
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228940729

The Categorical Abstract Machine: Basics and Enhancements

Article · May 1993

CITATIONS

4
READS

1,065

1 author:

Ralf Hinze

University of Oxford

117 PUBLICATIONS 2,618 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ralf Hinze on 01 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/228940729_The_Categorical_Abstract_Machine_Basics_and_Enhancements?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/228940729_The_Categorical_Abstract_Machine_Basics_and_Enhancements?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Hinze?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Hinze?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Oxford?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Hinze?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Hinze?enrichId=rgreq-a84a39cdb7fabc0f98fb759b44c72ee7-XXX&enrichSource=Y292ZXJQYWdlOzIyODk0MDcyOTtBUzoxMDMyODQzMTIzNzkzOTJAMTQwMTYzNjMwNzEwMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The Categorical Abstract Machine:Basics and EnhancementsRalf HinzeUniversit�at BonnInstitut f�ur Informatik IIIR�omerstra�e 164W5300 Bonn 1Germanye-mail: ralf@uran.informatik.uni-bonn.deApril 28, 1993AbstractThe categorical abstract machine (CAM) is a well-known environment-based architecture forimplementing strict functional languages. Existing literature about the CAM presumes more orless a category-theoretical background. Although we appreciate the �rm grounds on which theCAM is built, we try to motivate the components of the CAM from an implementor's point ofview. This undertaking is facilitated by the conceptional simplicity of the CAM and its proximityto conventional stack architectures.We describe the translation of an augmented �-calculus into CAM instructions. The basiccompilation scheme has its didactic virtues but for a real implementation many improvements arenecessary (and applicable). A �rst improvement concerns the treatment of subexpressions whichdo not access the environment. Further improvements are achieved via simple local transforma-tions of the generated CAM code|this is one of the novel features presented in this report. Theyinclude �-reduction at compile-time, improving calls to local functions, and last call optimization.1 IntroductionSince we want to introduce a particular implementation technique for functional programming lan-guages, we should �rst say1. what we mean by \functional" programming languages and2. why such languages require a special implementation technique.The �rst question is easy to answer. To deserve the attribute \functional", a programming languageshould treat functions as �rst-class citizens, i.e., functions should not be subject to any restrictions.In a functional language there are expressions to denote functions and functions can be passed asparameters or obtained as results. Without entering a discussion about the usefulness of this featurewe would like to name one of its advantages. First-class functional values allow the unrestrictedapplication of the abstraction principle. A sorting function can be made more widely usable byabstracting from a particular ordering relation (functions as parameters). We may abstract fromfrequently occurring recursion schemes such as applying a function to every member of a list (map) orinserting a binary operation between two adjacent list elements (fold) using higher order functions1.Special instances of these schemes are obtained by partially parameterizing the corresponding functions(functions as results). For a broader discussion of this topic we refer to standard textbooks aboutfunctional programming [2, 11, 13, 21, 24].1The function f : � ! � is called higher order if � or � contains a functional type.1

In this report we are only concerned with so-called pure functional languages, which adhere to theprinciple of referential transparency. This principle is a very fundamental property of mathematicalreasoning and can be summarized as follows [27].The only thing that matters about an expression is its value. Moreover, in the same contextthe expression has the same value wherever it occurs.Referential transparency precludes any side-e�ects (assignment, imperative I/O, exceptions), whichin turn o�ers the possibility of rearranging the standard left to right order of evaluation.Let us turn to the second question. Many imperative languages such as Pascal, which are imple-mented using conventional stack-based techniques, also allow functions to be passed as parameters.The crucial di�erence to functional languages lies in the possibility of returning functions as resultsof other functions. The following example illustrates the point.add = �x! �y ! + x yIf the function add is called with only one parameter, say add 3, we obtain a function which adds 3 toits argument. On a conventional stack machine the arguments of a function are pushed onto the stackprior to the call and are popped upon return. Thus, if the resulting nameless function is applied, thevalue of the free variable x no longer rests on the stack. Figuratively speaking, the free variable xis torn out of its context. This situation can never occur in languages where functions or proceduresmay only be passed as parameters.The techniques which have been proposed to circumvent this problem can roughly be divided intotwo categories.1. Graph-based implementation techniques (SK graph-reduction [30], G-machine [1, 16], TIM [10],ABC-machine [26]).2. Environment-based implementation techniques (SECD machine [19], FAM [3], CAM [4, 5, 28]).Despite the apparent di�erences, the two approaches have many things in common as a closer inspec-tion reveals (cf. Section 5).The idea underlying graph-based techniques is simple but radical: Since (free) variables poseproblems, get rid of them. So-called bracket abstraction algorithms can be used to turn a (functional)expression into a variable free form. The origin of these algorithms must be traced back a longway in time [8]. They were rediscovered by Turner [30]. Bracket abstraction algorithms use a �xedset of combinators2 to accomplish their task. Alternatively, one can transform a source programinto a set of (super-) combinators using a technique called �-lifting [23]. A combinator may beinterpreted as a �rst-order rewrite rule. Thus the evaluation of an expression amounts to rewritingthe corresponding combinatorial expression. In order to facilitate the sharing of expressions, graphs areused to represent combinator expressions, hence the name of the technique. Graph-based techniquesare best suited for the implementation of non-strict functional languages like Miranda3 [29] or Haskell[14]. Lazy evaluation is easy to achieve via normal order reduction of the graph; the sharing ofsubgraphs guarantees that expressions are evaluated at most once.The idea underlying environment-based techniques is equally simple and radical: Since poppingof values from the stack causes problems, never pop values. The resulting book-keeping mechanismis of course no longer called stack but environment instead, hence the name of the technique. Afunctional value is represented using a pair consisting of a pointer to the code and a pointer tothe environment which records the values of the free variables. This bears a strong resemblance tostack-based implementations of imperative languages where procedure parameters are represented by apointer to the code and a pointer into the stack (link to the activation record of the static predecessor).The �rst abstract machine which realized these ideas was the SECD machine by Landin [19]. TheCAM resembles the SECD machine in many respects but it is conceptionally simpler and easier to2A function not containing any free variables is called a combinator. Consequently a local function which refers tonon-local variables is not a combinator.3Miranda is a trademark of Research Software Ltd. 2

understand. It should be noted that, although the CAM and the SECD machine are environment-based, both of them also use stacks albeit for other purposes (remember that conventional machinesalso employ the stack for di�erent purposes like the evaluation of arithmetic expressions). The factthat the environment contains the values of the free variables indicates that this technique is best-suited for the implementation of strict languages like SML [12]. Nevertheless, lazy evaluation can bebuilt on top of eager evaluation.The origins of the CAM can be traced back to the work of Lambek about the interpretation of�-expressions in cartesian closed categories [18]. The ideas upon which the design of the CAM is basedare due to Curien, who introduced categorical combinatory logic4 [7]. When Cousineau and Curienrealized that categorical combinators could be interpreted as instructions of a von Neumann machine,these ideas lead to the publication of the seminal paper about the CAM [4]. Due to its origin theCAM is tailored for the extreme, i.e., programs which make intensive use of higher-order functions. Tobe feasible for the normal case, i.e., many �rst order functions, improvements are necessary. Variousoptimizations were described by Su�arez [28]. It is mainly his work this report is based upon.The interesting point about the CAM lies in its conceptional proximity to classical stack archi-tectures deviating only in the management of variable access. It is this proximity to classical stackarchitectures that makes many optimization techniques developed for the implementation of impera-tive languages (tail recursion optimization and its generalization last call optimization) practicable forthe CAM as well. One of the objectives of this report is to point out this potential for optimization. Inaddition, we try to motivate the components of the CAM starting from �rst principles. Consequentlya large part of the material presented is tutorial in nature. We largely ignore the category-theoreticalbackground and introduce the ingredients from an implementor's point of view.The report is organized as follows. Section 2 gives an account of the source language, which isessentially an augmented �-calculus. Section 3 shows that once some fundamental design decisionshave been made, the structure of the CAM develops quite naturally. The core of the CAM is presentedin Section 4. A �rst improvement concerns the compilation of subexpressions which do not access theenvironment (Section 5). Further improvements instrumented through simple local transformations ofthe CAM code are presented in Section 6. Amongst others they include �-reduction at compile-time,improving calls to local functions, and last call optimization.2 The Source LanguageThe source language which serves as a starting point for the compilation process is fairly conventional.It is essentially an augmented �-calculus simple enough to be compiled directly into CAM code andexpressive enough to translate a pure functional language into it. Readers familiar with the topic maysafely skip this section.The syntactic domains of the language are shown in Table 1. The domain var contains variables.category comment meta variablesvar variables xsys(n) prede�ned functions of arity 0 � n � 2 s(n)con constructors cexp expressions epat patterns pTable 1: Syntactic domains for the source languageWe do not bother how variables are represented, we simply assume that there are enough of them.4Categorical combinatory logic can be viewed as \classical" combinatory logic augmentedwith products. Categoricalcombinators have been proposed as an alternative to SK combinators by Lins [20] revealing once again the closeinterconnection between graph-based and environment-based approaches.3

Every realistic programming language o�ers prede�ned constants and functions, which constitutethe domains sys(n). The arity of a prede�ned function is indicated using bracketed subscripts, i.e.,s(2) is a 2-argument function. In the remainder we require that the domain sys(0) contains at least(the representations of) the natural numbers, characters, and the truth values true and false. Theelements of the domain con are used to represent constructed values.The domain exp contains the various syntactic constructs of the source language and will be furtherspeci�ed below. Finally, the domain pat comprises patterns which may be used in formal parameterpositions|we permit ourselves this luxury because patterns of this kind can be easily translated intoCAM code. We use x, s(n), c, e, and p as syntactic metavariables ranging over variables, prede�nedfunctions, constructors, expressions, and patterns.The abstract syntax of the source language is given in Table 2. The source language contains theexp ::= var variablej sys(n) exp1 � � � expn application of a prede�ned functionj () empty tuplej (exp1; exp2) pairj con exp constructed valuej exp1 exp2 applicationj �pat! exp abstractionj if exp1 then exp2 else exp3 conditionalj case exp of con1 pat1 ! exp1 j � � � j conn patn ! expn case analysisj let pat1 = exp1 in exp local de�nitionj letrec pat1 = exp1 in exp recursive local de�nitionpat ::= var variablej () empty patternj (pat1;pat2) pairj var as pat layered patternTable 2: Abstract syntax of the source language�-calculus as a sublanguage, i.e., we are able to denote functional values. The expression�f ! �x! f (f x)denotes a function which applies its �rst argument twice to its second. Function application is writtenwithout special syntax simply by sequencing the function and its argument. The expression �p ! ecalled abstraction corresponds to the function f with f(p) = e but there is no need to invent a namefor it. The formal parameter of an abstraction may be a very simple pattern composed of variablesand pairs with the restriction that a variable may occur only once in a pattern, i.e., (a; b) is a legalpattern, (a; a) is not. We restrict ourselves to linear patterns of this kind (irrefutable patterns) becausethey cannot fail to match a (well-typed) argument obviating the need for a complex pattern matchingprocess. The expression�(f; x)! f (f x)denotes a function which applies the �rst component of its argument twice to the second componentof its argument. Note: There is a fundamental di�erence between�(a; b)! + a b and �a! �b! + a b:The �rst expression maps a pair to a natural number whereas the second maps a natural number toa function over the natural numbers.5 Pairs may of course also appear in the body of an abstraction.�(a; b)! (b; a)5As a matter of fact the CAM is based on the correspondence between these two function de�nitions. We will see inthe sequel that the CAM code generated for the bodies of the abstractions is identical.4

is a function which swaps the components of a pair. The possibility of using pairs in patterns obviatesthe need for projection functions. With the help of layered patterns we can simultaneously access apair and its components. In the expression�z as (x; y)! + (f z) xthe variable z serves as a shortcut for the pair (x; y).The expression �p! e is a variable binding construct very much like quanti�ers in predicate logic.The variables in p are said to be bound by the �-abstraction. A variable which is not bound is calledfree. In the expression (�(x; y)! � x y) (x; z) the variable y occurs bound, z occurs free and x occursboth free and bound. We postpone a rigorous de�nition of these terms until Section 5.1.Prede�ned functions must always be applied to the correct number of arguments. Partial param-eterization, however, can be achieved using abstractions. So we are forced to write�x! + 1 x instead of + 1:Local de�nitions are introduced by let- or letrec-expressions. As the name indicates, letrec-expressions must be used for recursive de�nitions. The scope of the de�ned variables extends over thede�niens as well as over the de�niendum. In analogy to patterns in formal parameter positions a localde�nition may de�ne a variable only once, i.e., let (x; y) = (1; 2) in x is legal, let (x; x) = (1; 2) in xis not. We shall see in Section 6.5 that it is advantageous to use letrec for the binding of non-recursive abstractions as well. Hence a functional program or rather script can be simply representedby a letrec-expression. Note: Due to the evaluation strategy recursively de�ned non-functionalvalues usually fail to terminate.Most modern functional languages o�er the possibility to de�ne new datatypes, often called al-gebraic datatypes. A datatype de�nition describes essentially how elements of the datatype can beconstructed. The SML de�nition of integer sequencesdatatype sequence = nil | cons of int*sequencetells us that the constructor nil is a sequence and cons applied to a pair consisting of an integerand a sequence is again a sequence. Elements of a datatype can be translated almost literally intoconstructed values of the source language with the slight exception that nullary constructors such asnil have to take the empty tuple as a dummy argument.Functions over algebraic datatypes are usually de�ned via pattern matching. The test, whether asequence contains a certain number, could be speci�ed in SML as follows.fun contains nil c = false| contains (cons(d,s)) c = if c=d then trueelse contains s cIf the patterns are exclusive and not nested we can translate them directly into a case-expression.letrec contains = �t! �c! case t ofnil () ! falsecons (d; s) ! if = c d then true else contains s cin : : :Each alternative of the case-expression describes how to handle the corresponding constructed value.Note: The if-construct could be de�ned in terms of the case-expression but for reasons of e�ciencywe include the former as a primitive.To improve the readability of expressions we will make use of the abbreviations listed in Table 3.3 Towards the CAMImperative languages can be implemented using a stack for storage management. We have seen in theintroduction that this technique is not applicable to functional languages because a non-local variablemay escape from its scope. Since a non-local variable is by de�nition a variable which occurs free5

derived form equivalent formexpressions(e1; e2; : : : ; en�1; en) ((: : : (e1; e2) : : : ; en�1); en)e e1 e2 � � � en (� � � ((e e1) e2) � � � en)�p1 � � � pn ! e �p1 ! (� � � (�pn ! e) � � �)let p1 = e1 ; : : : ; pn = en in e let (p1; : : : ; pn) = (e1; : : : ; en) in eletrec p1 = e1 ; : : : ; pn = en in e letrec (p1; : : : ; pn) = (e1; : : : ; en) in epatterns(p1; p2; : : : ; pn�1; pn) ((: : : (p1; p2) : : : ; pn�1); pn)Table 3: Derived forms of expressionsin an abstraction, we must essentially decide how to deal with free variables. Note: Every variableeventually becomes free as �-abstractions are traversed.The classical approach also employed in the CAM is to maintain a data structure at run-time,the so-called environment, which records the bindings of the free variables. In contrast to a stackan environment is a monotonic data structure: It never shrinks. Nonetheless we have considerablefreedom in representing the environment. It could be represented by a vector or by a list. Each choicehas its pros and cons: Environments-as-lists are easy to extend whereas environments-as-vectorssupport constant time access to variables. We decide for the former: Environments are representedby lists or rather by nested pairs (the FAM uses vectors). For historical reasons pairs are nested inthe left component, i.e., (((); 1); 4) is an example for an environment. At compile-time we maintaina formal image of the environment which tells us how to access variables at run-time. To distinguishrun-time from compile-time environments we use angle brackets for the latter, e.g., hhhi; yi; xi.An environment looks very much like an ordinary value, so why not treat it as such. Applyingthis idea we use the same register to store the environment and the computed value of an expression.The CAM code generated for the expression e in the compile-time environment � (notation: C[[e]] �)always satis�es the following invariant:If the register contains the run-time environment, then after the execution of the code itholds the value of the expression.The CAM code may be interpreted as a mapping from environments to values. Because the envi-ronment is overwritten by a value, we are faced with a problem if the environment is required twiceduring a computation. We need a mechanism for saving and restoring environments. A suitable datastructure for this purpose is a stack. The CAM code generated for an expression satis�es the furtherconstraint:The stack may be used during the execution of the CAM code but afterwards it is in thesame state as before.6These invariants should be kept in mind when the compilation schemes are studied.By now we have introduced all the components of the CAM. Let us summarize: The environmentholds the values of the free variables and is organized as a list. The CAM comprises� a register (for the environment and the computed value),� a stack (for saving and restoring environments), and� a code area.The triple consisting of the register, the stack, and the pointer into the code area constitutes a CAMcon�guration. In the sequel we introduce the most important CAM instructions and show how tocompile the expression (�x! + x y) 4 into CAM code (do not worry about the free variable y).6This is what the warden of a youth hostel continues to tell.6

3.1 Compiling a VariableFor a variable code which accesses the run-time environment is generated. The instruction Acc nfetches the nth component of the environment. The CAM instructions are de�ned via their e�ectson a con�guration. Every row of the following table speci�es a transition (CAM instructions areseparated by \;").register stack code register stack code(v1; v2) S Acc 0 ; C v2 S C(v1; v2) S Acc (n+ 1) ; C v1 S Acc n ; CThe instruction Acc 0 expects the register to contain a pair and replaces it by its second componentleaving the stack unchanged. The \program counter" is moved to the next instruction.In the environment � = hhhi; yi; xi the variables x and y get translated to:C[[x]] � = Acc 0C[[y]] � = Acc 1The argument of Acc coincides with the de Bruijn number of a variable, i.e., the number of �-abstractions between a variable and its binding place.3.2 Compiling a Prede�ned FunctionNullary prede�ned functions or constants may safely ignore the environment.register stack code register stack codev S Quote s(0) ; C s(0) S CThe Quote instruction corresponds to a load immediate operation.C[[4]] � = Quote 4Binary operators expect their �rst argument on top of the stack and their second in the register.This is reminiscent of conventional stack architectures especially if we consider the register as a cachefor the topmost element of the stack. As the environment may be required for both arguments, thestack must be used for intermediate storage. For saving and restoring the environment the instructionsPush and Swap are provided (\:" pre�xes an element to a stack).register stack code register stack codev1 v2 : S + ; C v2 + v1 S Cv S Push ; C v v : S Cv1 v2 : S Swap ; C v2 v1 : S CThe instruction Push copies the contents of the register onto the stack; Swap interchanges the contentsof the register and the topmost element of the stack.C[[+ x y]] � = Push ; C[[x]] � ; Swap ; C[[y]] � ; += Push ; Acc 0 ; Swap ; Acc 1 ; +The initial Push instruction copies the environment onto the stack providing it for the computationof the second summand. The code for the �rst summand destroys the environment mapping it to avalue; Swap restores the environment and simultaneously moves the �rst argument's value onto thestack. After the execution of the second argument's code, the con�guration is such as the binaryoperation \+" expects it to be. 7

3.3 Compiling an AbstractionThough we know that an abstraction denotes a function, it is not quite clear what the computedvalue of an abstraction should be. The answer is very simple: An abstraction evaluates to a frozencomputation waiting to be applied to an argument later on.7 Because an abstraction may contain freevariables it is represented by a pair consisting of� the current environment and� a pointer to the CAM code of the body.This pair (notation: [s : `]) is traditionally called closure. The CAM instruction Cur builds a closure;Return is used to return from a subroutine call.register stack code register stack codev S Cur ` ; C [v : `] S Cv C : S Return ; C 0 v S CClosure building is a very cheap operation. This is the main reason why the CAM is well suitedfor the execution of highly functional programs where closure building occurs very frequently. Let�0 = hhi; yi, thenC[[�x! + x y]] �0 = Cur `� ` : C[[+ x y]] h�0; xi ; Return �= Cur `� ` : Push ; Acc 0 ; Swap ; Acc 1 ; + ; Return �The square brackets indicate that the generated code is not consecutive. The bracketed code hasrather the status of a subroutine, which is addressed via the label put at the beginning. The body ofthe abstraction must be compiled in an extended environment because the bound variable x appearsfree in the body.The more abstractions are processed the deeper the nesting of the environment becomes. Theaccess time grows linear to the depth of the environment. But since in practice the nesting of de�nitionsis rather small, little run-time penalty is caused.3.4 Compiling an ApplicationThe application is treated like a binary operator. The instruction App melts a frozen computation andperforms an indirect jump to the body of the abstraction. The code sequence of the body is executedin the environment which is stored in the closure extended with the argument's value.register stack code register stack code[v1 : `] v2 : S App ; C (v1; v2) C : S C`The notation C` denotes the subroutine labeled with `.C[[(�x! + x y) 4]] �0 = Push ; C[[4]] �0 ; Swap ; C[[�x! + x y]] �0 ; App= Push ; Quote 4 ; Swap ; Cur ` ; App� ` : Push ; Acc 0 ; Swap ; Acc 1 ; + ; Return �Note: The function and the argument are processed in reversed order. This compilation schemedeviates from the original description of the CAM but it facilitates code optimizations (cf. Section6.4).7That is to say, an abstraction is not evaluated at all. This fact is employed in some SML implementations of lazylists. Functions with a dummy argument �() ! e serve as means to freeze a computation. A frozen computation ismelted by applying it to the dummy value (). 8

3.5 Execution of the CodeBecause our running example contains a free variable, we must supply an non-empty initial environ-ment, e.g., v = ((); 1). The consecutively numbered code and the execution of this code is displayed inTable 4. The empty stack is denoted by ", the operator \:" pre�xes an element to a stack. Fortunatelythe expected value of the expression coincides with the computed one.CAM con�guration CAM coderegister stack codev " `1 `1 : Pushv v : " `2 `2 : Quote 44 v : " `3 `3 : Swapv 4 : " `4 `4 : Cur `7[v : `7] 4 : " `5 `5 : App(v; 4) `6 : " `7 `6 : Stop(v; 4) (v; 4) : `6 : " `8 `7 : Push4 (v; 4) : `6 : " `9 `8 : Acc 0(v; 4) 4 : `6 : " `10 `9 : Swap1 4 : `6 : " `11 `10 : Acc 15 `6 : " `12 `11 : +5 " `6 `12 : ReturnTable 4: A sample execution4 The Core of the Machine4.1 More Details of the CAMSo far we have been rather vague about the values the register and the stack hold. A precise charac-terization of these values is displayed in Tables 5 and 6. The domain lab contains labels which aredomain comment meta variableslab labels `val values venv � environments �ins CAM instructions Icam CAM code CTable 5: Syntactic domains for CAM values, formal environments, and CAM codeused to address CAM code sequences. (Intermediate) results of computations make up the domainval. Some of its constituents (constants, pairs, and closures) have already been used in the previousexample. Tagged values are the semantic counterpart of algebraic datatypes. The �rst component ofa tagged value called tag�eld indicates which constructor was used; the second component containsthe argument of the constructor. The expression (of type sequence)cons (3; cons (2; cons (1; nil ())))is represented by:(cons : (3; (cons : (2; (cons : (1; (nil : ())))))))9

val ::= sys(0) constantj () empty tuplej (val;val) pairj (con : val) tagged valuej [val : lab] closurej [lab] closure of a combinatorenv � ::= hi empty environmentj henv �;pati constructed environmentj henv �;pat 7! �i annotated environmentcam ::= ins single instructionj cam ; cam sequencej lab : cam labeled sequenceTable 6: Abstract syntax of CAM values, formal environments, and CAM codeFunctions not containing free variables are represented simply by a pointer into the code, i.e., [`] isa closure with an empty environment. Note: In principle there are only two kinds of values, namelyscalars and pairs. The domain env � comprises formal or compile-time environments parameterizedwith the domain � of annotations. The domain ins contains CAM instructions (cf. Table 7); thedomain cam consists of sequences of CAM instructions.As shown in Table 7, the CAM instructions can be roughly divided into four groups. This clas-si�cation is not always as straightforward as the table suggests but it may help in memorizing thedi�erent instructions. To access values stored in the environment, access instructions are used. Aquick glance shows that in principle two of them would su�ce, namely Fst and Snd, because Acc andRest can be de�ned in terms of them.Acc n := Fstn ; SndRest n := FstnThe stack operations Push and Swap realize the saving mechanism. The register operations com-prise commands which change the contents of the register possibly using values on the stack. Thecontrol operations a�ect the
ow of control. The Skip instruction|sometimes called NOP|is onlyincluded because it simpli�es the presentation of the compilation schemes.4.2 Compiling an ExpressionWe present the translation of a source expression into a sequence of CAM instructions using a set ofcompilation schemes. The di�erent schemes, E , P, C, T , and R, are described in Tables 8 and 9. Weconsider each of them in turn.4.2.1 Compiling pure �-expressionsBecause patterns may occur in formal parameter positions, environments are LISP-like binary treesrather than lists. The body of the multiple abstraction�(a; b)! �(c; d)! eis compiled in the formal environment:� = hhhi; (a; b)i; (c; d)iThe pictorial representation of the environment displayed in �gure 1 shows its tree-like structure.The code generation for a variable boils down to a non-deterministic search in the formal en-vironment. The sequence of access instructions|Acc n followed by a sequence of Fst and Snd10

register stack code register stack codeaccess instructions(v1; v2) S Fst ; C v1 S C(v1; v2) S Snd ; C v2 S C(v1; v2) S Acc 0 ; C v2 S C(v1; v2) S Acc (n+ 1) ; C v1 S Acc n ; Cv S Rest 0 ; C v S C(v1; v2) S Rest (n+ 1) ; C v1 S Rest n ; Cstack operationsv S Push ; C v v : S Cv1 v2 : S Swap ; C v2 v1 : S Cregister operationsv S Quote s(0) ; C s(0) S Cv S Clear ; C () S Cv S Prim s(1) ; C s(1)(v) S Cv1 v2 : S Prim s(2) ; C s(2)(v2; v1) S Cv1 v2 : S Cons ; C (v2; v1) S Cv S Cur ` ; C [v : `] S Cv S Pack c ; C (c : v) S Ccontrol instructionsv S Skip ; C v S Cv S Stop ; C all systems stop[v1 : `] v2 : S App ; C (v1; v2) C : S C`v C 0 : S Return ; C v S C 0v S Call ` ; C v C : S C`true v : S Gotofalse ` ; C v S Cfalse v : S Gotofalse ` ; C v S C`(ci : v1) v2 : S Switch [c1 : `

1

; : : : ; cn : `n] ; C (v2; v1) S C`iv S Goto ` ; C v S C`Table 7: The instructions of the CAM
thi t��� t@@@ta ��� tb@@@t������ HHHHHHttc ��� td@@@Figure 1: Graphical representation of the environment hhhi; (a; b)i; (c; d)i11

E [[x]] � n generates code which accesses the variable x in the environment � at nesting level n.Before the execution of the code the register contains an instance of the environment, afterwardsit holds the value of x.E : var! env lab! nat! camE[[x]] hi n = failE[[x]] h�; pi n = (Acc n ; P[[x]] p) ? E [[x]] � (n+ 1)E[[x]] h�; p 7! `i n = (Rest n ; Call ` ; P[[x]] p) ? E [[x]] � nP[[x]] p generates code which accesses the variable x in the pattern p. Before the execution of thecode the register contains an instance of the pattern, afterwards it holds the value of x.P : var! pat! camP[[x]] () = failP[[x]] y = Skip if x = y= fail otherwiseP[[x]] (p1; p2) = (Fst ; P[[x]] p1) ? (Snd ; P[[x]] p2)P[[x]] (y as p) = Skip if x = y= P [[x]] p otherwiseTable 8: The E and P compilation schemesinstructions|mirrors the access path to the variable. The non-deterministic search is realized viathe (meta-) operations \fail" and \?". If the search is successful, a sequence of CAM instructions isreturned, otherwise the special value \fail". The binary operation \?" returns the value of its �rstargument if it is not equal to \fail", otherwise the value of its second argument. Thus a sequentialleft to right search can be implemented with \?".The compilation scheme E [[x]] � n compiles the access of x in the environment �. The parametern records the current depth of the environment. The scheme P[[x]] p compiles the access within thepattern p. For the above environment we get:C[[c]] � = E [[c]] �(0)= Acc 0 ; P[[c]] (c; d)= Acc 0 ; FstC[[b]] � = E [[b]] � 0= E [[b]] hhi; (a; b)i 1= Acc 1 ; P[[b]] (a; b)= Acc 1 ; SndWe postpone the discussion of the third equation in the de�nition of E until Section 4.2.4.Since we can view function application and construction of pairs as special binary operations, theircompilation is very similar to the treatment of prede�ned binary functions. We use the binary schemeT [[e1; e2]] � to generate code which pushes the value of e1 onto the stack and stores the value of e2 intothe register. Remember that function application is processed in reversed order. Thus the argumentsof a curried function are evaluated from right to left.C[[f e1 e2 e3]] � = Push ; C[[e3]] � ; Swap ; Push ; C[[e2]] � ; Swap ;Push ; C[[e1]] � ; Swap ; C[[f]] � ; App ; App ; AppRearranging the order of evaluation poses no problems since we are only concerned with languageswhich adhere to the principle of referential transparency.The compilation scheme R generates code for a subroutine, i.e., the \normal" code sequencefollowed by a Return instruction. In Section 6.6 we will de�ne a more sophisticated variant of this12

M[[e]] is the CAM code for the closed expression e.M : exp! camM[[e]] = C[[e]] hi ; StopC[[e]] � compiles code which evaluates the expression e in the environment �. Before the executionof the code the register contains an instance of the environment, afterwards it holds the value of e.C : exp! env! camC[[x]] � = E [[x]] � 0C[[s(0)]] � = Quote s(0)C[[s(1) e]] � = C[[e]] � ; Prim s(1)C[[s(2) e1 e2]] � = T [[e1; e2]] � ; Prim s(2)C[[()]] � = ClearC[[(e1; e2)]] � = T [[e1; e2]] � ; ConsC[[c e]] � = C[[e]] � ; Pack cC[[e1 e2]] � = T [[e2; e1]] � ; AppC[[�p! e]] � = Cur `� ` : R[[e]] h�; pi �C[[if e1 then e2 else e3]] � = Push ; C[[e1]] � ; Gotofalse `1 ; C[[e2]] � ; Goto `2 ;`1 : C[[e3]] � ; `2 : SkipC[[case e of c1 p1 ! e1 j � � � j cn pn ! en]] �= Push ; C[[e]] � ; Switch [c1 : `1; : : : ; cn : `n] ;`1 : C[[e1]] h�; p1i ; Goto `...̀n : C[[en]] h�; pni ;` : SkipC[[let p1 = e1 in e]] � = Push ; C[[e1]] � ; Cons ; C[[e]] h�; p1iC[[letrec p1 = e1 in e]] � = C[[e]] h�; p1 7! `i� ` : R[[e1]] h�; p1 7! `i �T [[e1; e2]] � compiles code which pushes the value of e1 onto the stack and stores the value of e2into the register. T : exp� exp! env! camT [[e1; e2]] � = Push ; C[[e1]] � ; Swap ; C[[e2]] �R[[e]] � is|at least for the moment|the code produced by C[[e]] � followed by a Return instruction.R : exp! env! camR[[e]] � = C[[e]] � ; ReturnTable 9: The M, C, T , and R compilation schemes13

scheme, which has the property that each execution of the code ends in a Return instruction. The Rscheme is employed to compile the body of an abstraction. It should be clear that for each invocationof a compilation rule fresh labels must be used. The CAM code for some simple source expressions isshown below (the CAM code of an expression is arranged column-wise from left to right).�x! + 1 x �f x! f (f x) �(f; x)! f (f x)Cur ` Cur `1 Acc 1 Cur ` FstStop Stop App Stop App` : Push `1 : Cur `2 Swap ` : Push SwapQuote 1 Return Acc 1 Push Acc 0Swap `2 : Push App Acc 0 FstAcc 0 Push Return Snd AppPrim + Acc 0 Swap ReturnReturn Swap Acc 0The example in the �rst column demonstrates how to translate partially parameterized, prede�nedfunctions. Multiple abstractions result in sequences of Cur instructions (second column); the use ofpairs in abstractions complicates the access of variables (third column). It should be noted, however,that the access time is the same regardless to the use of multiple abstractions or pairs.4.2.2 Compiling an alternativeConditional and unconditional jumps are used to implement the if-then-else-construct. The com-pilation scheme for the alternative bears a strong resemblance to code schemes for the if-statementin imperative languages.�n! if � n 0 then n else � nCur `1 Acc 0 Gotofalse `2 Prim �Stop Swap Acc 0 `3 : Return`1 : Push Quote 0 Goto `3Push Prim � `2 : Acc 0Note: Lazy variants of the logical conjunction and disjunction can also be implemented via conditionaljumps (short-circuited evaluation).e1 ^ e2 := if e1 then e2 else falsee1 _ e2 := if e1 then true else e24.2.3 Compiling algebraic datatypesWe have already seen how elements of an algebraic datatype are represented at run-time. The tag�eldis set with the instruction Pack and is discriminated via the Switch instruction, which behaves likea multi-way jump. The compilation scheme of the case-expression generalizes the rule for the if-then-else-construct: There are in general more alternatives and each alternative includes a variablebinding mechanism (for the constructor's argument).�s! case s of nil ()! nil () j cons (c; t)! tCur `1 Acc 0 Pack nil SndStop Switch [nil : `2; cons : `3] Goto `4 `4 : Return`1 : Push `2 : Clear `3 : Acc 04.2.4 Compiling a local de�nitionA non-recursive local de�nition can be understood as a combination of functional abstraction andapplication, i.e., the expressionlet p1 = e1 in e2 14

is equivalent to the �-redex(�p1 ! e2) e1The equivalence suggests a �rst compilation rule for the let-construct.C[[let p1 = e1 in e2]] � = Push ; C[[e1]] � ; Swap ; Cur ` ; App� ` : C[[e2]] h�; p1i ; Return �The generated code sequence can be easily improved if we take a closer look at the operational behaviorof the code. When the body of the abstraction is executed, the register contains an instance of theformal environment h�; p1i. The indirect call of the subroutine is obviously unnecessary, so we contentourselves with the construction of the environment.C[[let p1 = e1 in e2]] � = Push ; C[[e1]] � ; Cons ; C[[e2]] h�; p1iThis is already an example for a simple code transformation, a topic we will pursue further in Section6. It should be noted that local de�nitions are evaluated whether they are needed or not.let a = 5 in � a aPush Cons Acc 0 Acc 0Quote 5 Push Swap Prim �The most di�cult thing to explain is the compilation of recursive local de�nitions. A recursivede�nition can be viewed as a �nite description of an in�nite expression. The generated CAM codehas the same
avor: It is in principle in�nite but is represented �nitely using labels and references.The de�ning expression of the letrec-construct is compiled as a subroutine marked with label `. Theassociation between the label ` and the de�ned pattern p is recorded in the environment (notation:h�; p 7! `i). The use of the extended environment for the translation of both expressions re
ects thescoping rules.At run-time the generated subroutine is addressed via an ordinary subroutine call. Prior to thecall, the proper environment must be restored. Because the environment only grows, we must simplyforget the entries which have been added since the code was entered. This is instrumented by theRest n instruction, which is equal to a sequence of n Fst instructions. An example for the compilationof a recursive de�nition is given below.letrec even = �n! if = n 0 then trueelse : even (dec n)in even 56Push `1 : Cur `2 Prim = SwapQuote 56 Return Gotofalse `3 Rest 1Swap `2 : Push Quote true Call `1Rest 0 Push Goto `4 AppCall `1 Acc 0 `3 : Push Prim :App Swap Acc 0 `4 : ReturnStop Quote 0 Prim decThe �rst call to the de�ning expression is executed in the initial environment (Rest 0 is equal toSkip). For the recursive call, which is situated in the body of the abstraction, the environment mustbe reduced by one entry.In contrast to the let-construct, which is evaluated in a call by value fashion, the letrec-constructrealizes a call by name regime. That is to say, the de�ning expression is evaluated as many timesas the de�ned variables are accessed. The letrec-construct should be used whenever the de�ningexpression is an abstraction, because an abstraction is never evaluated|there is no loss in time|andthe code is addressed directly not using the environment|there is a gain in space e�ciency.The code generated for multiple recursive de�nitions like letrec p1 = e1 ; : : : ; pn = en in e israther clumsy. One can do better by directly addressing the functions instead of building pairs andsubsequently accessing the components. From now on we will use the generalized scheme shown inTable 10. 15

C[[letrec p1 = e1 ; : : : ; pn = en in e]] �= C[[e]] �0264 `1 : R[[e1]] �0...̀n : R[[en]] �0 375where�0 = h: : : h�; p1 7! `1i : : : ; pn 7! `niTable 10: The C scheme revisited for multiple recursive de�nitions5 r-Closed ExpressionsThe compilation schemes which we have introduced in the last section are conceptionally very simplebut they are of course too simple-minded to be used in a real implementation. In the following wewill introduce several techniques which aim at improving the quality of the generated code (classicallycalled code optimizations).A �rst improvement concerns the compilation of subexpressions which do not access the environ-ment. Consider the following example.C[[+ x 3]] � = Push ; C[[x]] � ; Swap ; Quote 3 ; Prim +The Push instruction copies the initial environment onto the stack to make it available for the evalu-ation of the second summand. But once the environment has been restored, it is overwritten by theQuote instruction. The saving of the environment is obviously unnecessary and we can improve thecode as follows.C[[+ x 3]] � = C[[x]] � ; Move ; Quote 3 ; Prim +The Move instruction moves the contents of the register onto the stack. The example shows that theimproved translation essentially saves Push instructions. The elimination of some Pushes may notseem worth the e�ort but it should be kept in mind that the generated CAM code is usually furtherexpanded into real machine code. If the target machine belongs to the von Neumann class, thenthe Push instruction corresponds to an allocation of a register or a memory cell, an operation whichshould occur as seldom as possible. The innocent looking Push instruction has another interestingimplication. As Push is the only operation which duplicates a value, it necessitates the implementationof some form of garbage collection.For those readers familiar with graph-based implementation techniques (for non-strict functionallanguages), a comparison between SK combinator code and CAM code might be helpful. With thehelp of the combinators S, K, and I it is possible to simulate a �-reduction, i.e., the substitution ofan argument for a bound variable. The combinator S moves or rather copies the argument to theleaves of the expression8 in the body, I accepts the argument, and K rejects it. The procedure isreminiscent of the CAM's saving mechanism. The instructions Push and Swap move the environmentto the leaves, Acc uses the environment, and Quote rejects it. The only di�erence lies in the numberof arguments which are moved: The SK machine takes only one argument at a time, the CAM takesall arguments simultaneously.A �rst improvement of the combinator code introduces the combinators B and C; they are usedto move the argument only to the positions where it is needed. The improvement we are concernedwith in this section aims at the same purpose. The e�ect on the code size is of course not equallyimpressive.8We appeal to the abstract syntax tree of an expression rather than to its linear representation.16

5.1 r-ClosednessA closed expression, i.e., an expression not containing free variables, can be computed without anyreference to the environment. Since letrec-bound variables are not addressed via the environment,we need the more technical notion of r-closedness.An expression is called r-closed if the environment is not necessary9 for its computation.The following expression exempli�es the di�erence between closed and r-closed terms.letrec twice = �f x! f (f x) ;inc = �n! + 1 nin twice twice inc 0The expression twice twice inc 0 and each of its subexpressions are (in the given context) r-closed butnot closed because the letrec-bound variables twice and inc are compiled to simple subroutine callsfor the execution of which the initial environment is unnecessary. It should be noted that the notionof r-closedness is intentionally de�ned very operationally adapted to the improvements we have inmind.Furthermore, observe that the improved compilation of r-closed expressions may bene�t fromoptimizations which aim at using registers or stack positions instead of the environment, i.e., thefewer variables are held in the environment the more the technique becomes applicable.Let us turn to the question of determining whether an expression satis�es the property of r-closedness or not. In analogy to the notion of closed expressions, we call an expression r-closed if itdoes not contain r-free variables|this second de�nition is consistent with the one given earlier.A variable x occurs r-free in the expression e if x is held in in the environment and if it isnecessary for the computation of e.Note that a variable need not be part of an expression to occur r-free in the expression. In thesubexpression � y y of�x! letrec y = + 1 x in � y ythe variable x occurs r-free (imagine that the occurrences of y are in-line expanded to + 1 x). Itshould be clear by now that the notion of r-closedness is context dependent, e.g., in the context of�x! let y = + 1 x in � y yonly the variable y occurs r-free in � y y. We obtain the set of r-free variables from the set of freevariables by� subtracting the letrec-bound variables and by� adding for each subtracted letrec-bound variable the r-free variables of the de�ning right handside.This procedure precisely re
ects the operational behavior of the CAM code. A formal de�nition ofr-closedness can be found in Table 11 (IPS denotes the powerset of S). The function r-free[[e]] �computes the r-free variables of the expression e relative to the environment �. The environmentassociates letrec-bound patterns with the r-free variables of their corresponding right hand sides.By means of the environment we can distinguish between letrec-bound variables (second equation)and �-, let-, or case-bound variables (�rst equation).The last equation of r-free needs a bit of explanation. Due to the scoping rules the extendedenvironment must already be employed in its de�nition. Consequently the new environment �0 is9The word \necessary" should not be taken too literally. The body of the abstraction�n! if true then 0 else nis not r-closed although the else branch is never entered.17

vars[[p]] denotes the set of variables occurring in p.vars : pat! IP varvars[[x]] = fxgvars[[()]] = ;vars[[(p1; p2)]] = vars[[p1]][vars[[p2]]vars[[x as p]] = fxg [vars[[p]]r-free[[e]] � computes the set of r-free variables occurring in e relative to the environment �.r-free : exp! env (IP var)! IP varr-free[[x]] h�; pi = fxg if x 2 vars[[p]]= r-free[[x]] � otherwiser-free[[x]] h�; p 7! V i = V if x 2 vars[[p]]= r-free[[x]] � otherwiser-free[[s(n) e1 � � � en]] � = r-free[[e1]] � [� � � [r-free[[en]] �r-free[[()]] � = ;r-free[[(e1; e2)]] � = r-free[[e1]] � [r-free[[e2]] �r-free[[c e]] � = r-free[[e]] �r-free[[e1 e2]] � = r-free[[e1]] � [r-free[[e2]] �r-free[[�p! e]] � = r-free[[e]] h�; pi n vars[[p]]r-free[[if e1 then e2 else e3]] �= r-free[[e1]] � [r-free[[e2]] � [r-free[[e3]] �r-free[[case e of c1 p1 ! e1 j � � � j cn pn ! en]] �= r-free[[e]] � [r-free[[e1]] h�; p1i n vars[[p1]][� � �[r-free[[en]] h�; pni n vars[[pn]]r-free[[let p1 = e1 in e]] � = (r-free[[e]] h�; p1i n vars[[p1]]) [r-free[[e1]] �r-free[[letrec p1 = e1 ; : : : ; pn = en in e]] �= r-free[[e]] �0where�0 = h: : : h�; p1 7! r-free[[e1]] �0i : : : ; pn 7! r-free[[en]] �0ir-closed[[e]] � de�nes the property of r-closedness relative to the environment �.r-closed : exp! env (IP var)! boolr-closed[[e]] � = r-free[[e]] � = ;Table 11: The computation of r-free variables
18

de�ned with the help of a recursive equation and denotes the least �xed point of the following chainof environments.�0 = h: : : h�; p1 7! ;i : : : ; pn 7! ;i...�n+1 = h: : : h�; p1 7! r-free[[e1]] �ni : : : ; pn 7! r-free[[en]] �niSince r-free is monotone with respect to the environment and the domain under consideration is �nite(an expression contains only a �nite number of variables), a least �xed point always exists and is �niteitself (the number of iterations is equal to the longest acyclic path in the static calling graph of theletrec-expression). For the expression e withe = �a b! letrec f = : : :a : : : g : : : ;g = : : : h : : : ;h = : : : b : : : g : : :in : : :we obtain the following chain (r-free[[e]] hi):�0 = hhhhi; f 7! ;i; g 7! ;i; h 7! ;i�1 = hhhhi; f 7! fagi; g 7! ;i; h 7! fbgi�2 = hhhhi; f 7! fagi; g 7! fbgi; h 7! fbgi�3 = hhhhi; f 7! fa; bgi; g 7! fbgi; h 7! fbgi�4 = �3After the third iteration the �xed point is reached.The expensive determination of the �xed point can be simpli�ed if the letrec-de�nition satis�esthe following property: The equations are mutually recursive, i.e., each de�ning expression dependson every remaining de�nition (the static calling graph consists of a single maximal strong component).The source code transformation which establishes this property is called dependency analysis. If thesource language has a polymorphic type system (�a la Hindley and Milner [22]), the analysis must becarried out anyway prior to the type inference process. The above example is transformed to thenested expression:e = �a b! letrec g = : : : h : : : ;h = : : : b : : : g : : : inletrec f = : : :a : : : g : : :in : : :For expressions of this kind the last equation of r-free can be simpli�ed as indicated in Table 12. Ther-free[[letrec p1 = e1 ; : : : ; pn = en in e]] �= r-free[[e]] �1where�0 = h: : : h�; p1 = ;i : : : ; pn = ;iV = r-free[[e1]] �0 [� � � [r-free[[en]] �0�1 = h: : : h�; p1 = V i : : : ; pn = V iTable 12: The de�nition of r-free revisited for truly recursive de�nitionsmodi�ed de�nition re
ects the fact that the de�ning expressions are truly recursive.19

5.2 Compiling an ExpressionWe have seen that the property of r-closedness depends on the context. In the remainder we mark theparts of an expression that are r-closed with a star, i.e., e� identi�es the subexpression e as r-closed(relative to the given context).The new instructions which are required for the compilation of r-closed expressions are displayedin table 13. Table 14 shows the modi�ed compilation schemes. Again we will consider each of themregister stack code register stack codestack operationsv S Move ; C () v : S Cv1 v2 : S Pop ; C v2 S Cregister operationsv1 v2 : S Snoc ; C (v1; v2) S Cv S Comb ` ; C [`] S Ccontrol instructions[`] v : S App ; C v C : S C`true S Gotoifalse ` ; C true S Cfalse S Gotoifalse ` ; C false S C`(ci : v) S Switchi [c1 : `1; : : : ; cn : `n] ; C v S C`iTable 13: Some more instructionsin turn. E�[[x]] hi = failE�[[x]] h�; pi = E�[[x]] �E�[[x]] h�; p 7! `i = (Call ` ; P[[x]] p) ? E�[[x]] �E [[x]] h��; pi n = Rest n ; P[[x]] pC[[x�]] � = E�[[x]] �C[[e�1 e2]] � = C[[e2]] � ; Move ; C[[e1]] �� ; AppC[[e1 e�2]] � = Move ; C[[e2]] �� ; Swap ; C[[e1]] � ; AppC[[(�p! e)�]] � = Comb `� ` : R[[e]] h��; pi �C[[if e1 then e�2 else e�3]] �= C[[e1]] � ; Gotoifalse `1 ; C[[e2]] �� ; Goto `2 ;`1 : C[[e3]] �� ; `2 : SkipC[[case e of (c1 p1 ! e1)� j � � � j (cn pn ! en)�]] �= C[[e]] � ; Switchi [c1 : `1; : : : ; cn : `n] ;`1 : C[[e1]] h��; p1i ; Goto `...̀n : C[[en]] h��; pni ;` : SkipC[[let p1 = e1 in e]] � = C[[e1]] � ; C[[e]] h��; p1i if �p1 ! e is r-closedC[[let p1 = e�1 in e]] � = Move ; C[[e1]] �� ; Cons ; C[[e]] h�; p1iT [[e1; e�2]] � = C[[e1]] � ; Move ; C[[e2]] ��T [[e�1; e2]] � = C[[e2]] � ; Move ; C[[e1]] �� ; SwapTable 14: The E�, E , C, and T compilation schemes for r-closed expressions20

5.2.1 Compiling pure �-expressionsAn r-closed expression does not make use of the environment at run-time. Consequently we do notneed the environment at compile-time with the exception of letrec-caused-entries (p 7! `). Theannotation �� indicates that only entries of the form p 7! ` are valid in �. The formal environmenth��; pi, which is called simple environment, represents the run-time environment consisting only ofan instance of p. The CAM code generated for the expression e in the restricted environment ��(notation: C[[e]] ��) satis�es the following invariant.The register may contain an arbitrary value. After the execution of the code it holds thevalue of the expression.The compilation scheme C[[e]] h��; pi has a special reading as well.If the register contains an instance of the pattern, then after the execution of the code itholds the value of the expression.An r-closed variable must be letrec-bound. Furthermore, the de�ning expression of the variabledoes not contain any external references. The simpli�ed compilation scheme E� takes these facts intoaccount: Only entries of the form p 7! ` are examined and the subroutine is called directly withoutprior restoration of the environment. The original E scheme must be extended for the case of simpleenvironments. The access path for a variable in p is shortened by a Snd instruction (Rest n is usedinstead of Acc n).The T scheme distinguishes between two situations: The second argument is r-closed (or both) oronly the �rst argument is r-closed. In the former case the �rst expression is compiled in the initialenvironment, the value is moved from the register onto the stack and the second expression is compiledin an unde�ned environment. In the latter case the order of the evaluation is reversed and the reversalis compensated by a Swap instruction.The Move instruction resembles a Push instruction with the di�erence that Push duplicates a valuewhereas Move actually moves a value. After a Push instruction the register is \alive", after a Moveinstruction it is \dead". The distinction is important if the CAM code is further expanded to machinecode or for compile-time garbage collection.Function application is treated di�erently from pairs and prede�ned functions because we do notwant function and argument to be reordered (in view of further improvements in Section 6.4).An r-closed abstraction, classically called combinator, evaluates to a very simple closure (notation:[`]), which contains only a reference to the CAM code of the body. This closure is created by theComb instruction. The App instruction must distinguish between a normal and a simple closure. In thelatter case the App instruction boils down to an indirect jump. This distinction facilitates further codeimprovements as described in Section 6.4 but complicates the expansion of CAM code into machinecode. The examples of Section 4.2.1 get compiled to the following code (we omit Skip and Rest 0).�x! + 1 x �f x! f (f x) �(f; x)! f (f x)Comb ` Comb `1 Swap Comb ` AppStop Stop Rest 1 Stop Swap` : Move `1 : Cur `2 App ` : Push FstQuote 1 Return Swap Push AppSwap `2 : Push Rest 1 Snd ReturnPrim + Push App SwapReturn Acc 0 Return FstNote that if we bear in mind that Acc 0 is equal to Snd and Rest 1 is equal to Fst, the code generatedfor the function bodies in the second and third example is identical.5.2.2 Compiling an alternativeIf neither of the branches needs the environment, the initial Push instruction can be omitted. TheGotoifalse (branch immediate) instruction acts like a Gotofalsewithout restoring the environment.21

The Heaviside function exempli�es the new compilation scheme.�n! if � n 0 then 0 else 1Comb `1 Quote 0 Quote 0 `3 : ReturnStop Prim � Goto `3`1 : Move Gotoifalse `2 `2 : Quote 15.2.3 Compiling algebraic datatypesIn analogy to the if-construct we can save a Push instruction if neither of the branches contains otherreferences than to the arguments of the corresponding constructor. The example of 4.2.2 bene�ts fromthis improvement.�s! case s of nil ()! nil () j cons (c; t)! tComb `1 `2 : Quote () `3 : SndStop Pack nil `4 : Return`1 : Switchi [nil : `2; cons : `3] Goto `45.2.4 Compiling a local de�nitionThe CAM code for the expression let p1 = e1 in e can be drastically simpli�ed if e contains onlyreferences to variables in p1 by just sequencing the code fragments of e1 and e. The �rst example ofSection 4.2.4 is a candidate for this improvement.let a = 5 in � a aQuote 5 SwapPush Prim �As a �nal example, we give the improved code for the even function of Section 4.2.4.letrec even = �n! if = n 0 then trueelse : even (dec n)in even 56Quote 56 `1 : Comb `2 Prim = MoveMove Return Gotofalse `3 Call `1Call `1 `2 : Push Quote true AppApp Move Goto `4 Prim :Stop Quote 0 `3 : Prim dec `4 : Return6 Peephole OptimizationThe purpose of this section is to show how the generated CAM code can be further improved. Thetechnique we employ is a very simple one called peephole optimization and works as follows: Weexamine a short sequence of the code and try to replace it by an equivalent sequence which is eithershorter or faster. This process is repeated until no more improvements are applicable. Typically oneimprovement spawns opportunities for additional improvements.The improvements with the exception of last call optimization are already described elsewhere[28] but they are tightly coupled with the compilation process in the cited paper. We hope that aseparation of the phases (code generation and optimization) helps towards a better understanding ofthe topic. Note that most of the optimizations are only applicable because we reversed the order inwhich functions and arguments are compiled. 22

6.1 Replacement SystemsBefore we look at the di�erent sources of improvements, we would like to give a short account ofthe theoretical background. Peephole optimizations can be viewed as an instance of what we call areplacement system.Replacement systems are similar to string rewriting systems [9] and Markov algorithms [25]. For-mally, a replacement system is a pair (�; R), where � is an alphabet and P � �� � �� is a set ofordered pairs of words over �. The elements of R are called optimization rules and are denoted by�! �. We assume that the optimization rules are given in a linear order.�1 ! �1; : : : ; �n ! �nNote that since we want to view a single CAM instruction as a letter of the alphabet, we do notdemand the alphabet to be �nite (of course it must be decidable). Consequently the set of rulesneed not be �nite as well (albeit given a word � we must be able to determine e�ectively whether Rcontains a rule of the form �! �).A replacement system translates a word u into a word v. At each step of the replacement processthe leftmost subword which matches a left hand side is replaced by the corresponding right handside. The rules are tried in the order given. The process terminates if none of the rules is applicable.Formally, the relation u) v (u yields directly v) holds i�1. there is a rule �i ! �i 2 R and there are words u1 and u2 such that u = u1�iu2 and v = u1�iu2and2. there is no rule �j ! �j 2 R such that there are words v1 and v2 with u = v1�jv2 andjv1j < ju1j _ (jv1j = ju1j ^ j < i).The second condition implies that the leftmost occurrence of the left hand side in u must be re-placed. As an immediate consequence of the de�nition, there is at most one word v with the propertyu)� v ^:9w v) w. If there is no such word, the replacement system loops.In contrast to string rewriting systems replacement systems are deterministic. The former mustsatisfy non-trivial properties like con
uence to guarantee that the �nal outcome is determined. Markovalgorithms �rst impose an order on the rules and then on the position of the left hand sides in thestring, whereas the situation is reversed with replacement systems.A na��ve implementation of a replacement system would repeatedly scan a given word from leftto right looking for instances of left hand sides. Of course there is a more e�cient way. After areplacement has taken place, we may in some cases safely ignore the left context in search of the nextreplacement. To be more precise, letu1�u2) u1�u2be the last step. The position where the next search may safely start is given by the current position(�rst letter of �) plus an o�set k. The o�set k depends only on the last rule which was applied andcan be determined in advance (the de�nition actually underestimates the possible o�set).k = min(f�jw1j j 9
 ! � 2 R 9w1; w2; w4 2 ��with w1�w2 =
w4 and jw1j < j
j g[f jw3j j 9
 ! � 2 R 9w2; w3; w4 2 ��with �w2 = w3
w4 and jw3j < j�j g[fj�jg)The o�set is negative if there is a left hand side
 with which � overlaps from the right (there mustbe an overlap, otherwise � was not the leftmost occurrence of a left hand side in the preceding step).In the worst case, k is equal to the length of the longest left hand side minus 1. If there is no suchoverlap but an overlap from the left, the o�set is positive but smaller than j�j. If the right hand side� has nothing in common with the left hand sides, we may safely start the search at the �rst letter ofu2. Since the optimization rules we will introduce in the subsequent sections consider at most twoinstructions at a time, the o�set k has a lower bound of �1.23

6.2 Converse OperationsAlgebraic properties of prede�ned operations can be used to improve the code. Let us take a look atthe T scheme. If the �rst argument is r-closed but not the second, the arguments are compiled inreversed order. The reversal is compensated by a trailing Swap instruction. This instruction is clearlyunnecessary if the subsequent operation is commutative.C[[+ 3 x]] � = C[[x]] � ; Move ; Quote 3 ; Swap ; Prim += C[[x]] � ; Move ; Quote 3 ; Prim +Many operations possess a simple converse operation (fc is called the converse operations of f i�f(x1; x2) = fc(x2; x1)), which can be used instead of the sequence Swap ; Prim s(2). The converseoperations of some primitives are displayed below with sub(m;n) = n�m and div(m;n) = n=m.s(2) + � � = < � = � > ^ _sc(2) + sub � div > � = � < ^ _Consequently we get the following optimization rules.code improved code o�setSwap ; Cons Snoc �1Swap ; Snoc Cons �1Swap ; Prim s(2) Prim sc(2) �1Attention must be paid not to modify parts marked with a label. It is not safe to replace Swap ; ` : Consby ` : Snoc.6.3 Access InstructionsThe optimization rules presented in this section are mainly of cosmetic nature and could be builtdirectly into the compilation schemes albeit with a loss of clarity. The improvements only a�ect thesize of the CAM code but have little or no impact on the run-time behavior.The Skip instruction and the Rest 0 instructions (camou
aged Skip) are clearly super
uous. Wehave already omitted them in the preceding sections. The Rest 1 and Acc 0 instructions have simplervariants Fst and Snd which can be used instead.code improved code o�setSkip �1Rest 0 �1Rest 1 Fst �1Acc 0 Snd �1Tuples are represented by nested pairs. The structure of the nesting was chosen carefully so thatthe instructions Acc and Rest can be used to access components of a tuple.C[[�(x1; x2; x3; x4; x5)! x1]] � = Comb `� ` : Fst ; Fst ; Fst ; Fst ; Return �C[[�(x1; x2; x3; x4; x5)! x3]] � = Comb `� ` : Fst ; Fst ; Snd ; Return �The sequence of access instructions can be condensed into a Rest 4 respectively an Acc 2 instruction.The following rules will do the job.code improved code o�setFst ; Fst Rest 2 0Fst ; Snd Acc 1 1Rest n ; Fst Rest (n + 1) if n � 2 0Rest n ; Snd Acc n if n � 2 124

Note that these rules su�ce|a rule like Rest m ; Rest n ! Rest (m + n) is not necessary|as thecompiler generates only access sequences of the following form.(Acc n j Rest n) ; (Fst j Snd)�6.4 Abstraction and ApplicationThe biggest potential for optimizations lies in the combination of functional abstraction and applica-tion. In Section 4.2.4 we have already used the equivalence oflet p1 = e1 in e2with the �-redex(�p1 ! e2) e1for the derivation of a compilation rule for the let-construct. Nevertheless, the generated CAM codefor the two expressions di�ers signi�cantly in size and speed.C[[(�p1 ! e2) e1]] � = Push ; C[[e1]] � ; Swap ; Cur ` ; App� ` : C[[e2]] h�; p1i ; Return �C[[let p1 = e1 in e2]] � = Push ; C[[e1]] � ; Cons ; C[[e2]] h�; p1iIn what follows we will show how to derive the second sequence from the �rst one. It is instructiveto follow the execution of Cur ` ; App (left column). The value of e1 is located on the stack (v2); theregister contains the current environment (v1).register stack code register stack codev1 v2 : S Cur ` ; App ; C v1 v2 : S Snoc ; Call ` ; C[v1 : `] v2 : S App ; C (v1; v2) S Call ` ; C(v1; v2) C : S C` (v1; v2) C : S C`The code fragment e�ectively cons'es the environment with the value and calls the subroutine labeledwith `. The intermediate building of the closure [v1 : `] can be spared if one uses the Snoc and theCall instruction instead (right column). The App instruction is a very complex operation and shouldbe avoided whenever possible. Thus we obtain the following code for (�p1 ! e2) e1.= Push ; C[[e1]] � ; Swap ; Snoc ; Call `� ` : C[[e2]] h�; p1i ; Return �= Push ; C[[e1]] � ; Cons ; Call `� ` : C[[e2]] h�; p1i ; Return �Since the Call instruction is the only one which refers to the subroutine, we could replace Call by thecode of the subroutine (exclusive Return) and dispose the subroutine itself. We resist the temptationto do so because the inline expansion would require some sort of bookkeeping mechanism (how manyinstructions refer to a label) and because it does not go well together with a further optimization wehave in mind (cf. Section 6.6).If the abstraction is r-closed, the combination of abstraction and application gets compiled to thefollowing code.C[[(�p1 ! e2)� e1]] � = C[[e1]] � ; Move ; Comb ` ; App� ` : C[[e2]] h�; p1i ; Return �The sequence Comb ` ; App may be improved in a similar way as Cur ` ; App. At this point the Popinstruction comes into play.register stack code register stack codev1 v2 : S Comb ` ; App ; C v1 v2 : S Pop ; Call ` ; C[`] v2 : S App ; C v2 S Call ` ; Cv2 C : S C` v2 C : S C`25

The Pop instruction is inverse to Push and Move, that is to say, Pop compensates the e�ect of Pushand Move. Thus we obtain:= C[[e1]] � ; Move ; Pop ; Call `� ` : C[[e2]] h�; p1i ; Return �= C[[e1]] � ; Call `� ` : C[[e2]] h�; p1i ; Return �If we expanded the subroutine call, we would obtain exactly the code sequence which is generated bythe optimized C scheme for the let-construct.Iterated applications and abstractions require iterated application of the optimization rules.C[[(�a b!� b a) 7 8]] �= Quote 8 ; Move ; Quote 7 ; Move ; Comb `1 ; App ; App� `1 : Cur `2 ; Return �� `2 : Push ; Acc 0 ; Swap ; Rest 1 ; Prim � ; Return �= Quote 8 ; Move ; Quote 7 ; Move ; Pop ; Call `1 ; App= Quote 8 ; Move ; Quote 7 ; Call `1 ; AppThe body of the subroutine labeled with `1 consists only of a single instruction. In this special casewe replace Call by the respective instruction.= Quote 8 ; Move ; Quote 7 ; Cur `2 ; App= Quote 8 ; Move ; Quote 7 ; Snoc ; Call `2The code corresponds with a minor exception (the order of the arguments 7 and 8 is reversed) exactlyto the code generated for the uncurried variant.C[[(�(a; b)!� b a) (7; 8)]] �= Quote 7 ; Move ; Quote 8 ; Cons ; Call `2� `2 : Push ; Snd ; Swap ; Fst ; Prim � ; Return �The example shows that curried functions can be used without loss of e�ciency. Again, if we expandedthe subroutine call, we would obtain the code sequence the following expressions get compiled to.C[[let a = 7 ; b = 8 in � b a]] �= C[[let a = 7 in let b = 8 in � b a]] �= Quote 7 ; Move ; Quote 8 ; Cons ; Push ; Snd ; Swap ; Fst ; Prim �The optimization rules introduced in this section are summarized below.code improved code o�setMove ; Pop �1Cur ` ; App Snoc ; Call ` �1Comb ` ; App Pop ; Call ` �1Call ` � ` : I ; Return � I � ` : I ; Return � �1Note that the expanded Call instruction must not be identical with I (this restriction is necessary toguarantee the termination of the replacement process).6.5 Local Function De�nitionsA letrec-bound function applied to arguments is a combination of functional abstraction and appli-cation in disguise. Hence all of the optimizations introduced in the last section are also applicable inthis context. Let us assume that the local function satis�es the property of r-closedness.C[[letrec f� = �p! e1 in f e2]] �= C[[e2]] h�; f 7! `1i ; Move ; Call `1 ; App� `1 : Comb `2 ; Return �� `2 : C[[e1]] hh�; f 7! `1i�; pi ; Return �= C[[e2]] h�; f 7! `1i ; Move ; Comb `2 ; App= C[[e2]] h�; f 7! `1i ; Move ; Pop ; Call `2= C[[e2]] h�; f 7! `1i ; Call `2 26

The calling sequence resembles the one on a conventional stack architecture: The single parameter isloaded into the register, which serves as a cache for the topmost stack element, and the subroutine iscalled. If f is not r-closed, we obtain the following code sequence.C[[letrec f = �p! e1 in f e2]] �= Push ; C[[e2]] h�; f 7! `1i ; Swap ; Rest 0 ; Call `1 ; App� `1 : Cur `2 ; Return �� `2 : C[[e1]] hh�; f 7! `1i; pi ; Return �= Push ; C[[e2]] h�; f 7! `1i ; Swap ; Call `1 ; App= Push ; C[[e2]] h�; f 7! `1i ; Swap ; Cur `2 ; App= Push ; C[[e2]] h�; f 7! `1i ; Swap ; Snoc ; Call `2= Push ; C[[e2]] h�; f 7! `1i ; Cons ; Call `2The parameter is paired with the current environment, then the subroutine is called. If the call to fis situated in an abstraction, the environment must be restored by an Rest n instruction with n > 0,which prevents the application of the Swap ; Snoc rule resulting in a slightly longer code sequence.Thus, after expanding the �rst call instruction we carry out the same simpli�cations as in Section6.4 with the minor di�erence that Rest n possibly prevents some optimizations.10We have said in Section 2 that non-recursive functions should also be bound by letrec ratherthan let. We are now in a position to justify the advice by looking at the code sequence generatedfor a let-bound function.C[[let f = �p! e1 in f e2]] �= Push ; Cur ` ; Cons ; Push ; C[[e2]] h�; fi ; Swap ; Acc 0 ; App� `1 : C[[e1]] h�; pi ; Return �The code does not o�er any opportunity for improvements and is consequently inferior to the codegenerated for the letrec-construct.Functions with multiple arguments can be improved by applying the optimization rules repeatedly.letrec f = �x y z ! + (� x y) z in f 3 4 5Quote 5 Snoc Push SwapMove Snoc Rest 2 SndQuote 4 Call ` Swap Prim +Move Stop Acc 1 ReturnQuote 3 ` : Push Prim �Note that we have omitted the subroutines which are not addressed anywhere (dead code elimination).The code is nearly identical to the code generated for letrec f = �(x; y; z)! + (� x y) z in f (3; 4; 5)the only di�erence being the order in which the arguments are processed. Thus the use of curriedfunctions, which are superior to their uncurried counterparts because of their greater
exibility, doesnot result in a loss of e�ciency. The code of the even function (cf. Section 5.2.4) also bene�ts from10With the following exception our technique subsumes the optimizations described in [28]. If the call to f lies withinan abstraction (the nesting level n is indicated by the bracketed superscript f (n)) and the argument is r-closed, we getthe following code sequence,C[[f (n) e�]] � = Move ; C[[e]] �� ; Swap ; Rest n ; Snoc ; Call `whereas Su�arez obtains:C[[f (n) e�]] � = Rest n ; Move ; C[[e]] �� ; Cons ; Call `A Swap instruction is saved by reversing the argument and the restoration of the environment. This improvement isdi�cult to achieve in our framework because we must insist on the special order in which the argument and the functioncall are compiled. Otherwise, the Cur ` ; App rule would no longer be applicable.27

the improvements described in this section.letrec even = �n! if = n 0 then trueelse : even (dec n)in even 56Quote 56 `1 : Push Gotofalse `2 Call `1Call `1 Move Quote true Prim :Stop Quote 0 Goto `3 `3 : ReturnPrim = `2 : Prim dec6.6 Last Call OptimizationIf the last instruction executed in the body of a function is a call to the same function, the call istermed tail recursive. It is well-known that tail recursive calls can be replaced by jumps. After thistransformation, a tail recursive function, i.e., a function where every recursive call is tail recursive,runs with constant stack space. On conventional stack architectures this behavior is achieved bydeallocating the stack used by the function prior to the recursive call. This technique is commonlycalled tail recursion optimization. If the technique is generalized to arbitrary calls in a tail position,it is termed last call optimization.Last call optimization is particularly easy to achieve in our setting because we must deal only withsingle argument functions|the environment being the only argument. The single argument is placedinto the register, no additional stack space is allocated. The following example illustrates the point(we do not bother that f never terminates).C[[letrec f� = �p! f e1 in e2]] �= C[[e2]] h�; f 7! `1i� `1 : Comb `2 ; Return �� `2 : C[[e1]] hh�; f 7! `1i�; pi ; Call `2 ; Return �Upon the entry of the subroutine labeled with `2 the register contains an instance of p. Prior to therecursive call the instance is replaced by the value of e1 (the stack is unchanged). Thus the CAMautomatically supports the stack recovery mechanism of last call optimization. If the code sequenceCall `2 ; Return is replaced by a single Goto `2 instruction, we obtain a (nonterminating) loop.= : : :� `2 : C[[e1]] hh�; f 7! `1i�; pi ; Goto `2 �It is easy to see that the above transformation is correct. We may assume that the body of a subroutine(C) only a�ects the register (mapping v1 to v2) leaving the stack unchanged.register stack code register stack codev1 C1 : S Call ` ; Return v1 C1 : S Goto `� ` : C ; Return � � ` : C ; Return �v1 Return : C1 : S C ; Return v1 C1 : S C ; Returnv2 Return : C1 : S Return v2 C1 : S Returnv2 C1 : S Return v2 S C1v2 S C1Thus we achieve last call optimization simply by applying the following optimization rule.code improved code o�setCall ` ; Return Goto ` 1In order to improve the applicability of this rule, we have to change the R scheme. The Returninstruction is moved into the branches of alternatives and case-expressions (Table 15).28

R[[if e1 then e�2 else e�3]] �= C[[e1]] � ; Gotoifalse `1 ; R[[e2]] �� ; `1 : R[[e3]] ��R[[if e1 then e2 else e3]] �= Push ; C[[e1]] � ; Gotofalse `1 ; R[[e2]] � ; `1 : R[[e3]] �R[[case e of (c1 p1 ! e1)� j � � � j (cn pn ! en)�]] �= C[[e]] � ; Switchi [c1 : `1; : : : ; cn : `n] ;`1 : R[[e1]] h��; p1i ;...̀n : R[[en]] h��; pni ;R[[case e of c1 p1 ! e1 j � � � j cn pn ! en]] �= Push ; C[[e]] � ; Switch [c1 : `1; : : : ; cn : `n] ;`1 : R[[e1]] h�; p1i ;...̀n : R[[en]] h�; pni ;R[[e]] � = C[[e]] � ; ReturnTable 15: The R compilation scheme for last call optimizationThe mutual recursive de�nitions of even and odd serve as an example for the e�ects of last calloptimization. letrec even = �n! if = n 0 then trueelse odd (dec n) ;odd = �n! if = n 0 then falseelse even (dec n)in even 56Quote 56 Prim = `3 : Push ReturnCall `3 Gotofalse `2 Move `4 : Prim decStop Quote true Quote 0 Goto `1`1 : Push Return Prim =Move `2 : Prim dec Gotofalse `4Quote 0 Goto `3 Quote false6.7 MiscellaneousThe optimization rules should be chosen very carefully in order to improve the most frequently gener-ated code sequences. Many algebraic properties of CAM instructions do not serve well as optimizationrules because the code schemes never generate the respective sequences.code improved code o�setPush ; Pop �1The above rule is never applicable. In some cases it is questionable whether the e�ect is worth thee�ort because the code sequences in question are seldom generated.code improved code o�setPush ; Swap Push 0The following expression shows one of the rare chances to apply the rule above.C[[� n (+ n 1)]] h��; ni= Push ; Swap ; Move ; Quote 1 ; Prim + ; Prim �= Push ; Move ; Quote 1 ; Prim + ; Prim �29

The optimization rules are summarized in Table 16.code improved code o�setaccess instructionsSkip �1Rest 0 �1Rest 1 Fst �1Acc 0 Snd �1Fst ; Fst Rest 2 0Fst ; Snd Acc 1 1Rest n ; Fst Rest (n + 1) if n � 2 0Rest n ; Snd Acc n if n � 2 1stack operationsPush ; Swap Push 0Move ; Pop �1register operationsSwap ; Cons Snoc �1Swap ; Snoc Cons �1Swap ; Prim s(2) Prim sc(2) �1control instructionsCur ` ; App Snoc ; Call ` �1Comb ` ; App Pop ; Call ` �1Call ` � ` : I ; Return � I � ` : I ; Return � �1Call ` ; Return Goto ` 1Table 16: Optimization rulesIn the remainder we name some of the advantages and disadvantages of peephole optimizations incontrast to source code transformations like partial evaluation.It is obvious that the compilation of a �-expression to a sequence of CAM instructions is a structureloosing mapping. Consequently it is much harder|although not impossible|to mimic source codetransformations like fst(e1; e2)) e1 on the level of CAM instructions.Since the granularity of CAM instructions is much �ner, peephole optimizations sometimes do notcorrespond to a transformation on the source code level. Furthermore, a single optimization rule maybe applicable to code sequences stemming from di�erent compilation schemes.The optimization rules introduced in Section 6.2 serve as an example. The Swap instruction doesnot only appear in the optimized T scheme but also in the ordinary T scheme. If the second argumentof T compiles to the empty sequence, the code can be further improved.C[[let a = 5 in � a a]] � = Quote 5 ; Push ; Swap ; Prim �= Quote 5 ; Push ; Prim �In general, source code transformations such as common subexpression elimination, reduction instrength and code motion are complementary to target code transformations rather than compet-ing.7 PerspectivesWe have seen in the introduction that free variables occurring in an abstraction prevent us from usinga conventional stack architecture. The solution was to dispose the stack as a bookkeeping-mechanismfor variables and to use environments instead. This reaction is quite extreme, it should be clear thatthe stack could be used nonetheless in many cases. A variable which has a free occurrence in anabstraction is held in the environment (access time linear to the nesting level), otherwise it is put onto30

the stack (constant access time). This distinction is already made in Cardelli's FAM, where variablesare classi�ed as global or local. Su�arez similarly distinguishes between persistent and ephemeralvariables. Note that this improvement does not only reduce the size of the environment (speeding upthe access to persistent variables) but as a side-e�ect also increases the number of r-closed expressions(cf. Section 5) resulting in a more compact code.The notion of persistency is relative. If the body of an abstraction is entered, a persistent variablemay turn to an ephemeral one. In case the variable is accessed three or more times it may be worthwhileto copy it onto the stack. This also opens new perspectives in optimizing (local) function calls. Letus assume that all the variables occurring in the body of a (local) function are ephemeral. Thusthey can safely be copied onto the stack. Fully parameterized (recursive) calls to this function canbe compiled more e�ciently by directly pushing the arguments onto the stack and entering the codeof the body after the initial copy sequence. This scheme corresponds to the usual calling mechanismin stack-based implementations. Function calls implemented in this fashion can be optimized evenmore by a general stack recovery mechanism called stack trimming. Stack trimming can be viewedas a generalization of last call optimization and works as follows. The arguments of a function arepushed onto the stack using a special ordering. The parameter which occurs in the rightmost positionand consequently lives for the longest time is pushed �rst and so forth. Prior to (recursive) calls inthe body stack space is freed by removing those variables from the stack which are not accessed anylonger after the call. This technique applies to every function call in the body last call optimizationbeing only the special case of the last call.8 Related WorkExisting literature on the CAM [4, 5, 6] with the notable exception of Su�arez [28] deals with thetranslation of functional languages into CAM code on a very high and abstract level showing only theprinciple suitability of the CAM as a target machine.In [28] an optimizing compiler is presented for the CAML language, a variant of SML. The improve-ments include detection of r-closed expressions, �-reduction at compile-time, improving calls to localfunctions, and local variables classi�cation. Except for the latter we perform the same improvementsalbeit in a di�erent setting.The improvements described in [28] are tightly coupled with the compilation process whereas weseparate the phases of generating code and improving it. Insofar our work can be interpreted as aparaphrases of [28]. Besides better readability and veri�bility our approach allows the easy integrationof classical optimization techniques such as last call optimization.9 AcknowledgementsThanks are due to Holger Berse, Wolfram Burgard, Ulrike Griefahn, J�urgen Kalinski, Stefan Kurtz,Stefan L�uttringhaus-Kappel, J�org Prante, and Peter Thiemann for their detailed comments and helpfulsuggestions on an earlier draft of this report.
31

References[1] Lennart Augustsson. A compiler for lazy ML. In Conference Record of the 1984 ACM Symposiumon LISP and Functional Programming, Austin, Texas, pages 218{227. ACM, 1984.[2] Richard Bird and Philip Wadler. Introduction to Functional Programming. Series in ComputerScience. Prentice Hall International, 1988.[3] L. Cardelli. The functional abstract machine. Technical Report 107, Bell Laboratories, 1983.[4] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. In Jouannaud[17], pages 50{64. LNCS 201.[5] G. Cousineau, P.-L. Curien, and M. Mauny. The categorical abstract machine. Science ofComputer Programming, 8:173{202, 1987.[6] Guy Cousineau. The Categorical Abstract Machine. In Huet [15], pages 25{45. ISBN 0-201-17234-8.[7] P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pit-man, Series in Theoretical Computer Science, 1986.[8] H.B. Curry and R. Feys. Combinatory Logic, Volume 1. North-Holland, Amsterdam New YorkOxford, 1958.[9] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In Jan van Leeuwen, editor, Handbook ofTheoretical Computer Science, Volume B: Formal Models and Semantics, chapter 15. ElsevierScience Publishers B.V. (North Holland), 1990.[10] Jon Fairbairn and Stuart Wray. Tim: A simple, lazy abstract machine to execute supercom-binators. In G. Kahn, editor, Functional Programming Languages and Computer Architecture:Portland, OR, pages 34{46. Springer Verlag, 1987. LNCS 274.[11] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley Publ. Comp.,Inc., 1988.[12] Robert Harper and Robin Milner. The De�nition of Standard ML, Version 2. Technical report,University of Edinburgh, 1988.[13] Ralf Hinze. Einf�uhrung in die funktionale Programmierung mit Miranda. Teubner, Stuttgart,1992.[14] P. Hudak and P. Wadler. Report on the Functional Programming Language Haskell. ResearchReport CSC/89/R5, Department of Computer Science, University of Glasgow, Glasgow, 1989.[15] Gerard Huet, editor. Logical Foundations of Functional Programming. Addison-Wesley Publ.Comp., Inc., 1990. ISBN 0-201-17234-8.[16] Thomas Johnsson. E�cient compilation of lazy evaluation. In Proceedings of the ACM SIGPLAN1984 Symposium on Compiler Construction, pages 58{69. SIGPLAN, 1984. SIGPLAN NoticesVol. 19, No. 6, June 1984.[17] Jean-Pierre Jouannaud, editor. Functional Programming Languages and Computer Architecture:Nancy, France, September 1985. Springer Verlag, 1985. LNCS 201.[18] J. Lambek. From lambda-calculus to cartesian closed categories. In J.P. Seldin and J.R. Hindley,editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages376{402. Academic-Press, 1980.[19] P.J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308{320, 1964.32

[20] R.D. Lins. On the e�ciency of categorical combinators as a rewriting system. Software - Practiceand Experience, 17(8):547{559, 1987.[21] Bruce MacLennan. Functional programming: Practice and Theory. Addison-Wesley Publ. Comp.,Inc., 1990.[22] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and SystemSciences, 17(3):348{375, 1978.[23] S.L. Peyton Jones and D.R. Lester. Implementing functional languages: a tutorial. InternationalSeries in Computer Science. Prentice Hall International, 1992.[24] Chris Reade. Elements of Functional Programming. Addison-Wesley Publ. Comp., Inc., 1989.[25] Arto Salomaa. Computation and Automata. Cambridge University Press, 1985.[26] Sjaak Smetsers, Eric N�ocker, John van Groningen, and Rinus Plasmeijer. Generating e�cientcode for lazy functional languages. In J. Hughes, editor, Functional Programming Languages andComputer Architecture: Cambridge, MA, pages 593{617. Springer Verlag, 1991. LNCS 523.[27] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming LanguageTheory. The MIT Press, 1977.[28] Asc�ander Su�arez. Compiling ML into CAM. In Huet [15], pages 47{73. ISBN 0-201-17234-8.[29] D. A. Turner. Miranda: A non-strict functional language with polymorphic types. In Jouannaud[17], pages 1{26. LNCS 201.[30] D.A. Turner. A new implementation technique for applicative languages. Software - Practice andExperience, 9:31{49, 1979.

33

Contents1 Introduction 12 The Source Language 33 Towards the CAM 53.1 Compiling a Variable : 73.2 Compiling a Prede�ned Function : 73.3 Compiling an Abstraction : 83.4 Compiling an Application : 83.5 Execution of the Code : 94 The Core of the Machine 94.1 More Details of the CAM : 94.2 Compiling an Expression : 104.2.1 Compiling pure �-expressions : 104.2.2 Compiling an alternative : 144.2.3 Compiling algebraic datatypes : 144.2.4 Compiling a local de�nition : 145 r-Closed Expressions 165.1 r-Closedness : 175.2 Compiling an Expression : 205.2.1 Compiling pure �-expressions : 215.2.2 Compiling an alternative : 215.2.3 Compiling algebraic datatypes : 225.2.4 Compiling a local de�nition : 226 Peephole Optimization 226.1 Replacement Systems : 236.2 Converse Operations : 246.3 Access Instructions : 246.4 Abstraction and Application : 256.5 Local Function De�nitions : 266.6 Last Call Optimization : 286.7 Miscellaneous : 297 Perspectives 308 Related Work 319 Acknowledgements 31
34

List of Tables1 Syntactic domains for the source language : 32 Abstract syntax of the source language : 43 Derived forms of expressions : 64 A sample execution : 95 Syntactic domains for CAM values, formal environments, and CAM code : : : : : : : 96 Abstract syntax of CAM values, formal environments, and CAM code : : : : : : : : : 107 The instructions of the CAM : 118 The E and P compilation schemes : 129 The M, C, T , and R compilation schemes : 1310 The C scheme revisited for multiple recursive de�nitions : : : : : : : : : : : : : : : : : 1611 The computation of r-free variables : 1812 The de�nition of r-free revisited for truly recursive de�nitions : : : : : : : : : : : : : : 1913 Some more instructions : 2014 The E�, E , C, and T compilation schemes for r-closed expressions : : : : : : : : : : : : 2015 The R compilation scheme for last call optimization : : : : : : : : : : : : : : : : : : : 2916 Optimization rules : 30

35
View publication statsView publication stats

https://www.researchgate.net/publication/228940729

