
T$: An Optimizing Compiler for Smalltalk

Ralph E. Johnson
Justin 0. Graver

Lawrence W. Zurawski

Department of Computer Science
University of Illinois, Urbana-Champaign

Abstract

TS (Typed Smalltalk) is a portable optimizing com-
piler that produces native machine code for a typed
variant of Smalltalk, making Smalltalk programs
much faster. This paper describes the structure of
TS, the kinds of optimizations that it performs, the
constraints that it places upon Smalltalk, the con-
straints placed upon it by an interactive programming
environment, and its performance.

1 Introduction

A number of recent Smalltalk implementations have
acceptable performance[DS83][CW86][SIJII86]. This
has been achieved as much by the increase in proces-
sor speed as by improvements in software technology.
However, all current implementations of Smalltalk
are slower than those of languages like C. Smalltalk’s
poor performance is usually ascribed to late-binding
of procedure calls, heavy use of closures, and dy-
namic memory management. However, Smalltalk im-
plementations such as PS and SOAR reduce the cost
of these language features. SOAR spends two-thirds
of its time executing primitives. Thus, even if proce-
dure calling and memory management overhead were
completely removed, SOAR could be no more than a
third faster. TS (Typed Smalltalk) is an optimizing

Authors’ address: Department of Computer Science, 1304
West Springfield Ave., Urbana IL 61601
Telephone: (217) 244-0093
E-mail: fiohnson,graver,mrawski}Qcs.uiuc.edu

Permission to copy without fee all or part of this material is granted provided
tha1 the copies are not made or distributed for direct commercial advantage.
the ACM copyright nowe and rhe title ofthe publication and its date appear.
and nolice IS given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requires a fee and/
or specific permission.

0 1988 ACM O-89791-284-5/88/0009/0018 $1.50

compiler for Smalltalk that results in a large speedup
over interpreters. The performance of TS indicates
that the real reason that Smalltalk is inefficient is
information-hiding provided by object-oriented pro-
gramming.

Most attempts to speed-up Smalltalk have focused
on optimizing the interpreter instead of building an
optimizing compiler. The reason is easy to see. In the
absence of type information, a compiler cannot de-
termine which method (procedure) is being invoked
by a message send (procedure call). Since control
structures, field selection, arithmetic operations, and
array accesses are all accomplished by sending mes-
sages, the compiler has virtually no information on
which to make optimizations.

The importance of a type system is illustrated
by two compilers that compile subsets of Smalltalk
to efficient machine code: Hurricane[Atk86] and
Quicktalk[BMW86]. Both compilers use a type sys-
tem to determine the methods that would be invoked
by a particular message send. Quicktalk produces the
fastest code but has the most restrictive type system.
Quicktalk produces speed-ups of over 20 using only
modest optimizations, but few large Smalltalk meth-
ods satisfy the restrictions of the compiler. While
neither Quicktalk nor Hurricane accept full Smalltalk,
they show the potential for code optimization to im-
prove the speed of Smalltalk.

The type system of TS[Joh86][JG87] is more pow-
erful than the type systems of Hurricane or Quick-
talk. It type-checks most large Smalltalk methods,
ensures that each variable always contains an object
whose class is compatible with the type of the vari-
able, and allows the type of a variable or expression
to be expressed precisely enough that the compiler
can deduce the set of methods that can be invoked
by a particular message. Neither of the earlier type
systems is sufficient for type-checking all Smalltalk
methods, and neither ensures that the contents of
a variable is always an object in a particular set of

18 OOPSLA ‘88 Proceedings September 2540,lw

classes. Quicktalk treats compiled methods as “user
primitives”, and if the classes of the arguments dif-
fer from their types then the primitives fail, just like
normal Smalltalk primitives. Hurricane treats types
as hints to the compiler, and produces code to han-
dle the cases where the classes of objects are different
than what was expected.

TS uses a set of very general optimizations, most
notably early binding of procedure calls (message
sends) and in-line substitution of calls to user-defined
and primitive methods. The result is that Smalltalk
programs are converted into a form similar to C or
Pascal programs, permitting standard code optimiza-
tion techniques to be used. TS has been designed so
that it can be easily ported to any machine with 32
bit integers and pointers. It currently runs on a Tek-
tronix 4405 and produces Motorola 68020 machine
language.

2 An Overview of TS

TS reuses many of the components of the Smalltalk-
80 programming environment, including most of the
original compiler. The reused classes served as an
interface between the various people working on the
project. This reuse of code and interfaces let six inex-
perienced Smalltalk programmers build the compiler
in a relatively short time.

The standard Smalltalk parser produces a parse
tree consisting of instances of subclasses of ParseNode.

We changed the parser to allow the types of variables
to be declared. Since the Smalltalk- compiler uses
a recursive descent parser, it was easy to build the the
parser for TS ‘by subclassing the Smalltalk- Parser

class.
A TS parse tree can type-check itself, resulting in

a parse tree decorated with type information[Gra86].
In particular, each parse-node representing a message
send knows the type of the receiver. There are many
different kinds of types, and some of them specify a
set of classes.

Once a parse tree is type-checked, the type
information can be used to perform high-level
optimizations[Loy88]. The ones that are currently
implemented are:

l conversion of a message send into a case state-
ment with procedure calls (when the receiver is
known to be in a small set of classes),

l in-line substitution of procedure calls,

l tail recursion elimination, and

l beta reduction, i.e. elimination of block creation
and evaluation.

These are only a small fraction of the optimizations
that are potentially useful. However, they are sufi-

cient to provide a dramatic performance increase.
TS converts’ optimized parse trees into programs

written in a machine-independent register transfer
language, which is also used to write Smalltalk prim-
itives. This increases portability and is useful for
optimizations because it allows uniform in-line sub-
stitution of primitives and of methods written in
Smalltalk. The code generation algorithm performs
several optimizations on the register transfer instruc-
tions, often eliminating entire uses of the primitives.
A single representation for code simplifies the com-
piler, as well.

The code generator is modeled after PO, by David-
son and Fraser[DFSO]. PO takes a stream of assembly
language instructions, converts each instruction into
a sequence of register transfer instructions, optimizes
the resultirlg sequence, and then converts it back to
assembly language. The main optimization is com-
mon subexpression elimination. The conversion back
to assembly language selects the best instruction for a
sequence of register transfer instructions. The result
is that peephole optimization is performed automat-
ically by a machine independent algorithm.

We modified the algorithm of PO slightly[Wie87].
Assembly language is never generated. Instead, parse
trees are converted directly to register transfer in-
structions. Register transfer instructions are also
used to describe the Smalltalk primitives, which are
usually written in native machine language and em-
bedded in the interpreter[GR83]. In TS, a primitive
method is defined using the register transfer language,
and can be read and written from the browser. Thus,
there are no black-box primitives in TS; all code can
be inspected by the programmer. Of course, a pro-
grammer must know the register transfer language for
this to be useful.

A message send can be implemented in one of three
ways. The most efficient is in-line substitution. This
can only be done when the class (or set of potential
classes) of the receiver is known and should only be
done when the method being invoked is small. If the
class of the receiver is known but the method being
invoked is large then a message send is implemented
as a procedure call using native machine instructions.
Finally, if the class of the receiver is not known, in-
line caching[DS83] is used for method-lookup. In-

* line caching is implemented by procedure calls. Thus,
there is no need for a “method lookup” primitive in -
the code generator, though there is a routine in the
in-line caching system for that purpose.

September 2530,1988 OOPSLA ‘88 Proceedings 19

All knowledge about run-time structures is isolated
to the translation from parse trees to register transfer
instructions. In particular, the translator from reg-
ister transfer instructions to native machine instruc-
tions knows nothing about method-lookup or the for-
mat of method contexts. This probably makes the
compiler less portable, since it means that primitives
need to know the exact format of objects, whether
the stack grows up or down, and where to find ar-
guments. This problem has been partly overcome by
adding macros to the register transfer language for
accessing method arguments and returning results.
We plan to try porting our compiler to another plat-
form soon; this will undoubtedly reveal many more
machine dependencies.

3 Types

Types in Typed Smalltalk are similar to sets of
classes. To be precise:

An object type is a class name together with
a possibly empty list of types.
A type is a non-empty set of object types.

An object type describes the type of a single object.
The class name in the object type is the class of the
object, while the list of types describes the types of
the components of the object. For example, the type
of an array whose elements are integers is Array oj
Integer.’ Array is the class name and the list of types
consists of the single type Integer. The type Integer
is a single object type with a class name Integer and
an empty list of types.

The type of a variable or expression describes the
objects that are possible values of ‘the variable or ex-
pression. An example is (Array of: Integer) + (Array
of: Character) + (Array oj (Integer + Character)).
Here, the plus operator is read as ‘or’, so a variable
of the above type could contain an Array whose ele-
ments are all Integers, all Characters, or a mixture of
the two.

One feature of this type system is that type inclu-
sion (i.e. type specificity) is exactly the same as the
subset relationship on the sets of object types mak-
ing up a type. Thus, an object of type Integer is a
member of type Integer + Character.

This definition of type permits subtle distinctions
between types. Consider the two types Array of: (In-
teger + Character) and (Array of: Integer) + (Array
of: Character). Neither is a subset of the other-the
first has one object type and the second has two, but

‘Types will be in italics. Class names and Smalltalk code
will be in a sans serif font.

neither of the two object types in the second type are
equal to the object type in the first. Although these
types seem similar, they are completely different. An
object of type Array of: Character is not of type Ar-
ray ofi (Integer + Character) since it cannot have an
integer stored in it. A variable of type Array of (Inte-
ger + Character) is not of type (Array of: Integer) +
(Array of: Character) because it cannot be assigned
something of type (Array of: Integer).

3.1 Type Declarations

As our examples of types illustrate, a class may be re-

garded as having certain type parameters. The list of
types that an object type associates with a given class
name C will contain one type for each type parameter
of class C. These type parameters are declared when
the class is created, and can be referred to in the
methods of the class as if they were types. The fol-
lowing class definition declares OrderedCollection to

be a subclass of SequenceableCollection with a type
parameter Elementnpe.

SequenceableCollection subclass: #OrderedCollection

instancevariables: ‘firstlndex (Smalllnteger)

lastlndex (Smalllnteger)’

classVariables: ”

typeparameters: ‘ElementType’

poolDictionaries: ”

category: ‘Sequenceable-Collections’

Note that the type of each instance variable is de-
clared when the variable is declared and that angle
brackets are used to set off types from the regular
Smalltalk code. Type parameters like ElementType

and cIasses like Smalllnteger can be used as types.
Other classes, such as SequenceableCollection, return
types when sent the of: message, the ofiof: message,
and so on.

The range of a type parameter may be restricted
by including an optional range declaration. The
range declaration of a type parameter is syntactically
identical to the type declaration for a variable. In
the above example, if we wished to restrict the ele-
ments of the OrderedCollection to be characters, the
typeparameters: field would be declared as ‘Element-

Type (Character)‘.

Class variables and instance variables have their
types declared when their defining class is created.
However, method arguments, temporary variables,
and block arguments all have their types declared in
a method, as will be seen later.

A signature type is a type (i.e. a set of object types)
specified by a set of message types. A message type
is the type of a message, not an object, so it is not

OOPSLA ‘88 Fbceedjngs sEplember25-30,1!398

really a type. It consists of the name of the message,
the type of the message’s arguments, and the type of
the value that the message returns. A object type T
is in the signature type if, for each message type m
in the specification of the signature type, a message
of type m sent to an object of type T is type-correct.

A signature type can be thought to include object
types belonging to classes not yet created. Under
this interpretation, signature types contain an infinite
number of object types. In fact, the type specified
by an empty signature contains every possible object
type. Since signature types specify the largest possi-
ble types, procedures that use them exhibit the most
polymorphism and so are the most flexible. However,
use of signature types prevents the compiler from per-
forming some important kinds of optimizations, since
they do not provide enough information about the
class of the receiver to allow compile-time binding of
message sends.

3.2 Type-checking

Type-checking infers the types of expressions and en-
sures that each statement is type-correct. An assign-
ment statement is type-correct if the type of the ex-
pression on the right-hand side (viewed as a set of
object. types) is a subset of the type of the variable
on the left-hand side. A return statement is type-
correct if the type of its expression is a subset of the
return type of the method. A statement sequence
is type-correct if each statement in the sequence is
type-correct.

Due to the simplicity of Smalltalk, the only remain-
ing language construct is the message send. A mes-
sage send is type-correct if it is type-correct for each
possibIe class of the receiver. Let, method(C, msg) de-
note the method invoked when message msg is sent, to
an object in class C. The sending of msg to an object
in class C is type-correct if the message type describ-
ing the send includea the message type of method(C,

msg). This will be true if there exists an assignment
of types to type parameters (type variables) such that
the type of each argument of the message send is a
subset of the type of the corresponding argument of
the message type of method(C, msg). Finding this as-
signment requires unification. The return type of a
message send to an object in a particular object type
is the return type of the corresponding typed message
with each type parameter replaced by the type that
was assigned to it in the previous matching. The re-
turn type of a message send is the union of the return
types of the message sends for each component object
type of the receiver.

Type-checking with signature types is easy. No fi-

nite union of object types contains a includes type,
while a signature type includes a type T if every mes-
sage in the signature is type correct for each object
type in T. A message is type correct for a signature
type if it matches the corresponding method in the
signature.

Type-checking is actually more complicated than
this. TS uses case analysis to type-check some meth-
ods, and the programmer can use type-coercion when
necessary. Details can be found in [JG87].

4 A Simple Example

We will illustrate the way the compiler works by
showing how the method for max: in class Magnitude

is compiled. The code for this method is

{ arguments: aMagnitude (MagnitudeType)
returnType: (Magnitudenpe))

max: aMagnitude

1 self < aMagnitude ifTrue: [aMagnitude]

iffalse: [self]

This is identical to the original Smalltalk- method
except for the type information prefix.

Method < in class Magnitude is known to return
an object of type l+ue + False (also called Boolean-
Type), but it is actually implemented by subclasses of
Magnitude, so its exact definition is not known. How-
ever, the iffrue:ifFalse: message to its result can be
converted into a case statement with procedure calls,
as follows: 2

t e self < aMagnitude.

case

t = true

t fcall True::iffrue:ifFalse:([aMagnitude],[self]).

t = false

+ tcall False::iffrue:ifFalsc:([aMagnitude],[self]),

Each of the two procedure calls can be replaced
by its definition. The ifTrue:ifFalse: message for
class True evaluates its first argument, while the
ifTrue:iffalse: message for class False evaluates its sec-
ond argument. Thus, the result is

t t self < aMagnitude.

case

t = true -+ t[aMagnitude] value.

t = false -+ T[selt] value.

Evaluating a constant block can be reduced at com-
pile time to the expression in the block, so the method
will end up as:

‘The notation here is not legal Smalhalk, but a printable
representation of the parse tree.

September 2530,1988 OOPSLA ‘88 Proceedings

{ arguments: aNumber <IniegerType>
returnType: <Booleanl$pe>)

t + self < aMagnitude.

case

t = true + faMagnitude.

t = false ---, Tself.

A particular use of max: is likely to be optimized by
in-line substitution, providing further opportunities
for optimization. For example, suppose x and y are
declared to be of type SmallInteger. The expression
x max: y would be converted into the expression

tcx<y.
case

t = true -+y.

t = false -+x.

In this case, the < message can be further opti-
mized because the class of the sender is known to be
Smalllnteger. The < method fdr class Smalilnteger is
a primitive method. Primitive methods are defined in
TS by a register transfer language program. TS ex-
tends the Smalltalk- description of a primitive to
<primitive: n <type> ‘code’>, where n is the integer
assigned to the primitive by Smalltalk-80, <type> is
the type of the object that the primitive returns if it
succeeds3 and ‘code’ is the register transfer language
program. Figure 1 shows the TS definition of the <
method for Smalllntcgcr.

The register transfer language uses the standard
Smalltalk- syntax for variables, constants, and bi-
nary operators. Variables come in four flavors: ad-
dress valued registers (al, a2, . . .), integer valued
data registers (dl, d2, . . .), byte valued data reg-
isters (bl, b2, . . .), and special registers like the
stack pointer (SP), a register holding the constant nil

(NIL), and the condition code registers. The only con-
stants are integers, though there are ways to access
global variables and other objects using the current
method’s literal frame.

Expressions usually contain only one operator.
These operators include the usual arithmetic and log-
ical operators. The C dereference operator * is used
to dereference a pointer. The instruction 1 L jumps
to label L and the instruction L 1 L jumps to label
L if the t bit is set, which normally means that the
previous operation resulted in a zero.

The arguments to a method are given special
names. Register $0 refers to the receiver. The n
arguments to a method are named $1 through $n.
Register $n + 1 refers to the result to be returned to
the sender. Using these special names makes it easier
for the compiler to substitute a primitive in-line.

3Primitives can fail if the types of their arguments are

incorrect-the Smalltalk code in the method is then executed.

< aNumber

< primitive: 3 <BooleanType>
‘dl +-SO.
d2 +Sl.
z +(d2 & 16r80000000) = 0. “check class of arg.”
-z 112 “fail if wrong.”
dl cdl {1:31} *Convert self.”
d2 td2 {1:31} “Convert aNumber.”
n t(d1 - d2) < 0 . “Test for less-thau.”
n TU.
al +-NIL.

al tal + 12. ‘Generate a false.”
$2 tal. n Return a false.”
(0.

I1 a2 tNIL.

a2 ta2 + 24. “Generate a; true.”
$2 ta2. *Return a true.”
9.

l2’>

Tsuper < aNumber

Figure 1: Definition of primitive for Smalllntcger <

The register transfer program defining Smalllnteger

< (Figure 1) first fetches the receiver and operand
from the stack and stores them in dl and d2. It then
tests to see if the second argument is a Smalllntcger.

As in other Smalltalk implementations, Smallintegers

are flagged by having certain bits set. In this case,
the high-order bit of a Smalllnteger is 0. The operands
are then converted to the machine representation for
an integer and compared. The last half of the method
returns a boolean object as a result. It depends on
the fact that the objects nil, false, and true are located
next to each other, so the addresses of the last two
objects can be calculated from that of the first. This
fact, like the representation of small integers, is spe-
cific to the Tektronix implementation of Smalltalk.

When the parse tree for x max: y is converted into a
register transfer program, the primitive definition of
< will be substituted in-line. The registers $0 and $1
in the primitive definition will be replaced by refer-
ences to the receiver and argument of the method, in
this case x and y. The resulting register transfer pro-
gram will be optimized and converted into a machine
language program similar to the one in Figure 2.

Note that the quality of the resulting code is pretty
poor. In particular, there is no reason to generate a
true or false object and then discard it immediately

22 OOPSLA ‘88 Proceedings September 25-30,1938

00
02
04
08
OA
10
12
16
1A
1E
20
24
26
2C
2E
32
34
3A
3c
42
44
48
4c
4E
52
56
5A

move .l
move.1
move.1
move.1
and.1
tst.1
bne
bfext
bfext
cmp.1
bmi
move.1
add.1
move.1
bra
move .l
add.1
move.1
add.1
cmp.1
bne
move .l
move .l
bra
move .l
move .l

a5,aO .

W),dO ;receiver in d0
(-8,a5),dl ;argument in dl
dl,d2
16r80000000,d2 ;Test if SmallInteger.
d2
3A
d0(1:3I},dO
dl{l:31},dl
dI,dO
32 ;test x<y
d5,a2 ;d5 + 12 is false

12,a2 ;return false

a2,al

3A
d5,al ;d5 + 24 is true

24,al ;return true
d5,dO
12,dO
dO,al ;test if true

FZO),a2
a2,a6 ;a6 will hold result
5A
(-8,aO),a3

a3,a6

Figure 2: Assembly language version of x max: y

thereafter. Also, the argument is declared to be a
small integer, so the first test is unnecessary. There
are many optimizations of this kind that are needed.
In spite of lacking many optimizations, the resulting
code is much faster than the best interpreters, as will
be seen in the next section.

5 Performance Evaluation

A compiler needs to produce fast code and to produce
it quickly. TS is currently speeding up small exam-
ples by a factor of 5 to 10 over the interpreter, but
it takes 15 to 30 seconds to compile them. Both of
these figures are certain to improve. The previous ex-
ample shows that better optimizations should be able
to make the resulting code several times faster than
it is now. The code generator has several bottlenecks.
Rewriting them should make TS two or three times
faster and compiling TS should then make it about
as fast as the current Smalltalk- compiler.

The following benchmarks compare TS with Quick-
talk. It is impossible to compare absolute times be-
cause the machines we used are several times faster
than the ones used in [CWSS]. Even the speedups
are hard to compare, since the Tektronix interpreter
has been rewritten and made faster since the earlier
paper. However, the results show that TS produces
code that is about as fast as that of Quicktalk.

The first example is the sumFrom:to: method of
SmallInteger, Since TS is integrated within the
standard Smalltalk- programming environment, we
used the same source code for the compiled and the
interpreted time. 0 sumFrom: 1 to: 10000 took 62
milliseconds in TS and 829 milliseconds in the inter-
preter, for a total speedup of 13. Quicktalk achieved
a speedup of 22 on this example.

The second example is the substring replacement
method replaceFrom:to:with:startingAt: in class String.

TS achieved a speedup of 5.5 over the interpreter
when replacing substrings of length 1000. This com-
pares favorably with Quicktalk, which had a speedup
of 3.3, but is still much slower than a handwritten ma-
chine language program, for the same reasons given
in [CWSS].

The third example is dot product. TS provided a
speedup of 6.7 whereas Quicktalk provided a speedup
of 5.0.

All of these example are small. The largest example
that TS has been able to compile so far is addAll:. We
compiled a test method that added one set of integers
to another. The addAll: method was substituted in-
line and specialized for sets and for integers. The re-
sulting program was from 5.7 to 7.2 times faster than

September 2530,1988 OOPSLA ‘88 Proceedings 23

the interpreter, with the greatest speedup occuring
with the fewest collisions in the hash table of the set.
Sets and dictionaries are used a lot in Smalltalk, and
both are based on hashing. Thus, this example indi-
cates that TS should be able to make large programs
quite a bit faster.

6 Programming Environment
Concerns

Smallta.lk-80 provides an extremely attractive pro-
gramming environment [Go184]. The user can incre-
mentally construct and test a program, changing even
the classes that provide the programming environ-
ment. An optimized method has assumptions about
other methods encoded within it, so changes to the
other methods can make the optimized method in-
correct. Thus, optimization does not integrate easily
into the kind of programming environment provided
by Smalltalk-80.

The most important optimization, in-line substitu-
tion, is also the optimization that causes the most

problems. If method A is substituted into method B
then any change to A will require the recompilation
of B. Thus, in-line substitution creates dependencies
between methods.

There are several ways to handle these dependen-
cies. One way is to keep track of the dependents
of each method and to recompile a method’s depen-
dents when it is changed. However, nearly every
method depends on some other method, so it will
take a great deal of space to store all these depen-
dencies. Most of the dependencies will be on stan-
dard methods with little chance of changing, such as
iffrue:ifFalse:. Therefore, this approach will waste a
lot of space storing dependency information that is
never used.

Another solution is that recompiling a method
causes all other methods to be checked to see whether
they need to be recompiled. This will waste a lot of
time, since most methods being recompiled have no
dependents.

Our solution is to have several kinds of methods.
A jized method is not expected to change, so no de-
pendency information is kept for it. Before it can be
changed it must be converted to a changeable method.
Converting a fixed method to be changeable requires
scanning all other methods to see which depend on
it. Converting a method from changeable to fixed
will delete the dependency information kept for it.
Thus, we can make recompilation fast and minimize
the dependency information required.

It is very important that the Smalltalk compiler be

fast. Smalltalk programmers are used to the compiler
taking no more than a second or two per method.
Moreover, the compiler is used as a command inter-
preter. The compiler can be a fast command inter-
preter by having it do few optimizations. However,
changing one method can cause an arbitrary num-
ber of other methods to be recompiled, so even a fast
compiler will take a long time in some cases.

We make changing a method fast by keeping an un-
optimized version of every method that depends on
some other method. If the dependent method is told
that its optimizations are invalid then it will use the
unoptimized version of itself until it can be reopti-
mized. Instead of 0ptimizing.a method immediately,
all optimization takes place in the background. Thus,
when a method’s optimizations are invalidated, it will
place itself on the optimizer’s queue. Invalidating a
method is 10 to 100 times as fast as reoptimizing it,
so this technique greatly improves the response time
of the compiler.[Whi87]

One of the problems with performing in-line substi-
tution is that the compiler needs to be able to deter-
mine which methods should be substituted. In gen-
eral, rarely executed methods do not need to be opti-
mized at all. Short methods should usually be substi-
tuted in-line, while long methods should not be. We
have not yet tried to automate the decision of which
methods shouId be called by in-line substitution and
which by a procedure call. Instead, the programmer
marks methods as substitutable or nonsubstitutabie,
and the compiler follows the advice.

7 Project Organization

Proponents of object-oriented programming cIaim it
greatly improves reuse of code, and decreases the
amount of time needed to develop software. This
project is evidence in support of these claims. The
compiler was written by six people. Although the
first code for the type system was written in Decem-
ber of 1985, most of the work on the compiler took
place after September of 1986. Indeed, four people on
the project did not even know Smalltalk at the begin-
ning of September 1?86. Somewhere between 2 and
3 man-years have been spent on this project, mostly
by students who did not previously know Smalltalk
nor had done much work on compilers.

We were able to reuse most of the parser, most
of the parse-node class hierarchy, and the user inter-
face tools. This not only saved an enormous amount
of work, but provided a common framework for the
project. The reused components provided standard
interfaces between the people working on the project.

24 OOPSLA ‘88 Proceedings September 2!5-30,1998

The
0l.l

0

l

project was divided into one person each working

the type system

integrating the type system into the compiler and
programming environment

high level optimizations on parse trees

optimizing register transfer instructions and pro-
ducing machine code

maintaining dependencies

building an interface to the virtual machine.

The most important shared interface was that of the
parse trees, which was reused from Smalltalk-80. The
type system was also an important shared interface.
Although the type checking algorithms were reimple-
mented several times, the interface remained stable.
The register transfer language was also an important
interface, and changes to it caused other code to be
rewritten.

Since many of the students taking part in the
project are doing so as part of a M.S. program, there
is a lot of turnover of project members. In fact, three
of the original students have been replaced by three
others. We have stressed clean, understandable de-
sign to minimize the difficulty of learning the system,
but a new generation of students quickly learns which
parts of the system are well designed and which need
more work.

8 Further Plans

Although the compiler is becoming more reliable,
it has not yet compiled the entire Smalltalk- im-
age. We plan to do that and quit using the inter-
preter. We are rewriting register allocation, adding
support for foreign functions, making it possible to
provide specialized method look-up routines, and pro-
viding support for compiling applications to run out-
side the Smalltalk programming environment. Long-
range problems that are being investigated are that of
providing the usual Smalltalk debugger for optimized
code, type inference, and allowing typed and untyped
code to coexist safely.

The compiler only performs a few optimizations, so
it is just a skeleton of an optimizing compiler. How-
ever, because it converts Smalltalk programs into an
intermediate form that is very similar to C or Pascal,
it can be fleshed out to perform most standard opti-
mizations. Smalltalk should eventually be as efficient
as other languages.

f’.. type system is a prerequisite for optimizing
Smalltalk. Fortunately, it is possible to design a type
system for Smalltalk that is flexible enough to allow

most Smalltalk programs to be type correct, yet re-
strictive enough to allow the compiler to optimize the
programs. While it is not yet clear that all the advan-
tages of the Smalltalk environment can be preserved,
it should be possible to make Smalltalk as fast as any
other language.

Aiknowledgements

The authors are grateful to Tektronix for the dona-
tion of equipment, financial support and advice, to
AT&T for financial support under the Illinois Soft-
ware Engineering Program, to NSF for support under
grant CCR-8715752, and to Joe Loyal& John Wie-
gand, and James Whitledge for doing much of the
programming.

References

[Atk86]

[BMW861

[CWSS]

[DF60]

[DS83]

Robert G. Atkinson. Hurricane: an op-
timizing compiler for Smalltalk. In Pro-
ceedings of 0 OPSL A ‘86, Object- Oriented
Programming Systems, Languages and Ap
plications, pages 151-166, November 1986.
printed as SIGPLAN Notices, 21(11).

Mark B. Ballard, David Maier, and Allen
Wirfs-Brock. QUICKTALK: a Smalltalk-
80 dialect for defining primitive methods.
In Proceedings of OOPSLA ‘86, Object-
Oriented Programming Systems, Lon-
guagea and Applications, pages 140-150,
November 1986. printed as SIGPLAN No-
tices, 21(11).

Patrick J. Caudill and Allen Wirfs-
Brock. A third generation Smalltalk-
80 implementation. In Proceedings of
OOPSLA ‘86, Object-Oriented Program-
ming Systems, Languages and Applica-
tions, pages 119-130, November 1986.
printed as SIGPLAN Notices, 21(11).

Jack W. Davidson and Christopher W.
Fraser. The design and application of
a retargetable peephole optimizer. ACM
lhnsactions on Programming Languages
and Systems, 2(2):191-202, April 1980.

L. Peter Deutsch and Allan M. Schiff-
man. Efficient implementation of the
Smalltalk- system. In Conference Record

September 2530,1988 OOPSLA ‘88 Proceedings

[Go1841

[GR83]

[Gra86]

[J G87]

[Joh86]

Foy881

pJH86]

fWhi87]

[Wie87]

of the Tenth Annual ACM Symposium
on Principles of Programming Languages,
pages 297-362,1983.

Adele Goldberg. Smalltalk-80: The
Interactive Programming Environment.
Addison-Wesley, Reading, Massachusetts,
1984.

Adele Goldberg and David Robson.
Smalltalk-80: The Language and its Im-
plementa2ion. Addison-Wesley, Reading,
Massachusetts, 1983.

Justin Graver. Adding Qpe Specijica-
tion and We-Checking Capabilities to
Smalltalk-80. Master’s thesis, University
of Illinois at Urbana-Champaign, 1986.

Ralph E. Johnson and Justin 0. Graver.
A User’s Guide lo loped Smalltalk. Tech-
nical Report, Department of Computer
Science, University of IIIinois at Urbana-
Champaign, 1304 West Springfield, Ur-
bana, Illinois, 1987.

Ralph E. Johnson. Type-checking
SmalItaIk. In Proceedings of OOPSLA ‘86,
Object-Oriented Programming Syslems,
Languages and Applicalions, pages 3X-
321, November 1986. printed as SIGPLAN
Notices, 21(11).

Joseph LoyaII. High-level zplimization
in a !Qped Smalltalk Compiler. Master’s
thesis, University of IlIinois at Urbana-
Champaign, 1988.

A. Dain Samples, David Ungar, and
Paul Hilfinger . SOAR: Smalltalk with-
out bytecodes. In Proceedings of OOP-
SLA ‘86, Object-Oriented Programming
Systems, Languages and Applicalions,
pages 107-118, November 1986. printed
as SIGPLAN Notices, 21(11).

James Robert Whitledge. An Interface
for an Optimizer in the Highly InZerac-
tive Environment of Smalltalk. Master’s
thesis, University of Illinois at Urbana-
Champaign, 1987.

John David Wiegand. An Object-oriented
Code Optimizer and Generator. Mm-
ter’s thesis, University of Illinois, Urbana-
Champaign, 1987.

OOPSLA ‘88 Proceedings September 25.30,1988

