
A Type System for Smalltalk 

Justin 0. Graver 
University of Florida 

Ralph E. Johnson 
University of Illinois at Urbana-Champaign 

Abstract 

This paper describes a type system for Smalltalk that 
is type-safe, that allows most Smalltalk programs to 
be type-checked, and that can be used as the basis of 
an optimizing compiler. 

1 Introduction 

There has been a lot of interest recently in type 
systems for object-oriented programming languages 
[CW85, DT88]. S ince Smalltalk was one of the ear- 
liest object-oriented languages, it is not surprising 
that there have been several attempts to provide 
a type system for it [SuaBl, BI82]. Unfortunately, 
none of the attempts have been completely successful 
[Joh86]. In particular, none of the proposed type sys- 
tems are both type-safe and capable of type-checking 
most common Smalltalk programs. Smalltalk vio- 
lates many of the assumptions on which most object- 
oriented type systems are based, and a successful 
type system for Smalltalk is necessarily different from 
those for other languages. 

We have designed a new type system for Smalltalk. 
The biggest difference between our type system and 
others is that most type systems for object-oriented 
programming languages equate classes with types and 

Authors’ address, telephone, and e-mail: 

Department of Computer and Information Sciences, E301 CSE, 
Gainesville, FL 32611, (904) 392-1507, graverOcis.ti.edu 
Department of Computer Science, 1304 W. Springfield Ave., 
Urbana, IL 61801, (217) 244-0093, johnson@cs.uiuc.cdu 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Asociation for Computing Machinery. To copy othcr- 
wise, or to republish, requires a fee and/or specific permission. 

0 1990 ACM 089791-3434/9O/OOOi/O136 $1.50 136 

subclassing with subtyping [Sus81, B182, SCB’86, 
Str86, Mey88]. In our type system, types are based 
on classes (i.e. each class defines a type or a fam- 
ily of types) but subclassing has no relationship to 
subtyping. This is because Smalltalk classes inherit 
implementation and not specification. 

Our type system uses discriminated union types 
and signature types to describe inclusion polymor- 
phism and describes functional polymorphism (some- 
times called parametric polymorphism, see [DT88]) 
using bounded universal quantification. It has the 
following features: 

a automatic case analysis of union types, 

l effective treatment of side-effects by basing the 
definition of the subtype relation on equality of 
parameterized types, and 

l type-safety, i.e. a variable’s value always con- 
forms to its type. 

Because the type system uses class information, it can 
be used for optimization. It has been implemented as 
part of the TS (Typed Smalltalk) optimizing compiler 
[JGZ88]. 

2 Background 

Smalltalk [GRSS] . is a pure object-oriented program- 
ming language in that everything, from integers to 
text windows to the execution state, is an object. In 
particular, classes are objects. Since everything is an 
object, the only operation needed in Smalltalk is mes- 
sage sending. Smalltalk uses run-time type-checking. 
Every message send is dynamically bound to an im- 
plementation depending on the class of the receiver. 
This unified view of the universe makes Smalltalk a 
compact yet powerful language. 

Smalltalk is extremely extensible. Most operations 
are built out of a small set of powerful primitives. 



For example, control structures are all implemented 
in terms of blocks, which are the Smalltalk equivalent 
of closures. Smalltalk’s equivalent to if-then-else is 
the ifTtue:ifFalse: message, which is sent to a boolean 
object with two block arguments. If the receiver is an 
instance of class True then the “true block” is evalu- 
ated. Similarly, if the receiver is an instance of class 
Fake then the “false block” is evaluated. Looping is 
implemented in a similar way using recursion. These 
primitives can be used to implement case statements, 
generators, exceptions, and coroutines[Deu81]. 

Smalltalk has been used mostly for prototyping and 
exploratory development. It is ideal for these pur- 
poses because Smalltalk programs are easy to change 
and reuse, and Smalltalk comes with a powerful pro- 
gramming environment and large library of generally 
useful components. However, it has not been used 
as much for production programming. This is partly 
because it is hard to use for multi-person projects, 
partly because it is hard to deliver application pro- 
grams without the large programming environment, 
and partly because it is not as efficient as languages 
like C. In spite of these problems, the development 
and maintenance of Smalltalk programs is so easy 
that more and more companies are developing ap- 
plications with it. 

A type system can help solve Smalltalk’s problems. 
Type information makes programs easier to under- 
stand and can be used to automatically check inter- 
face consistency, which makes Smalltalk better suited 
for multiperson projects. However, our main motiva- 
tion for type-checking Smalltalk is to provide infor- 
mation needed by an optimizing compiler. Smalltalk 
methods (procedures) tend to be very small, mak- 
ing aggressive inline substitution necessary to achieve 
good performance. Type information is required to 
bind methods at compile-time. Although some type 
information can be acquired by dataflow analysis of 
individual methods [CUL89], explicit type declara- 
tions produce better results and also make programs 
more reliable and easier to understand. From this 
point of view, the type system has been quite suc- 
cessful, because the TS compiler can make Smalltalk 
programs run nearly as fast as C programs. 

It is important that a type system for Smalltalk not 
hurt Smalltalk’s good qualities. In particular, it must 
not hinder the rapid-prototyping style often used by 
Smalltalk programmers. Exploratory programmers 
try to build programs as quickly as possible, mak- 
ing localized changes instead of global reorganization. 
They often use explicit run-time checks for particu- 
lar classes (evidence that code is in the wrong class) 
and create new subclasses to reuse code rather than 
to organize abstraction (evidence that a new abstract 

class Change: 

values 
TAtray with: self class with: self parameters 

parameters 

self subclassResponsibility 

class ClassRelatedChange: 

parameters 

TclassName 

class MethodChange: 

parameters 

fAtray with: className with: selector 

class OtherChange: 

parameters 

Tself text 

Figure 1: Change and its subclasses. 

class is needed) [JF88]. Although conscientious prd- 
grammers remove these improprieties from finished 
programs, we wanted a type system that would al- 
low them, since they are often important intermedi- 
ate steps in the development process. Thus, a static 
type system for Smalltalk must be as flexible as the 
traditional dynamic type-checking. 

In an untyped object-oriented language like 
Smalltalk, classes inherit only the implementation 
of their superclasses. In contrast, most type sys- 
tems for object-oriented programming languages re- 
quire classes to inherit the specification of their super- 
classes [BI82, Car84, CW85, SCB*86, Str86, Mey88], 
not just the implementation [Sua81, Joh86]. A class 
specification can be an explicit signature [BHJL86], 
the implicit signature implied by the name of a class 
[SCB*86], or a signature combined with method pre- 
and post-conditions, class invariants, etc. [Mey88]. 
Inheriting specification means that the type of meth- 
ods in subclasses must be subtypes of their specifica- 
tions in superclasses. 

Since Smalltalk is untyped, only implementation is 
inherited. This makes retrofitting a type system dif- 
ficult. Since specification inheritance is a logical or- 
ganization, many parts of the Smalltalk inheritance 
hierarchy conform to specification inheritance, but 
there is nothing in the language that requires or en- 
forces this. Thus, it is common to find classes in 
the Smalltalk- class library that inherit implemen- 

137 



tation and ignore specification. 

Dictionary is a good example of a class that inher- 
its implementation but not specification; it is a sub- 
class of Set. A Dictionary is a keyed lookup table 
that is implemented as a hash table of <key, value> 
pairs. Dictionary inherits the hash table implemen- 
tation from Set, but applications using Sets would 
behave quite differently if given Dictionaries instead. 

Abstract classes, a commonly used Smalltalk pro- 
gramming technique, provide other examples where 
classes inherit implementation but not specification. 
Consider the method definitions shown in Figure 1. 

These (and other) classes are used to track changes 
made to the system. The abstract class Change de- 

fines the values method in terms of the parameters 
method. The implementation of the values method is 
inherited by the subclasses of Change. The result of 
sending the values message depends on the result of 
sending the parameters message, which is different for 
each class in Figure 1. Hence, the specification of the 
values method is also different for each of the classes. 

A class-based type system with explicit union types 
works for an implementation inheritance hierarchy 
and greatly simplifies optimization, but is not very 
flexible when it comes to adding new classes to the 
system. To regain some of the flexibility we incor- 
porate type-inference and signatures. This gives us 
both flexibility and the ability to optimize. 

A type system suitable for an optimizing Smalltalk 
compiler must also have parameterized types. It is 
difficult to imagine a (non-trivial) Smalltalk applica- 
tion that does not use Collections. The compiler must 
be able to associate the type of objects being added 
to a Collection with the type of objects being removed 
from it. Without parameterized types, all Collections 

are reduced to homogeneous groups of generic ob- 
jects. Furthermore, due to the potentially imperative 
side-effects of any operation, a special imperative def- 
inition of subtyping for parameterized types is used 

(see Section 3.1). 

The type system must also be able to describe the 
functional and inclusion polymorphism exhibited by 
many Smalltalk methods. Functional polymorphism 
can be described, in the usual manner, with (im- 
plicit) bounded universal quantification of type vari- 
ables. Inclusion polymorphism can be described with 
explicit union types or signatures. 

For a detailed discussion of these issues see 
[Gra89]. 

3 Types 

The abstract and concrete syntax for type expressions 
is shown in Figure 2 (abstract syntax on the left and 
concrete syntax on the right). In the concrete syn- 
tax grammar terminals are underlined, (something)* 
represents zero or more repetitions of the something, 
and (something)+ represents one or more repetitions 
of the something. Each of the type forms will be de- 
scribed in detail in the following sections. 

We use the abstract syntax in inference rules and 
the concrete syntax in examples. Type expressions 
are denoted by a, t, and u. Type variables are de- 
noted by p (abstract syntax) or by P (concrete_syn- 
tax). Lists (tuples) of types are denoted by t = 

<ir,tz,***r t, >. The empty list is denoted by <> 
and t e t’is the list < t, 21, t2,. . . , t, >. Similar nota- 
tion is used for lists of type variables. C denotes a 
class name and m denotes a message selector. 

Strictly speaking, a type variable is not a type; it 
is a place holder (or representative) for a type. We 
assume that all free type variables are (implicitly) 
universally quantified at an appropriate level. For 
example, the local type variables of a method type 
are assured to be universally quantified over the type 
of the method; the class type parameters of a class 
are assumed to be universally quantified over all type 
definitions in the class. We also assume that all type 
variables are unique (i.e. have unique names) and are 
implicitly renamed whenever a type containing type 
variables is conceptually instantiated. For example, 
the local type variables of a method type are renamed 
each time the method type is “used” at a call site. We 
do use explicit range declarations for type variables 
to achieve bounded universal quantification (see Sec- 
tions 3.5 and 3.6). Given these assumptions, we treat 
type variables 8s types. 

3.1 Subtyping 

The intuitive meaning of the subtype relation 5 is 
that if B C t then everything of type 8 is also of type 
t. The subtyping relation for our type system can 
be formalized 8s 8 Set, of type inference rules (8s in 
[CW85]). C is a set of inclusion constraints for type 
variables. The notation C.p E t means to extend the 
set C with the constraint that the type variable p is a 
subtype of the type 1. The notation C t- s 5 t means 
that from C we can infer s & t. A horizontal bar is 
logical implication: if we can infer what is above it 
then we can infer what is below it. 

The following are basic inference rules. 

C t t & Anything 

138 



t ..- 

‘.‘- (object type) 
(block type) 
(union type) 

(signature type) 

(type variable) 

(7 
(1) 

Type ::= 

W) 
Iid 
lt+t 

I (2) _ 
I <m,t-+t>* 

I 0) 
IP 
1 Anything 
1 Nothing 

ClassName (of: Type)+ 
) Block (of: Z$pe)* returns: Type 

(d Type)Sreturns: Type)*) 

t (Type) 
IP 
1 Anything 

[ Nothing 

Figure 2: The abstract and concrete syntax of types. 

C I- Nothing 5 t 

C.p&tl-pCt 

c.t L pl-t g p 

CkP 5 P 

The following rules are used for the type parame- 
ter lists of object types (see Section 3.2) and for the 
argument type lists for block types (see Section 3.4). 

Ck<>&<> 

Subtyping is reflexive, transitive, and antisymmet- 
ric . 

cl-t c: t 

cl-s c t ctt c u 

Cl-8 c u 

Cl-8 L t cl-t c 8 

Cks=t 

3.2 Object Types 

Some variables contain only one kind of object. For 
example, all Characters * have an instance variable 
that contains a Smalllnteger ASCII value. Other vari- 
ables can contain different kinds of objects. For ex- 
ample, a Set can contain Smalllntegers, Characters, 

Arrays, Sets, and so on. Each class has a set of zero 
or more type variables called class type parametera 
that can be used in type expressions to specify the 
types of instance variables. These are the only type 

1 The phrase “a SomeClass” refers to an instance of class 

SomeClass. The phrase “class SomeClass” refers to the class 

itself. 

variables that can appear in type declarations for in- 
stance variables. 

An object type is a class name together with a pos- 
sibly empty list of types. The type list of an object 
type provides values for the class type parameters de- 
fined for the corresponding class. Thus, the size of the 
type list that may accompany a class name is fixed by 
the corresponding class definition. For example, the 
classes Smalllnteger and Character have zero class type 
parameters, so SmallInteger and Character are valid 
object types. The classes Array and Set each have one 
class type parameter, so Array of: SmaIUnteger and 
Set of: (Array of: Character) are valid object types. 

Due to the imperative nature of Smalltalk [GR83, 
Joh86] and because of the antimonotonic ordering of 
function types [DT88] we define subtyping for ob- 
ject types as equality, i.e. one object type is included 
in another if and only if they are equai (Cardelli 
also takes this approach for “updatable” objects in 
[CarSS]). (Recall that C is a set of inclusion con- 
straints and C is a class name.) 

3.3 Union Types 

The type system defined so far cannot describe an 
Array containing both Characters and Smallintegers. 

In Smalltalk, a variable can contain many different 
kinds of objects over its lifetime. Thus, a type can 
be a nonempty “set” of object types (or other types). 
An example of a union type is 

(Array of: SmallInteger) + (Array of: Character) 
+ (Array of: (SmallInteger + Character)). 

139 



Here, the plus operator is read as “or,” so a variable of 
the above type could contain an Array whose elements 
are all Smalllntegers, all Characters, or a mixture of 
the two. 

Our type system does not use the subclass relation 
on classes to induce the subtype relation on types. In- 
stead, type inclusion is based on discriminated union 
types. An object type t is included in a union type u 
only if t is included in one of u’s elements. 

cl-s c t 

et-a g t+u 

A union type u is included in a union type u’ only if 
each element of u is included in IL’. 

cl-s F u cl-t F u 

cl-s+t g u 

Some examples are: 

Character & Character + SmallInteger 
Army of: SmallInteger C_ 

(Array of: SmallInteger) + (Array of: Character) 
Array of: SmallInteger g 

Array of: (SmallInteger + Character) 

Note that our type system does not reflect class inher- 
itance. Even though Integer is a subclass of Number, 

Inieger is not a subtype of Number. However, we can 
specify the type of all subclasses of Number by listing 
them, i.e. Integer + Float + Fraction2 

3.4 Block Types 

Blocks (function abstractions) are treated differently 
from other objects. A block type consists of the name 
Block, a possibly empty list of types for block argu- 
ments, and a return type. For example, 

Block of: (Array of: Character) of: SmallInteger 
returns: Character 

represents the type of a block with two arguments, 
and Block returns: SmallInteger represents a block 
with no arguments. Block types differ from object 
types in several ways. Unlike object types, there is 
no class Block. Types beginning with the name Block 
can have different sized argument type lists. 

A block type u is included in a block type u’ only 
if the return type of u is included in the return type 

*Common union types such as Integer $ Float + Fraction 
and True + F&c arc presently abbreviated using the global 
variables Num6rtType and BooleanType, respectively. Another 
approach is to use the object type of an abstract class (classes 
such as Number, Collection, and Boolean that provide an im- 
plementation template for subclasses but have no instances of 
their own) to automatically denote the union of the types of 
all its non-abstract subclasses. 

SequenceableCollection subclass: #OrderedCollection 

instancevariables: ‘firstlndcx <SmallInteger> 
lastlndex <SmallInteger>’ 

classvariables: ” 

typeparameters: ‘ElementType’ 

poolDictionaries: ” 

category: ‘Sequenceable-Collections’ 

Figure 3: Class definition for OrderedCollection. 

of u’ and if each argument type of U’ is included in 
the corresponding argument type of u 
standard antimonotonic subtype relation 
types [MS82]). 

(this is the 
for function 

cl-2 g s’ cf-2 r t’ 

Cl-s’+t & 2-t’ 

For example, 

Block returns: Character 
& Block returns: (Character + SmallInteger) 

Block of: (Float + Smalllnteger) returns: Smallinteger 
E Block of: Float returns: (Character f SmallInteger). 

3.5 Typed Class Definitions 

All instance variables and class variables must have 
their types declared. Each class defines a set of type 
variables called class type parameters, which may be 
used to specify the types of instance and class vari- 
ables. 

Figure 3 shows the definition of OrderedCollection, 

which is a subclass of SequenceableCollection. Note 
that the type of each instance variable is declared 
when the variable is declared and that angle brackets 
are used to set off type expressions from the regular 
Smalltalk code. 

A class definition defines an “object type” in which 
the type list is the list of class type parameters (ap- 
pearing in the same order as in the class definition). 
The type defined by the above class definition would 
be 

Orderedcollection of: ElementType. 

The scope of the class type parameter ElementType 
is limited to the method and variable definitions in 
class OrderedCollection (the same scope as a class vari- 
able). Class type parameters are inherited by sub- 
classes, just like instance and class variables. Any 
use of the OrderedCollection type outside of this scope 

140 



{ IocalTypeVariables: <Pl > < P2 > 
receiverType: <Self > 
arguments: argl <arglX$pe> arg2 <argZType> 
temporaries: temp <tempZ$pe> 
blockArguments: blkArg <blkArgfipe> 
returnType: <Self > } 

message selector and argument names 
“comment stating purpose of message” 

1 temporary variable names 1 

statements 

Figure 4: Template for typed methods. 

must “instantiate” its class type parameter to a type 
constant (like Character) or to a locally known type 
variable. Thus, the above type actually defines a fam- 
ily of object types. 

The range (upper bound for type instantiation) 
of a class type parameter may be restricted by 
including an optional range type declaration. A 
class type parameter may only be instantiated to 
a type that is a subtype of its range type. The 
range declaration of a class type parameter is syn- 
tactically identical to the type declaration for a 
variable. In the above example, if we wished to 
restrict the elements of OrderedCollections to be 
Characters, the typeparameters: field would be de- 
clared as ‘ElementType <C?iaracler>‘. If the range 
declaration of a class type parameter is omitted it is 
assumed to be Anything. 

3.6 Typed Method Definitions 

The types of method arguments, temporary variables, 
and block arguments can be explicitly declared or in- 
ferred by the TS type-inference mechanism [Gra89]. 
The only difference between a typed method and an 
untyped method is that the typed method has type 
declarations. Type declarations must precede any 
part of the method definition. A typed method tem- 
plate is shown in Figure 4. The arguments for the 
fields arguments:, temporaries:, and blockArguments: 
are lists of identifier <type> declaration pairs. The 
arguments for the receiverType: and returnType: fields 
are single type declarations. The arguments for 
the IocalTypeVariables: field are capitalized identifiers. 
The range of a type variable can be restricted by using 
the range: modifier. For example, the local type vari- 

able declaration <P range: (Integer + Character)> 
declares P to be a type variable that can be asso- 
ciated with any of the types Integer, Character, or 
Integer + Character. Local type variables are instan- 
tiated during type-checking to types determined by 
the types of actual arguments at a call site. Local 
type variabies will usually, though not necessarily, 
correspond to the class type parameters of some class. 

The do: method for SequenceableCollection is shown 
in Figure 5 as an example of a typed method defini- 
tion. Notice that certain fields of the type declara- 
tions have been omitted. The syntax rules for type 
declarations are fairly liberal. Fields can occur in any 
order. All fields except receiverType: and returnType: 

can have multiple occurrences. The smallest type 
declaration for a method is “{}.” 

Self represents the type of the pseudo-variable self 

(and super). Unfortunately, the class of self is dif- 
ferent in each class that inherits a method, so Self 
must differ, too. Thus, each method is type checked 
for each class that inherits it by replacing Serf with 
the type appropriate for the inheriting class. In the 
absence of a receiverType: declaration (which is over 
99% of the time}, Self defaults to the object type 
for the class in which the method is being compiled. 
Otherwise, Self is replaced with the type given in the 
receiverType: declaration. A legal receiverType: must 
be a subtype of the default value of Self 

Returning to the example of Figure 5, 
SequenceableCollection has one class type parameter 
called Elementnpe, so the type substituted for Self 
will be Sequenceablecollection of: ElementType. The 
argument aBlock is a block that takes one argument of 
type ElementType and returns an object of unknown 
type P. When do: is envoked in another method 
definition both Elementfipe and P will be associ- 
ated with actual receiver and argument types. The 
temporary variables index and length have values de- 
pendent on the size of Collections. In Smalltdk im- 
plementations with 30+ bit Smalllntegers, the possi- 
ble size of any Collection is well within the range of 
Smalllntegers.3 There is no explicit return statement 
in the method so it implicitly returns self. 

Type declarations and typed methods introduce 
the notions of message and method types. A mes- 
sage type consists of a message selector, a receiver 
type, a list of argument types, and a return type. A 
method type consists of a message type and a set of 
constraints on the type variables used in the message 

‘Smalltalk defines infinite precision integer arithmetic 
using the classes LargeNegativelntcgcr, SmallInteger, and 

LargePoritivelnteger (the three subclasses of class Integer). 
Smalllntegers are essentially machine integers; instances of the 
Large-Integer classes are more complex. 

141 



{ IocalTypeVariablcs: <P> 
arguments: aBlock <Block of: ElementQpe returns: P> 
temporaries: index <SmallInteger> length <SmallInteger> 
returnType: <Self > 3 

do: aBlock 

“Evaluate aBlock for each of the receiver’s elements.” 

( index length 1 

index t- 0. 
length +- self size. 
[(index e index + 1) <= length] 

whileTrue: [aBlock value: (self at: index)] 

Figure 5: The do: method for SequenceableCollection. 

type. A method type denotes the type of a method 
relative to a specific class of receivers. Therefore, SeZf 
should already have been expanded and should never 
appear in a method type. The type of the above 
method is denoted by 

<SequenceableCollection of: ElementType> 
do: <Block of: ElementType returns: T> 
f<SequenceableCollection of: ElementQpe>. 

Message types use the same notation. Local range 
constraints on type variables are shown enclosed in 
braces following the return type of a method type. 
For example, 

<Object> foo: <P> T<P> 
(<P> & <Integer + Character>}. 

Subtyping for message types, although complicated 
by type variables (see [Gra89]), is essentially the same 
as for block types, with the added condition that the 
selectors must be equal. 

3.7 Metaclass Method Definitions 

In regular class method definitions the type Self 
refers to the type of the receiver. It is useful to extend 
this notion to be able to refer to the type of the class 
of the receiver. This is done by using the Self class 
type specification. 

Similarly, when defining methods in a metaclass it 
is useful to be able to refer to the type of instances of 
the metaclass. This is done by using the InstanceQpe 
type specification. For example, Figure 6 shows the 
typed method definition of new: for the Set metaclass. 

( receiverType: <SeZf > 

arguments: anlnteger <SmallInteger> 
returnType: <Instance Type> } 

new: anlntegtr 

“Answer a new instance of size anlnteger.” 

T(super new: (anlnteger max: 1)) setTally 

Figure 6: The new: method in Set class. 

4 Type-Checking 

Type-checking is specified using inference rules simi- 
lar to those used to describe subtyping. Besides a set 
of type constraints C, we need a set of assumptions 
A about the types of variables. The notation A.v : t 
means to extend the set A with the assumption that 
variable 21 has type 2. The notation C, A I- e : t means 
that from the constraints C and assumptions A we can 
infer that an expression e has type t. If a type can 
be inferred for an expression the expression is type- 
correct. The following rule describes the essence of 
subtyping: 

C,Ai-e:s cl-s c t 

C,Ate:t 

4.1 Basic Type-Checking 

A method is type-correct if each of its statements is 
type-correct and if the type of the expression in each 

142 



return statement is a subtype of the declared return 
type of the method. Type-checking an expression re- 
quires knowing the types of its subexpressions. 

The types of all variables are declared. 

c,d”v:tt-lt:t 

The types of the pseudo-variables true, false, and nil 

are constants. 
t true : Z%ue 

I- f& : False 

t gJ : UndefinedObject 

The type of a literal (constant) is inferred from its 
class. 

t n : Integer 

t SC : Character 

etc. 

If this type is not general enough then an explicit type 
declaration can be used to supply the “correct” type 
[Gra89]. 

An assignment statement v +- e is type-correct if 
both v and e are type-correct (variables are trivially 
type-correct) and if the type of e is a subtype of the 
type of v. The type of an assignment statement v +--- e 
is the type of e. 

C,dtv:: C,dte:t ctt 5 8 

C, A t (U t e) : t 

A statement sequence ei . . .e, is type-correct if 
each statement in the sequence is type-correct. The 
type of a statement sequence is the type of the last 
statement in the sequence. 

C,dtel :tl . . . C, A t e, : t,, 
C,di-(el...e,):t, 

The type of a block is inferred from the declared 
types of its arguments and the inferred type of its 
statement list. 

C,d.y’:<t-e : u 

C,dt- [$]e] :<-+u 

An additional inference rule for blocks is given in Sec- 
tion 4.2. 

A return statement Te is type-correct if e is type- 
correct and if the type of e is a subtype of the de- 
clared return type of the method. The set of assump- 
tions A contains a special variable returnvalue whose 

type is the declared return type of the method being 
type-checked. The only place a return statement can 
appear is as the last statement in the statement list 

of a method or a block. The types of the top-level 
statements in the statement list of a method can be 
ignored. The type of a block will always be checked 
for inclusion within some block type. To afford the 
maximum freedom to such blocks, the type given to 
return statements is the special type Nothing, which 
is included in any type. 

C, A t returnvalue : t C,dl-eet 

C, A I- (ye) : Nothing 

Due to the simplicity of Smalltalk, the only remain- 
ing kind of expression is the message send. Type- 
checking a message send involves looking up one or 
more method types. The message send is type-correct 
if, for each method type, there exists a mapping of 
type variables to types such that, under this map 
ping, the type of each actual argument is a subtype 
of the corresponding formal argument. The type of a 
message send is the union of the return types of each 
of these method types, evaluated in their respective 
type assignment environments. 

Let H be a hierarchy of typed class definitions and 
H < C, m > be the definition in class C for method 
m, i.e. 

H<C,m>=p’C u’C(i’)my’:<Tui:pe 

where p’ & c are local type variables with range 
declarations, C(Z) is the type of the receiver, y’ : t’ 
are typed arguments, u is the return type, z’ : <’ are 
the typed temporaries, and e is the method body. 
The notation 

denotes a method type where C(g) is the receiver 
type, t’ is the list of argument types, u is the return 
type, and p’ 5 ii are range constraints. For notational 
convenience, we use the following inference rule to 
extract method types from method definitions. 

The notation t< C, m >d: t means it can be inferred 
that t is the declared method type of the method 
invoked when sending the message-m to an instance 
of class C. 

In the following inference rule for message sends, 
e : C(Z) signifies that the type of the receiver is an 
object type, e’: 1’ denotes the typed arguments, and 
e m t? denotes a message send. 

C, A t e : C(Z) C,dt$:; 

C,dt<C,m>d:C(Z”)-? -+u’IFC ii 

143 



C.(j c q.(c(q 5 C(P)).@ g P) t- u’ c 21 

C,dl- (em;) :u 
4.2 Case Analysis 

Message sends to receivers with union types are han- 
dled by an inference rule in Section 4.2. 

Consider, for example, the message send 
anArray at: 2, where the type of the variable anArray 
is Array of: Character. Let the method type associ- 
ated with the method that would be invoked if the 
at: message were sent to an Array be 

<Array of: P> at: <SmallInteger> T<P>. 

The inference rule for message sends produces a set 
of inclusion equations 

Type-checking Smalltalk programs frequently re- 
quires case analysis of a union type. Even though 
the type of a variable may be a union type when its 
use throughout an entire method is considered, its 
type in any particular use can be considered an ob- 
ject type (or one of several object types). This reflects 
the fact that a variable may reference only one object 
at a time. It is therefore more precise, when type- 
checking an expression containing a variable with a 
union type, to type-check the expression separately 
for each type in the union type. The type of the ex- 
pression is then the union of the separate result types. 

P E Anything (range of P) 
Array of: Character & Array of: P (receiver type) 
Smalllizteger C SmallInteger (argument type) 

whose solution is 

C, d.v : s l- e : u C,d.v:tke:u 

C,d.v:s+tt-e:: 

Case analysis is useful when used with the follow- 
ing rule: a block whose body is type-incorrect has 
type IllegalBlock. (i.e. if no better type can be in- 
ferred for a block then it can always be inferred to be 
IllegalBlock) 

P E Character. 
C, A I- [y’ 1 e] : NegalBZock 

In general, there may not be a unique solution to a 
given set of inclusion equations. How to deal with 
(avoid) multiple solutions is discussed in [Gra89]. If 
no solution exists then there is a type error some- 
where. 

An inference rule is also needed to type-check 
method definitions. Recall that the abstract defini- 
tion for a method m looks like 

Thus, a type-incorrect block will not necessarily cause 
the containing method to be type-incorrect. This 
rule, combined with case analysis and the definitions 
of the normal Smalltalk control structures, provides 
automatic type discrimination, as shown in the next 
example. 

p^f iiC(s’)mij:~fuZ:~‘e. 

If, by adding type declarations appropriately to C and 
d, it can be inferred that e has type u then it can be 
inferred that the definition of m is type-correct and 
is of type 

The typed method definition of controlToNextLevel 
for class Controller is shown in Figure 7. The notNil 

message is defined to return an object of type True 
for all classes except UndefinedObject, for which it is 
defined to return an object of type False. If the type 
of aView is assumed to be View then the type of the 
expression aView notNit is Ilhre. The iffrue: method 
defined for class True has a type 

C(Z). i- -uIp’c_ ii. 

This is expressed in the following inference rule where 
self : C(Z) is the implicit type of the pseudo-variable 
self and returnvalue is a special variable used for type- 
checking return statements. 

<The> iffrue: <Block returns: P> T<P> 

where P is a local type variable for the method. Since 
the type of aView is View, the controller and startup 

messages are type-correct and P can be mapped to 
the return type for the actual block argument. 

C.F 5 ii, A.&f: C(Z). y’: < returnvalue : u. Z: t’5 I- e : 11 

C,d~<C,m>:C(s’).~--t21]~5 G - 

On the other hand, if the type of aView is assumed 
to be UndefinedObject then the type of the expression 
aView notNil is False. Class False defines the iffrue: 

method to have type 

<False> iffrue: <P> T< UndejinedObject> 

Note that < C, m >: t denotes the true inferred type so objects of type False accept itTrue: messages with 
of a method m for class C, which must be included an argument of any type. The method has this type 
in the declared method type < C, m >d: t’. because it ignores its arguments and simply returns 

144 



( temporaries: aView < View + UndefinedObject > 

returnType: <Self> } 

controlToNextLeve1 

“Pass control to the next control level, that is. to the Controller of a subView 

of the receiver’s view if possible. The receiver finds the subView (if any) 

whose controller wants control and sends that controller the startup message.” 

aView +- view subViewWantingContro1. 

aView notNil itTrue: [aView controller startup] 

Figure 7: The controlToNextLeve1 method for class Controller. 

nil. Since the type of aView is UndefinedObject, the 
controller message is undefined; the body of the block 
is illegally typed and the block’s type is IllegalBlock. 

However, P can be mapped to l7legalBlock, so the 
block can legally be an argument of the iffrue: 

message for class False. Thus, the entire method 
ControlToNextLevel is type-correct. 

4.3 Inheritance 

One way that inheritance complicates type-checking 
is that the type of a method for a subclass that in- 
herits it is slightly different from its type in the class 
that defines it. For example, the type of the receiver 
is different, and the type of the returned value will be 
different when the receiver is returned. This problem 
is solved by referring to the type of the receiver as 
Self and expanding Self to the type of the receiver 
in each subclass. Self is not a type, but instead is 
“macro-expanded” to a type at compile-time. 

Abstract classes provide another way in which the 
type of a method can change when it is inherited. 
Consider the method definitions shown in Figure 1. 
The values method is defined in class Change and in- 
herited by the other classes. The return type of values 
depends on the return type of parameters, which is 
different for each class. The types of the different 
parameters methods are 

<Change> parameters t<Change> 
<ClassRelatedChange> parameters T<Symbol> 

<MethodChange> parameters f<drray of: Symbol> 
<OtherChange> parameters f<String> 

where the types in “receiver position” are receiver 
types and the types following the “T” are return 
types. Thus, the values method must be recompiled 

in the context of each subclass of Change to compute 
its correct return type for that context. 

Another way in which abstract classes show that 
Smalltalk classes inherit implementation, not specifi- 
cation, is that some methods cannot be executed by 
all of the classes that inherit them. For example, class 
Collection has a number of methods that use the add: 

message, such as addAli:, but it does not implement or 
inherit the add: message itself. Instead, add: is imple- 
mented by the various subclasses of Collection. Some 
of its subclasses, such as Array, do not implement add: 

and thus cannot use methods like addAll:. Smalltalk 
relies on run-time type-checking and the “does not 
understand” error to detect when an undefined mes- 
sage is sent to an object. Our type system detects all 
such cases at compile-time. 

These problems are solved by retype-checking 
methods in each subclass that inherits them. The 
method definition (delined in terms of Self) is inher- 
ited and Self is expanded to refer to the current class 
as described in section 3.6. We assume that the hi- 
erarchy of typed class definitions H (see Section 4.1) 
contains not only the user declared method defini- 
tions for a class, but also any methods that can be 
meaningfully (i.e. type-correctly) inherited by a class. 
If H~J is a partial function from < C, m > pairs to 
method definitions representing user declared meth- 
ods then H is derived by extending Ho to include 
definition points for inherited methods. In other 
words, if Ho < C, m > is a user defined method 
then H < C’, m > has the same definition provided 
that C’ is a subclass of C and Ho < C’,m > is 
not defined. There are many possible H function. A 
type-correct H is one in which, for all method types 
derivable from H, the declared type of H < C,m > 

145 



is the same as the type inferred by type-checking. 

(k< c, m >d: t) _ (c, A t-< c, m >: t) 

I- C,d 

Strictly speaking, if every method definition in H 
must type-check then certain methods in abstract 
classes must be removed in order to have a type- 
correct H (e.g. the addAll: method in class Collection). 

In practice, inherited methods are type-checked 
upon demand, i.e. when code is first compiled that 
might cause that method to be invoked. Array can 
then be a legitimate subclass of Collection; no inher- 
ited code that invokes add: will be type-correct. 

The benefits of delaying type-checking of inherited 
methods is that a method is only retype-checked for 
every subclass that actuslly inherits it, and that this 
type-checking is spread out over a large amount of 
time. A new class does not require any of the methods 
that it inherits to be type-checked when it is created. 
Adding a new method to a superclass does not require 
type-checking it for every subclass that inherits it, nor 
does adding a new variable. However, changing the 
type of a method or variable might require a lot of 
computation to ensure that each of its uses is still 
type-correct. 

4.4 Specific Receivers 

Some classes have methods that can be executed 
by only a subset of their instances. For example, 
the whileTrue: message should be sent only to blocks 
that return Booleans. We can specify this by using 
the receiverType: field in the type declaration of the 
method definition as shown in Figure 8. Recall that 
if this field is omitted then Self defaults to the object 
type for the class in which the method is being com- 
piled. Although whileTrue: is nearly the only method 
in the Smalltalk- class library that needs to declare 
a specific receiver, it is easy to imagine other meth- 
ods that would need this feature, such as a summation 
method in Collection. 

4.5 Signature Types 

A signature type is a type (i.e. a set of object and 
block types) specified by a set of message types. An 
object type (or block type) 1 is included in a signature 
type s if, for each message type m E a, a message of 
type m sent to an object of type t is type-correct. In 
other words, an object type is in a signature type if 
it “understands each message in the signature.” 

C,dte:t C,dl-e’:F C,dt-(eme’):u 

C,At-t &<<m,t.t+u>> 

( IocalTypeVariables: <P> 

receiverType: <Hock returns: (The + False)> 
arguments: aBlock <Block returns: P> 
returnType: < UndefinedObject> } 

whileTrue: aBlock 

fself value 

iffrue: 
[aBlock value. 

self whileTrue: aBlock] 

Figure 8: whileTrue: for class BlockContext. 

C,dkt C<<m,t*;+u>> 

C,dt-t &<<m’,t’-$-+u’>> 

C,dt-i ~<<m,t.~--,~>,<m’,t’*~~--t21’>> 

The message types in a signature type may have oc- 
currences of Self to denote the type represented by 
the signature. Receiver types of Self may be omitted. 
When an object type is being checked for inclusion 
in a signature type Self is instantiated to the object 

type. 
A signature type includes object types belonging to 

classes not yet created. Thus, signature types contain 
an infinite number of object types. In fact, the type 
specified by an empty signature contains every possi- 
ble object type, since every object type understands 
every message type in the signature. 

C,dht Lo 

Since signature types specify the largest possible 
types, procedures that use them exhibit the most 
polymorphism and so are the most flexible. However, 
use of signature types prevents the compiler from per- 
forming some important kinds of optimizations, since 
they do not provide enough information about the 
class of the receiver to allow compile-time binding of 
message sends. 

A signature type is specified by a special kind of 
type declaration. 

<understands: #(tml tm2 . . .)> 

Here, the h’s are strings containing message type 
specifications. An example will be given shortly. Sig- 
nature types may also be used to restrict the range of 
type variables. A local type variable with a signature 
range would have a declaration of the form 

<P understands: #(tml tm2 . .)>. 

146 



{ receiverType: <Self> 

arguments: anObject <understands: #(‘= <EZemenlQpe> T<IWae + ZI-ue> ‘)> 

temporaries: tally <SmallInteger> 
blockArguments: each <EIementQpe> 
returnType: <SmallInteger> } 

occurrencesOf: anobject 

“Answer how many of the receiver’s elements are equal to anobject.” 

I tally I 
tally t 0. 

self do: [:each ] anObject = each iffrue: [tally t tally + l]]. 
ftally 

Figure 9: The occurrencesOf: method in class Collection. 

Since such declarations may be recursive, complex 
mutually recursive signature types can be built. 

As an example, consider the occurrencesOf: method 
for class Collection shown in Figure 9. The only re- 
striction placed on the type of the argument anObject 

is that its corresponding class (or classes) must im- 
plement (or inherit) an = (equality) message that will 
take an argument of type ElementType and return a 
boolean. It is helpful to compare the use of the do: 
message in this example with its definition in Fig- 
ure 5. 

Type-checking a message send to a receiver whose 
type is a signature type is straightforward since all 
relevant type information is contained in the signa- 
ture type. 

C,dl-e:<...<m,P--+u’>...> 

Cd!-&; c.t’ c i+’ I- u’ g u 

C,dt-(eme’):u 

5 Beyond Signatures 

The type system described so far, with explicit union 
types, case analysis, and signature types, is quite 
powerful. However, there are still some methods that 
elude type-checking. 

Although Smalltalk is a typeless language, it is 
possible to discriminate between classes of objects 
and provide a simple kind of explicit run-time type- 
checking. An example is the isLookupKey message 
whose implementation is shown in Figure 10. Mes- 
sages like isLookupKey can be used in a method to 

“type-check” an argument before sending it a mes- 
sage that it might not understand. 

A example of this style of programming is the = 
(equality) message shown in Figure 11. Equality must 
be defined between any two objects and should not 
be subject to run-time errors. This style of imple- 
mentation meets both of these criteria. The problem 
is how to type-check such a method. 

The type of this method can be roughly stated 
as follows. An argument must understand the 
isLookupKey message. If an argument responds to 
this message with true then it must also understand 
the key message and the method will (presumedly) 
return an object of type Due + False, otherwise the 
method returns an object of type False. 

In general, the type of a polymorphic method like = 
is complicated, but its type for a specific use is sim- 
ple and easy to understand. Thus, type-checking a 
method defers some of the type-checking for a method 
until its invocations are type-checked. It doesn’t mat- 
ter when a method is type-checked, only that type- 
checking is completed before any code that invokes 
the method is executed. 

When a send of = to a LookupKey needs to be 
type-checked, the code in Figure 11 is substituted for 
the call. The types of the actual arguments then re- 
place those of the formal arguments, allowing both 
definition and use information to be used in type- 
checking. This usually permits the = method to be 
type-checked completely. If not, then type-checking 
for the method that sends = must also be deferred. 
This static analysis technique has proven useful for 
type-inference as well as for type-checking (Gra89]. 

147 



class Object: 

islookupKey 
Tfalse 

class LookupKey: 

isl.ookupKey 

Ttrue 

Figure 10: Implementation of isLookupKey. 

= aLookupKey 

aLookupKey isLookupKey 

iffrue: [Tself key = aLookupKcy key] 

iffalse: [Tfalse] 

Figure 11: = (equality) in class LookupKey. 

6 Type Safety 

A type system can only be shown correct relative to 
a formal definition of the language. This section out- 
lines a proof of correctness for the type system rela- 
tive to Kamin’s denotational semantics of Smalltalk 
[KamEB]. 

Usually a type is described as a set of objects. Type 
safety then means that the value of an expression is 
always contained in its type. However, our types are 
not sets of objects, so a different definition of type 
safety is needed. We will define type safety by assign- 
ing an object type to each object and then showing 
that the value of an expression always is assigned a 
type contained in the expression’s type. 

The type of an object depends not only on its cur- 
rent state but also on its past and future states. Thus, 
it may not be possible to decide whether an object is 
in a particular type, though it is often possible to 
show that it is not. For example, a Set is never in 
Array ofr Character, and a Set containing Characters 

is not in Set of: SmallInteger. However, it is not easy 
to tell whether a Set containing only Characters is 
in Set of: (SmallInteger + Character,)--it all depends 
on whether or not the Set is referenced by a variable 
that requires it to contain only Characters. 

Definition 1 (Object/type consistency) An ob- 
ject o ia consistent with a mapping from objects to 
types <, relative to a class hierarchy A, and a state $J, 

if 

I. ((0) = cm, 

2. the class of o is C, and 

3. for each instance variable xi of o, let ti be the 
declared type of 2i with type variables replaced 
by the typea given in t(o). Then the type of the 
object referred to by xi is a subtype of ti. 

If each object had a type assigned to it then we 
could check whether an object was consistent with its 
type by checking whether its class was consistent with 
its type and whether the types assigned to the values 
of its instance variables were included in the declared 
types of its instance variables. This assignment would 
be consistent if every object was consistent with the 
type assigned to it. Although this type-assignment 
might not be unique, any consistent type-assignment 
could be thought of as describing the types of all ob- 
jects. These ideas are formalized in Definition 1. 

A state is consistent with a type-assignment E if 
every object in the state is consistent with f. 
Proposition: If a type-correct program i8 in a state 

that is consistent with a type assignment t then any 
succeeding state will be consistent with <. 
The only way that a consistent type-assignment can 
become inconsistent is if the state changes. This is 
because the type-assignment itself is constant and, 
in Kamin’s semantics, objects never change and the 
class hierartihy does not change. Thus, we can prove 
the proposition by showing that < is maintained as an 
invariant every place where the state can be changed. 

There are two ways that the state changes in 
Kamin’s semantics. The first is when a variable 
changes its value. This happens in an assignment 
statement and in assigning arguments to formal pa- 
rameters when evaluating a method or block. 

The second way that the state changes is when a 
new object is created. The type of some new objects, 
such as new blocks, are known in advance so the new 
object will always be of the correct type. Unfortu- 
nately, problems occur with the new primitive and 
when creating a new context to evaluate a method. 
This is because instance variables of new objects and 
local variables of new contexts are both initialized to 

148 



nil, but the types of these variables usually do not 
include UndefinedObject. Thus, until the variables 
are initialized, their value is not consistent with their 
type. We ensure type-safety by requiring all variables 
whose types do not include UndefinedObject to be as- 
signed before they are read, and use flow analysis to 
check this. Thus, we will change the statement of the 
proposition slightly. 
Type-Safety Theorem: If u Qpe-correct program 

is in a state that is consistent with a type assignment 
c except for unassigned variablea, and if a variable is 
always assigned before it is read, then any succeeding 
state will be consistent with ,f. 

Proof: In a type-correct program, the type of the 
expression of an assignment statement must be in- 
cluded in the type of the variable, so, if each expres- 
sion returns a value that is consistent with its type 
then assignment statements maintain the consistency 
of the type-assignment. Once a variable is assigned, 
its value will have a type that is included in the type 
of the variable. Thus, if the value of any expression 
has a type that is included in the type of the expres- 
sion then whenever a.variable v is read, the type of 
the value of v will be consistent with the type of v. 

The theorem is proved by structural induction on 
the number of message sends in the evaluation of an 
expression. The base case is where there are no mes- 
sage sends. Since there are no message sends there 
can only be assignment statements, whose right-hand 
sides are literals or variables. The variables either are 
type-consistent or will be assigned before they are 
read, so the assignment statements will all maintain 
the consistency of the type-assignment. 

The induction step is to assume that any expres- 
sion that can be evaluated in n - 1 message sends 
(or less) is type-safe and to prove that evaluating an 
expression 

rev kl: expl k2: expz.. . km: exp, 

that requires n message sends is type-safe. Since an 
expression must be type-checked before it can be eval- 
uated, we know that the types of the argument ex- 
pressions to the kl:k2:. . .km: message are included in 
the types of the formal parameters of the method that 

is invoked. ‘Evaluating any expi will take less than n 
message sends, so each argument is consistent with its 
corresponding type. When the new context is created 
and the method is executed, the formal parameters 
of the method will be bound to objects whose type is 
included in the type of the parameter. Methods also 
create temporary variables, but they are unassigned, 
so invoking a method maintains the consistency of the 
type-assignment (except for unassigned variables). 

We assumed that the expression involves n message 
sends. One of them is the kl:k2:. . .km: message, so 
evaluating the body of the method will involve less 
than n message sends. Thus, every expression eval- 
uation in it will result in an object whose type is 
included in the type of the expression that produced 
it. In particular, the type of the object returned from 
the method will be included in the type of the ex- 
pression in the return statement, and, according to 
the type-checking rules for the return statement, the 
type of the expression in a return statement must be 
included in the declared return type of the method. 
Thus, the type of the object returned as a result of 
the kl:k2:. . .km: message will be included in the re- 
turn type of the method. 

The type of 

rev kl: expl k2: expz . . . km: exp,,., 

is the union of the return types of a number of meth- 
ods, but it certainly includes the return type of the 
method that was invoked. Thus, the result of the ex- 
pression, which is the object being returned by the 
method, has a type that is included in the type of the 
expression. I 

Type-safety also depends on all the primitives be- 
ing given correct types. Since primitives are written 
in a language other than Smalltalk, it is impossible 
to reason about them within the framework presented 
here. A few primitives are inherently unsafe. These 
are primarily used by the debugger. Most of the prim- 
itives have simple types, however. 

7 Conclusion 

Our type system for Smalltalk is type-safe. It has 
been implemented in Smalltalk and used in the TS 
optimizing compiler for Smalltalk [JGZ88]. It has 
been able to solve most type-checking problems in 
the standard Smalltalk- class hierarchy. Thus, it is 
correct, useful, and usable. 

Our type system is also unique. It differs from 
other type systems for object-oriented programming 
languages by acknowledging that only implementa- 
tion is inherited, not specification, and by handling 
case analysis of union types automatically. 

Our type system is more complicated than other 
type systems for object-oriented programming lan- 
guages. Whether this complication is justified de- 
pends partly on whether a new language is being de- 
fined or whether a type system is being defined for 
Smalltalk. Current Smalltalk programming practice 
requires a type system like ours. 

149 



Acknowlegements 

This research was supported by NSF contract CCR- 
8715752, by the AT&T ISEP grant, and by an equip- 
ment grant from Tektronix. 

References 

[BHJL86] 

[BI82] 

[Car841 

[Car851 

[CUL89] 

[CW85] 

[DeuSl] 

[DT88] 

Andrew Black, Norman Hutchinson, Eric 
Jul, and Henry Levy. Object structure 
in the Emerald system. In Proceeding8 
of OOPSLA ‘86, pages 78-86, Novem- 
ber 1986. printed as SIGPLAN Notices, 
21(11). 

A. H. Borning and D. H. H. Ingalls. 
A type declaration and inference sys- 
tem for Smalltalk. In Conference Record 
of the Ninth Annual ACM Symposium 
on Principles of Programming Languages, 
pages 133-139, 1982. 

Luca Cardelli. A semantics of multiple in- 
heritance. In Semantics of Data Types, 
Lecture Notes in Computer Science, n. 
173, pages 51-67, Springer-Verlag, 1984. 

Luca Cardelli. Amber. In Combinators 
and Functional Programming Languages, 
Proceedings of the 13th Summer School of 
the LITP, Le Val d’Ajo1, Vosges (France), 
May 1985. 

Craig Chambers, David Ungar, and Elgin 
Lee. An efficient implementation of Self, 
a dynamically-typed object-oriented lan- 
guage based on prototypes. In Proceed- 
ings of OOPSLA ‘89, pages 49-70, Octo- 
ber 1989. printed as SIGPLAN Notices, 
24(10). 

Luca Cardelli and Peter Wegner. On 
understanding types, data abstraction, 
and polymorphism. Computing Surveys, 
17(4):471-522, December 1985. 

L. Peter Deutsch. Building control struc- 
tures in the Smalltalk- system. Byte, 
6(8):322-347, August 1981. 

Scott Danforth and Chris Tomlinson. 
Type theories and object-oriented pro- 
gramming. Computing Surveys, 20( 1):29- 
72, March 1988. 

[GR83] 

[Gra89] 

[JF88] 

[JGZ88] 

[Joh86] 

[Kam88] 

PWW 

[MS821 

[scB*~~] 

[Str86] 

[SuzSl] 

Adele Goldberg and David Robson. 
Smalltalk-80: The Language and its Im- 
plementation. Addison-Wesley, Reading, 
Massachusetts, 1983. 

Justin Graver. Type- Checking and Type- 
Inference for Object-Oriented Program- 
ming Languages. PhD thesis, University 
of Illinois at Urbana-Champaign, 1989. 

Ralph E. Johnson and Brian Foote. De- 
signing reusable classes. Journal of Object- 
Oriented Progrumming, 1(2):22-35, 1988. 

Ralph E. Johnson, Justin 0. Graver, and 
Lawrence W. Zurawski. TS: An optimiz- 
ing compiler for Smalltalk. In Proceed- 
ings of OOPSLA ‘88, pages 18-26, Novem- 
ber 1988. printed as SIGPLAN Notices, 
23(11). 

Ralph E. Johnson. Type-checking 
Smalltalk. In Proceedings of OOPSLA ‘86, 
pages 315-321, November 1986. printed as 
SIGPLAN Notices, 21(11). 

Samuel Kamin. Inheritance in Smalltalk- 
80: A denotational definition. In Confer- 
ence Record of the Fifleenth Annual ACM 
Symposium on Principles of Programming 
Languages, pages 80-87, 1988. 

Bertrand Meyer. Object-oriented Software 
Construction. Prentice Hall, 1988. 

David MacQueen and Ravi Sethi. A 
higher order polymorphic type system for 
applicative languages. In ACM Sympo- 
sium of LISP and Functional Program- 
ming, pages 243-252, 1982. 

Craig Schaffert, Topher Cooper, Bruce 
Bullis, Mike Kilian, and Carrie Wilpolt. 
An introduction to Trellis/Owl. In Pro- 
ceedings of OOPSLA ‘86, pages 9-16, 
November 1986. printed as SIGPLAN No- 
tices, 21(11). 

Bjarne Stroustrup. The C++ Program- 
ming Language. Addison-Wesley Publish- 
ing Co., Reading, MA, 1986. 

Norihisa Suzuki. Inferring types in 
Smalltalk. In Conference Record of 
the Eighth Annual ACM Symposium on 
Principles of Programming Languages, 
pages 187-199, 1981. 

150 


