
Dynamic Prefetching of Data Tiles for Interactive
Visualization

ABSTRACT
In this paper, we present ForeCache, a general-purpose tool for ex-
ploratory browsing of large datasets. ForeCache utilizes a client-
server architecture, where the user interacts with a lightweight client-
side interface to browse datasets, and the data to be browsed is re-
trieved from a DBMS running on a back-end server. We assume a
detail-on-demand browsing paradigm, and optimize the back-end
support for this paradigm by inserting a separate middleware layer
in front of the DBMS. To improve response times, the middleware
layer fetches data ahead of the user as she explores a dataset.

We consider two different mechanisms for prefetching: (a) learn-
ing what to fetch from the user’s recent movements, and (b) us-
ing data characteristics (e.g., histograms) to find data similar to
what the user has viewed in the past. We incorporate these mech-
anisms into a single prediction engine that adjusts its prediction
strategies over time, based on changes in the user’s behavior. We
evaluated our prediction engine with a user study, and found that
our dynamic prefetching strategy provides: (1) significant improve-
ments in overall latency when compared with non-prefetching sys-
tems (430% improvement); and (2) substantial improvements in
both prediction accuracy (25% improvement) and latency (88% im-
provement) relative to existing prefetching techniques.

1. INTRODUCTION
Exploratory browsing helps users analyze large amounts of data

quickly by rendering the data at interactive speeds within a view-
port of fixed size (e.g., a laptop screen). This is of particular interest
to data scientists, because they do not have the time or resources to
analyze billions of datapoints by hand. One common interaction
pattern we have observed in data scientists is that they analyze a
small region within a larger dataset, and then move to a nearby
region and repeat the same analysis. They initially aggregate or
sample these regions when looking for a quick answer, and zoom
into the raw data when an exact answer is needed. Thus, we focus
on supporting a detail-on-demand browsing paradigm, where users
can move to different regions within a single dataset, and zoom into
these regions to see them in greater detail.

While users want to be able to drill down into specific regions of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: A diagram of ForeCache’s tile storage scheme.

a dataset, they also want their actions within the browsing tool to be
fluid and interactive. Even one second of delay after a pan or zoom
can be frustrating for users, hindering their analyses and distract-
ing them from what the data has to offer [16, 14]. Thus, the goal of
this project is to make all user interactions extremely fast (i.e., 500
ms or less), thereby providing a seamless exploration experience
for users. However, though modern database management systems
(DBMS’s) allow users to perform complex scientific analyses over
large datasets [19], DBMS’s are not designed to respond to queries
at interactive speeds, resulting in long interaction delays for brows-
ing tools that must wait for answers from a backend DBMS [2].
Thus, new optimization techniques are needed to address the non-
interactive performance of modern DBMS’s, within the context of
exploratory browsing.

In this paper, we present ForeCache, a general-purpose tool for
exploratory browsing of large datasets at interactive speeds. Given
that data scientists routinely analyze datasets that do not fit in main
memory, ForeCache utilizes a client-server architecture, where users
interact with a lightweight client-side interface, and the data to be
explored is retrieved from a back-end server running a DBMS. We
use the array-based DBMS SciDB as the back-end [21], and insert
a middleware layer in front of the DBMS, which utilizes prefetch-
ing techniques and a main-memory cache to speedup server-side
performance.

When the user performs zooms in ForeCache, she expects to see
more detail from the underlying data. To support multiple levels
of detail, we apply aggregation queries to the raw data. However,
these queries are slow, and may not execute at interactive speeds.
To ensure that zooms are fast in ForeCache, we compute each level
of detail, or zoom level, beforehand, and store them on disk. A
separate materialized view is created for each zoom level, and we
partition each zoom level into equal-size blocks, or data tiles [15].

The user cycles through the following steps when browsing data
in ForeCache: (1) she analyzes the result of the previous request,
(2) performs an action in the interface to update or refine the request
(e.g., zooms in), and then (3) waits for the result to be rendered on
the screen. ForeCache eliminates step 3 by prefetching neighbor-
ing tiles and storing them in main memory while the user is still



in step 1, thereby providing the user with a seamless browsing ex-
perience. At the middleware level, we incorporate a main-memory
cache for fetching computed tiles, shown in Figure 1. When tiles
are prefetched, they are copied from SciDB to the cache. However,
in a multi-user environment, there may be too little space on the
server to cache all neighboring tiles for every user. Thus, we must
rank the tiles first, and fetch only the most likely candidates.

While prefetching is known to be effective, ForeCache needs ac-
cess to the user’s past interactions with the interface to predict fu-
ture data requests. We have observed that the client has extensive
records of the user’s past interactions, which we can leverage to im-
prove our prefetching strategy. For example, the client knows what
regions the user has visited in the past, and what actions she has
recently performed. One straightforward optimization is to train a
Markov model on the user’s past actions, and to use this model to
predict the user’s future actions [6, 7]. We refer to these prediction
techniques as recommendation models throughout this paper.

However, the user’s actions are often too complex to be described
by a single model (which we will show in Section 5). Thus, existing
models only cover a fraction of possible browsing strategies, lead-
ing to longer user wait times due to prediction errors. A compre-
hensive approach is needed, such that we can consistently prefetch
the right tiles over a diverse range of browsing strategies.

To address the limitations of existing techniques, we have de-
signed a new two-level prediction engine for our middleware. At
the top level, our prediction engine learns the user’s current brows-
ing strategy, given her most recent actions. Users frequently em-
ploy several low-level browsing behaviors as part of their browsing
strategies (e.g., panning right three times in a row). Therefore at
the bottom level, our prediction engine runs multiple recommenda-
tion models in parallel, each designed to model a specific low-level
browsing behavior. Using this two-level design, our prediction en-
gine tracks shifts in the user’s browsing strategy, and updates its
prediction strategy accordingly. To do this, we increase or decrease
the space allotted to each low-level recommendation model for pre-
dictions. Furthermore, this two-level design can be applied to other
components within the ForeCache architecture. For example, we
plan to extend our techniques to improve caching and prefetching
performance within the DBMS.

Taking inspiration from other user analysis models [18], we have
observed that the space of possible browsing strategies can be par-
titioned into three separate analysis phases: Foraging (analyzing
individual tiles at a coarse zoom level to form a new hypothesis),
Sensemaking (comparing neighboring tiles at a detailed zoom level
to test the current hypothesis), and Navigation (moving between
coarse and detailed zoom levels to transition between the previous
two phases). The user’s goal changes depending on which phase
she is currently in. For example, in the Navigation phase, the user
is shifting the focus of her analysis from one region in the dataset
to another. In contrast, the user’s goal in the Foraging phase is to
find new regions that exhibit interesting data patterns. Thus, users
will also employ a different browsing strategy for each phase.

We consider two separate mechanisms for our low-level recom-
mendation models: (a) learning what to fetch based on the user’s
past movements (e.g., given that the the user’s last three moves were
all to “pan right,” what should be fetched?) [7]; and (b) using data-
derived characteristics, or signatures, to identify neighboring tiles
that are similar to what the user has seen in the past. We use a
Markov chain to model the first mechanism, and a suite of sig-
natures for the second mechanism, ranging from simple statistics
(e.g., histograms) to sophisticated machine vision features.

To evaluate ForeCache, we conducted a user study, where do-
main scientists explored satellite imagery data. Our results show

Figure 2: A tiling example with satellite imagery data.

that ForeCache achieves (near) interactive speeds for data explo-
ration (i.e., average latency within 500 ms). We also found that
ForeCache achieves: (1) dramatic improvements in latency com-
pared with traditional non-prefetching systems (430% improvement
in latency); and (2) higher prediction accuracy (25% better ac-
curacy) and significantly lower latency (88% improvement in la-
tency), compared to existing prefetching techniques.

In this paper, we make the following contributions:
1. We propose a new three-phase analysis model to describe

how users generally explore array-based data.
2. We present a tile-based data model for arrays, and architec-

ture for supporting interactive browsing of tiles in SciDB,
3. We present our two-level prediction engine, with an SVM

classifier at the top level to predict the user’s current analysis
phase, and recommendation models at the bottom to predict
low-level user interactions.

4. We present the results from our user study. Our results show
that our approach provides higher prediction accuracy and
significantly lower latency, compared to existing techniques.

2. DATA MODEL
In this section, we describe the kinds of datasets supported by

ForeCache, and our process for building zoom levels and data tiles.

2.1 Datasets Supported by ForeCache
Our tiling structure supports browsing of any array-based dataset

that can be stored in SciDB, such as time series datasets (e.g.,
stock prices) and geospatial datasets (e.g., satellite imagery). Given
its extensive support for complex analytics over multidimensional
datasets, we use SciDB as the back-end DBMS in ForeCache. Con-
sider Figure 2, where the user happens to be exploring an array of
satellite imagery, and each array cell has been mapped to a pixel.
We have partitioned the current zoom level along the array’s two di-
mensions (latitude and longitude), resulting in four data tiles. The
user’s current viewport is located at the top left data tile, and the
user can move to other data tiles by performing actions in the client-
side interface (e.g., panning). The user can also zoom in or out to
explore different zoom levels.

Building zoom levels over this array will produce high-resolution
(finer) or lower-resolution (coarser) views of the underlying data.
For example, we can make a zoom level with one quarter of the
original resolution quality by computing the average pixel value of
every 2x2 window of array cells.

2.2 Building Data Tiles
In this section, we explain how ForeCache builds zoom levels

(and data tiles) for array-based data stored in SciDB. We conducted
our experiments in Section 5 using two-dimensional data, so we
focus on 2D arrays here. However, it is straightforward to extend
our 2D tiling scheme to work for three or more dimensions.

The ForeCache tile building process is divided into three steps:
(1) building a separate materialized view for each zoom level; (2)
partitioning each zoom level into non-overlapping blocks of fixed
size (i.e., data tiles); and (3) computing any necessary metadata



Figure 3: A 64x64 array being aggregated down to an 8x8 array
with aggregation parameters (8,8).

Figure 4: A zoom level being partitioned into four tiles, with tiling
parameters (4,4).

(e.g., data statistics) for each data tile. The most detailed zoom
level (i.e., highest resolution) is just the raw data without any ag-
gregation.

To build a materialized view, we apply an aggregation query to
the raw data, where the aggregation parameters dictate how de-
tailed the resulting zoom level will be. These parameters form a
tuple ( j1, j2,..., jd), where d is the number of dimensions. Each pa-
rameter j specifies an aggregation interval over the corresponding
dimension, where every j array cells along this dimension are ag-
gregated into a single cell. Consider Figure 3, where we have a
64x64 array (on the left), with two dimensions labeled x and y, re-
spectively. Aggregation parameters of (8,8) correspond to every 8
cells being aggregated along dimension x, and every 8 cells along
dimension y. This aggregation window is denoted by the red box in
Figure 3. If we compute the average cell value for each window in
the 64x64 array, the resulting array will have dimensions 8x8 (right
side of Figure 3).

Next, we partition each computed zoom level into data tiles. To
do this, we assign a tiling interval to each dimension, which dic-
tates number of aggregated cells contained in each tile along this
dimension. For example, consider our aggregated view with di-
mensions 8x8, shown in Figure 4. If we specify a tiling window
of (4,4), ForeCache will partition this view into four separate data
tiles, each with the dimensions we specified in our tiling parameters
(4x4).

We choose the aggregation and tiling parameters such that a sin-
gle tile at zoom level i corresponds to four higher-resolution data
tiles at zoom level i+1. To do this, we calculated our zoom levels
bottom-up (i.e., starting at the raw data level), multiplying our ag-
gregation intervals by 2 for each coarser zoom level going upward.
We then applied the same tiling intervals to every zoom level.

Last, ForeCache computes any necessary metadata for each data
tile. For example, some of our recommendation models rely on
data characteristics, or signatures, to be computed for each tile,
such as histograms or machine vision features (see Section 4 for
more detail). As ForeCache processes each tile and zoom level,
this metadata is computed and stored in a shared data structure for
later use by our prediction engine.

3. ARCHITECTURE
ForeCache has four primary components in its client-server ar-

chitecture: a web-based visualization interface on the client; a pre-

Figure 5: Overview of the ForeCache architecture.

diction engine; a tile cache manager; and the back-end DBMS. Fig-
ure 5 illustrates the relationship between these components. The
visualizer sends tile requests to the tile prediction engine, and the
prediction engine then sends these requests to the cache manager
for retrieval. To anticipate the user’s future requests, the prediction
engine sends predictions to the cache manager to be fetched ahead
of time. The cache manager stores predicted tiles in the middleware
tile cache, and retrieves tiles requested by the client from either the
middleware cache or SciDB. We elaborate on the first three com-
ponents of the ForeCache architecture in the rest of this section.

3.1 Front-End Visualizer
ForeCache is agnostic to the front-end visualizer, which can be

implemented in any language or platform on the client. The only
requirement for the visualizer is that it must interact with the back-
end through tile requests. As the user interacts with the client-side
interface, requests are sent to the back-end to retrieve the corre-
sponding tiles. For our experiments, we implemented a lightweight,
front-end visualization interface that runs in a web browser on the
client machine (see Section 5 for more details).

3.2 Prediction Engine
The purpose of the prediction engine is to manage ForeCache’s

tile requests, which consists of two major tasks: responding to tile
requests from the client; and managing both the high-level (anal-
ysis phase classifier) and low-level (recommendation models) pre-
dictions used to infer the user’s future requests. To fulfill existing
tile requests, the prediction engine retrieves requested tiles from the
cache manager, and sends them back to the client for visualization.
This component also manages ForeCache’s predictions. At the top-
most level, this component runs an SVM classifier that predicts the
user’s current analysis phase. At the lower level, the prediction en-
gine manages several tile recommendation models running in paral-
lel. These recommendation models make suggestions for what data
tiles to fetch, and the actual fetching of the tiles is left to the cache
manager. After each user request, the prediction engine retrieves a
separate list of predictions from each recommender, and forwards
these predictions to the cache manager for further processing. We
describe our SVM classifier and recommendation models in detail
in Section 4.

3.3 Tile Cache Manager
The cache manager is in charge of managing tiles in the middle-

ware cache. At the middleware level, the cache manager decides
which tiles will be stored in our main memory cache. Each rec-
ommendation model is allotted a limited amount of space in this
cache to make predictions. The remaining space in the middleware



cache is used to store the last n tiles requested by the interface.
We refer to the allocations made to our recommendation models
as the cache manager’s current allocation strategy. This allocation
strategy is reevaluated after each request to ensure that space is al-
located efficiently across all models. We explain how we update
these allocations in Section 4. The cache manger then uses the tile
recommendations from the prediction engine to fill the cache once
the allocations have been updated.

4. PREDICTION ENGINE DESIGN
The goal of our prediction engine is to identify changes in the

user’s browsing behavior, and update its prediction strategy accord-
ingly. In this way, our prediction engine ensures that the most rel-
evant prediction algorithms are being used to prefetch data tiles.
To do this, our prediction engine makes predictions at two separate
levels. At the top level, it learns the user’s current browsing strat-
egy. At the bottom level, it models the observed strategy with a
suite of recommendation models.

We chose a two-level design because we have found that users
frequently switch between browsing strategies over time. In con-
trast, recommendation models make strict assumptions about the
user’s browsing strategy, and thus ignore changes in the user’s be-
havior. For example, Markov chains assume that the user’s past
movements will always be good indicators of her future actions.
However, when the user has visually identified a new region to ex-
plore, the user’s past actions are likely poor indicators for the fu-
ture actions she will take to navigate towards this new area. As a
result, we have found that recommendation models only work well
in specific cases, making any individual model a poor choice for
predicting the user’s entire browsing session.

However, if we can learn what a user is trying to do, we can
identify the most likely browsing strategy she will employ to ac-
complish her goals, and apply the corresponding recommendation
model(s) to make predictions. To do this, we first outline the three
general analysis phases that users alternate between when brows-
ing array-based data. Each analysis phase represents a particular
kind of browsing strategy, which we explain in Section 4.1.1.

Using these analysis phases, we build our two-level prediction
engine. To build the top level of our prediction engine, we trained
a classifier to predict the user’s current analysis phase, given her
past tile requests. To build the bottom level of our prediction en-
gine, we developed a suite of recommendation models to capture
the different browsing behaviors exhibited in our analysis phases.
To combine the top and bottom levels, we developed three sepa-
rate allocation strategies for our middleware cache, one for each
analysis phase.

In the rest of this section, we explain the top and bottom level
designs for our prediction engine, and how we combine the two
levels using our allocation strategies. In Section 5, we explain how
we used trace data from our user study to improve our allocation
strategies and evaluate our prediction engine.

4.1 Top-Level Design
In this section, we explain the three analysis phases that users

alternate between while browsing array-based data, and how we
use this information to predict the user’s current analysis phase.

4.1.1 Learning Analysis Phases
We informally observed several users browsing array-based data

in SciDB, searching for common interaction patterns. We used
these observed patterns to define a user analysis model, or a general-
purpose template for user interactions in ForeCache. Our user anal-
ysis model was inspired in part by the well-known Sensemaking

model [18]. However, we found that the Sensemaking Model did
not accurately represent the behaviors we observed. For exam-
ple, the Sensemaking model does not explicitly model navigation,
which is an important aspect of browsing array data. Thus, we
extend existing analysis models to generalize to array browsing be-
haviors. We found that our users alternated between three high-
level analysis phases, each representing different user goals: For-
aging, Sensemaking, and Navigation. Within each phase, users em-
ployed a number of low-level behaviors to achieve their goals. We
model the low-level behaviors separately in the bottom half of our
prediction engine, which we describe in detail in Section 4.2.

In the Foraging phase, the user is looking for visually interesting
patterns in the data and forming hypotheses. The user will tend to
stay at coarser zoom levels during this phase, because these levels
allow the user to scan large sections of the dataset for visual pat-
terns that she may want to investigate further. In the Sensemaking
phase, the user has identified a region of interest (or ROI), and is
looking to confirm an initial hypothesis. During this phase, the user
stays at more detailed zoom levels, and analyzes neighboring tiles
to determine if the pattern in the data supports or refutes her hy-
pothesis. Finally, during the Navigation phase, the user performs
zooming operations to move between the coarse zoom levels of the
Foraging phase and detailed zoom levels of the Sensemaking phase.

4.1.2 Predicting the Current Analysis Phase
The top half of our two-level scheme is responsible for predict-

ing the user’s current analysis phase. To do this, we apply a Support
Vector Machine (SVM) classifier using the LibSVM Java Library1,
similar to the work by Brown et al. [3]. SVM’s are a group of
supervised learning techniques that are frequently used for classifi-
cation and regression tasks. We used a multi-class SVM classifier
with a non-linear kernel (RBF). To format data for our SVM clas-
sifier, we generate a feature vector from incoming user requests,
which contain the location of the requested tile (XY-coordinate and
zoom level) and whether the previous request was a zoom in, zoom
out, or pan. Because this SVM classifier only learns from interac-
tion data and relative tile positions, we can apply our classification
techniques to any dataset that is amenable to a tile-based format.
To build a training dataset for the classifier, we hand-labeled tile re-
quests from our user study with their corresponding analysis phase.
We evaluate the accuracy of this classifier in Section 5.

4.2 Bottom-Level Design
Once the user’s current analysis phase has been identified, Fore-

Cache employs the corresponding recommendation model(s) to pre-
dict specific tiles. At the bottom level of our prediction engine, we
run multiple recommendation models in parallel, where each model
is designed to predict specific browsing behaviors. Each of these
models requires access to the user’s tile request history, and some
additional metadata.

These low-level recommendation models can be categorized into
two types of predictions: (a) learning what to predict from the
user’s previous moves (e.g., pans and zooms), and (b) learning what
to predict by using data characteristics, or signatures, from the tiles
that the user has recently analyzed (e.g., histograms).

4.2.1 Additional Inputs for Recommendation Models
All of our models require additional inputs in order to make pre-

dictions. Here we provide an overview of the inputs that we pass to
our models, and the output produced by our models.

Each model outputs a ranked list of tiles, where the ranking sig-
nifies the model’s prediction of how likely the user will request each
1https://github.com/cjlin1/libsvm



Figure 6: An example of how we retrieve the user’s last ROI.

tile. Each model also requires two additional information sources,
or inputs, to make predictions. The first input is a subset of tiles
from the user’s request history; the second input is a list of candi-
date tiles for the models to rank and return as output.

We use the first input as a reference point for what the user’s
current interests, which we refer to as a region of interest (ROI).
We use a simple heuristic to identify the user’s last ROI. We use
zooming in as a cue for the user preparing to analyze a region, and
zooming out as a sign that the user is finished analyzing a region.
Thus, our heuristic simply tracks when the user zooms out, and
records the list of tiles the user analyzed before zooming out. Fig-
ure 6 shows an example of how to use this heuristic. When the user
first zooms out from zoom level two to zoom level one (A), the
first ROI contains three tiles from zoom level two: the tile the user
zoomed out from, and two other tiles the user explored after zoom-
ing in. When the user zooms out from zoom level one to zoom
level zero, she is still leaving the previous ROI. Thus, we ignore
this zoom out. The user then explores a new ROI by zooming into
level two again. When the user zooms out (B), we find that one
tile was explored since the last zoom in. Thus this ROI only has
one tile. Note that the first two moves (a zoom in to level zero,
and directional pan) are not considered for ROI’s, as the user is still
moving towards her next ROI at zoom level two.

For the second input to our models, we compile a list of can-
didate data tiles by finding all tiles that are within d actions from
the user’s current focal point. We call d the user’s current “neigh-
borhood.” For example, a neighborhood of size one represents all
tiles that are exactly one action away from the user’s last tile re-
quest. All tiles reachable by one panning action would be part of
this neighborhood. Note that we use Manhattan distance and not
Euclidean distance, which is equivalent to counting the number of
moves required to go from one tile to another.

4.2.2 Actions-Based (AB) Recommender
As the user moves to or from ROI’s, she is likely to consistently

zoom or pan in a predictable way (e.g., zoom out three times).
Doshi et al. leverage this assumption in their Momentum model,
which predicts that the user’s next move will match her previous
move [7]. Similarly, Lee et al. [11] apply Markov chains to map
tiles. We expand on this idea with our actions-based (AB) recom-
mender, which builds a Markov chain from users’ past actions. This
differs significantly from our signature-based mechanism, because
we do not need to compute any data-specific features. We use the
user’s last n−1 moves as a reference point.

A basic Markov chain contains a single state for each move the
user can make (e.g., zoom out, pan up, pan down, etc.). These states
represent the last move the user has made. Each state also has an
outgoing transition to all other states. These transitions represent
how likely the user is to make the corresponding move, given the
previous move. Figure 7 is an example of a Markov chain that pre-
dicts whether the user will zoom in or zoom out. Initially, zooming
in and out are equally likely, because they both have probability

Figure 7: An example Markov chain for predicting zooms.

Table 1: Features computed in ForeCache to compare data tiles for
visual similarity.

Signature Measures used for Comparison
Normal Distribution Mean, standard deviation
1-D histogram histogram bins
SIFT histogram built from

clustered SIFT descriptors
DenseSIFT same as SIFT

0.5. However, once the user has moved, she is more likely to repeat
the same move than to change direction, shown by the self-loops in
Figure 7 with probability 0.75.

We build more powerful nth-order Markov chains in our AB rec-
ommender by embedding more of the user’s movement history into
each state in the Markov model. Specifically, we create a state in
the Markov model for each possible sequence of the user’s last n
moves.

We learn transition probabilities using tile request logs recorded
from our user study, which we describe in more detail in Section 5.
However, if our AB recommender incorporates too much informa-
tion from past logs, we will over-fit the model to our training data.
To assess the tradeoff between flexibility and accuracy, we tested
building nth-order Markov chains with history lengths ranging from
the user’s last request to the user’s last ten requests. We observed
that setting n = 3 provided the best prediction accuracy. We discuss
the accuracy of our recommendation models in Section 5.

We used the BerkeleyLM [17] Java library to implement our
Markov chains.

4.2.3 Signature-Based (SB) Recommender
The goal of our signature-based (SB) recommender is to identify

neighboring tiles that are visually similar to what the user has seen
in the past. For example, in the Foraging phase, the user is using
a coarse view of the data to find new ROI’s to explore. When the
user finds a new ROI, she zooms into this area until she reaches her
desired zoom level. Each tile along her zooming path will share
the same visual features, which the user depends on to navigate to
her destination. In the Sensemaking phase, the user is analyzing
visually similar data tiles at the same zoom level. One such exam-
ple is when the user is exploring satellite imagery of the earth, and
panning to tiles within the same mountain range.

Consider Figure 8a, where the user is exploring snow cover data
derived from a satellite imagery dataset. Snow is colored red, and
regions without snow are blue. Thus, the user will search for ROI’s
that contain large clusters of red pixels, which are circled in Fig-
ure 8a. These ROI’s correspond to mountain ranges.

Given the user’s last ROI (i.e., the last mountain range the user
visited), we can look for neighboring tiles that look similar (i.e.,
find more mountains). Figure 8b is an example of some tiles that
may be in the user’s history if she has recently explored some of



(a) Potential ROI’s (e.g., mountain ranges) for
snow cover data in the US and Canada. Snow
is in red.

(b) Example tiles that may be in the user’s
request history after visiting some ROI’s
from (a).

Figure 8: Example ROI’s in the US and Canada for snow cover data. Note that (a) and (b) span the same latitude-longitude range.

Algorithm 1 Computes the visual distance of each candidate tile,
with respect to a given ROI.

Input: Signatures S1-S4, candidate tiles, ROI tiles
Output: A set of distance values D
1: for Signature Si, i = 1−4 do
2: di,MAX ← 1
3: for each candidate tile TA do
4: Retrieve signature Si(TA)

5: for each ROI tile TB do
6: Retrieve signature Si(TB)

7: for each candidate/ROI pair (TA,TB) do
8: di,A,B← 2dmanh(TA,TB)−1[distSi(Si(TA),Si(TB))]
9: di,MAX ← max(di,MAX ,di,A,B)

10: for each candidate/ROI pair (TA,TB) do
11: di,A,B←

di,A,B
di,MAX

12: for each candidate/ROI pair (TA,TB) do

13: dA,B←
√

∑Si
wi(di,A,B)2

dphysical(A,B)

14: for each candidate tile TA do
15: dA← ∑B dA,B

return D ={d1,d2, ...,dA, ...}

these ROI’s, which we can use for reference to find new ROI’s.
We measure visual similarity by computing a diverse set of tile

signatures. A signature is a compact, numerical representation of
a data tile, and is stored as a vector of double-precision values.
Table 1 lists the four signatures we compute in ForeCache. All of
our signatures are calculated over a single SciDB array attribute.
The first signature in Table 1 calculates the average and standard
deviation of all values stored within a single data tile. The second
signature builds a histogram over these array values, using a fixed
number of bins.

Given that users are interacting with rendered images of the data,
we also tested two machine vision techniques as signatures: the
scale-invariant feature transform (SIFT), and a variant called dens-
eSIFT (signatures 3 and 4 in Table 1). SIFT is a computer vision
algorithm that is used to detect and compare local features in an
image. We used the open source machine vision library OpenCV
to compute our SIFT and denseSIFT signatures2.

Algorithm 1 outlines how we compare candidate tiles to the user’s
last ROI using these signatures. We first retrieve all four signatures
for each candidate tile (lines 3-4). We also retrieve these four sig-
natures for each ROI tile on lines 5-6. Then we compute how much
each candidate tile (TA) deviates from each ROI tile (TB), with re-
2http://opencv.org

spect to each signature (lines 7-8). To do this, a distance function
for the signature is applied to the candidate tile and ROI tile (de-
noted as distSi in Algorithm 1). Since our signatures do not au-
tomatically account for the physical distance between TA and TB,
we apply a penalty to our signature distances based on the Man-
hattan distance between the tiles. Since all four of our current sig-
natures produce histograms as output, we use the Chi-Squared dis-
tance metric as the distance function for all signatures. We then
normalize the computed distance values (lines 10-11).

To produce a single distance measure for a given candidate-ROI
pair, we treat the four resulting distance measures as a single vec-
tor, and compute the `2-norm of the vector (lines 12-13). To adjust
how much influence each signature has on our final distance mea-
surements, we can modify the `2-norm function to include weights
for each signature. All signatures are assigned equal weight by de-
fault, but the user can update these weight parameters as necessary.

`2
weighted(A,B) =

√
∑
Si

wi(di,A,B)2

At this point, there will be multiple distance values calculated
for each candidate tile, one per ROI tile. For example, if we have
four ROI tiles, then there will be four distance values calculated per
candidate tile. We sum these ROI tile distances, so we have a single
distance value to compare for each candidate tile (lines 14-15). We
then rank the candidates by these final distance values.

Note that it is straightforward to add new signatures to the SB
recommender. To add a new signature, one only needs to add: (1)
an algorithm for computing the signature over a single data tile,
and (2) a new distance function for comparing this signature (if the
Chi-Squared distance is not applicable).

4.3 Cache Allocation Strategies
In this section, we describe the recommendation models gener-

ally associated with each analysis phase, and how we use this in-
formation to allocate space to each recommendation model in our
tile cache.

In the Navigation phase, the user is zooming and panning in or-
der to transition between the Foraging and Sensemaking phases.
Thus, we expect the AB recommendation model to be most ef-
fective for predicting tiles for this phase, and allocate all available
cache space to this model.

In the Sensemaking phase, the user is mainly panning to neigh-
boring tiles with similar visual features. Therefore, we expect the
SB recommendation model to perform well when predicting tiles
for this phase, and allocate all available cache space to this model.

In the Foraging phase, the user is using visual features as cues
for where she should zoom in next. When the user finds a ROI that
she wants to analyze, the tiles she zooms into to reach this ROI will
share the same visual properties. Thus, the SB model should prove



useful for this phase. However, the user will also zoom out several
times in a row in order to return to the Foraging phase, exhibiting a
predictable pattern that can be utilized by the AB model. Therefore,
we allocate equal amounts of space to both models for this phase.

5. EXPERIMENTS
Although the goal behind ForeCache is to reduce user wait times,

we will demonstrate in Section 5.5 that there is a linear (constant
factor) correlation between latency and the accuracy of the predic-
tion algorithm. As such, we claim that we can improve the observed
latency in ForeCache by reducing the number of prediction errors
that occur when prefetching tiles ahead of the user. Our aim in
this section is to show that ForeCache provides significantly bet-
ter prediction accuracy, and thus lower latency, when compared to
existing prefetching techniques.

We validate our claims about user exploration behavior through
a user study on NASA MODIS satellite imagery data, and evaluate
the prediction accuracy of our two-level prediction engine using
traces collected from the study. To validate our hypothesis that
prediction accuracy dictates the overall latency of the system, we
also measured the average latency observed in ForeCache for each
of our prediction techniques.

To test the accuracy of our prediction engine, we conducted three
sets of evaluations. We first evaluate each prediction level sepa-
rately. At the top level, we measure how accurately we can predict
the user’s current analysis phase. At the bottom level, we measure
the overall prediction accuracy of each recommendation model,
with respect to each analysis phase, and compare our individual
models to existing techniques. Then we compare the accuracy of
the full prediction engine to our best performing individual recom-
mendation models, as well as existing techniques. Last, we evalu-
ate the relationship between accuracy and latency, and compare the
overall latency of our full prediction engine to existing techniques.

5.1 MODIS Dataset
The NASA MODIS is a satellite instrument that records im-

agery data. This data is originally recorded by NASA in a three-
dimensional array, where the dimensions are latitude, longitude
and time. Each array cell contains a vector of wavelength mea-
surements, where each separate wavelength measurement is called
a MODIS “band.”

One use case for MODIS data is to estimate snow depths in the
mountains. One well-known MODIS snow cover algorithm, which
we apply in our experiments, is the Normalized Difference Snow
Index (NDSI) [20]. The NDSI indicates whether there is snow at
a given MODIS pixel (i.e., array cell). A high NDSI value (close
to 1.0) means that there is snow at the given pixel, and a low value
(close to -1.0) corresponds to no snow cover. The NDSI uses two
MODIS bands to calculate this. We label the two bands used in
the NDSI as VIS for visible light, and SWIR for short-wave in-
frared. The NDSI is calculated by applying the following function
to each cell of the MODIS array. It is straightforward to translate
this transformation into a user-defined function (UDF) in SciDB:

NDSI =
(visible light − short wave in f rared)
(visible light + short wave in f rared)

.

5.1.1 Modifications for User Study
Our test dataset consisted of NDSI measurements computed over

one week of raw NASA MODIS data, where the temporal range of
the data was from late October to early November of 2011. We
downloaded the raw data directly from the NASA MODIS web-

site3, and used SciDB’s MODIS data loading tool to load the data
into SciDB. We applied the NDSI to the raw MODIS data as a user-
defined function, and stored the resulting NDSI calculations in a
separate array. The NDSI array was roughly 10TB in size when
stored in SciDB.

To ensure that participants could complete the study in a timely
manner, we chose to simplify the dataset to make exploring it easier
and faster. Prior to the study, The NDSI dataset was flattened into a
single, one-week window, reducing the total dimensions from three
(latitude, longitude, time) to two (latitude and longitude only). The
NDSI dataset contained four numeric attributes: maximum, min-
imum and average NDSI values; and a land/sea mask value that
was used to filter for land or ocean pixels in the dataset. After ap-
plying ForeCache’s tile computation process, there were nine total
zoom levels in this dataset, where each level was a separate layer
of cooked tiles.

5.1.2 Calculating the NSDI in SciDB
In this section, we explain how to compute the NSDI in SciDB.

We assume that we already have a an NDSI UDF written in SciDB,
which we refer to as “ndsi_func”.

Let SV IS and SSWIR be the SciDB arrays containing recorded data
for their respective MODIS bands. We use two separate arrays, as
this is the current schema supported by the MODIS data loader for
SciDB [19]. SV IS and SSWIR share the same array schema. An
example of this schema is provided below.

SV IS/SWIR(reflectance)[latitude, longitude].
The array attributes are denoted in parentheses (reflectance) and

the dimensions are shown in brackets (latitude and longitude). The
attributes represent the MODIS band measurements recorded for
each latitude-longitude coordinate.

The following is the SciDB query we execute to compute the
NDSI over the SV IS and SSWIR arrays:

Query 1: SciDB query to apply the NDSI.
1 store(
2 apply(
3 join(SV IS,SSWIR),
4 ndsi,
5 ndsi_func(SV IS.reflectance,
6 SSWIR.reflectance)
7 ),
8 NDSI
9 );

We first perform an equi-join, matching the latitude-longitude
coordinates of the two arrays (line 3). Note that SciDB implicitly
joins on dimensions, so latitude and longitude are not specified in
the query. We then apply the NDSI to each pair of joined array cells
by calling the “ndsi_func” UDF (lines 5-6). We pass the reflectance
attribute of SV IS and the reflectance attribute of SSWIR to the UDF.
We store the result of this query as a separate array in SciDB named
NDSI (line 8), and the NDSI calculations are recorded in a new
“ndsi” attribute in this array (line 4).

5.2 Experimental Setup

5.2.1 Hardware/Software setup
The ForeCache front-end for the study was a web-based visual-

izer. The D3.js Javascript library was used to render data tiles. We
describe the interface in more detail below.

The data was partitioned across two servers running SciDB ver-
sion 13.3. Each server had 24 cores, 47GB of memory, and 10.1
TB of disk space. Both servers ran Ubuntu Server 12.04. The
3http://modis.gsfc.nasa.gov/data/



first server was also responsible for running the ForeCache middle-
ware (prediction engine and cache manager), which received tile
requests from the client-side interface.

5.2.2 Measuring Accuracy
The number of cache misses (i.e., prediction accuracy) directly

impacts whether delays occur in the ForeCache front end, and thus
also determines the length of user wait times (i.e., the latency).
Therefore, we used prediction accuracy as one of our primary met-
rics for comparing prefetching strategies, similar to the prediction
accuracy metric used by Lee et al. [11]. To compute this, we ran
our models in parallel while stepping through tile request logs, one
request at a time. For each requested tile, we collected a ranked
list of predictions from each of our recommendation models, and
recorded whether the next tile to be requested was located within
the top k of these rankings. For example, we would set k = 3 to test
whether the next tile was found within the top three recommenda-
tions in each list. To compute the final accuracy for the trace, we
counted all correct predictions for each recommender and divided
these counts by the total number of requested tiles.

We simulated having limited space in our middleware cache in
our experiments by varying k in our accuracy measurements. Thus
measuring prediction accuracy becomes equivalent to measuring
the hit rate of our tile cache. A value of k = 1 meant that ForeCache
only had space to fetch a single tile before the user’s next request,
k = 2 represented available space to fetch two tiles, and so on. We
varied k from 1 to 8 in our experiments. Note that at k = 9, we
are fetching all nine of the user’s possible next moves, and are thus
guaranteed to prefetch the correct tile. This is because the user
was restricted to a small set of actions in the front-end visualizer.
Specifically, the user could perform the following nine moves in
our interface: zoom out, pan (left, right, up, down), and zoom in
(users could zoom into one of four tiles at the zoom level below).

Given that ForeCache prefetches new tiles after every request,
we found that having ForeCache predict further than one move
ahead did not actually improve accuracy. Therefore, predicting be-
yond the user’s next move was irrelevant to the goals of these ex-
periments, and we only considered the tiles that were exactly one
step ahead of the user. We leave prefetching more than one step
ahead of the user as future work.

5.2.3 Comparing with Existing Techniques
To compare our two-level prediction engine with existing tech-

niques, we implemented two models proposed in [7], the “Momen-
tum” and “Hotspot” models. Several more recent systems, such as
ATLAS [6] and ImMens [15] apply very similar techniques (see
Section 7 for more information).

Momentum: The Momentum model assumes that the user’s
next move will be the same as her previous move. To implement
this, the tile matching the user’s previous move is assigned a proba-
bility of 0.9, and the eight other candidates are assigned a probabil-
ity of 0.0125. Note that this is a Markov model, since probabilities
are assigned to future moves based on the user’s previous move.

Hotspot: The Hotspot model is an extension of the Momen-
tum model that adds awareness of popular tiles, or hotspots, in the
dataset. To find hotspots in the NDSI dataset, we counted the num-
ber of requests made for each tile visited in our user study, and
chose the tiles with the most requests. When the user is not close
to any hotspots, the Hotspot model defaults to the behavior of the
Momentum model. When a hotspot is nearby, the Hotspot model
assigns a higher ranking to any tiles that bring the user closer to that
hotspot, and a lower ranking to the remaining tiles. We trained the
Hotspot model on trace data ahead of time. This training process

Figure 9: ForeCache browsing interface.

took less than one second to complete.

5.3 User Study
To generate a diverse workload for evaluating the ForeCache sys-

tem, we conducted a user study with domain scientists exploring
the NDSI dataset. In this section, we outline the study design, and
validate whether our analysis phases are an appropriate classifica-
tion of user behavior using results from the study. We avoided bi-
asing the behavior of our study participants by caching all data tiles
in main memory while the study was being conducted. This pre-
vented our participants from choosing their their movements based
on response time (e.g., avoiding zooming out if it is slower than
other movements). This also ensured that all study participants had
the same browsing experience throughout the study.

5.3.1 Study Subjects
The study consisted of 18 domain scientists (graduate students,

post doctoral researchers, and faculty). Most of our participants
were either interested in or actively working with MODIS data.
Subjects were recruited at the University of Washington and Uni-
versity of California, Santa Barbara.

5.3.2 Browsing Interface
Figure 9 is an example of the client-side interface. Each visu-

alization in the interface represented exactly one data tile. Partici-
pants (i.e., users) used directional buttons (top of Figure 9) to move
up, down, left, or right. Moving up or down corresponded to mov-
ing along the latitude dimension in the NDSI dataset, and left or
right to the longitude dimension. Each directional move resulted
in the user moving to a completely separate data tile. User’s left
clicked on a quadrant to zoom into the corresponding tile, and right
clicked anywhere on the visualization to zoom out.

5.3.3 Browsing Tasks
Participants completed the same search task over three different

regions in the NDSI dataset. For each region, participants were
asked to identify four data tiles (i.e., four different visualizations)
that met specific visual requirements. The tasks were as follows:

1. Find four data tiles in the continental United States at zoom
level 6 with the highest NDSI values.

2. Find four data tiles within western Europe at zoom level 8
with NDSI values of .5 or greater.

3. Find 4 data tiles in South America at zoom level 6 that con-
tain NDSI values greater than .25.

A separate request log was recorded for each user and task. There-
fore, by the end of the study we had 54 user traces, each consisting
of sequential tile requests.

5.3.4 Post-Study: General Observations
The most popular ROI’s for each task were: the Rocky Moun-

tains for Task 1, Swiss Alps for Task 2, and Andes Mountains for



Figure 10: Distribution of moves across all users, recorded per task.

Figure 11: Change in zoom level per request as study participant 2
completed task 2.

Task 3. The average number of requests per task are as follows: 35
tiles for Task 1, 25 tiles for Task2, and 17 tiles for Task 3. The
mountain ranges in Tasks 2 and 3 (Europe and South America)
were closer together and had less snow than those in task 1 (US
and Southern Canada). Thus, users spent less time on these tasks,
shown by the decrease in total requests.

We also tracked whether the request was a zoom in, zoom out,
or pan. Figure 10 shows the distribution of directions across all
study participants, recorded separately for each task. We see that
for all tasks, our study participants spent the most time zooming in.
This is because users had to zoom to a specific zoom level for each
task, and did not have to zoom back out to the top level to complete
the task. In tasks 1 and 2, users panned and zoomed out roughly
equally. In task 3, we found that users clearly favored panning more
than zooming out.

5.3.5 Evaluating the Suitability of Our Three Analy-
sis Phases

To demonstrate some of the patterns that we found in our user
traces, consider Figure 11, which plots the change in zoom level
over time for one of our user traces. The coarsest zoom level is
plotted at the top of Figure 11, and the most-detailed zoom level
was plotted at the bottom. The x-axis represents each successive
tile request made by this user. A downward slope corresponds to
the user moving from a coarser to a more detailed zoom level; an
upward slope corresponds to the reverse; and a flat line (i.e., slope
of 0) to the user panning to tiles at the same zoom level.

We see that the user alternates between zooming out to a coarser
zoom level, and zooming into more detailed zoom levels. We know
that the coarser views were used to locate snow, and the high-
resolution views to find specific tiles that satisfied task 2 (hence
the four tile requests specifically at zoom level 8).

We see in Figure 11 that this user’s behavior corresponds di-
rectly to the three exploration phases described in Section 4.1.1.
The user’s return to coarser views near the top of Figure 11 corre-
spond to the user returning to the Foraging phase (e.g., at request
ID’s 20 to 23). The user’s zooms down to the bottom half of the
plot correspond to the user moving to the Sensemaking phase, as
they searched for individual tiles to complete the task requirements.
Furthermore, we found that 13 out of 18 users exhibited this same
general exploration behavior throughout their participation in the

Figure 12: Distribution of Analysis phases for each task.

Figure 13: Accuracy of our best AB model (Markov3) compared
to existing models.

study. 16 out of 18 users exhibited this behavior during 2 or more
tasks. Furthermore, we found that only 57 out of the 1390 total
requests made in the study were not described adequately by our
exploration model.

Therefore, we conclude that our three analysis phases provide
an accurate classification of how the vast majority of users actually
explored our NDSI MODIS dataset.

5.4 Evaluating the Prediction Engine
Now that we have established that our three analysis phases pro-

vide a comprehensive labeling scheme for user behavior, we move
on to evaluating our two-level prediction engine. In particular, we
evaluated each level of our prediction engine separately, and then
compared the complete prediction engine to the existing techniques
described in our experimental setup.

At the top level of our prediction engine, we measured how accu-
rately we could predict the user’s current exploration phase. At the
bottom level, we measured the accuracy of each recommendation
model, with respect to each analysis phase.

The following experiments were conducted using leave-one-out
cross validation [10], a common cross-validation technique used
in the HCI community for evaluating user study data. For each
user, the models were trained on the trace data of the other 17 out
of 18 participants, and tested on the trace data from the remaining
participant that was removed from the training set.

5.4.1 Predicting the User’s Current Analysis Phase
The goal was to measure how accurately we could predict the

user’s current analysis phase. To build a training and testing set for

Figure 14: Accuracy of the four signatures in our SB model.



Figure 15: Accuracy of our top two recommendation models.

this experiment, we manually labeled each request in our request
logs with one of our 3 analysis phases. Figure 12 shows the dis-
tribution of phase labels. We see that users spent noticeably less
time in the Foraging phase for tasks 2 and 3 (i.e., looking for new
ROI’s), which is consistent with our user study observations.

To test our SVM classifier, we performed leave-one-out cross
validation (see above), where all requests for the corresponding
user were placed in the test dataset, and the remaining requests
were placed in the training set. Training the classifier took less than
one second. We found that our overall accuracy across all users was
82%. For some users, we could predict the current analysis phase
with 90% accuracy or higher.

5.4.2 Accuracy of Recommendation Models
In order to validate the accuracy of our individual recommenders,

we conducted two sets of experiments, where we (1) compared the
accuracy of our AB recommender to existing techniques, and (2)
measured the prediction accuracy of our SB recommender sepa-
rately for each of our four tile signatures.

The goal of these experiments was two-fold. First, we wanted
to find the phases where existing techniques performed well, and
where there was room for improvement. Second, we wanted to
evaluate whether our new recommendation models excelled in pre-
diction accuracy for their intended analysis phases.

To do this, we evaluated how accurately our individual recom-
mendation models could predict the user’s next move, for each
analysis phase.

Action-Based (AB) Model To evaluate the impact of history
length on our AB recommender, we implemented a separate Markov
chain for n = 2 to n = 10. Each Markov chain model only took
milliseconds to train. We found that a history length of 2 was too
small, and resulted in worse accuracy compared to the other history
lengths we tried. Otherwise, we found that there was no significant
improvement in accuracy when we increased n beyond 3, and thus
found n = 3 to be most efficient for our AB model.

Figure 13 shows the prediction accuracy of our AB model com-
pared to the Momentum and Hotspot models, with increasing val-
ues of k. Note that k represents the total space (in tiles) that each
model was given for predictions (see Section 5.2.2 for more infor-
mation). In Figure 13, we see that for the Foraging and Sense-
making phases, our AB model matches the performance of existing
techniques for all values of k. Furthermore, we found that our AB
model achieves significantly higher accuracy during the Navigation
phase for all values of k. This validates our decision to use the AB
model as the primary model for predicting the Navigation phase.

Signature-Based (SB) Model: Figure 14 shows the accuracy of
each of our individual signatures, with respect to analysis phase.
To do this, we created four separate recommendation models, one
per signature. Amongst our signatures, we found that the SIFT
signature achieved better accuracy overall compared to the other
signatures. We expected a machine vision feature like SIFT to per-
form well, because users are essentially comparing images when

Figure 16: Accuracy of our final prediction engine (hybrid) com-
pared to our best individual models.

they analyze MODIS tiles.
Surprisingly, we found that the denseSIFT signature did not per-

form nearly as well as SIFT. We attribute this to the fact that dens-
eSIFT effectively matches an entire image, where the original SIFT
only matches small regions of an image. In our snow cover use
case, relevant visualizations will contain clusters of snow pixels
(i.e., red pixels, like in the examples in Figure 8), but will not look
similar otherwise. For example, the Rockies will look very dif-
ferent from the Andes, but they will both contain clusters of snow
(red) pixels. Thus, many relevant tiles will not appear to be similar
with regards to the denseSIFT signature.

Comparing the Best AB and SB Models: We took the best AB
model (Markov chains with history length 3, labeled as “Markov3”)
and best SB model (SIFT), and compared their accuracy for each
analysis phase. We present the results in Figure 15.

For the Foraging phase, we found that the AB model had signif-
icantly higher accuracy than our SB model when k < 5, with more
than a 25% difference in accuracy for k < 3. This is because users
shared the same predictable pattern of zooming out several times to
return to the Foraging phase. As a result, our AB model was able
to learn these pre-Foraging patterns and predict accordingly.

Similarly, the AB model had noticeably better performance dur-
ing the Navigation phase when k < 4, with greater than 10% differ-
ence in accuracy when k = 2. However, we see that the SB model
eventually surpasses our AB model for higher values of k. We at-
tribute this to the fact that SB model has the ability to successfully
identify visual features at other zoom levels.

For the Sensemaking phase, we found that the SB model consis-
tently outperformed our AB model. This was expected, as our SB
models were designed with the Sensemaking phase in mind.

5.4.3 Evaluating the Final Prediction Engine
We used the accuracy results for our phase predictor and best

individual recommendation models as inputs to our final two-level
prediction engine. Our prediction engine only incorporated two
recommenders, the Markov3 AB recommender and the SIFT SB
recommender, re-allocating space for each model in the middle-
ware cache based on the user’s predicted analysis phase. When the
Sensemaking phase is predicted, our model always fetches predic-
tions from our SB model only. Otherwise, our final model fetches
the first 4 predictions from the AB model (or less if k < 4), and then
starts fetching predictions from the SB model if k > 4.

Note that we updated our original allocation strategies based on
our observed accuracy results for the best SB model and the AB
model. Originally, all space was allocated to our AB model during
the Navigation phase. However, we found that the SB model even-
tually outperformed the AB model when k > 4, and thus we now
allocate space to both models when k > 4.

We compared the accuracy of the final prediction engine to our
best individual recommenders, shown in Figure 16. Figure 16 shows
that our final prediction engine successfully combined the strengths



Figure 17: Accuracy of the hybrid model compared to existing
techniques.

Figure 18: Plot of average response time given prefetch accuracy,
for all models and fetch sizes (linear regression: Adj R2=0.99985,
Intercept=961.33, Slope=-939.08, P=1.1704e-242.

of our two best prediction models. It was able to match the accuracy
of the best recommender for each analysis phase, resulting in better
overall accuracy than any individual recommendation model. We
also compared our final prediction engine to existing techniques,
shown in Figure 17. We see that for the Foraging phase, our predic-
tion engine performs as well (if not better) than existing techniques.
For the Navigation phase, we can achieve up to 25% better predic-
tion accuracy compared to Momentum and Hotspot. Similarly for
the Sensemaking phase, we see a consistent 10-18% improvement
in accuracy using our hybrid strategy.

5.5 Latency
We used the same setup from our accuracy experiments to also

measure latency. To measure the latency for each tile request, we
recorded the time at which the client sent the request to the middle-
ware, as well as the time at which the requested tile was received
by the client. We calculated the resulting latency by taking the dif-
ference between the two time measurements. On a cache hit, the
middleware was able to retrieve the tile from main memory, allow-
ing ForeCache to send an immediate response. On a cache miss,
the middleware was forced to issue a query to SciDB to retrieve the
missing tile, which was much slower. On average, the middleware
took 19.5 ms to send tiles for a cache hit, and 984.0 ms for a cache

Figure 19: Average prefetching response times for hybrid model
and existing techniques.

miss.
To evaluate our claim that accuracy dictates latency, we plot-

ted the relationship between prefetching accuracy and average re-
sponse time (i.e., average latency), provided in Figure 18. Accu-
racy and response times were plotted for all models and fetch sizes.
We see a strong linear relationship between accuracy and response
time, where a 1% increase in accuracy corresponded to a 10ms de-
crease in average response time (adjusted R2 = 0.99985). Given
this constant accuracy-latency factor, we found that the higher pre-
diction accuracy of our hybrid algorithm translates to a time sav-
ings of 150-250ms per tile request, when compared with existing
prefetching techniques. The difference in latency is plotted in Fig-
ure 19, where we calculated the average response times for three
models. Furthermore, we found that our hybrid model reduced re-
sponse times by more than 50% for k ≥ 5, compared with existing
techniques.

This latency evaluation indicates that ForeCache provides signif-
icantly better performance over not only traditional systems (i.e.,
exploration systems without prefetching), but also existing systems
that enable prefetching (e.g., [7, 6, 15]). Specifically, as shown in
Figure 19, with a prefetch size of 5 tiles (k = 5), our system demon-
strates a 430% improvement over traditional systems (i.e., average
latency of 185ms vs. 984ms), and 88% over existing prefetching
techniques (average latency of 185 ms vs. 349 ms for Momentum,
and 360 ms for Hotspot).

In addition, ForeCache provides a much more fluid and interac-
tive user experience than traditional (no prefetching) systems. As
shown in HCI literature, a 1 second interaction delay is at the limit
of a user’s sensory memory [4]. Delays greater than 1 second make
users feel like they cannot navigate the interface freely [16, 14]. In
this regard, traditional systems (i.e., a constant latency of 1 second
per request) are not considered interactive by HCI standards.

In contrast, ForeCache remains highly interactive during most
of the user’s interactions with the interface, with only 19.5ms of
delay per tile request. As shown in Figure 17, with a fetch size of
5 tiles (k = 5), the prediction algorithm succeeds the vast majority
of the time (82% of the time), making a cache miss (and the full
1 second delay) an infrequent event. Thus our techniques allow
systems with limited main memory resources (e.g., less than 10MB
of prefetching space per user) to operate at interactive speeds, so
that many users can actively navigate the data freely and in parallel.

6. DISCUSSION AND FUTURE WORK
While ForeCache has demonstrated a significant advantage over

existing systems in both latency and user experience, there is still
room for improvement. In this section, we discuss an extension of
ForeCache by integrating the pre-computation of tiles during run-
time. In addition, we present several venues for further improve-
ments to ForeCache both in performance and applicability to other
large-scale scientific datasets.

6.1 Pre-computation
When disk space is also a limited resource, it may be worth-

while to favor resource-saving optimizations over costly optimiza-
tions with lower latency. One immediate way to save resources in
ForeCache is to pre-compute tiles at runtime, instead of comput-
ing every tile offline. As new predictions come in, we compute as
many top-ranked tiles as we can during the user’s think time. We
then choose which of these tiles to copy to main memory.

However, it is considerably more complicated to evaluate the la-
tency benefits of this technique, and thus to compare the resource-
latency tradeoff. In particular, the time required to compute tiles
can vary widely, based on the underlying DBMS configuration (de-



Figure 20: Average pre-computation response times comparison
for several models.

gree of parallelism, use of SSD’s, etc.). To test this, we ran Fore-
Cache with two different configurations of SciDB, and found that
computing tiles could range from 33 seconds on average (very ba-
sic, single-threaded setup) to 3 seconds (optimized, multithreaded
setup). Consider the 3 second case. Pre-computing and prefetch-
ing will take 4 seconds for 1 tile (3 seconds to compute, then 1
second to fetch), 8 seconds for 2 tiles, etc. In Figure 20, we cal-
culated the average latency for this strategy, using the exact same
prediction setup as our prefetching case. We see that our hybrid
model generally saves about 1 second of latency compared to ex-
isting models (including the 200ms we save from prefetching). We
also see that for just 16 seconds of pre-computation and prefetch-
ing time (i.e., k = 4), the hybrid model takes close to 1 second to
return tiles, whereas the other models take 1.5 to 2 seconds. Fur-
thermore, existing techniques require at least 8 more seconds of
pre-computation and prefetching time to match the performance of
the hybrid model.

Unfortunately, in the event of a cache miss, this strategy could
lead to a worst case scenario of a 4 second wait time (compared to
the 1 second latency, when all tiles were computed offline). Due to
the potentially high cost of a cache miss, an important future work
for this project will be to develop a balanced approach that can take
advantage of the resource savings provided by pre-computation,
without incurring the high cost of cache misses.

6.2 Future Work
In this section, we describe three future directions for the Fore-

Cache system: (1) applying our tiling scheme to other dataset types;
(2) extending our prediction engine to work well with high dimen-
sion datasets; and (3) creating new prediction and caching tech-
niques to take advantage of multi-user environments.

Our proposed tiling scheme works well for any array-based dataset.
However, when considering other types of data (e.g., social graphs
or patient health records), it is unclear how to map these datasets to
tiles. We plan to develop a general-purpose tiling mechanism for
relational datasets.

ForeCache works well with low-dimension datasets. However,
the number of tiles grows exponentially with the number of dimen-
sions (i.e., the possible moves in the client-side interface), making
it harder to predict which direction users will explore next. One
solution is to allow users to “pivot” along dimensions, where the
user chooses two or three dimensions to explore at any given time.
Pivoting limits the user’s range of possible actions, enabling Fore-
Cache to still make predictions.

Our prediction framework does not currently take into account
potential optimizations within a multi-user scheme. For example,
it is unclear how to partition the middleware cache to make pre-
dictions for multiple users exploring different datasets, or how to
share data between users exploring the same dataset. We plan
to extend our architecture to manage coordinated predictions and

caching across multiple users.

7. RELATED WORK
Many systems use online computation, pre-computation or pre-

fetching techniques to support exploratory browsing of large datasets.
The ScalaR system [2] computes aggregates and samples in the
DBMS at runtime to avoid overwhelming the client with data. How-
ever, aggregation and sampling queries are too slow to complete at
interactive speeds. Fisher et al. [8] combine online sampling with
running summaries to improve response times. However, users
must still wait for queries to complete if they want accurate results.

Several systems instead build pre-computed data reductions to
speed up query execution. BlinkDB [1] builds stratified samples
over datasets as they are loaded into the DBMS, and provides error
and latency guarantees when querying these samples. The DICE
system [9] utilizes pre-computed samples and a distributed DBMS
environment to shorten execution times for date cube queries. The
techniques used in ForeCache can be used alongside sampling tech-
niques to further improve performance.

Two recent systems have created specialized data structures to
support data exploration. Lins et al. [13] developed new data cube
structures, which they call nanocubes, to efficiently visualize large
datasets. However, the entire nanocubes data structure must fit in
memory. Thus, nanocubes do not scale easily to larger datasets.
Similar to our approach, the imMens system [15] builds data tiles
in advance, and fetches these tiles from the backend at runtime.
However, users must build the data tiles manually, and imMens
does not utilize comprehensive prediction techniques to fetch tiles.

A number of systems use prediction algorithms to improve prefetch-
ing accuracy. Lee et al. [11] and Cetintemel et al. [5] propose us-
ing Markov chains to predict user movements. Chan et al. [6] and
Doshi et al. [7] also propose several prediction strategies–the most
sophisticated being Markov chains–to predict the user’s next re-
quests. We compare with two of these strategies, Momentum and
Hotspot, in our experiments. Yesilmurat et al. [22] propose tech-
niques similar to the Momentum model for prefetching geospatial
data. Li et al. [12] combine the Hotspot model with Markov chains
to boost prefetching performance. ForeCache builds on the tech-
niques presented in these systems with new signature-based predic-
tion algorithms and a novel adaptive framework for running multi-
ple algorithms in parallel.

8. CONCLUSION
In this paper, we presented ForeCache, a general-purpose ex-

ploration system for browsing large datasets. ForeCache employs a
client-server architecture, where the user interacts with a lightweight
client-side interface, and a the data to be explored is retrieved from
a back-end server running a DBMS. We inserted a middleware op-
timization layer in front of the DBMS that uses a two-level pre-
diction engine and main-memory cache to prefetch relevant data
tiles given the user’s current analysis phase and recent tile requests.
We presented results from a user study we conducted, where 18
domain experts used ForeCache to explore NASA MODIS satel-
lite imagery data. We tested the performance of ForeCache using
traces recorded from our user study, and presented accuracy results
showing that our prediction engine provides: (1) significant accu-
racy improvements over existing prediction techniques (up to 25%
higher accuracy); and (2) dramatic latency improvements over cur-
rent non-prefetching systems (430% improvement in latency), and
existing prediction techniques (88% improvement in latency).

9. REFERENCES



[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. Blinkdb: queries with bounded errors and
bounded response times on very large data. In Proc. EuroSys
2013, pages 29–42, New York, NY, USA, 2013. ACM.

[2] L. Battle, M. Stonebraker, and R. Chang. Dynamic reduction
of query result sets for interactive visualizaton. In IEEE
BigDataVis Workshop, pages 1–8, 2013.

[3] E. Brown, A. Ottley, H. Zhao, Q. Lin, R. Souvenir,
A. Endert, and R. Chang. Finding Waldo: Learning about
Users from their Interactions. IEEE TVCG,
20(12):1663–1672, Dec. 2014.

[4] S. K. Card, G. G. Robertson, and J. D. Mackinlay. The
Information Visualizer, an Information Workspace. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’91, pages 181–186, New York,
NY, USA, 1991. ACM.

[5] U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao,
K. Dimitriadou, A. Kalinin, O. Papaemmanouil, and S. B.
Zdonik. Query steering for interactive data exploration. In
CIDR, 2013.

[6] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining
interactivity while exploring massive time series. In VAST,
2008.

[7] P. Doshi, E. Rundensteiner, and M. Ward. Prefetching for
visual data exploration. In Proc. DASFAA, 2003.

[8] D. Fisher. Incremental, approximate database queries and
uncertainty for exploratory visualization. In LDAV, 2011.

[9] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed interactive cube exploration. ICDE, 2014.

[10] R. Kohavi et al. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Ijcai,
volume 14, pages 1137–1145, 1995.

[11] D. H. Lee, J. S. Kim, S. D. Kim, K.-C. Kim, Y.-S. Kim, and
J. Park. Adaptation of a Neighbor Selection Markov Chain

for Prefetching Tiled Web GIS Data. ADVIS ’02, pages
213–222, London, UK, UK, 2002. Springer-Verlag.

[12] R. Li, R. Guo, Z. Xu, and W. Feng. A Prefetching Model
Based on Access Popularity for Geospatial Data in a
Cluster-based Caching System. Int. J. Geogr. Inf. Sci.,
26(10):1831–1844, Oct. 2012.

[13] L. Lins, J. Klosowski, and C. Scheidegger. Nanocubes for
real-time exploration of spatiotemporal datasets. IEEE
TVCG, 2013.

[14] Z. Liu and J. Heer. The Effects of Interactive Latency on
Exploratory Visual Analysis. IEEE TVCG,
20(12):2122–2131, Dec. 2014.

[15] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual
querying of big data. Proc. EuroVis, 32, 2013.

[16] J. Nielsen. Powers of 10: Time Scales in User Experience,
Oct. 2009.

[17] A. Pauls and D. Klein. Faster and smaller n-gram language
models. HLT, pages 258–267, Stroudsburg, PA, USA, 2011.

[18] P. Pirolli and S. Card. The sensemaking process and leverage
points for analyst technology as identified through cognitive
task analysis. In Proc. International Conference on
Intelligence Analysis, volume 2005, pages 2–4, 2005.

[19] G. Planthaber, M. Stonebraker, and J. Frew. Earthdb:
Scalable analysis of modis data using scidb. In BigSpatial,
pages 11–19, New York, NY, USA. ACM.

[20] K. Rittger, T. H. Painter, and J. Dozier. Assessment of
methods for mapping snow cover from modis. Advances in
Water Resources, 51(0):367 – 380, 2013.

[21] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The
architecture of scidb. In SSDBM, pages 1–16. Springer, 2011.

[22] S. Yesilmurat and V. Isler. Retrospective Adaptive
Prefetching for Interactive Web GIS Applications.
Geoinformatica, 16(3):435–466, July 2012.


