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Abstract 

TS (Typed Smalltalk) is a portable optimizing com- 
piler that produces native machine code for a typed 
variant of Smalltalk, making Smalltalk programs 
much faster. This paper describes the structure of 
TS, the kinds of optimizations that it performs, the 
constraints that it places upon Smalltalk, the con- 
straints placed upon it by an interactive programming 
environment, and its performance. 

1 Introduction 

A number of recent Smalltalk implementations have 
acceptable performance[DS83][CW86][SIJII86]. This 
has been achieved as much by the increase in proces- 
sor speed as by improvements in software technology. 
However, all current implementations of Smalltalk 
are slower than those of languages like C. Smalltalk’s 
poor performance is usually ascribed to late-binding 
of procedure calls, heavy use of closures, and dy- 
namic memory management. However, Smalltalk im- 
plementations such as PS and SOAR reduce the cost 
of these language features. SOAR spends two-thirds 
of its time executing primitives. Thus, even if proce- 
dure calling and memory management overhead were 
completely removed, SOAR could be no more than a 
third faster. TS (Typed Smalltalk) is an optimizing 
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compiler for Smalltalk that results in a large speedup 
over interpreters. The performance of TS indicates 
that the real reason that Smalltalk is inefficient is 
information-hiding provided by object-oriented pro- 
gramming. 

Most attempts to speed-up Smalltalk have focused 
on optimizing the interpreter instead of building an 
optimizing compiler. The reason is easy to see. In the 
absence of type information, a compiler cannot de- 
termine which method (procedure) is being invoked 
by a message send (procedure call). Since control 
structures, field selection, arithmetic operations, and 
array accesses are all accomplished by sending mes- 
sages, the compiler has virtually no information on 
which to make optimizations. 

The importance of a type system is illustrated 
by two compilers that compile subsets of Smalltalk 
to efficient machine code: Hurricane[Atk86] and 
Quicktalk[BMW86]. Both compilers use a type sys- 
tem to determine the methods that would be invoked 
by a particular message send. Quicktalk produces the 
fastest code but has the most restrictive type system. 
Quicktalk produces speed-ups of over 20 using only 
modest optimizations, but few large Smalltalk meth- 
ods satisfy the restrictions of the compiler. While 
neither Quicktalk nor Hurricane accept full Smalltalk, 
they show the potential for code optimization to im- 
prove the speed of Smalltalk. 

The type system of TS[Joh86][JG87] is more pow- 
erful than the type systems of Hurricane or Quick- 
talk. It type-checks most large Smalltalk methods, 
ensures that each variable always contains an object 
whose class is compatible with the type of the vari- 
able, and allows the type of a variable or expression 
to be expressed precisely enough that the compiler 
can deduce the set of methods that can be invoked 
by a particular message. Neither of the earlier type 
systems is sufficient for type-checking all Smalltalk 
methods, and neither ensures that the contents of 
a variable is always an object in a particular set of 
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classes. Quicktalk treats compiled methods as “user 
primitives”, and if the classes of the arguments dif- 
fer from their types then the primitives fail, just like 
normal Smalltalk primitives. Hurricane treats types 
as hints to the compiler, and produces code to han- 
dle the cases where the classes of objects are different 
than what was expected. 

TS uses a set of very general optimizations, most 
notably early binding of procedure calls (message 
sends) and in-line substitution of calls to user-defined 
and primitive methods. The result is that Smalltalk 
programs are converted into a form similar to C or 
Pascal programs, permitting standard code optimiza- 
tion techniques to be used. TS has been designed so 
that it can be easily ported to any machine with 32 
bit integers and pointers. It currently runs on a Tek- 
tronix 4405 and produces Motorola 68020 machine 
language. 

2 An Overview of TS 

TS reuses many of the components of the Smalltalk- 
80 programming environment, including most of the 
original compiler. The reused classes served as an 
interface between the various people working on the 
project. This reuse of code and interfaces let six inex- 
perienced Smalltalk programmers build the compiler 
in a relatively short time. 

The standard Smalltalk parser produces a parse 
tree consisting of instances of subclasses of ParseNode. 

We changed the parser to allow the types of variables 
to be declared. Since the Smalltalk- compiler uses 
a recursive descent parser, it was easy to build the the 
parser for TS ‘by subclassing the Smalltalk- Parser 

class. 
A TS parse tree can type-check itself, resulting in 

a parse tree decorated with type information[Gra86]. 
In particular, each parse-node representing a message 
send knows the type of the receiver. There are many 
different kinds of types, and some of them specify a 
set of classes. 

Once a parse tree is type-checked, the type 
information can be used to perform high-level 
optimizations[Loy88]. The ones that are currently 
implemented are: 

l conversion of a message send into a case state- 
ment with procedure calls (when the receiver is 
known to be in a small set of classes), 

l in-line substitution of procedure calls, 

l tail recursion elimination, and 

l beta reduction, i.e. elimination of block creation 
and evaluation. 

These are only a small fraction of the optimizations 
that are potentially useful. However, they are sufi- 

cient to provide a dramatic performance increase. 
TS converts’ optimized parse trees into programs 

written in a machine-independent register transfer 
language, which is also used to write Smalltalk prim- 
itives. This increases portability and is useful for 
optimizations because it allows uniform in-line sub- 
stitution of primitives and of methods written in 
Smalltalk. The code generation algorithm performs 
several optimizations on the register transfer instruc- 
tions, often eliminating entire uses of the primitives. 
A single representation for code simplifies the com- 
piler, as well. 

The code generator is modeled after PO, by David- 
son and Fraser[DFSO]. PO takes a stream of assembly 
language instructions, converts each instruction into 
a sequence of register transfer instructions, optimizes 
the resultirlg sequence, and then converts it back to 
assembly language. The main optimization is com- 
mon subexpression elimination. The conversion back 
to assembly language selects the best instruction for a 
sequence of register transfer instructions. The result 
is that peephole optimization is performed automat- 
ically by a machine independent algorithm. 

We modified the algorithm of PO slightly[Wie87]. 
Assembly language is never generated. Instead, parse 
trees are converted directly to register transfer in- 
structions. Register transfer instructions are also 
used to describe the Smalltalk primitives, which are 
usually written in native machine language and em- 
bedded in the interpreter[GR83]. In TS, a primitive 
method is defined using the register transfer language, 
and can be read and written from the browser. Thus, 
there are no black-box primitives in TS; all code can 
be inspected by the programmer. Of course, a pro- 
grammer must know the register transfer language for 
this to be useful. 

A message send can be implemented in one of three 
ways. The most efficient is in-line substitution. This 
can only be done when the class (or set of potential 
classes) of the receiver is known and should only be 
done when the method being invoked is small. If the 
class of the receiver is known but the method being 
invoked is large then a message send is implemented 
as a procedure call using native machine instructions. 
Finally, if the class of the receiver is not known, in- 
line caching[DS83] is used for method-lookup. In- 

* line caching is implemented by procedure calls. Thus, 
there is no need for a “method lookup” primitive in - 
the code generator, though there is a routine in the 
in-line caching system for that purpose. 
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All knowledge about run-time structures is isolated 
to the translation from parse trees to register transfer 
instructions. In particular, the translator from reg- 
ister transfer instructions to native machine instruc- 
tions knows nothing about method-lookup or the for- 
mat of method contexts. This probably makes the 
compiler less portable, since it means that primitives 
need to know the exact format of objects, whether 
the stack grows up or down, and where to find ar- 
guments. This problem has been partly overcome by 
adding macros to the register transfer language for 
accessing method arguments and returning results. 
We plan to try porting our compiler to another plat- 
form soon; this will undoubtedly reveal many more 
machine dependencies. 

3 Types 

Types in Typed Smalltalk are similar to sets of 
classes. To be precise: 

An object type is a class name together with 
a possibly empty list of types. 
A type is a non-empty set of object types. 

An object type describes the type of a single object. 
The class name in the object type is the class of the 
object, while the list of types describes the types of 
the components of the object. For example, the type 
of an array whose elements are integers is Array oj 
Integer.’ Array is the class name and the list of types 
consists of the single type Integer. The type Integer 
is a single object type with a class name Integer and 
an empty list of types. 

The type of a variable or expression describes the 
objects that are possible values of ‘the variable or ex- 
pression. An example is (Array of: Integer) + (Array 
of: Character) + (Array oj (Integer + Character)). 
Here, the plus operator is read as ‘or’, so a variable 
of the above type could contain an Array whose ele- 
ments are all Integers, all Characters, or a mixture of 
the two. 

One feature of this type system is that type inclu- 
sion (i.e. type specificity) is exactly the same as the 
subset relationship on the sets of object types mak- 
ing up a type. Thus, an object of type Integer is a 
member of type Integer + Character. 

This definition of type permits subtle distinctions 
between types. Consider the two types Array of: (In- 
teger + Character) and (Array of: Integer) + (Array 
of: Character). Neither is a subset of the other-the 
first has one object type and the second has two, but 

‘Types will be in italics. Class names and Smalltalk code 
will be in a sans serif font. 

neither of the two object types in the second type are 
equal to the object type in the first. Although these 
types seem similar, they are completely different. An 
object of type Array of: Character is not of type Ar- 
ray ofi (Integer + Character) since it cannot have an 
integer stored in it. A variable of type Array of (Inte- 
ger + Character) is not of type (Array of: Integer) + 
(Array of: Character) because it cannot be assigned 
something of type (Array of: Integer). 

3.1 Type Declarations 

As our examples of types illustrate, a class may be re- 

garded as having certain type parameters. The list of 
types that an object type associates with a given class 
name C will contain one type for each type parameter 
of class C. These type parameters are declared when 
the class is created, and can be referred to in the 
methods of the class as if they were types. The fol- 
lowing class definition declares OrderedCollection to 

be a subclass of SequenceableCollection with a type 
parameter Elementnpe. 

SequenceableCollection subclass: #OrderedCollection 

instancevariables: ‘firstlndex (Smalllnteger) 

lastlndex (Smalllnteger)’ 

classVariables: ” 

typeparameters: ‘ElementType’ 

poolDictionaries: ” 

category: ‘Sequenceable-Collections’ 

Note that the type of each instance variable is de- 
clared when the variable is declared and that angle 
brackets are used to set off types from the regular 
Smalltalk code. Type parameters like ElementType 

and cIasses like Smalllnteger can be used as types. 
Other classes, such as SequenceableCollection, return 
types when sent the of: message, the ofiof: message, 
and so on. 

The range of a type parameter may be restricted 
by including an optional range declaration. The 
range declaration of a type parameter is syntactically 
identical to the type declaration for a variable. In 
the above example, if we wished to restrict the ele- 
ments of the OrderedCollection to be characters, the 
typeparameters: field would be declared as ‘Element- 

Type (Character)‘. 

Class variables and instance variables have their 
types declared when their defining class is created. 
However, method arguments, temporary variables, 
and block arguments all have their types declared in 
a method, as will be seen later. 

A signature type is a type (i.e. a set of object types) 
specified by a set of message types. A message type 
is the type of a message, not an object, so it is not 
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really a type. It consists of the name of the message, 
the type of the message’s arguments, and the type of 
the value that the message returns. A object type T 
is in the signature type if, for each message type m 
in the specification of the signature type, a message 
of type m sent to an object of type T is type-correct. 

A signature type can be thought to include object 
types belonging to classes not yet created. Under 
this interpretation, signature types contain an infinite 
number of object types. In fact, the type specified 
by an empty signature contains every possible object 
type. Since signature types specify the largest possi- 
ble types, procedures that use them exhibit the most 
polymorphism and so are the most flexible. However, 
use of signature types prevents the compiler from per- 
forming some important kinds of optimizations, since 
they do not provide enough information about the 
class of the receiver to allow compile-time binding of 
message sends. 

3.2 Type-checking 

Type-checking infers the types of expressions and en- 
sures that each statement is type-correct. An assign- 
ment statement is type-correct if the type of the ex- 
pression on the right-hand side (viewed as a set of 
object. types) is a subset of the type of the variable 
on the left-hand side. A return statement is type- 
correct if the type of its expression is a subset of the 
return type of the method. A statement sequence 
is type-correct if each statement in the sequence is 
type-correct. 

Due to the simplicity of Smalltalk, the only remain- 
ing language construct is the message send. A mes- 
sage send is type-correct if it is type-correct for each 
possibIe class of the receiver. Let, method(C, msg) de- 
note the method invoked when message msg is sent, to 
an object in class C. The sending of msg to an object 
in class C is type-correct if the message type describ- 
ing the send includea the message type of method(C, 

msg). This will be true if there exists an assignment 
of types to type parameters (type variables) such that 
the type of each argument of the message send is a 
subset of the type of the corresponding argument of 
the message type of method(C, msg). Finding this as- 
signment requires unification. The return type of a 
message send to an object in a particular object type 
is the return type of the corresponding typed message 
with each type parameter replaced by the type that 
was assigned to it in the previous matching. The re- 
turn type of a message send is the union of the return 
types of the message sends for each component object 
type of the receiver. 

Type-checking with signature types is easy. No fi- 

nite union of object types contains a includes type, 
while a signature type includes a type T if every mes- 
sage in the signature is type correct for each object 
type in T. A message is type correct for a signature 
type if it matches the corresponding method in the 
signature. 

Type-checking is actually more complicated than 
this. TS uses case analysis to type-check some meth- 
ods, and the programmer can use type-coercion when 
necessary. Details can be found in [JG87]. 

4 A Simple Example 

We will illustrate the way the compiler works by 
showing how the method for max: in class Magnitude 

is compiled. The code for this method is 

{ arguments: aMagnitude (MagnitudeType) 
returnType: (Magnitudenpe)) 

max: aMagnitude 

1 self < aMagnitude ifTrue: [aMagnitude] 

iffalse: [self] 

This is identical to the original Smalltalk- method 
except for the type information prefix. 

Method < in class Magnitude is known to return 
an object of type l+ue + False (also called Boolean- 
Type), but it is actually implemented by subclasses of 
Magnitude, so its exact definition is not known. How- 
ever, the iffrue:ifFalse: message to its result can be 
converted into a case statement with procedure calls, 
as follows: 2 

t e self < aMagnitude. 

case 

t = true 

t fcall True::iffrue:ifFalse:([aMagnitude],[self]). 

t = false 

+ tcall False::iffrue:ifFalsc:([aMagnitude],[self]), 

Each of the two procedure calls can be replaced 
by its definition. The ifTrue:ifFalse: message for 
class True evaluates its first argument, while the 
ifTrue:iffalse: message for class False evaluates its sec- 
ond argument. Thus, the result is 

t t self < aMagnitude. 

case 

t = true -+ t[aMagnitude] value. 

t = false -+ T[selt] value. 

Evaluating a constant block can be reduced at com- 
pile time to the expression in the block, so the method 
will end up as: 

‘The notation here is not legal Smalhalk, but a printable 
representation of the parse tree. 
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{ arguments: aNumber <IniegerType> 
returnType: <Booleanl$pe>) 

t + self < aMagnitude. 

case 

t = true + faMagnitude. 

t = false ---, Tself. 

A particular use of max: is likely to be optimized by 
in-line substitution, providing further opportunities 
for optimization. For example, suppose x and y are 
declared to be of type SmallInteger. The expression 
x max: y would be converted into the expression 

tcx<y. 
case 

t = true -+y. 

t = false -+x. 

In this case, the < message can be further opti- 
mized because the class of the sender is known to be 
Smalllnteger. The < method fdr class Smalilnteger is 
a primitive method. Primitive methods are defined in 
TS by a register transfer language program. TS ex- 
tends the Smalltalk- description of a primitive to 
<primitive: n <type> ‘code’>, where n is the integer 
assigned to the primitive by Smalltalk-80, <type> is 
the type of the object that the primitive returns if it 
succeeds3 and ‘code’ is the register transfer language 
program. Figure 1 shows the TS definition of the < 
method for Smalllntcgcr. 

The register transfer language uses the standard 
Smalltalk- syntax for variables, constants, and bi- 
nary operators. Variables come in four flavors: ad- 
dress valued registers (al, a2, . . . ), integer valued 
data registers (dl, d2, . . . ), byte valued data reg- 
isters (bl, b2, . . .), and special registers like the 
stack pointer (SP), a register holding the constant nil 

(NIL), and the condition code registers. The only con- 
stants are integers, though there are ways to access 
global variables and other objects using the current 
method’s literal frame. 

Expressions usually contain only one operator. 
These operators include the usual arithmetic and log- 
ical operators. The C dereference operator * is used 
to dereference a pointer. The instruction 1 L jumps 
to label L and the instruction L 1 L jumps to label 
L if the t bit is set, which normally means that the 
previous operation resulted in a zero. 

The arguments to a method are given special 
names. Register $0 refers to the receiver. The n 
arguments to a method are named $1 through $n. 
Register $n + 1 refers to the result to be returned to 
the sender. Using these special names makes it easier 
for the compiler to substitute a primitive in-line. 

3Primitives can fail if the types of their arguments are 

incorrect-the Smalltalk code in the method is then executed. 

< aNumber 

< primitive: 3 <BooleanType> 
‘dl +-SO. 
d2 +Sl. 
z +(d2 & 16r80000000) = 0. “check class of arg.” 
-z 112 “fail if wrong.” 
dl cdl {1:31} *Convert self.” 
d2 td2 {1:31} “Convert aNumber.” 
n t(d1 - d2) < 0 . “Test for less-thau.” 
n TU. 
al +-NIL. 

al tal + 12. ‘Generate a false.” 
$2 tal. n Return a false.” 
(0. 

I1 a2 tNIL. 

a2 ta2 + 24. “Generate a; true.” 
$2 ta2. *Return a true.” 
9. 

l2’> 

Tsuper < aNumber 

Figure 1: Definition of primitive for Smalllntcger < 

The register transfer program defining Smalllnteger 

< (Figure 1) first fetches the receiver and operand 
from the stack and stores them in dl and d2. It then 
tests to see if the second argument is a Smalllntcger. 

As in other Smalltalk implementations, Smallintegers 

are flagged by having certain bits set. In this case, 
the high-order bit of a Smalllnteger is 0. The operands 
are then converted to the machine representation for 
an integer and compared. The last half of the method 
returns a boolean object as a result. It depends on 
the fact that the objects nil, false, and true are located 
next to each other, so the addresses of the last two 
objects can be calculated from that of the first. This 
fact, like the representation of small integers, is spe- 
cific to the Tektronix implementation of Smalltalk. 

When the parse tree for x max: y is converted into a 
register transfer program, the primitive definition of 
< will be substituted in-line. The registers $0 and $1 
in the primitive definition will be replaced by refer- 
ences to the receiver and argument of the method, in 
this case x and y. The resulting register transfer pro- 
gram will be optimized and converted into a machine 
language program similar to the one in Figure 2. 

Note that the quality of the resulting code is pretty 
poor. In particular, there is no reason to generate a 
true or false object and then discard it immediately 
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00 
02 
04 
08 
OA 
10 
12 
16 
1A 
1E 
20 
24 
26 
2C 
2E 
32 
34 
3A 
3c 
42 
44 
48 
4c 
4E 
52 
56 
5A 

move .l 
move.1 
move.1 
move.1 
and.1 
tst.1 
bne 
bfext 
bfext 
cmp.1 
bmi 
move.1 
add.1 
move.1 
bra 
move .l 
add.1 
move.1 
add.1 
cmp.1 
bne 
move .l 
move .l 
bra 
move .l 
move .l 

a5,aO . 

W),dO ;receiver in d0 
(-8,a5),dl ;argument in dl 
dl,d2 
# 16r80000000,d2 ;Test if SmallInteger. 
d2 
3A 
d0(1:3I},dO 
dl{l:31},dl 
dI,dO 
32 ;test x<y 
d5,a2 ;d5 + 12 is false 

# 12,a2 ;return false 

a2,al 

3A 
d5,al ;d5 + 24 is true 

# 24,al ;return true 
d5,dO 
# 12,dO 
dO,al ;test if true 

FZO),a2 
a2,a6 ;a6 will hold result 
5A 
(-8,aO),a3 

a3,a6 

Figure 2: Assembly language version of x max: y 

thereafter. Also, the argument is declared to be a 
small integer, so the first test is unnecessary. There 
are many optimizations of this kind that are needed. 
In spite of lacking many optimizations, the resulting 
code is much faster than the best interpreters, as will 
be seen in the next section. 

5 Performance Evaluation 

A compiler needs to produce fast code and to produce 
it quickly. TS is currently speeding up small exam- 
ples by a factor of 5 to 10 over the interpreter, but 
it takes 15 to 30 seconds to compile them. Both of 
these figures are certain to improve. The previous ex- 
ample shows that better optimizations should be able 
to make the resulting code several times faster than 
it is now. The code generator has several bottlenecks. 
Rewriting them should make TS two or three times 
faster and compiling TS should then make it about 
as fast as the current Smalltalk- compiler. 

The following benchmarks compare TS with Quick- 
talk. It is impossible to compare absolute times be- 
cause the machines we used are several times faster 
than the ones used in [CWSS]. Even the speedups 
are hard to compare, since the Tektronix interpreter 
has been rewritten and made faster since the earlier 
paper. However, the results show that TS produces 
code that is about as fast as that of Quicktalk. 

The first example is the sumFrom:to: method of 
SmallInteger, Since TS is integrated within the 
standard Smalltalk- programming environment, we 
used the same source code for the compiled and the 
interpreted time. 0 sumFrom: 1 to: 10000 took 62 
milliseconds in TS and 829 milliseconds in the inter- 
preter, for a total speedup of 13. Quicktalk achieved 
a speedup of 22 on this example. 

The second example is the substring replacement 
method replaceFrom:to:with:startingAt: in class String. 

TS achieved a speedup of 5.5 over the interpreter 
when replacing substrings of length 1000. This com- 
pares favorably with Quicktalk, which had a speedup 
of 3.3, but is still much slower than a handwritten ma- 
chine language program, for the same reasons given 
in [CWSS]. 

The third example is dot product. TS provided a 
speedup of 6.7 whereas Quicktalk provided a speedup 
of 5.0. 

All of these example are small. The largest example 
that TS has been able to compile so far is addAll:. We 
compiled a test method that added one set of integers 
to another. The addAll: method was substituted in- 
line and specialized for sets and for integers. The re- 
sulting program was from 5.7 to 7.2 times faster than 
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the interpreter, with the greatest speedup occuring 
with the fewest collisions in the hash table of the set. 
Sets and dictionaries are used a lot in Smalltalk, and 
both are based on hashing. Thus, this example indi- 
cates that TS should be able to make large programs 
quite a bit faster. 

6 Programming Environment 
Concerns 

Smallta.lk-80 provides an extremely attractive pro- 
gramming environment [Go184]. The user can incre- 
mentally construct and test a program, changing even 
the classes that provide the programming environ- 
ment. An optimized method has assumptions about 
other methods encoded within it, so changes to the 
other methods can make the optimized method in- 
correct. Thus, optimization does not integrate easily 
into the kind of programming environment provided 
by Smalltalk-80. 

The most important optimization, in-line substitu- 
tion, is also the optimization that causes the most 

problems. If method A is substituted into method B 
then any change to A will require the recompilation 
of B. Thus, in-line substitution creates dependencies 
between methods. 

There are several ways to handle these dependen- 
cies. One way is to keep track of the dependents 
of each method and to recompile a method’s depen- 
dents when it is changed. However, nearly every 
method depends on some other method, so it will 
take a great deal of space to store all these depen- 
dencies. Most of the dependencies will be on stan- 
dard methods with little chance of changing, such as 
iffrue:ifFalse:. Therefore, this approach will waste a 
lot of space storing dependency information that is 
never used. 

Another solution is that recompiling a method 
causes all other methods to be checked to see whether 
they need to be recompiled. This will waste a lot of 
time, since most methods being recompiled have no 
dependents. 

Our solution is to have several kinds of methods. 
A jized method is not expected to change, so no de- 
pendency information is kept for it. Before it can be 
changed it must be converted to a changeable method. 
Converting a fixed method to be changeable requires 
scanning all other methods to see which depend on 
it. Converting a method from changeable to fixed 
will delete the dependency information kept for it. 
Thus, we can make recompilation fast and minimize 
the dependency information required. 

It is very important that the Smalltalk compiler be 

fast. Smalltalk programmers are used to the compiler 
taking no more than a second or two per method. 
Moreover, the compiler is used as a command inter- 
preter. The compiler can be a fast command inter- 
preter by having it do few optimizations. However, 
changing one method can cause an arbitrary num- 
ber of other methods to be recompiled, so even a fast 
compiler will take a long time in some cases. 

We make changing a method fast by keeping an un- 
optimized version of every method that depends on 
some other method. If the dependent method is told 
that its optimizations are invalid then it will use the 
unoptimized version of itself until it can be reopti- 
mized. Instead of 0ptimizing.a method immediately, 
all optimization takes place in the background. Thus, 
when a method’s optimizations are invalidated, it will 
place itself on the optimizer’s queue. Invalidating a 
method is 10 to 100 times as fast as reoptimizing it, 
so this technique greatly improves the response time 
of the compiler.[Whi87] 

One of the problems with performing in-line substi- 
tution is that the compiler needs to be able to deter- 
mine which methods should be substituted. In gen- 
eral, rarely executed methods do not need to be opti- 
mized at all. Short methods should usually be substi- 
tuted in-line, while long methods should not be. We 
have not yet tried to automate the decision of which 
methods shouId be called by in-line substitution and 
which by a procedure call. Instead, the programmer 
marks methods as substitutable or nonsubstitutabie, 
and the compiler follows the advice. 

7 Project Organization 

Proponents of object-oriented programming cIaim it 
greatly improves reuse of code, and decreases the 
amount of time needed to develop software. This 
project is evidence in support of these claims. The 
compiler was written by six people. Although the 
first code for the type system was written in Decem- 
ber of 1985, most of the work on the compiler took 
place after September of 1986. Indeed, four people on 
the project did not even know Smalltalk at the begin- 
ning of September 1?86. Somewhere between 2 and 
3 man-years have been spent on this project, mostly 
by students who did not previously know Smalltalk 
nor had done much work on compilers. 

We were able to reuse most of the parser, most 
of the parse-node class hierarchy, and the user inter- 
face tools. This not only saved an enormous amount 
of work, but provided a common framework for the 
project. The reused components provided standard 
interfaces between the people working on the project. 
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project was divided into one person each working 

the type system 

integrating the type system into the compiler and 
programming environment 

high level optimizations on parse trees 

optimizing register transfer instructions and pro- 
ducing machine code 

maintaining dependencies 

building an interface to the virtual machine. 

The most important shared interface was that of the 
parse trees, which was reused from Smalltalk-80. The 
type system was also an important shared interface. 
Although the type checking algorithms were reimple- 
mented several times, the interface remained stable. 
The register transfer language was also an important 
interface, and changes to it caused other code to be 
rewritten. 

Since many of the students taking part in the 
project are doing so as part of a M.S. program, there 
is a lot of turnover of project members. In fact, three 
of the original students have been replaced by three 
others. We have stressed clean, understandable de- 
sign to minimize the difficulty of learning the system, 
but a new generation of students quickly learns which 
parts of the system are well designed and which need 
more work. 

8 Further Plans 

Although the compiler is becoming more reliable, 
it has not yet compiled the entire Smalltalk- im- 
age. We plan to do that and quit using the inter- 
preter. We are rewriting register allocation, adding 
support for foreign functions, making it possible to 
provide specialized method look-up routines, and pro- 
viding support for compiling applications to run out- 
side the Smalltalk programming environment. Long- 
range problems that are being investigated are that of 
providing the usual Smalltalk debugger for optimized 
code, type inference, and allowing typed and untyped 
code to coexist safely. 

The compiler only performs a few optimizations, so 
it is just a skeleton of an optimizing compiler. How- 
ever, because it converts Smalltalk programs into an 
intermediate form that is very similar to C or Pascal, 
it can be fleshed out to perform most standard opti- 
mizations. Smalltalk should eventually be as efficient 
as other languages. 

f’.. type system is a prerequisite for optimizing 
Smalltalk. Fortunately, it is possible to design a type 
system for Smalltalk that is flexible enough to allow 

most Smalltalk programs to be type correct, yet re- 
strictive enough to allow the compiler to optimize the 
programs. While it is not yet clear that all the advan- 
tages of the Smalltalk environment can be preserved, 
it should be possible to make Smalltalk as fast as any 
other language. 
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