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The Icon programming language has generators that are capable of producing sequences of results and a goal-directed
evaluation mechanism that allows concise formulation of many kinds of computations. The evaluation of generators
is restricted to their lexical site in a program, however. This paper describes co-expressions, an extension to Icon that
allows generators to be used at any time or place in a program. Examples of co-expression usage are given and the

relationship of co-expressions to coroutines is discussed.

Icon is a high-level programming language that features
facilities for string and list processing. In addition to
these facilities, it has expressions, called generators, that
are capable of producing sequences of results. A goal-
directed evaluation mechanism automatically produces
the results of generators in an attempt to produce
‘successful’ computations.

Generators and goal-directed evaluation make it
possible to formulate concise, natural solutions for many
programming problems. The evaluation of a generator is
limited, however, to its lexical site in a program. This
paper describes a mechanism that frees generators from
their lexical sites so that their results may be used as
needed, where needed.

The following section describes the basic aspects of
Icon, including enough of its features to understand the
examples given in subsequent sections. Section 2 de-
scribes co-expressions, which are the expression level
analog of coroutines and which allow the results of a
generator to be used anywhere in a program. Examples
of co-expression usage are given in Section 3, followed by
conclusions and discussion.

1. FEATURES OF ICON

Icon is a fully developed programming language with a
wide range of features. A few of its string and list
processing features, together with control structures and
the essentials of expression evaluation, are sufficient for
the central issues of this paper. The interested reader
may wish to refer to Refs 1-3 for more information.

1.1 String and list processing

A string is a sequence of characters. Strings are data
objects in Icon, rather than being arrays of characters. In
this respect, Icon is similar to SNOBOLA4.* Strings can
be represented literally, as in

text = "this theory is the third attempt”

which assigns a string of 32 characters to text. The size of
a string s is produced by the operation *s. For example

write(xtext)
writes 32.

* This work was supported by the National Science Foundation under
Grants MCS79-03890 and MCS81-01916.
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Strings can be computed in a variety of ways.
Concatenation, given by the operation

sl | s2

produces a string consisting of s1 followed by s2. The
empty string, which contains no characters, is the identity
with respect to concatenation. The empty string is
represented literally by *”.

There are a number of operations that analyze strings.
A typical one is

find(s1, s2)

which produces the position at which sl occurs as a
substring of s2. For the value of text given above.

i = find("is”, text)

assign the value 3 to i.

Lists are sequences of objects of any type and are
created by enclosing the list of objects in brackets. For
example

tlist = [text, xtext]

assigns a list of two values to t/ist. The first value in tlist
is a string, and the second is an integer. The elements in
a list are referenced by position, using subscripting
expressions. For example

write(tlisf2])
writes the second element in #list, and
tlis2] = tlisf2] — 1

decrements the second element in #list. Icon has aug-
mented assignment operations that combine other opera-
tions with assignment. For example

tlisf2] + =1

increments the value of the second element in tlist.
Similarly

sl=""

appends a colon to value of s.
The size of a list is produced by the same operation
that produces the size of a string; the value of *tlist is 2.
There are stack and queue access functions for lists
that allow lists to grow and shrink automatically. For
example,

push(t/ist, "Example-17)
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pushes the string “Example-1” on the left end of t/ist. The
value of tlist is now 3 and the value of #lisf3] is 32.
Conversely,

pop(tlist)

removes the leftmost value from #ist, restoring it to its
former size. The function put(¢/ist, x) adds x to the right
end of tlist, whereas the converse queue access function
get(zlist) is synonymous with pop(tist).

1.2 Generators

In Icon an operation may succeed and produce a result,
or it may fail. (Icon is similar to SNOBOL4 in this
respect.) The function find(sl, s2) described above
provides a natural example of this possibility, since sl
may not occur as a substring of s2. For example, for the
value of text given above

i = find("two’, text)

fails, since “two” is not a substring of the value of fext.
When an operation fails, this failure is ‘inherited’ by
surrounding expressions, which are not evaluated. For
this example, the assignment is not performed and the
value of i is not changed. Stated another way, the
assignment to i is contingent on the success of find(sl,
52).

Another example of a function that may fail is read(),
which reads a line of input, but fails when the end of the
input file is reached.

The function find(sl, s2) also provides a natural
example of a situation in which there can be more than
one result. For example, in

find("th”, text)

there are four places where “th” occurs as a substring of
the value of text: 1, 6, 16, and 20, as illustrated by the
arrows below:

this theory is the third attempt
T 1 [

Icon takes advantage of such possibilities by allowing
expressions to produce more than one result. Such
expressions are called generators. In simple contexts, such
as

i =find("th”, text)

a generator only produces its first value. In this case, the
value assigned to i is 1, since find(sl, s2) produces the
positionsof s1 in s2 from left to right. In more complicated
situations, such as the comparison operation

find("th”, text) = 16

a generator produces its results until the enclosing
expression succeeds or until there are no more results. In
this case, the first two results produced by find, 1 and 6,
do not satisfy the comparison. The third result, 16, does
satisfying the comparison, so the entire expression
succeeds. This is an example of goal-directed evaluation,
which is implicit in expression evaluation in Icon.
Another generator is

itoj

which generates the integers in sequence from i to j. For
example

tlisf{1 to *tlist)

1.3 Control structures

Icon has several traditional control structures. An
example is

while expr, do expr,

The control expression, expr,, is treated somewhat
differently in Icon than in most programming languages.
Rather than depending on the production of a Boolean
value true or false, control is determined by the success or
failure of expr;. For example

while /ine = read() do
write(/ine)

copies input to output. The loop is terminated when
read() fails. The do clause can be omitted. An equivalent
expression is

while write(read())

Generators provide the motivation for a number of more
novel control structures. One such control structure is
alternation,

expr, | expr,

This control structure produces the sequence of results
for expr, followed by the sequence of results for expr,.
For example

2|3]5

produces the sequence 2, 3, 5. Like find(s1, s2), alternation
produces more than one result only when the surrounding
context requires it. Similarly

find(s1, s2) = (16|20 30|40)

succeeds if sl occurs as a substring of s2 at position 10,
20, 30, or 40.

A somewhat more unusual control structure is repeated
alternation,

lexpr

which produces the sequence of results for expr repeat-
edly, stopping only when expr fails. For example, the
sequence of results for

[read()

is the lines of input to a program.
Since sequences of results are natural in Icon, iteration
over sequences is frequently useful, and is performed by

every expr, do expr,

which evaluates expr, for every result produced by expr,.
For example

every i = find(sl, s2) do
write(i)

writes the positions at which s1 occurs as a substring of
s2. The do clause can be omitted. An equivalent
expression is

every write(find(s1, s2))
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Since strings and lists are sequences of characters and
arbitrary values, respectively, it is useful to be able to
sequence through their elements concisely. The expres-
sion !x is a generator that produces the elements of x,
which may be a string or list, in order from left to right.
For example

every write(!tlist)
writes all the values in t/ist, whereas
every write(!text)

writes all the characters of the string text on separate
lines.

1.4 Procedures

Procedures in Icon are similar to those in many traditional
programming languages, except that they can fail or
produce a sequence of results, as well as produce a single
result. Return of a single result is indicated by

return expr
while failure is indicated by fail. For example

procedure cmax(i, j)
if i > j then return j else fail
end

returns j if i is greater than j, but fails otherwise. A
sequence of results can be produced by using

suspend expr

which returns the value of expr but leaves the procedure
environment intact so that it can be resumed to produce
another result. For example

procedure To(i, /)
while i < = jdo {
suspend i
i+ =1
}

end
is a procedural version of

itoj

1.5 The order of evaluation in expressions

In Icon, expressions are evaluated from left to right (in
the absence of control structures) and generators are
resumed in a last-in, first-out fashion. Thus in an
expression such as

find(s1, s2) > find(s3, s4)

the expression find(s1, s2) produces its first result (if any)
and then find(s3, s4) produces its first result (if any). If
the comparison then fails, find(s3, s4) is resumed to
produce its next result. Only when find(s3, s4) has
produced all its results is find(s1, s2) resumed to produce
its second result. When find(s1, s2) produces its second
result, find(s3, s4) is evaluated again and produces its first
result again. This ‘cross-product’ evaluation mechanism
makes Icon well suited to combinatorial applications.?
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2. CO-EXPRESSIONS

Generators in Icon are limited in their use by the syntax
of the language. This has the advantage of providing
straightforward means of controlling generators, as well
as permitting an efficient implementation.

The sequence of results that can be produced by a
generator is limited to a single lexical site in the program,
however. Furthermore, every evaluation of a generator
produces results from the result sequence for that
generator starting at the first result. For example, !tlist
produces the values from #/ist in sequence, but there is no
straightforward way to use this generator to write, for
example, only every other value in #/ist, since there is no
way to resume !#/ist at several sites in a program without
reproducing its sequence of results from the beginning.

To overcome these problems, the concept of co-
expression has been introduced.

2.1 Co-expression environments and resumption

The expression
create expr

creates a co-expression environment for expr. A co-
expression environment, subsequently referred to simply
as a co-expression, is a data object that contains the
information necessary to evaluate an expression: a
reference to the expression itself, a ‘program counter’
indicating where evaluation of the expression is to
resume, and copies of the local identifiers referenced in
the expression with initial values as they are when the co-
expression is created.

The expression within a co-expression can be explicitly
resumed whenever a result from the sequence of results
for the expression is needed. The resumption operation
is

@x
where x is a co-expression. For example,
texp = create !tlist

creates a co-expression for the generator !tlist and
successive resumptions of fexp produce the results from
this generator. Resumption of a co-expression fails once
all the results from its expressions have been generated.
For example

while write(@texp)
writes all the values in t/ist, but

while write(@texp) do
@texp

writes only the odd-numbered values in tist.
Sometimes it is useful to be able to transmit a value to
a co-expression when it is resumed. The operation

expr @ x
resumes the co-expression x and supplies the value
produced by expr to it. (This result is ignored if the co-
expression is being resumed for its first result.) The
transmission of a value to a resumed co-expression is
most frequently useful in producer/consumer contexts.
An example is given in Section 3.3.
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The operation
*X

produces a count of the number of results that have been

‘produced by resuming the co-expression x. The operator
chosen reflects the similarity of this operation to the
computation of the size of a string or a list.

2.2 Refreshing co-expressions

The refresh operation
AX

produces a copy of the co-expression x restored to its
state when it was created. Thus the refresh operation
provides a means of repeating the sequence of results of
a co-expression. For example,

x = create find(“ab”, “abracadabra”)
write("The first position is ”, @x)
write("The second position is ”, @x)
X=AXx

write("The first position still is ”, @x)

writes

The first position is 1
The second position is 8
The first position still is 1

Global side effects, of course, are not reversed by the
refresh operation.

2.3 Built-in co-expressions

There are two built-in co-expressions to aid in the use of
co-expressions in a general coroutine style. These co-
expressions are the values of the keywords &main and
&source.

Program execution in Icon is initiated by an implicit
call to the procedure main. The keyword &main is a co-
expression for this call. Resumption of &main from any
co-expression returns control to the point of interruption
in the evaluation of the call to main.

&source is a co-expression for the resuming expression
of the currently active co-expression. Control can be
explicitly transferred from a co-expression to its resuming
expression by resuming &source.

With &main and &source it is possible for any co-
expression to transfer control to any other co-expression,
providing a general coroutine facility. Examples are
given in the following sections.

3. EXAMPLES OF CO-EXPRESSIONS USAGE

3.1 Parallel evaluation

As mentioned earlier, goal-directed evaluation provides
a cross-product form of analysis that is suitable for many
combinatorial applications. Parallel, or ‘dot-product’
evaluation is not possible without co-expressions.
Consider the problem of determining without co-
expressions, whether two expressions, expr, and expr,,

produce the same sequences of results. Since the results
from two separate expressions cannot be produced in an
arbitrary manner, some other method is needed to obtain
corresponding values for comparison. One possibility is
to generate all the values for one expression first and
‘capture’ them by putting them in a (physical) list:

seq =[]
every put(seq, expr,)

The values for expr, can now be generated and compared
with those in seq. There is no longer a problem with
parallel evaluation, since the elements of seq can be
accessed by position.

This approach has several disadvantages, the most
serious of which is that a list of all the results for one
expression must be produced before a single result is
produced for the other. This process may be time and
space consuming and must be carried to completion,
even if the first results in the two sequences are different.

With co-expressions, the results of two expressions can
be generated and compared in parallel. A procedure to
do this is

procedure compseq(x1, x2)
local r1, r2
while r1 = @x1 do {
(2 = @x2)|fail
(rl === r2)|fail

}
if @x2 then fail else return
end

Since the two sequences may have different lengths, one,
x1, is chosen to control the loop. There are two situations
in which the sequences may fail to compare within the
loop—if the sequence for x2 terminates first, or if
corresponding values are different. If resumption of x2
fails, assignment to r2 fails, and the second expression in
the alternation causes the procedure to fail. The operation
rl === r2 compares arbitrary objects and fails if they
are not identical. Again, the procedure fails if the
comparison fails. Finally, if resumption of x1 fails,
terminating the loop, a check must be made to determine
if x2 has additional values; if so, the procedure fails.

The structural asymmetry in the procedure is imposed
by the need to check the lengths of the two sequences of
results as well as their values (there is no way, a priori, to
determine the length of a sequence of results). The same
problem occurs in comparing a physical list of values
produced by one expression with those generated by
another, as is evident if the details of the coding are
carried out.

3.2 The ‘same-fringe’ problem

Co-expressions permit the separation of an algorithm
from the situations in which it is to be used. This
generally results in clearer, more concise code. For
example, there are many applications, such as the ‘same
fringe’ problem® that require access to the leaves of a
tree.

Suppose that a tree is represented by a list whose first
element is a value associated with that node and whose
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subsequent elements are subtrees. For example, the tree

is represented by the list

U+, a’L 0”1, [ =", ["¢"), ["+", ["d"], ["e"1l]]
A procedure to generate the leaves of such a tree is

procedure leaves(tree)

if xtree = 1 then return tree{1]

else suspend leaves(tree[2 to *tree])
end

This procedure can be used in a solution to the same-
fringe problem to walk two trees in parallel to determine
if their leaf nodes have the same values in the same
order:

if compseq(create leaves(tree2), create leaves(tree2)) then
write(“same fringe”)

else
write(“different fringes”)

3.3 Grune’s problem

As indicated above, co-expressions have coroutine
capabilities.®®

The following problem was originally posed by Grune®
to illustrate a number of coroutine facilities.

‘Let A be a process that copies characters from some
input to some output, replacing all occurrences of aa with
b, and a similar process, B, that converts bb into c.
Connect these processes in series by feeding the output of
Ainto B.’

Using co-expressions, this problem can be solved as
follows.

global 4, B

procedure main()
A = create compress("a’, "b”, create |reads(), B)
B = create compress("b”, "c”, A, &main)
repeat writes(@ B)
end
procedure compress(cl, c2, in, out)
local ch
repeat {
ch = @in
if ch == c1 then {
ch = @in
ifch ==cl thench =c2
else c1 @ out

}
ch @ out
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}

end
The control structure
repeat expr

evaluates expr in an infinite loop. The operation s1 ==
s2 succeeds if s1 and s2 are the same strings. The function
reads() reads a single character and writes(s) writes s in
stream mode without line terminators.

Thissolution is similar to a solution originally presented
in Simula'® and translated into ACL by Marlin.!! Like
their solutions and those proposed by Grune, it assumes
an infinite stream of input, although it is not hard to
modify the solution above for a finite input stream. Like
their solutions, the one above creates two instances of the
same procedure for the operation of both 4 and B. The
Icon version is simplified slightly by the ability to transfer
results explicitly between co-expressions.

3.4 The sieve of Eratosthenes

The following example uses co-expressions to implement
the Sieve of Eratosthenes. The technique is based upon
a similar one used to illustrate a use of coroutines!? and
filtered variables.'3

The sieve supplies an infinite stream of integers
through a cascade of ‘filters’, each of which checks to see
if the integer is divisible by a specific known prime. Each
filter activates the next filter in the cascade if the integer
passes its test. If a filter finds an integer that is a multiple
of its prime, the filter activates the source of integers and
the cascade is restarted on the next integer. If the integer
passes through the entire set of filters successfully, it is
output as a prime and a new filter is added to the cascade
to test subsequent integers against this prime.

global number, cascade, source, nextfilter

procedure main()
cascade =[]
source = create { # root of sieve
number =1
repeat {
number + =1
nextfilter = create \cascade # sequence
# of filters
@ @nextfilter # get first filter and
# activate it
}
push(cascade, create sink()) # sink starts as the
# only filter
@source # start the sieve
end
procedure sink()
local prime
repeat {
write( prime = number)
push(cascade, create filter( prime)) # add
# filter to cascade
g@source # start processing next number
end
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procedure filter( prime)
repeat {
if number 7, prime = 0 then @source # try next
# number
else @ @nextfilter # get next filter and
# activate it.

}

end

The co-expression source generates the integers and
starts the cascade on each integer. Each filter in the
cascade is a co-expression that tests the potential prime
against a specific known prime (the operation n % m
produces the remainder of n divided by m). The co-
expression sink processes new primes and is always the
last filter in the cascade. An additional co-expression is
used to sequence through the filters in cascade. Note that
each filter is invoked exactly once. From then on, control
is simply passed between source and the various filters
(including sink).

Actually, there is no need for any of the procedures
other than main. This example can be written as

global number, cascade, source, nextfilter

procedure main()
local prime
cascade =[]
source = create {
number = 1
repeat {
number + =1
@ @ (nextfilter = create \cascade)

@&main

push(cascade, create
repeat {
write(prime = number)
push(cascade, create repeat
if number %, prime = 0 then @source
else @ @nextfilter

@source
}
)
@source
end

This version does not show the logical division of the
algorithm as well as the previous version, however.

3.5 Modelling generative control structures

Since co-expressions allow control over the generation of
results, they can be used to model generative control
structures and to gain insight into their relationship with
traditional control structures.

For example, alternation

expr, |expr,
can be modelled by a procedure such as

procedure Alt(x1, x2)
local r
while r = @x1 do suspend r

while r = @x2 do suspend r
end

which is invoked as
Alt(create expr,, create expr,)

This model clearly demonstrates the relationship between
the sequences of results for expr, and expr, and the
sequence of results for

expr, | expr,

and avoids complicated explanations of alternation in
terms of control backtracking.?
Similarly, the relationship between

every expr, do expr,
and
while expr, do expr,
is illuminated by the model

procedure Every(x1, x2)
while @ x1 do @ A x2
end

In fact, all the generative control structures in Icon can
be modelled using co-expressions and traditional control
structures.

4. DISCUSSION AND CONCLUSIONS

Co-expressions have been implemented in Version 5 of
Icon. In addition to the kinds of uses illustrated by
examples in this paper, co-expressions have been used to
experiment with new kinds of control structures without
the need for modifying the implementation of Icon itself.

Co-expressions represent a significant step in increas-
ing the functionality of generators, since they free the
evaluation of generators from their lexical sites and
permit access to the results of a generator when and
where needed. In this sense, co-expressions represent the
instantiation of sequences of results into the program-
ming language as data objects that can be manipulated in
much the same way as other data objects are manipulated.

Co-expressions also provide insight into the operation
of coroutine facilities. Most languages that incorporate
coroutines do so by associating the coroutine mechanism
with procedures. In actuality, it is the expression instance
containing the invocation of a procedure that functions as
the coroutine. Co-expressions make this clear by associ-
ating the coroutine mechanism with expression instances,
rather than with procedures.

The concept of expression instances is also a useful
descriptive tool leading to a better understanding of the
operation of goal-directed evaluation and co-expressions.
Considering expression evaluation as occurring within
expression instances and then examining goal-directed
evaluation and co-expressions as operations upon expres-
sion instances simplifies the development and analysis of
implementation techniques for these language features.
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