stack recovery mechanism called stack trimming. Stack trimming can be viewed
as a generalization of last call optimization and works as follows. The arguments of a function are
pushed onto the stack using a special ordering. The parameter which occurs in the rightmost position
and consequently lives for the longest time is pushed first and so forth. Prior to (recursive) calls in
the body stack space is freed by removing those variables from the stack which are not accessed any
longer after the call. This technique applies to every function call in the body last call optimization
being only the special case of the last call.

8 Related Work

Existing literature on the CAM [4, 5, 6] with the notable exception of Sudrez [28] deals with the
translation of functional languages into CAM code on a very high and abstract level showing only the
principle suitability of the CAM as a target machine.

In [28] an optimizing compiler is presented for the CAML language, a variant of SML. The improve-
ments include detection of r-closed expressions, G-reduction at compile-time, improving calls to local
functions, and local variables classification. Except for the latter we perform the same improvements
albeit in a different setting.

The improvements described in [28] are tightly coupled with the compilation process whereas we
separate the phases of generating code and improving it. Insofar our work can be interpreted as a
paraphrases of [28]. Besides better readability and verifibility our approach allows the easy integration
of classical optimization techniques such as last call optimization.
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