
Mite

a basis for ubiquitous virtual machines

Reuben Rhys Thomas
St John’s College

A dissertation submitted for the Ph.D. degree

November 2000

Ars est celare artem

To Basil Rose, who did it first, and Tony Thomas, who hooked me.

Preface

Mite is a virtual machine intended to provide fast language and machine-neutral
just-in-time translation of binary-portable object code into high quality native code,
with a formal foundation.

Chapter 1 discusses the need for fast good quality translation of portable code
at run time, and, having considered what functionality is needed, sets out a list of
goals that Mite should reach, then states the contribution of the thesis. Chapter 2
discusses related work, concentrating on the extent to which the various systems
examined fulfil Mite’s goals. Chapter 3 elaborates Mite’s design, and chapter 4 anal-
yses the choices that it makes. Chapter 5 examines the implementation, consisting
of a C compiler back end targeting Mite and a virtual code translator for the ARM
processor, and shows how it could be extended to other languages and processors.
Chapter 6 describes and analyses a series of tests performed on the implementation,
then assesses both the design and implementation in their light. Chapter 7 describes
future work; finally, chapter 8 concludes the thesis with an appraisal of how well
Mite meets its goals, and a final perspective.

Appendices A–C give Mite’s definition, appendix 6.1 lists two of the benchmark
programs used in chapter 6, and appendix E gives the data collected from the tests.

This dissertation is my own work and includes nothing resulting from collabora-
tion.

I owe many thanks. Alistair Turnbull’s keen insight, blunt criticism and imagi-
native advice elaborated in many hours of enjoyable discussion have cheered and
smoothed my path. Simon Peyton Jones has been a smiling source of balanced en-
couragement and criticism. Eugenia Cheng once again ran her merciless eagle eye
over my text. Martin Richards supervised me with a light hand, and lit the murk
of bureaucracy. Several kindly souls gave useful advice and help with tools, ideas
and language; in particular, Dave Hanson and Chris Fraser advised me far beyond
the call of duty in my abuse of their LCC compiler, and Arthur Norman gave useful
advice on the shape a thesis should have.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and goals . 2

1.2.1 Required functionality . 2
1.2.2 Goals . 3
1.2.3 Non-goals . 4

1.3 Contribution of this thesis . 4

2 Context 6
2.1 Java VM . 6
2.2 Dis . 7
2.3 VCODE . 8
2.4 ANDF . 9
2.5

�����
. 10

2.6 TAL and TALx86 . 11
2.7 Other systems . 12
2.8 Comparison . 16

3 Design 18
3.1 Architecture . 18

3.1.1 Quantities . 18
3.1.1.1 Offsets and sizes . 18

3.1.2 Memory . 19
3.1.3 Stack . 19
3.1.4 The flags . 20

3.2 Instruction set . 20
3.2.1 Creating and destroying stack items 20
3.2.2 Register assignment . 20
3.2.3 Data processing . 21

3.2.3.1 Simple arithmetic . 21
3.2.3.2 Division . 21
3.2.3.3 Logic and shifts . 22
3.2.3.4 Comparisons . 22

3.2.4 Addressing memory . 22
3.2.5 Branching . 23

iii

Contents

3.2.6 Subroutines . 23
3.2.7 Functions . 24
3.2.8 Non-local exit . 26
3.2.9 Escape . 27
3.2.10 optimization directives . 27

3.3 Data . 27
3.4 Object format . 27
3.5 Pitfalls . 28

4 Rationale 30
4.1 Architecture . 30

4.1.1 Load-store three-address register model 30
4.1.2 Memory . 32
4.1.3 Three-component numbers . 33

4.2 Registers . 34
4.2.1 Unlimited virtual registers . 34
4.2.2 Stack . 35
4.2.3 Numbering . 37
4.2.4 Sizes . 38
4.2.5 Constants . 38

4.3 The instruction set . 38
4.3.1 Registers . 39

4.3.1.1 Creation and destruction 39
4.3.1.2 Ranking . 40
4.3.1.3

���������
	
. 41

4.3.2 Flags . 42
4.3.3 Function calling . 43
4.3.4 Division . 43
4.3.5 Escape . 44
4.3.6 Seeming superfluities . 44

4.3.6.1
���
� ��

and
�� ����� . 44

4.3.6.2 � � ��� . 48
4.4 Object format . 48
4.5 Semantics . 49
4.6 Shortcomings . 49
4.7 Summary . 50

5 Implementation 52
5.1 Mite’s components . 52

5.1.1 Assembler . 53
5.1.2 Translator . 53
5.1.3 Compiler back end . 54
5.1.4 Run-time system . 54
5.1.5 Standard library access . 54

iv

Contents

5.2 A sample translation . 55
5.2.1 C code . 55
5.2.2 Translation to Mite virtual code 55
5.2.3 Translation to ARM assembly . 59

5.2.3.1 Idiosyncratic code . 61
5.2.3.2 Physical register usage 62
5.2.3.3 Immediate constants 63
5.2.3.4 Address constants . 63
5.2.3.5 Register allocation and spilling 63

5.2.4 Summary . 65
5.3 Optimizing compilation . 65

5.3.1 The test program . 65
5.3.2 LCC-style optimization . 66
5.3.3 GNU C-style optimization . 67

5.3.3.1 Hits . 68
5.3.3.2 Misses . 70

5.4 Other languages . 70
5.4.1 Static chains . 71

5.4.1.1 Putting variables in a chunk 72
5.4.1.2 Walking the stack . 72

5.4.2 Exceptions . 73
5.4.2.1 C style exceptions . 73
5.4.2.2 Java style exceptions 74
5.4.2.3 ML style exceptions . 75

5.4.3 Garbage collection . 76
5.4.3.1 Reference counting . 76
5.4.3.2 Conservative . 76
5.4.3.3 Accurate tracing . 76

5.5 Other target processors . 77
5.5.1 Flags without a dedicated register 77
5.5.2 Targeting the IA-32 . 78

5.5.2.1 Register allocation . 78
5.5.2.2 Three-operand instructions 79

5.6 Summary . 80

6 Assessment 81
6.1 Tests . 81

6.1.1 Measurements . 82
6.1.2 Execution speed . 88
6.1.3 Code size . 90
6.1.4 Executable size . 90
6.1.5 Translation speed . 91
6.1.6 Memory consumption . 92
6.1.7 Usage of physical registers . 92

v

Contents

6.2 Evaluation of the implementation . 93
6.2.1 Assembler . 93
6.2.2 LCC back end . 93
6.2.3 Translator . 95

6.2.3.1 Speed and memory consumption 95
6.2.3.2 Quality of the generated code 96

6.3 Evaluation of the design . 98
6.3.1 Implementability . 98
6.3.2 Importance of innovative features 98
6.3.3 Design compromises . 100

6.4 Summary . 102

7 Future work 103
7.1 Improvements . 103

7.1.1 Registers . 103
7.1.1.1 Out of order � ����� . 103
7.1.1.2 Typing . 103
7.1.1.3 Targeting . 104
7.1.1.4 Addressing chunks directly 105

7.1.2 Walking the stack . 105
7.1.3 Flags . 106
7.1.4 Code sharing . 107
7.1.5 Tail call . 107
7.1.6 Translator . 108
7.1.7 Consistent semantics . 108

7.2 Extensions . 109
7.2.1 Floating point . 109
7.2.2 Instruction scheduling . 110
7.2.3 Global optimization . 110
7.2.4 Compiler back end . 110
7.2.5 Dynamic code generation . 111
7.2.6 Sandbox execution . 111

8 Conclusion 112
8.1 Appraisal . 112
8.2 Perspective . 113

A Semantics 115
A.1 Introduction . 115
A.2 Definitions . 115
A.3 State . 116
A.4 Program . 116
A.5 Instructions . 117

A.5.1 Assignment . 117

vi

Contents

A.5.2 Data processing . 117
A.5.2.1 Arithmetic . 118
A.5.2.2 Logic . 118

A.5.3 Memory . 119
A.5.4 Branch . 119
A.5.5 Call and return . 120
A.5.6 Catch and throw . 121
A.5.7 Stack . 121

B Assembly language 122
B.1 Introduction . 122
B.2 Metagrammar . 122
B.3 Identifier . 123
B.4 Number . 123
B.5 Item . 123
B.6 Label . 124
B.7 Manifest . 124
B.8 Instruction . 124

B.8.1 Assignment . 124
B.8.2 Data processing . 125

B.8.2.1 Arithmetic . 125
B.8.2.2 Logical . 125

B.8.3 Memory . 125
B.8.4 Branch . 126
B.8.5 Call and return . 126
B.8.6 Catch and throw . 127
B.8.7 Stack . 127
B.8.8 Escape . 127
B.8.9 Datum . 128

B.9 Location . 128
B.9.1 Labelling . 128
B.9.2 Code . 128
B.9.3 Handler . 128
B.9.4 Subroutine and function . 129
B.9.5 Data . 129

B.10 Directive . 129
B.11 Module . 129
B.12 Comments . 129

C Object format 130
C.1 Introduction . 130
C.2 Presentation . 130
C.3 Number . 131

C.3.1 Width . 131

vii

Contents

C.4 Identifier . 131
C.5 Item . 131
C.6 Address . 131
C.7 Manifest . 132
C.8 Lists . 132
C.9 Instruction . 132

C.9.1
� ���

and
	����

. 133
C.9.2 Data processing . 133

C.9.2.1 Three-operand . 133
C.9.2.2 Four-operand . 133

C.9.3 Memory . 134
C.9.4 Branch . 134
C.9.5 Call and return . 134
C.9.6 ��� � � . 135
C.9.7 ����� . 135
C.9.8 Datum . 135

C.9.8.1 Literal . 135
C.9.8.2 Space . 135

C.9.9 Other instructions . 136
C.10 Location . 136
C.11 Data . 137
C.12 Module . 137

D Source code of tests 138
D.1 The fast-Fourier transform test (����) . 138
D.2 Pyramid register allocation test (
�������) 140

E Results of the tests 141

F Word list 146

Bibliography 157

Colophon 167

viii

1 Introduction

This thesis describes Mite, a general-purpose low-level virtual machine (VM) with
a semi-formal definition (see appendices A and B) and binary-portable code format
(see appendix C). It is a good target for compiled languages, and allows compilers to
perform many optimizations on the virtual code, so that its just-in-time (JIT) transla-
tor can be simple and fast, while still producing good native code.

The rest of this chapter motivates the design of Mite, sets out a list of goals that
it should reach, and states the contribution of this thesis. Chapter 2 discusses related
work. Chapter 3 elaborates Mite’s design, and chapter 4 analyses the choices that
it makes. Chapter 5 outlines the structure of the implementation, which consists of
a C compiler back end targeting Mite and a virtual code translator for the ARM
processor. A sample translation is followed from C to Mite code, and then to ARM
assembler, and optimizing compilation is discussed. Then, methods for dealing with
other languages and processors are introduced. Chapter 6 describes and analyses
a series of tests performed on the implementation, then assesses both the design
and implementation in their light. Chapter 7 suggests future work; finally, chapter 8
concludes the thesis. with an appraisal of how well Mite meets its goals, and ends
with a final perspective. Appendices A–C give Mite’s definition, appendix 6.1 lists
two of the benchmark programs used in chapter 6, and appendix E gives the data
collected from the tests. Appendix F is an alternative summary of the thesis.

1.1 Motivation

Computers are becoming increasingly diverse in form and function, and ever more
connected, above all via the internet. At the same time, the tasks we use them for are
becoming more distributed: we can send and receive email from our television and
mobile phone as well as our PC, and keep our diary and address book synchronized
between our desktop, laptop and PDA. This environment encourages the creation
of software which is not only portable but mobile: mobile code gives much more
flexibility and power than communicating only data.

Of course, many tools and languages for creating portable and mobile code al-
ready exist. Unfortunately, they rarely consist of reusable components. Code gen-
erators tend to be tied to a single compiler, which often means a single language;
compilers usually produce code that runs only on one machine; VMs are often in-
tegrated with a particular language or run-time environment (or both). Moreover,
tradeoffs such as those between portability and loading time, or speed of JIT transla-

1

1 Introduction

tion and speed of execution, or compilation time and memory usage, tend either to be
beyond the programmer’s control, as in VM systems such as Java [42] or Inferno [26],
or require a lot of work to alter, as in a compiler system such as GNU C [35].

It would be vainglory in the spirit of UNCOL [113] to attempt to design, let alone
build, a single system that solves all these problems (not even Java claims that):
the current diversity is a testament to the need for different solutions, while the in-
creasing complexity of software systems underlines the necessity of an approach to
programming that is at the same time more modular (building components rather
than monoliths) and higher-level (programming with components rather than lines
of code). What is really needed is a common basis from which to attack the problems
outlined above.

Hence, it would be nice to have a system that provided:

A single target for code generation

Portable binaries and hence, potentially, mobile code

Support for a wide range of compiled languages

Fine control over the tradeoffs involved in compilation

An open and extensible basis for more complex systems

This is what Mite attempts to do.

1.2 Scope and goals

In the light of the desiderata listed above, the functionality required of Mite is out-
lined. This leads to a list of goals; afterwards, some non-goals are disposed of.

1.2.1 Required functionality

Given the list above of benefits that Mite should provide, what features must it
have? To act as a single target for code generation, Mite must provide a machine-
independent model of computation. Together with the requirements that it support
most compiled languages and give a high degree of control over compilation trade-
offs, this seems to indicate a low-level execution model. To allow portable code, a
standard binary format must be provided. To form an open basis for building more
complex systems, it should be possible to interwork with native code. If Mite is to
be trusted, its definition should be as precise as possible, preferably formal. Finally,
if Mite is to give fine control over the code generation process and act as a basis
for more complex systems, then it must be just as flexible as the underlying ma-
chines; it should not preclude alternative implementations of features not directly
implemented by the processors themselves, for example, memory management and
concurrency. This, taken together with the indication of a low-level execution model,
suggests that Mite should be little more than a processor abstraction.

2

1.2 Scope and goals

1.2.2 Goals

The features that Mite must provide are now listed; for each, references to the points
at which it is introduced and discussed are given.

A low-level processor-based VM model (chapter 3 and section 4.1) The VM model
should be little more than a processor abstraction, and have a similar instruc-
tion set and execution model to those of conventional processors.

Architecture neutrality (sections 4.1, 5.3 and 5.5) Most of Mite’s features should be
common to all processors. At the same time, the translator should be able to
take advantage of processor features that are not modelled.

Language neutrality (sections 4.1 and 5.4) Mite should constrain a compiler little
more than the underlying machine, so that most language compilation tech-
niques used by native code generators are applicable to Mite, and languages
that are compiled directly to native code can be similarly compiled for Mite.

Portable virtual code (sections 4.1.2, 4.1.3 and 4.2) It should be possible (though
not mandatory) to compile virtual code that can run unaltered on any target
system.

Fast JIT translation (sections 4.1, 5.2.2 and 6.1.5 The virtual code should be trans-
latable in a single pass, and most of Mite’s instructions should map directly to
machine instructions.

High-quality native code (sections 4.1, 5.3 and 6.1.2) With the combination of opti-
mizable virtual code and annotations, Mite should be capable of generating
excellent native code. More importantly, the responsibility for code quality
should lie squarely on the compiler; generating good code should not slow the
JIT translator down. To make significant further improvements should require
detailed machine-specific analysis.

Virtual code annotation (sections 3.2.10, 6.1.2 and 6.1.3) It should be possible for
compilers to help the JIT translator with machine-dependent aspects of code
generation (which they cannot perform themselves), such as register allocation,
by annotating the virtual code.

Interworking with native code (sections 3.2.7 and 5.1.5) Mite should reside in the
same address space or spaces as native code on the host system, and to be able
to call and be called like normally compiled code. This will allow it to integrate
with native libraries and object modules without glue code, and enable Mite to
be used for some systems programming.

Portable object format (appendix C, and sections 3.4 and 4.4) A simple binary-
portable object file format which is endianness-independent and quick to read,
write and traverse should be provided.

3

1 Introduction

Precise definition (appendix A and B, and section 4.5 Mite’s definition should be
given in formal terms, allowing implementors to be sure of its meaning, and
allowing proofs about Mite programs to be made and automatically checked.

Section 8.1 discusses how well Mite meets each of these goals.

1.2.3 Non-goals

Mite does not aim to provide:

Write once, run anywhere This requires portable libraries as well as portable code,
and leads towards a closed system. On the other hand, it would certainly be
possible to develop a set of libraries that can be widely implemented and used
by binary-portable programs, and use them with Mite to make such a system.

High-level mechanisms Mechanisms such as security, concurrency and garbage col-
lection should be implemented orthogonally to the main execution model as far
as possible. [91] and [100] show how exceptions and accurate garbage collec-
tion can be added to a code generation system with only minor modifications
to the core design, and section 5.4.3 considers how to support garbage collec-
tion in Mite.

The last word in execution speed This is unrealistic given an architecture-neutral
VM model and a fast translator (although performance can still be near-
optimal: see section 6.1.2). In any case, run-time optimization of the native
code can probably produce better results than any static optimizations [63].

1.3 Contribution of this thesis

Mite makes the following contribution:

Novel mechanisms for portable just-in-time optimization It provides novel mech-
anisms for compilers to indicate optimizations in a machine-independent
way that can be used rapidly by a just-in-time translator to produce good
native code: the ranked register stack (section 4.2.2) and constant registers
(section 4.2.5). In particular, register ranking can be used to encode any register
allocation algorithm, with some constraints, so that it can be performed in
linear time by the just-in-time translator (section 4.3.1.2).

Quality of JITted code depends only on the compiler Mite’s design places the onus
for generating good native code firmly on the compiler that generates the vir-
tual code. Rather than the usual tradeoff between the time taken to perform the
JIT translation and the speed of the resultant native code, Mite places the trade-
off in the hands of the compiler; there is little a translator has to do to ensure
that good virtual code is turned into good native code.

4

1.3 Contribution of this thesis

Low-overhead 32/64-bit portability Three-component numbers (section 4.1.3) allow
compilers to generate code that runs on both 32 and 64-bit machines, without
having to defer calculations based on the word size to run time, or making the
compiler use a complex algebra to make such calculations at compile time.

Unique combination of features It uniquely occupies a point in the design space
of VM-based systems. No other system offers a small, stand-alone, language-
neutral VM capable of producing optimized native code. Useful in its own right
as a compiler target and back end, Mite would make a good starting point for
a wide range of VM-based applications, including dynamic code generation,
portable execution environments along the lines of Java and distributed oper-
ating systems. Its definition (appendices A and B) could be used as the basis
for theoretical investigations of code generation issues. In addition, Mite is fully
documented, and its JIT translator is open source (see http://sc3d.org/rrt/).

5

2 Context

A major reason for designing Mite was that no system known to me met all the re-
quirements identified in section 1.2.1. However, a variety of systems share some of
them, and meet others to varying degrees. Several are examined below. Each sys-
tem’s key features are described with the reasons for their adoption and the advan-
tages and disadvantages that they entail. Direct comparisons with Mite are post-
poned to chapter 4, after Mite’s design has been elaborated.

2.1 Java VM

Java is the most high-profile VM-based system currently in use. It shares with
Mite the goal of providing an architecture-neutral platform for execution of binary
portable object code, but otherwise the two are dissimilar. The Java VM [64] (JVM)
is much more than a hardware abstraction layer, and is tightly coupled to the Java
system [42], with direct support for language and system-specific features such as
objects, monitors and byte-code verification.

Before discussing specific features of Java, it is worth noting one guiding princi-
ple, that of familiarity. Although Java as a whole was a novelty when it was intro-
duced, it was built from tried-and-tested components: from the VM model to con-
currency, the language to the I/O model, it used familiar, well understood and thor-
oughly tested concepts. Thus, it is hardly surprising that some of its design choices
have obvious disadvantages.

The JVM is a stack-based architecture, with a zero-operand byte-coded instruc-
tion set. The project that produced Java was originally aimed at embedded devices,
where low memory consumption was crucial, and the lack of processing power
favoured an interpreter-based system. The byte-coded stack machine is a classic im-
plementation technique, exemplified by the p-code system [83], and gives good code
density and performance on smaller machines, especially 8-bit processors. However,
general-purpose interpreters of this sort tend to be an order of magnitude slower
than optimized native code for compute-bound tasks [24].1 Hence, JIT translators

1In more specialized systems the reverse can be the case. For example, APL interpreters spend most of
their time executing the opcodes [4], so the overhead of instruction fetch and decode is negligible.
In addition, since the VM instructions are heavily tuned for the language, and are implemented in
carefully hand-crafted code, programs generally run faster than if they were compiled convention-
ally into native code.

6

2.2 Dis

are generally used to execute Java. To produce good native code, register allocation
must be performed for stack locations, and this is almost as much work as compiling
Java source to native code; thus, JIT translators cannot easily be fast and produce
fast code. Also, though the byte-code is fairly compact, as zero-operand instruction
sets tend to be, Java class files tend to be bulky compared with equivalent C or C++
executables, because of all the type information they contain.

The JVM has direct support for Java language types, both primitive integral, float-
ing point and character types, and object types. This is primarily to ensure safe exe-
cution of Java programs: while they can have run-time errors, including type errors,
they cannot, in theory, gain unauthorized access to the host system. The JVM’s type
system allows many of the necessary checks to be performed at load time by the
byte code verifier, which increases execution speed. The main disadvantage is that
the object types are tied closely to the Java language, and even the primitive types
are not general; for example, there are no unsigned integral types. This makes it
hard to compile languages other than Java for the JVM: untyped and weakly typed
languages must either adapt to it or simulate memory access, and strongly typed
languages must contrive a mapping to Java types. Nevertheless, Forth [14, 107] and
ML [115] compilers exist for the JVM.

Other aspects of the JVM’s language support, such as monitors and the class file
format, have similar tradeoffs: they improve efficiency and safety for running Java
programs, but are at best useless and at worst a hindrance when implementing other
languages with different semantics for the same constructs.

2.2 Dis

As the JVM is to Java, so Dis [137] is to Inferno [26]. While the JVM is heavily special-
ized for the Java language, Dis is much more language-neutral, as Inferno supports
several languages. Dis is however tied to Inferno.

Dis has a three-operand memory-to-memory instruction set. This was designed
to allow a range of compilation techniques, from naïve to flow-analysis-based reg-
ister allocation, while retaining a simple JIT translator; Dis instructions map more
directly to machine instructions than JVM instructions. Pike [94] asserts that “a load-
store model requires . . . register allocation in the compiler. Memory-to-memory
doesn’t, but with careful design doesn’t preclude effective native register allocation.”
While this is true, mapping memory locations to registers is hampered by aliasing
(see section 4.1.1). In addition, this statement suggests an interesting intention: to re-
duce the effort needed by the compiler (for register allocation) and instead to make
the JIT translator do the work. From Mite’s perspective, this is bizarre: the compiler
has the time and information to perform good register allocation which the trans-
lator lacks. On the other hand, perhaps the designers of Inferno did not think that
compilers could perform effective register allocation for virtual code; in this case,
the service might as well be centralized in the JIT translator, where it only need be
written once.

7

2 Context

The memory-to-memory architecture also makes for faster interpretation, be-
cause fewer VM instructions are required, so the fetch-decode overhead of the
interpreter is reduced. For example, to implement the assignment “ ������� � ”
may take two pushes, an add and a pop on a stack machine, whereas it is a single
Dis instruction.2

Dis has a binary-portable object module format, which is structured into code,
data, symbol and type information. As well as allowing portability, the module de-
sign is aimed at aiding system security and run-time memory management. Because
Dis has reference-counting garbage collection built in, the VM run-time system has
to know the structure of every type used, so that pointers can be tracked. Security
features include support for the cryptographic signature of type information. The
result is that the module format, though much simpler than Java’s, is still more than
a plain object file format. Not only is it specific to Inferno, but the type information
uses the type structure of Limbo, Inferno’s main language. Limbo’s type system is
amenable to use for other languages, as it contains records and pointers, unlike Java’s
object-oriented type system; nonetheless there are one or two awkwardnesses, such
as the lack of unsigned integral types.

There are other examples of both OS support, such as threading primitives, and
language support, such as instructions for managing lists and arrays. However,
while it is hard to see how the OS support could be used with systems other than
Inferno, the language support could easily be used with other languages. While
Limbo is definitely favoured by Dis, other languages are not excluded.

In conclusion, Dis is closer to Mite’s ideals than Java in most respects, but is still
rather higher level.

2.3 VCODE

VCODE [29] is a dynamic code generation system that provides a machine-independ-
ent one-pass code generation interface. It is lightweight, typically executing fewer
than 10 instructions per machine instruction generated.

VCODE uses a procedural interface that presents an idealized RISC-like machine.
There is a code generation function for each sort of instruction that can be generated,
plus functions to deal with register allocation and general housekeeping. This makes
dynamic code generation convenient, as the client can call the code generation rou-
tines directly, and fast, as no intermediate data structure need be built or consumed.
On the other hand, because the virtual code has no representation, it must be gener-
ated by the program that wants to use it, and cannot be stored or transmitted. It is
also harder to specify the semantics of an application programming interface (API)

2This example, taken from [137] is a little unfair: a VM whose stack items can be permuted avoids
many pushes and pops by keeping frequently-used quantities on top of the stack, where they can
be accessed directly; also, many stack machines’ instructions implicitly pop their parameters and
push their results.

8

2.4 ANDF

than of a language or VM, although since VCODE has little global state, the code gen-
eration functions are largely independent. Since VCODE is implemented as a set of C
macros, it is tricky to use with languages other than C.

VCODE’s machine model is very low level. This allows it to offer direct access to
machine registers and machine-independent delay slot instruction scheduling, and
contributes to VCODE’s rapid code generation. On the down side, it complicates code
generation: rather than providing an infinite number of virtual registers, VCODE pro-
vides calls to claim and release registers, and the client must deal with spilling when
necessary. Also, the machine model is so close to that of processors that some awk-
wardnesses are exposed. For example, constants may either be loaded into virtual
registers or placed in immediate operands. This is a natural choice to offer on a par-
ticular processor, but it is less sensible for a machine-independent system where the
range of immediate constants is unknown (see section 4.2.5).

VCODE has little system or language support other than a way of calling C func-
tions; this makes it extremely flexible. While it is obvious that to build a system such
as Inferno or Java on top of VCODE would require many features to be added, this
is only a disadvantage of VCODE insofar as the current design makes their addition
difficult. In fact, VCODE is designed to be extensible, and adding new instructions, at
least, is straightforward.

An automatic back end generator makes porting VCODE easy: back ends are gen-
erated from patterns that match virtual instructions to native instructions. Though it
has several RISC implementations, VCODE has notably not been implemented on the
Intel IA-32 architecture, which raises questions as to the universality of its machine
model (but see the next section).

An extension to VCODE has been written, called ICODE [96], which provides an
infinite number of registers, and performs global optimization on an intermediate
representation of the code. This seems to confirm VCODE’s suitability as a basis for
more ambitious systems, while allowing it to remain more flexible than a monolithic
approach such as the JVM. However, to be useful for more than run-time code gener-
ation, VCODE needs a portable binary form. This involves more than just designing a
virtual object format: at the moment, because VCODE exposes the host’s register set,
virtual code is not portable.

2.4 ANDF

ANDF [85] (Architecture-Neutral Distribution Format) is the multi-language binary-
portable object encoding adopted by The Open Group (http://www.opengroup.
org/).

ANDF is a distribution format rather than an execution format; programs are in-
tended to be compiled once on each machine or network by an “installer”; thereafter,
the compiled binary is used. To this end, ANDF models language features rather than
machine features, and encodes program in a high-level tree structure that resembles
an abstract syntax tree. This means that the installer can be rather like a compiler,

9

2 Context

and can perform all the usual optimizations. Performance is about the same as that
of code generated by conventional optimizing compilers [87]. The tree encoding is
extensible, and since many optimizations can be performed on it directly, about 70%
of the installer code is machine-independent. The encoding is also designed to resist
decompilation.

By giving freedom for installers to optimize it, the high level encoding is not so
good for JIT translation, and dynamic code generation would be inefficient. In order
to be able to use standard system libraries, it contains language-specific constructs, so
it needs to be extended for each new source language. Also, the installers are rather
more complex than most JIT translators, and maintaining them for a wide range of
platforms is expensive [87]. The problem is exacerbated by the languages that ANDF
supports, C, C++, FORTRAN and Ada, most of which are not designed for binary
portability. For example, the C installer requires special platform-neutral header files,
which are then mapped to the target platform’s headers; sometimes, further work is
required to use native headers with ANDF. Supporting a wide range of targets thus
requires much the same effort as supporting a multiple-language native code com-
piler. Some burden is also placed on the application writer: C applications must de-
fine application-specific APIs rather than using conditional compilation for different
targets. This does however have the advantage of providing semantic checks that C
normally omits.

In summary, ANDF is specialized both with respect to the languages it supports,
and in the functions it performs. It is interesting to note that although ANDF is well
documented and freely available for many systems, it is not been widely used.

2.5
�����

� � �
[89] is a portable assembly language based on C, which aims to be a good target

for compilers, particularly of garbage-collected languages.
��� �

is a language rather than a VM or a code generation API. This has allowed it
to be defined in a familiar manner, and makes it naturally extensible; extensions have
been designed for exception handling [100] and accurate garbage collection [91],
both of which require intimate interaction with the run-time system.

�����
is also

more human-readable than the other formats described in this chapter. Its C-like de-
sign makes it straightforward to compile with existing compiler technology, and to
achieve the same or better code quality (

� � �
has special support for constructs such

as tail-calls which other languages tend to lack). Being a fully-fledged language, not
just an assembler,

� � �
is rather more expensive to translate than a low-level VM as-

sembly language, and correspondingly harder to implement, as a full front and back
end are required.

As it is a language, code generators need not be written in a language that can
call the

�����
implementation directly. This makes it more accessible than competitors

such as ML RISC [41] or GNU C’s RTL [35], which provide an API instead, which
in GNU C’s case is not separable from the rest of the compiler. Most of the systems

10

2.6 TAL and TALx86

discussed in this chapter have a similar property, though with binary rather than
textual formats.

� � �
uses entirely concrete types: its variables, which are mapped to

registers and memory locations, are of fixed size. This means that offsets and space
requirements are simple to calculate, but does mean that though code generators that
emit

� � �
can be highly portable,

�����
programs themselves are not.

C, C++ and Microsoft COM object calling conventions are all supported by
� � �

,
which makes it highly interoperable.

� � �
seems a promising approach for those used to the horrors of writing code

generators that emit C, but it is not clear whether it will succeed. The alternative
approach of adding a few judiciously chosen structures to a C compiler, and per-
haps using a C preprocessor to ensure that undesirable features of C are not used
in

� � �
programs might have yielded a solution that was easier to implement. Most

worryingly, unlike the other systems described in this chapter,
� � �

is still largely
vapourware: an implementation is in progress, but it is not yet usable.

2.6 TAL and TALx86

TAL [81] is a typed assembly language, a small RISC-like assembly language anno-
tated with static type information that makes it possible to prove statically that TAL
programs are type-safe. An implementation for Intel IA-32 processors exists, called
TALx86 [80], along with compilers for C and Scheme-like languages. TAL does not
aim to provide portable code generation in any sense: the TALx86 compilers generate
ordinary IA-32 code. However, TAL’s theory is certainly architecture-neutral, and its
implications for portable code generation merit its place in this chapter. As will be
seen below, TAL can also be considered as a useful adjunct to portable code genera-
tion.

TAL was designed to provide a flexible route to safe and certified code. TALx86,
which is just a subset of IA-32 assembly language, is trivially language-neutral, and
can be optimised conventionally, subject to the constraints placed upon it by the re-
quirements of type safety (TAL’s theoretical framework is largely type-based). TAL’s
type checker is fast, and typically invoked by the compiler on its assembler output,
which contains type annotations as comments, before the code is passed to the as-
sembler.

Hence, TALx86 can be used at a very low level: for example, it can be used to ver-
ify the output of a JIT translator, which therefore need not itself be trusted. This gives
better safety than the JVM, which verifies its byte-code input, but might not translate
it correctly into native code. TALx86’s type system includes support for type-checking
of stack frames, and allows object modules to be type-checked with respect to each
other, and then check inter-module references at link time. This allows it to be used
straightforwardly with existing tools.

In its present state, TAL is a little limited: it does not support partial safety in
languages that are not type-safe, and has certain important features missing, such
as floating point arithmetic. In addition, certain classes of optimization are forbid-

11

2 Context

den, mainly high-level code transformations. Most importantly, it does not support
portable code, though it could be used in conjunction with a JIT translator to guar-
antee the type safety of JIT translation. Nevertheless, since TAL’s machine model is
similar to Mite’s, it ought to be possible to define a portable system formally. If the
type checks were more flexible, the system designer would also have better control
over the compromises between safety, complexity, and speed of verification.

2.7 Other systems

Several other systems are also used as points of comparison with Mite in the rest
of the thesis. Since they overlap in aims and functionality with systems described
above, it would be battological to describe them in detail; instead, their principal
features are sketched, and their interesting points of difference from the systems al-
ready discussed are highlighted.

Microsoft .NET VM [75] is similar in scope to the JVM, but aims for broader applica-
bility, in two ways. First, its instruction set is much more language neutral, as
it aims to be a reasonable target for all languages, though it is targeted at lan-
guages that fit its type regime. Secondly, its security is more flexible: it allows
code either to be verified, in a similar banner to JVM code, or merely validated,
which means that it is simply structurally correct, but may not be type-safe.
This makes it easier for languages such as C and C++ to target it.

PRACTICAL [28] is a VM that was designed for embedded systems in financial
networks. It is designed to be run on small microprocessors, and hence uses
threaded code to improve code density; the interpretive overhead of this tech-
nique is much less than on more powerful microprocessors. It is not language
neutral, but supports C and Forth. Because it is designed for high security
networks, it has a very simple and concrete execution model, though it is not
formally specified.

Cintcode [55] is a VM designed to execute BCPL, for which it is highly specialized.
It has a simple, concrete design, and has run successfully on a wide range of
machines, from 8-bit microprocessors to 64-bit workstations. Its emphasis is on
simplicity and ease of porting. It has a portable C interpreter, as well as a collec-
tion of hand-written assembly language interpreters, each only a few kilobytes
in size. The BCPL compiler which runs on it is also simple, performing few
optimisations; nevertheless, it performs reasonably well, largely because of its
high code density and the small interpreter, which fits in the instruction cache
of most modern processors.

Juice [37] is similar to Java, though much less developed. Its main language is
Oberon [138], and it aims to provide both smaller binaries and better native
code than the JVM. To do this, it uses a binary format similar to ANDF’s; the

12

2.7 Other systems

tree-based code structure is both more compressible than a typical virtual code
and, since it is a higher-level representation of the program, contains more
useful information that the JIT translator can use to optimize the native code
that it produces.

PASM [21] is a dynamic code generation system very similar to VCODE, but less well
developed; there are no publications about it, and little documentation. It has
two notable features: it allows multiple functions to be created in parallel in a
thread-safe manner (VCODE allows only one), and it provides an infinite num-
ber of virtual registers without the other overheads of ICODE. It has been im-
plemented for the Intel IA-32, which is about as different from its machine
model as any workstation microprocessor, being CISC rather than RISC, al-
lowing direct memory operands in most instructions, and having few general-
purpose registers. This suggests that PASM’s machine model, which is similar
to VCODE’s, is applicable to most real machines.

lightning [16] is a dynamic code generation system inspired by VCODE which aims
to be even faster at code generation, largely through having a simpler machine
model, in order to support languages such as Smalltalk that rely on frequent
incremental recompilation. It is entirely written as C macros, so generates code
extremely quickly. Its VM model is brutally simple: it has just six fixed virtual
registers, and does not allow functions of more than six arguments.

There are many other systems that provide portable code generation in some
form, notably the many VMs in the run-time systems of languages such as Perl [130]
and Python [72]. These VMs are in wide use, but not as systems in their own right;
they occupy positions near the JVM in the design space. On a different tack, sev-
eral commercial systems claim to fulfil goals similar to those of Mite, including
Elate [114], Omniware [2, 67] and ORIGIN [66]. Unfortunately, information about
them seems to be commercially restricted.

13

2 Context

Level of
abstraction

object

procedure

instruction

architecture-
specific

Language
neutralityneutralwide range

multiple
language

single
language

TALx86

Cintcode

PASM, ICODE

Mite

VCODE

TAL

�����

Dis

JVM

PRACTICAL

Juice ANDF

(Size of disc indicates breadth of functionality)

Figure 2.1: Comparison of code generation systems

14

2.7 Other systems

JV
M

Dis
Ju

ice
PRACTIC

AL

Cin
tco

de
VCODE IC

ODE PASM
ANDF ��

�

TA
L

TA
Lx

86 M
ite

N
eu

tr
al

it
y

{

M
ac

hi
ne

-n
eu

tr
al

L
an

gu
ag

e-
ne

ut
ra

l
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓

✓
✓

✓
✓

✓
✓

✓
C

lo
se

ne
ss

to
m

ac
hi

ne

{

op
ti

m
iz

at
io

ns
in

vi
rt

ua
lc

od
e

C
PU

-l
ik

e
V

M
m

od
el

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
B

in
ar

y
re

pr
es

en
ta

ti
on

{

Po
rt

ab
le

bi
na

ry
fo

rm
at

In
te

rm
ed

ia
te

re
pr

es
en

ta
ti

on
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

R
un

-t
im

e
tr

an
sl

at
io

n

{

D
yn

am
ic

co
d

e
ge

ne
ra

ti
on

JI
T

tr
an

sl
at

io
n

✓
✓

✓

✓
✓

✓
✓

✓
✓

Sa
fe

ty
{

D
ir

ec
tm

ac
hi

ne
ac

ce
ss

Sa
nd

bo
x

ex
ec

ut
io

n
V

er
ifi

ab
le

vi
rt

ua
lc

od
e

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

✓
✓

A
d

d
it

io
na

l
fu

nc
ti

on
al

it
y

{

G
ar

ba
ge

co
lle

ct
io

n
T

hr
ea

d
s

✓
✓

✓

✓
✓

✓
✓

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
of

co
d

e
ge

ne
ra

ti
on

sy
st

em
s

15

2 Context

2.8 Comparison

Figure 2.1 and table 2.1 give some at-a-glance comparisons between Mite and the
systems described in this chapter. They necessarily gloss over some of the differ-
ences and subtleties discussed above. For example, the JVM and Dis are identical
according to the table, and the wide range of VM models is reduced to whether or
not each resembles a real machine. In the figure, ANDF and PRACTICAL are shown
as being equally language-neutral, though their approaches to language neutrality
differ substantially and have quite different tradeoffs.

The figure gives an idea of the relationships between the various systems. It plots
level of abstraction on the vertical axis against language neutrality on the horizontal
axis. The size of each circle indicates the system’s breadth of functionality, which
means the level of support for non-computational activities such as multi-threading,
garbage collection and security. There seems to be a negative correlation between
level of abstraction and the other two qualities.

The table gives an overview of the functionality of each system, according to thir-
teen features divided into six categories. Some of the headings are worth elucidating:

optimizations in virtual code compilers can express optimizations, whether high-
level, as in ANDF, or low-level, as in VCODE

Portable binary format a format for runnable virtual code that can be used on any
host platform

Intermediate representation a concrete intermediate representation, whether tex-
tual, such as

�����
’s, or binary, such as the JVM’s, as opposed to an API such as

VCODE’s

Dynamic code generation run-time code generation by an application, typically of
application-specific code

JIT translation load-time translation of virtual code into native code

Sandbox execution the ability to execute virtual code safely, without its being able
to attack the host machine, according to some well-defined security policy

Verifiable virtual code virtual code whose safety can be mechanically verified stati-
cally with reference to some security policy

Most of the systems discussed in this chapter offer portable code generation.
Three sorts of portability are involved: that of the code generation interface, that
of the generated code, and that of the system itself. Each system strikes a different
balance, and differs in its degree of specialization and in the leeway for tradeoff be-
tween compiler and run-time translator.

16

2.8 Comparison

Mite aims to be portable in all three senses: the code generation interface is a
machine-independent assembly language, the generated code is stored in a stan-
dard binary format, and the machine-dependent part of the system is small. Spe-
cialized systems such as the Java VM could be built on top of Mite, though machine-
dependent features that it lacks, such as concurrency, would obviously require ex-
tra work. Mite makes code quality almost entirely the compiler’s responsibility, but
simple compilers can easily generate naïve code; higher-level VMs which generate
native code directly do not offer this tradeoff. It would also be possible to write a
language-independent optimiser for Mite virtual code.

More Mite-centric comparisons are made in chapter 4, but first, to make them
comprehensible, the next chapter introduces Mite’s design.

17

3 Design

Mite’s definition is given in appendices A to C. It consists of three layers: a semantic
definition, a concrete syntax, and an object module encoding. Each layer introduces
additional constraints; the concrete syntax also adds several features not present in
the semantic model of the VM, most of which relate to optimization. This chapter
introduces the design from a programmer’s point of view, giving example code to
illustrate Mite’s features.

In this chapter, hexadecimal numbers are written followed by “h”; for example,
100 decimal is 64h in hexadecimal.

3.1 Architecture

Mite has a load-store architecture. The main difference from conventional proces-
sors is its treatment of memory and registers, which must be dealt with carefully in
order to cope with differences between machines: the number and size of physical
registers, and alignment restrictions on accessing memory.

3.1.1 Quantities

The basic types with which Mite deals are strings of bytes, called quantities. The
length of the string is the quantity’s width; quantities may be one, two, four or
A/8 bytes wide. A denotes the width of an address, and may be either 32 or 64. An
address-wide quantity is called a word. The constant ����� � 	 has the value log2 A/8
(the number of bit positions that a quantity must be left-shifted to multiply it by
A/8), and denotes A/8 wherever a width is required.

3.1.1.1 Offsets and sizes

Three-component numbers are used to represent the sizes of data structures and
offsets within them: the value of b � w � r is b + Aw/8 + 4 bA/64c r. b gives a number
of bytes, and w a number of words. r gives a number of roundings up, and is used
to specify sizes of records, and offsets within them. For example, a record consisting
of two addresses separated by a four-byte integer would require 12 bytes of storage
if A is 32, and 24 if A is 64, as shown in figure 3.1. In the latter case the integer has
to be padded to the next eight-byte boundary so that the second address is correctly
aligned. Hence, the size of this object is 4 � 2 � 1, made up of 4 bytes for the integer, 2

18

3.1 Architecture

4

address 1
4

integer
4

address 2

(a) 32-bit machine; no padding needed

8

address 1
4

integer
4

padding
8

address 2

(b) 64-bit machine; padding required

Figure 3.1: Layout of a record at different word widths

words for the addresses, and 1 rounding up from the integer to the second address.
The offset to the second address (third field) is 4 � 1 � 1. If the integer were stored at the
end, the size would be only 4 � 2, and take only 20 bytes on a 64-bit machine.

3.1.2 Memory

The memory is a word-indexed array of bytes; an index into the memory is called
an address. The memory is effectively the data address space; not all addresses are
necessarily valid. The stack (see the next section) is held in memory; code may also
reside in memory, but it need not, and the effects of manipulating it if it does are
undefined.

Memory may be accessed at any width; the address must be aligned to the given
width. The effects of overlapping accesses at different widths are undefined; for ex-
ample, if the two-byte quantity ABCDh is stored at address 14, and the single byte at
15 is then examined, its value may be either ABh or CDh.

3.1.3 Stack

Mite uses a stack for data processing, which resides in memory. There are two types
of stack item: registers, which are the same size as a machine address, and chunks,
which can be any size. A register’s value can be manipulated directly, and may be
cached in physical registers; chunks reside permanently on the system stack, and can
only have their address taken. Stack items are created on top of the stack, and only
the top-most item may be destroyed. The items are referred to by their position in the
stack, one being the bottom-most. All stack items occupy a whole number of words.

Each register has a different rank between one and the number of registers. This
is used for register allocation: typically, if the host machine has N physical registers,
the virtual registers with ranks 1 to N will be assigned to physical registers. When a
register’s rank changes, it may be spilled from or loaded into a physical register.

19

3 Design

Chunks are used for three main purposes: stack-allocated scratch space, passing
structures by value to functions and subroutines, and for callee-saved information
within subroutines and functions (the “return chunk”). See sections 3.2.6 and 3.2.7
explain the uses of chunks in functions.

3.1.4 The flags

There are four flags: zero (fZ), negative (fN), carry (fC), and overflow (fV). They are
set by each data processing instruction (see section 3.2.3). The flags may only be
tested by conditional branches, and must be tested immediately after they are set;
see section 3.2.5 for examples.

3.2 Instruction set

The instruction set is RISC-like, and generally three-operand.

3.2.1 Creating and destroying stack items

A register is created by the instruction
�����

. A newly created register is given rank
of 1. A chunk is created by �����

� n , where n is the size of the chunk, given as a three-
component number, as in section 3.1.1.1. Since all stack items occupy a whole number
of words, a chunk created with

�����
� 3 will occupy either 4 or 8 bytes, depending on

the value of A.
� � � �

destroys the top-most stack item.

3.2.2 Register assignment

The instruction
� ��� r � v assigns v to register r. v can be either a register, or an im-

mediate constant. An immediate constant is either a three-component number (the
second and third components may be omitted if they are zero) or a label, optionally
with a three-component offset added to it.

Registers can be either constant or variable. A constant register may only have
its value changed by a later

	����
or

� ���
, while variable registers may be updated by

ordinary instructions such as
� 	
	

,
��� �

, and so on.
The instruction

	���� r � v makes r a constant register with value v;
����	���� r makes

a r variable. Constant registers may only be altered by another 	���� or � ��� instruction
(using

� ���
has the same effect as

���
	����
, and makes the register variable from then

on).	���� and ����	���� are static declarations, and apply from the point in the program
at which they occurs to the next

� ���
or

	����
acting on the same register.

� ���
is an

ordinary dynamic instruction, and loads the register with the specified value only
when it is executed (though it makes the register variable statically, just like

����	����
).

Sections 3.2.5 and 3.5 contain examples illustrating the difference between constant
and variable registers.

20

3.2 Instruction set

3.2.3 Data processing

Most data processing instructions take two operands and one result. Destination reg-
isters are given before operand registers. All operations are performed to word preci-
sion. Every data processing instruction except

� � �
and

	 � �
sets fZ if its result is zero

and fN if the most significant bit of the result is one.

3.2.3.1 Simple arithmetic

For addition (
� 	�	

), subtraction (� ���) and multiplication (
��� �

), each instruction takes
one destination and two operands. The result of

� � �
is the least-significant word of

the product of its operands.
As an example, the following code computes the discriminant of a quadratic

equation ax2 + bx + c = 0 where a is in register 1, b in register 2 and c in register
3:

����� �������	� Compute b2 in register 2�����
���
��	
Compute ac in register 1������� c (register 1) is no longer needed�����
Create a register to hold the constant 4����� ��	���
Define register 3 to be constant with value 4�����
���
��	
Compute 4ac into register 1������� 4 (in register 3) is no longer needed� ���
�������

Compute b2 − 4ac into register 1������� b2 (register 2) is no longer needed

The result of the calculation is placed in register 1. Note how the top-most stack item
is killed as soon as it is finished with, possibly freeing a physical register or stack slot.
Declaring the register created to hold 4 as constant enables the translator to treat it as
an immediate quantity, and it may never need to be loaded into a physical register.

The
�����

instruction takes a single operand, which it negates and stores in the
destination.

� 	
	 , � ��� and ��� � set fC to the carry out from the most significant bit of the result,
and fV if signed overflow occurred.

3.2.3.2 Division

The
	 � �

instruction takes two destinations and two operands:
	 � � q � r � x � y com-

putes x ÷ y and x mod y, placing the quotient in q and the remainder in r. The
operands are treated as unsigned. Either destination may be omitted if the corre-
sponding result is unwanted, but not both.

	�� � � performs signed division, rounding the quotient towards minus infinity
(17 ÷ −7 = −3 rem −4);

	�� � ��! rounds towards zero (17 ÷ −7 = −2 rem 3). In
all cases the identity qy + r = x holds, where x is the dividend, y the divisor, q the
quotient and r the remainder.

21

3 Design

3.2.3.3 Logic and shifts
� �
	

,
���

,
�����

and
� � �

perform the corresponding bitwise logical operations. � � per-
forms a left shift, � � � an arithmetic right shift, and � � � a logical right shift. The first
operand to a shift is the quantity to be shifted and the second is the amount of the
shift, which must be between 0 and A inclusive. Shift instructions set fC to the carry
out of the shift.

The following code sets register 1 to zero if it was previously negative:

����� temporary register����� number of bits in a word minus 1����� �� � �
����
����� ����
 copy value�
	�� ���	���� make mask out of sign bit�������

constant no longer needed���� ���	�
invert mask� ���
���
����
clear if it was negative; otherwise leave it alone�������
mask no longer needed

3.2.3.4 Comparisons

The instructions � ��� ,
� ��	 and � ��� may also be used to make comparisons by omitting

the destination, so that they affect only the flags. Examples of this use are given in
section 3.2.5.

3.2.4 Addressing memory
��	

� w x ��� a � loads the w-wide quantity at the address in register a, which must be a

multiple of w, into register x. The quantity is zero-extended if necessary. � � � w x ��� a �
stores the least significant w bytes of x at the address in a.

Though nothing may be assumed about the ordering of the bytes in multi-byte
quantities, it is possible to write some machine-dependent operations in a machine
independent way; for example, the following code reverses the order of the bytes in
the two-byte quantity at the address in register 1:

�����
copy address and add 1�����

����� �� ��

� ��� ����
���
�������
����� registers to hold bytes�����
�����
 ����
�� load bytes�����
 � ��� ���
� ��
 ���� ��� store bytes the other way around� ��
 � ���
��
�������

kill all registers used

22

3.2 Instruction set

�������
�������
�������

3.2.5 Branching
� c a causes a branch to address a if condition c is true. There are fourteen conditions

such as
� �

(“equals”),
���

(“minus”) and
� � (“carry set”), plus

� �
(“always”). The

address a is a label, or a register holding the value of a label.
The following code uses conditional branches and the comparison instructions

introduced in section 3.2.3.4 to count the number of ones in register 1.1 Note that
register 2 is used as a counter, so its initial value is � ��� ed into it, as it is a variable
register, whereas registers 4 and 5 are constant, so their values are

	����
ed.

�����
ones counter����� ���	���

����� temporary register����� constant needed in loop����� � �	��

����� for compare with 0����� ���	���
�������
	 label marking the start of the loop� ��� ��
���� test if all ones gone���� ���
����� finish if so� ��� ������� �

increment counter� ��� ���
�� �
word−1� ���
������

knock off least-significant one in word� � � �������
	 go back for next one

���������

3.2.6 Subroutines

The instruction
��� � � a � n ��� t1 � . . . � tn � calls the subroutine at address a. The top-

most n items on the stack are passed as arguments to the subroutine. t1 . . . tn describe
the return values as follows: t1 gives a number of registers, t2 the size of a chunk, t3 a
number of registers and so on. The effect of a

��� � �
on the stack is as if the following

code were executed:
������� (n times)����� (t1 times)������� t2���

1There are much more efficient ways of doing this, but they are useless for the present purpose, as
they involve neither comparisons nor loops.

23

3 Design

The arguments passed to the subroutine are killed, and the return values created in
their place.

A subroutine entry point is indicated by a label preceded by an � . The � may be
followed by

�
if the subroutine is a leaf routine, that is, it contains no

��� ���
instruc-

tions; this may allow the translator to optimize it. On entry to a subroutine the stack
holds the arguments passed to it with the return address and any other callee-saved
information in a chunk on top of the stack.

��� � c ��� i1 � . . . � in � returns from the current subroutine. c is the chunk holding the
return address, which is the stack item directly above the last argument. The return
values i1 . . . in are copied into the caller’s stack.

The following code shows the use of a subroutine which computes the sum and
difference of its arguments.

����� declare arguments�����
� � � ������� �	� subroutine entry point�����

register to hold difference� ��� � ��
����
calculate difference� ���
���
����
calculate sum	 �� ����
�� � �
return results�������
kill the active registers�������

�������
�������
� ��
 �� entry point of program����� set up arguments�����
�� ���
�����
����� ��� ���
��� ��� � ������� �	� � � � � �
� call subroutine

The type and number of the subroutine’s arguments are given by the state of the
stack at the subroutine label. In this case, two registers are declared directly before
the label. The label itself effectively declares the return chunk. The calculation is per-
formed, and the

��� �
instruction specifies which stack items should be returned as

results. Finally, all four stack items active at the end of the subroutine must be killed.
Mite’s specification does not define how execution commences. The convention

used here is to start execution at the label � � ��� . Depending on the translator, this
label might be a subroutine or function label.

3.2.7 Functions

Mite supports the host environment’s calling convention, allowing Mite code to call
and be called by native code. Function labels start with � , and

��� �����
and

��� � �
call

and return from functions.

24

3.2 Instruction set

Function labels may have up to three modifiers after the initial � : a leaf function
is marked

�
, a function whose return value is a chunk is marked � , and a variadic

function is marked � . The modifiers must occur in that order.
There are two forms of

��� � �
for functions: if the function returns a register or has

no result,
��� � ���

is used, which has the same syntax as
��� � �

, but allows a maximum
of one return value. For functions returning a chunk,

��� � ��� �
is used; instead of a

return list, a single item is given, which is either the chunk into which the result
should be copied, or a register containing the address at which it should be stored.
When a variadic function is called,

�
must be appended to the instruction name.��� � � has the same syntax as ��� � , but functions may return at most one value.

The following example demonstrates a variadic function which returns a chunk:

�������������
chunk to hold result�����
the variadic arguments����� ���	���

�����
����� ��	���
�����
����� � �	���
�����
����� ���	�� the number of variadic arguments
��� ����� � � � � � � � � pass 4 arguments and receive result in chunk 2
������������ the variadic argument chunk����� the non-variadic argument

� ����� � � a variadic leaf function returning a chunk����� address increment����� � �	�����

����� accumulator for sum����� accumulator for product����� ���	���

set sum to zero����� ���	��

set product to one�����
pointer to variadic arguments����� ����

get address of first argument�����
get address of end of variadic arguments�����

����� ���
 ��� �	���� � �������	�
�������
� ��� ��� ��� �
����� temporary
�
 �
� ��� � �
 � ������
 ��� � ��� load variadic argument� ��� ��� � ���

add to sum����� ����� ���
multiply into product� ��� ��� � �	�
increment the address� ��� � ��� �
repeat until all arguments read����� �
 ��� ��� � �
 ���

25

3 Design

������� get rid of temporary����� ������� create chunk to hold results����� ��� �
get address of return chunk� ��
 ��� � ���
store sum� ��
 ��� � ��� � �
store product	 ���� � � ���
return result�������
kill all items�������

�������
�������
�������
�������
�������
�������
�������

As for subroutines in the previous section, the stack of the stack at the function label
is taken to declare the function’s arguments, and the function label itself implicitly
declares the return chunk. The variadic arguments to a function come below the nor-
mal arguments on the stack. They are stored in chunk 1, which must be declared to
have size 0; the format in which they are stored is system-dependent. In this example
it does not matter provided that each argument occupies a single word.

The modelling of functions, in particular the treatment of variadic arguments,
structure return values and the return chunk, is discussed further in section 4.3.3.

3.2.8 Non-local exit

The
���
� ��

and
�� ����� instructions, together with handlers, allow non-local exit from

a subroutine or function. A handler is a label preceded by � .
���
� ��

r � l saves the
value of the stack pointer at handler label l in register r. Later, while the subroutine in
which

���
� ��
was executed is still active,

�� � � � l � r � v returns control to the handler
at l. The value v overwrites the top stack item active at the handler, which must be a
register.

When
�� �����

is executed, the stack’s state is changed to that of the handler label.
Since this may not be the same as at the corresponding

���
� ��
instruction, only those

stack items which are active at both locations have a defined value. Moreover, since
the values of registers that are cached in physical registers may be lost when a

�
 ��� �

is executed, all registers are assumed to be held in memory at a handler, and the ��� � �

modifier is provided to save all registers to memory. It has one operand, a handler
label, which is used to decide which registers need to be saved. ��� � � may be attached
to a

��� ���
or

�� � � �
instruction, and is only needed when the handler is in the same

subroutine or function as the instruction being ��� � � ed. The workings of ��� � � are
explained further in section 4.3.6.1.

26

3.3 Data

3.2.9 Escape

There is a general-purpose escape mechanism:
� � � � n performs implementation-

dependent function n.

3.2.10 optimization directives

The instruction � � � � r � n changes the rank of register r to n. The ranks of the other
registers are altered accordingly so that all the ranks are still distinct and in the range
1–N, where N is the number of registers. The mechanics of ranking are explained
further in section 4.3.1.2.

���
� � �
	 causes the binding of virtual to physical registers to be updated to reflect
the current ranking. It is intended for use just before a loop, to minimize spills within.
The thinking behind ����� � �
	 is explained in section 4.3.1.3.

3.3 Data

Constant data and static data areas are declared in data blocks. A data block starts
with a label preceded by � , or � � if the data is to be read-only, followed by a series of
data directives enclosed in brackets.

The directives are � � �
� w v1 � . . . � vn , which stores literal values v1 . . . vn of width

w, and � �
� � � � w n , which reserves space for n w-wide quantities; � �
� � � ! causes the
space reserved to be zero-initialized. All values stored and space reserved are aligned
to the given width.

3.4 Object format

The object format is a simple byte-code. Multi-byte quantities are stored in little-
endian order. The three main building blocks of the encoding are:

Numbers The number is divided into 7-bit words. Each is padded to a byte with a
zero bit, except for the least-significant word, which is padded with a one. The
bytes are stored most-significant first.

Header The object module header consists of a four-byte magic number, then a
single-byte version number, then three bytes giving the length of the module
in bytes, excluding the header. The number of labels and data blocks follows,
and finally the name of the module, stored as a counted string.

Instructions Each instruction consists of a single-byte opcode followed by a list of
operands. When an operand consists of a list of values, the list is prefixed by
its length. For example, the instruction

��� ���
����� ��� ��� � is encoded as 86h 84h

83h 81h 83h 87h. The first byte is the opcode, the second is the encoding of the

27

3 Design

return chunk, number 4; the third byte encodes the length of the list of return
items, which is 3. The return items follow.

3.5 Pitfalls

Programming Mite is deceptively similar to programming in a conventional assem-
bly language, but there are fundamental differences that should be borne in mind.
Almost all the pitfalls concern the use of registers.

Machine-independent coding is tricky It is easy to write Mite code that is machine-
dependent. The biggest problem is assuming a particular width for the regis-
ters by mistake, just as in C one is tempted to assume the sizes of types. A sim-
ilar problem arises with optimization: it is tempting to try to second-guess the
translator. Since Mite code may be run on a variety of machines, this is boot-
less; however, there is no clear dividing line between machine-independent
and machine-dependent optimizations. The best weapon against both types of
machine-dependence is never to think in terms of a particular host machine.

Registers are plentiful Although one should use as few registers as possible, quanti-
ties should always be held in a register where possible, rather than in memory
or a chunk, so that the translator has a chance to allocate them to physical reg-
isters.

Registers are not concrete One of the hardest things to remember is that registers
have limited scope, and that their use must be checked more carefully than in
most assembly languages, especially around and across branches.

The stack must match across branches Bugs are easily introduced by branching to
a place with a different stack state; the type of each item active at both source
and destination of a branch must match. The next point is an example of this.

Constants are static
	����

operates statically, not dynamically, which can create prob-
lems in loops. The following code:

�����
�� ���
�������
	�����
�� ��
� � � �������
	

is illegal, because the type of register 1 is not the same at the
� � �

, where its
value is 3, as at �

� ���
 , where its value is 4.

Live ranges may not contain holes Since registers must be created and destroyed in
stack order, live ranges may not contain holes. This places restrictions on the
order in which compilers can linearize flow graphs; or alternatively, on how
tightly they can define live ranges. For example, if a register is live in the test

28

3.5 Pitfalls

of an � � statement, and continues to be live in the 	 ��� � branch, but not in the
� � ��� branch, then the compiler must either compile the � � ��� branch second,
and kill the register at the end of the 	 ����� branch, or it must allow the register
to be live in the � � ��� branch, even though the quantity it holds is not used. This
is the converse of the nesting problem discussed in section 4.3.1.2.

Code sharing is clumsy Since
��� �

may only be used to return from the textually cur-
rent subroutine or function, code sharing is only possible using continuation
addresses, which is awkward and inefficient. Therefore, shared code should
normally either be encapsulated in a subroutine or inlined. Code sharing is
discussed further in section 4.6.

Data may move Since data may move relative to code when it is translated, there
is little point storing it in places where it must be branched around simply in
order to improve locality. On the other hand, storing data between functions or
after unconditional branches will improve locality on machines that store data
and code together, and be harmless on those that do not.

29

4 Rationale

The details of Mite’s design are now examined to show the reasoning behind them.
First, section 4.1 discusses Mite’s overall architecture; section 4.2 concentrates on the
treatment of registers, its most important single feature. Next, section 4.3 scrutinizes
the instruction set. The object format and semantics are examined in sections 4.4
and 4.5. Finally, section 4.6 discusses some shortcomings of the design. Throughout,
comparisons are drawn with alternative design decisions in other systems.

4.1 Architecture

Mite’s architecture is very like that of a conventional RISC processor. The most im-
portant difference from that of a real processor, and those of most other VMs, is
that its definition leaves a number of behaviours undefined for the sake of imple-
mentation efficiency. This is done in two ways. First, the behaviour of instructions
when they are misused (such as attempting to divide by zero) is not specified, which
removes the need for costly translate-time and run-time checks to detect incorrect
usage. Secondly, when some behaviour of an instruction differs between target ma-
chines, it is usually omitted, to keep Mite architecture-neutral. Hence,

��� �
does not

affect the condition flags (see section 4.3.2).
This is similar to the way that the ANSI C standard [6], for similar reasons, makes

many behaviours “implementation-dependent”, meaning that they are not necessar-
ily defined.1

Dynamic code generation systems such as VCODE and PASM take a similar ap-
proach; VMs that support sandbox execution or verification rely on run-time checks
or verification to catch illegal usages (they may also allow the execution of unver-
ifiable code, like Microsoft’s .NET common runtime [75]). Cintcode is rare in be-
ing completely almost specified; this reflects its heritage of running on 8-bit systems
where optimizations of this sort are less beneficial.

4.1.1 Load-store three-address register model

One of the most important characteristics of a virtual or real machine is the way it ad-
dresses data. Mite has three key features in its addressing mechanism: first, its use of

1As opposed to “implementation-defined”, meaning that the behaviour must be defined, but may
differ between implementations; this is not portable, and hence not useful for Mite.

30

4.1 Architecture

registers; secondly its load-store architecture; and thirdly, three-address instructions.
Most VMs have a simple and restricted set of addressing modes. The reason is

simple: translating a wide range of addressing modes is a lot of work for a translator,
and can impose an unacceptably high cost on instruction decoding, particularly for
intepreters. Like VCODE, the fastest translating system discussed here, Mite uses a
load-store model, which restricts memory access to load and store instructions, and
provides only two memory addressing modes, register indirect and register indirect
plus offset. Similarly, Mite also restricts other addressing modes: most instructions
only take register operands, and immediate constants are confined to two instruc-
tions.

This simplicity speeds up code generation on RISC machines, because it uses only
addressing modes that most of them directly support; however, it makes it harder to
take advantage of the richer addressing modes found on CISC machines, which Dis
and the JVM can better exploit, with their use respectively of memory and stack
operands.

However, Mite’s registers are easier to map efficiently on to the register set of
most modern processors, especially of RISC machines that have a large orthogonal
register set, than the JVM’s stack items, or Dis’s memory locations. Even though reg-
isters must sometimes be spilt, and hence mapped to memory or stack locations,
it is easier to do this than vice versa. This is because stack and memory locations
can normally be accessed indirectly, so when mapping them to registers, aliasing
must be detected; since virtual registers cannot be accessed indirectly, they cannot
alias one another. Similarly, information about the liveness and importance of quan-
tities, which is vital for good register allocation, is harder to specify for memory
and stack locations, because memory locations are too numerous and stack items
can be permuted.2 Mite’s register declarations (see section 4.3.1.1) and ranking (see
section 4.3.1.2) provide a simple way to give information about the liveness and rel-
ative importance of virtual registers. The JVM and Dis do not try to provide such
information, and hence need much more complex JIT translators to obtain the same
performance.

The use of three-address instructions may seem to run counter to the simplicity
of Mite’s addressing modes, by adding an implicit register move to each operation.
However, it can equally be seen as a simplification, as instructions are not forced
to overwrite one of their operands. For the benchmark programs, the use of three-
operand instructions improves the code density of virtual code, though only by 1.8%,
and with a standard deviation of 3.4%. On 3-operand RISC machines, where the extra
operand is free, there would be a larger saving; while three-operand instructions
could be generated from a two-address virtual instruction set, it would complicate
and slow down translation. On two-operand machines, each instruction whose first
operand is different from its second generates an extra register copy; however, it is
as easy to do this as to generate the register copy from an explicit copy instruction.

2To avoid this difficulty, the .NET virtual machine [75] forbids the permutation of stack items.

31

4 Rationale

4.1.2 Memory

Mite’s memory model is just concrete enough to allow memory access at different
widths, and to allow endianness-dependent data to be dealt with where necessary.
Unlike Cintcode, Mite cannot be completely concrete, as it must cope gracefully
with different word widths and endiannesses (Mite’s permutation functions (see sec-
tion A.3) even cope with machines that are neither big nor little-endian, like some
PDPs). On the other hand, Mite cannot completely abstract the structure of memory,
like the JVM, as it must allow quantities occupying a specific number of bytes to be
loaded and stored.

This insistence on laying out memory in bytes rather than allowing an arbitrary
ordering of bits is compatible with the vast majority of processors, and allows binary
data with a particular byte ordering, such as network packets, which are typically
big-endian, to be dealt with simply. At the same time, the load and store instructions
can use the host’s preferred byte-ordering, whatever that is. It is quite possible for a
Mite program to discover the byte ordering of the machine on which it is running,
and then use optimized routines that assume a particular ordering; most of the time
it is reasonable to assume that memory is big or little-endian. Once again, Mite puts
the tradeoff between efficiency and portability in the hands of the programmer. Most
other systems that aim strongly for efficiency, such as VCODE and

�����
also use the na-

tive bit ordering (though not necessarily specifying that it must be a byte ordering).
The JVM and Dis say nothing about byte ordering; in order to remain flexible, the
JVM therefore has a large range of primitive types, and dealing with anything else
is problematic. Dis attempts to remain simple, and therefore lacks some commonly
used types, such as 16-bit integers. Mite has neither problem.

The assumption of a linear address space whose addresses can be held in a ma-
chine register is of a similar quality: it matches most real machines, while keeping the
programming model simple and efficient. If Mite were to allow 16-bit registers, or
registers larger than 64 bits, this assumption might change, but 32-bit machines tend
to have 32-bit address spaces, and 64-bit machines 64-bit address spaces. VCODE and
PASM take the same approach, while the JVM, by avoiding explicit pointers, avoids
the problem altogether.

Code memory is organized in a different way: as the length, format and meaning
of code varies depending on the host machine, there is no compelling reason to make
it addressable as data. Allowing separate code and data address spaces means that
Mite can be implemented on Harvard architecture machines, and makes it easier to
build more secure systems on top of Mite in which code cannot be read or written,
without changing Mite’s semantics. Nevertheless, code is addressable via locations
(see section B.9), so it is possible to build branch tables; also, it is of course possible
to write Mite code that directly manipulates program code in a known format, when
it is held in data-addressable memory, as it typically will be.

Mite’s memory model therefore has most of the advantages of a fixed memory
model such as Cintcode’s; indeed, at the cost of portability, a fixed memory model
can be assumed in Mite code. At the same time, Mite remains architecture-neutral.

32

4.1 Architecture

4.1.3 Three-component numbers

Three-component numbers were introduced to allow compilers to optimize accesses
to fixed array elements or record fields, even when the size of the elements or fields
is not known at compile time. The example in section 3.1.1.1 shows how this can be
achieved for a record consisting of two words and a 32-bit integer (which could be
32 or 64 bits). In particular, it shows the use of the third component in rounding up
from 4-byte to word boundaries.

For arrays, three-component numbers can be used to access elements whose in-
dex is known at compile time; calculating the address of run-time determined indices
is made easier by the � ��� � 	 constant (see section 3.1.1), as an index into an array of
words can be turned into an offset by the following code:

register 1 holds the index�����
create a register to hold the shift����� � �
 � � �	��� set the shift� �
���
���� turn the index into a shift

Three-component numbers are just one point in a spectrum. At one end, Cintcode
has a single fixed-size datatype, the 32-bit word, and therefore works less efficiently
on machines with different natural sizes. In VCODE and

�����
the sizes of data struc-

tures are known (and in
�����

’s case, specified) at compile time, but the generated code
is not binary portable. Next come systems that have mostly fixed-size datatypes, and
pointers whose size cannot be explicitly mentioned in virtual code. Dis, the JVM, and
ANDF all calculate the sizes of data structures at load time, and therefore offsets to
known fields must be calculated at run time, or special array access instructions must
be used. Mite is unique among the systems discussed here in allowing compile-time
calculation with quantities whose actual value is not known until run-time.

Still, Mite is not at the end of the spectrum. Constants could be polynomials in
the word size: this could be used to express as a manifest constant the size of a word
array which had as many members as there were bits in a word. However, in this
case an additional component would be needed for each possible “rounding up”; for
example, if a 16, 32 or 64 bit word size was allowed, then a rounding up from 2 to
4 byte boundaries would be required. Finally, to allow all possible offsets in a lan-
guage such as C to be calculated at compile time in a fully portable manner, an extra
component would be required for each independently-sized type, such as � � �� , ��� 	 ,
� � � � , � � � ��� and so on. A compiler could end up calculating with arbitrary-order
polynomials in a dozen variables where originally it worked with constants. This
is clearly unacceptable; Mite’s scheme keeps the complexity to a minimum, while
allowing the commonest optimizations to be expressed.

One point of particular interest to C compilers is that since three-component
numbers are manifest constants, they can be returned as the value of � ��� � � � , which
can therefore be used as normal, even in expressions evaluated by the preprocessor.

Finally, note that it is of course possible for Mite code generators to delay calcula-
tion of offsets to run time, or to assume a fixed word size, and thereby trade compiler

33

4 Rationale

simplicity for loss of portability or run-time speed. In any case, a minimal overhead
is imposed on translators: since the translator knows the machine word size, it can
turn three-component numbers into ordinary constants as they are decoded.

4.2 Registers

The treatment of registers is the linchpin of Mite’s design: most of its goals and con-
straints converge on this one element. As noted in section 4.1.1, the way that a VM
addresses memory is an important characteristic. It is also one of the ways in which
VMs tend to differ most.3 Hence the JVM may be described as a stack machine, Dis
as a memory-to-memory machine, VCODE as a register machine, and Cintcode as an
accumulator machine.4 As discussed in section 4.1.1, Mite is register-based in order
to map easily on to current machine architectures. This implies that Mite’s registers
should correspond as directly as possible to machine registers, and this is exactly
what Mite’s method of handling registers aims to ensure.

There are three main differences between the register sets of different processors:
first, the size of register (usually, all the registers are the same size); secondly, the
number of registers, and finally, the uses to which each register may be put: some
processors assign special rôles to certain registers. The last of these varies too widely
to be dealt with in a general way; each translator must deal with it ad hoc. The first
is dealt with by allowing two register sizes, as discussed in section 4.2.4. The second
is by far the most difficult to deal with: the only practical way seems to be to allow
an unlimited number of virtual registers (section 4.2.1), which in turn introduces
further problems, which are the subject of the rest of this section. The handling of
registers is also affected by the varied ranges of immediate constants on different
machines (section 4.2.5), and by argument and result passing under system calling
conventions (section 4.2.2).

4.2.1 Unlimited virtual registers

Since supporting unlimited virtual registers creates some of the trickiest problems in
Mite’s design, it is necessary to justify their use in the first place.

There are at least four possible approaches that could be taken to the “right”
number of registers:

Few Have only as many as the most register-starved architecture (say, 6 for IA-32).
GNU lightning [16] does this, because it speeds up translation by allowing a
fixed mapping from virtual to physical registers, and still gives adequate native
code quality. However, lightningis aimed at dynamic code generators which
typically apply few optimizations, and hence tend to use few registers. GNU C

3The same used to be true of processor architectures, but in recent years the majority have converged
on the load-store register model.

4In fact it has two general-purpose registers that behave like a two-element stack.

34

4.2 Registers

at its highest optimization level (
� � �

) needs to spills for most programs even
with 10 registers, as on the ARM, and figure 6.6 shows that performance of
Mite-generated code increases as the number of registers is increased, at least
up to 10.

Enough Have as many registers as are needed. 16 or 32 might be plausible numbers.
But since some programs will still cause spilling, both compilers and transla-
tors must cope, independently, with register spilling. Worse, compilers must
spill virtual registers, while translators spill physical registers; these two types
of spilling could easily interact badly. VCODE effectively takes this approach
by allowing the physical registers to be claimed and released. This however
means that, in general, different virtual code will be generated on machines
with different numbers of physical registers; to obtain portable code, the mini-
mum number of registers must be assumed once more.

Many Have a large fixed number of registers, say 256 or 1, 024. Compilers could then
reasonably fail if they run out of virtual registers, or generate much poorer
code. Nevertheless, this is just the previous option with different tradeoffs, and
special-case code is still required in both compiler and translator, even if only
to detect the limit being exceeded; also, building in a fixed limit does not seem
satisfactory, and could pose problems for machine-generated code, such as the
output of compilers that use C as a target language.

Unlimited Have an unlimited number of registers. This simplifies code generation,
though at the same time it subtly alters the notion of what a register is, as
a compiler can use as many registers as it likes, although as with Mite, reg-
ister assignment and co-location may still be an issue (see section 4.3.1.1). The
translator is more complicated than with a minimal number of registers, but no
worse than for the other options, as from a translator’s perspective the number
of physical registers is fixed, so it is still a question of matching one fixed num-
ber against another, except that the number of virtual registers varies between
programs. To achieve a good translation the virtual registers must be ranked,
but this is also true for the previous two alternatives.

The last option is the most aesthetically attractive, gives the best potential perfor-
mance, and is no worse to implement than other options that give good performance.
Stack machines (virtual and physical) effectively adopt this solution, but with the
overheads that come with using a stack rather than registers.

4.2.2 Stack

Mite’s stack is its most complex structure. From the code generator’s point of view it
combines virtual registers, argument and result passing, and stack frames. From the
translator’s point of view it supplies the information necessary to arrange physical
register allocation and spilling, and to perform function call, entry and return. These

35

4 Rationale

functions are interrelated in most systems, via the system calling convention. Hence,
as at several places in Mite’s design, the twin requirements of portable virtual code
and efficient native code force a certain degree of complexity. Mite must mirror the
machines it targets, so these features must be combined into a single structure.

The stack, therefore, combines the following elements:

Unlimited number of registers A stack allows an unlimited number of registers,
without needing to specify the total number used in advance, or a fixed maxi-
mum.

Register live ranges Stack elements can be popped as well as pushed, so registers’
live range can be delimited, though registers must be created and destroyed in
stack order. This is a reasonable restriction, as most virtual registers correspond
either to temporaries which are live for the evaluation of a single expression,
or register variables, whose live range corresponds to a nested block (either
lexical or dynamic), which itself obeys a stack discipline. In any case, virtual
registers can be reused (see section 4.3.1.1).

System stack The system stack, whose requirements generally correspond to those
of conventional languages such as C and Pascal, tends to hold a series of frames
for active procedures, which hold a saved program counter and perhaps other
registers, local variables, and incoming and outgoing procedure arguments. It
is also generally used for block-local storage, such as temporary data areas,
and spilled register values. Modelling the system stack in the virtual register
stack simplifies the spilling of virtual registers to the system stack, by giving
the translator a definite idea of how the virtual stack maps to the physical stack
(see section 4.3.1.1), and makes virtual register sets correspond to stack frames
(section 4.2.3 explains why this is desirable).

Function calling Certain virtual registers correspond to incoming and outgoing
procedure arguments and return values; chunks allow structures to be eas-
ily passed by value. Making arguments and return values correspond to the
top-most virtual registers on the stack makes it easy for the translator to move
arguments and return values into the right place for function calls; normally, it
can be arranged so that they are already in the correct virtual registers when
the call or return instruction is reached.

Stack allocation Chunks allow limited stack allocation (since the size of block allo-
cated must be statically determined, they cannot be used to implement � � � �),
suitable for run-time scratch space, local structures and arrays, as well as pass-
ing structure arguments by value, as mentioned in section 3.1.3.

Most other systems fall into one of three categories: either they use a processor-
like model that splits stack and registers, like Cintcode, VCODE, PASM and TAL, or
they use a computation stack as a simple unifying structure, as the JVM does. Dis

36

4.2 Registers

goes one step further by eschewing temporary storage in favour of using just mem-
ory locations. Finally, systems such as ANDF and Juice avoid referring to temporary
storage by describing computation statically, using trees, rather than dynamically.

4.2.3 Numbering

Mite allows an unlimited number of registers, as discussed in the previous section.
Most processors have global register numbers, but this is useful only because a regis-
ter number always refers to the same physical register. With an unlimited number of
virtual registers, it is necessary for good register allocation to be able to map virtual
registers to different physical registers at various times, so the advantage of global
numbering is lost. Globally numbered registers are also difficult to spill without ei-
ther wasting time and memory if they are spilt to some global area, or risking bugs
if they are spilt locally. Frame-local numbering allows efficient, simple spilling to the
current stack frame: the procedure is exactly the unit within which stack offsets to
spill locations are statically determined. This is why there is no point making the
numbering finer grained (for example, block-local).

The fact that registers must be explicitly passed to and returned from subroutines
and functions may seem like a disadvantage of using local numbers. In fact, to allow
subroutine and function calls to be both portable and efficient, it must be possible to
use different calling conventions on different machines, and in particular, to support
each system’s function calling convention. Hence, the number and type of arguments
passed to each function needs to be specified. Since the function’s type may not be
known at the call site (for example, if it is declared later, or in another module), and
since in any case most C calling conventions permit functions to be called with dif-
ferent numbers of arguments, the number and type of arguments must be specified
by the call. Actually, the type is already known (because the type of each stack item is
known), so only the number of arguments needs to be given in the

��� � � instruction.
Another consequence of local register numbering is that registers declared in

one subroutine or function may not be accessed by its callees. Allowing such access
would complicate the design (for example by adding a notation to name variables in
an outer frame) with little return; it is in any case possible to access registers in outer
stack frames via displays or static chains, as discussed in section 5.4.1.

Most other systems either lack explicit registers, like the JVM, directly expose the
machine’s register set, as VCODE does, or have a fixed small set, like Cintcode and
GNU lightning [16]. ICODE and PASM use a similar approach to Mite. The JVM and
PRACTICAL impose their own calling conventions, which are therefore simpler to
use, but require glue to interwork with native libraries. VCODE, ICODE and GNU
lightningabstract from the native calling convention (though lightningin particular
places restrictions on the sort of calls that may be made, forbidding more than six
arguments, and not allowing structures to be passed by value). These are all rather
more complicated to use than Mite, but allow slightly more efficient code to be gen-
erated, by revealing more details of the way that arguments and return values are
marshalled.

37

4 Rationale

4.2.4 Sizes

Mite restricts registers to a single size from a choice of two: 32 or 64 bits. These match
the word size of most modern microprocessors, while simplifying address calcula-
tions and the difficulties of performing word-size-independent arithmetic (see sec-
tion 4.1.3). With a little care registers can be treated as 32-bit words most of the time;5

in the worst case only two versions of code are needed, one for each word size. The
only major problem is the lack of machine-independent 64-bit arithmetic, but this
seems to be rarely used.

Most other VMs use completely fixed types, like the JVM, Dis and Cintcode;
some, like VCODE, also allow access to the natural machine word. Having a range
of types is more flexible than Mite’s solution, but requires the translator to gener-
ate special code for types not directly supported by the machine (for example, 64-bit
arithmetic on 32-bit machines), and type conversion code.

4.2.5 Constants

Since the range of immediate constants varies between processors and even between
instructions and addressing modes on the same processor, compilers cannot know
when to use an immediate constant and when to load the constant into a register.
Simplicity demands that Mite adopt one or the other mechanism uniformly. Tying a
constant to a virtual register allows it to be assigned permanently to a physical regis-
ter if it does not fit in a particular immediate field, rather than forcing it to be loaded
repeatedly. The

	����
instruction (introduced in section 3.2.2) declares constants, and

gives them static scope so that they can be more freely optimized, as the translator
knows that a constant register’s value is fixed.

Support for constants is limited in other systems: while most have some form
of constant, these tend either to be one-off immediate constants, or global constant
values; no other system discussed here gives constants a live range as Mite does.

4.3 The instruction set

The instruction set’s main features are:

Minimal abstraction The instruction set allows Mite programs to be portable, while
making the translation into native code trivial for the majority of instructions
on most machines.

Few instructions The instruction set follows the common observation that complex
instructions are rarely used, and provides just enough instructions to permit

5The results of most operations can be converted to a 32-bit result by simple truncation; only division
and right-shifting need special attention, as the contents of particular digits of the operands can
affect the contents of less significant digits of the result.

38

4.3 The instruction set

good code to be generated, rather than attempting to exploit CISC instruction
sets directly (though a sophisticated translator may do so by techniques such
as peephole optimization; see sections 5.5.2.1 and 6.2.3.2).

Three-operand instructions Most instructions take three operands, as discussed in
section 4.1.1.

Restricted addressing modes Immediate constants and register indirect are con-
fined to special instructions, and these are the only addressing modes (other
than register immediate; see section 4.1.1). The restriction on the use of imme-
diate constants is discussed in section 4.2.5.

Unlike many VM instruction sets, Mite’s is untyped. Typing is generally pro-
vided to aid safety, as in the JVM, and to allow the correct code to be generated for
different types of quantity, as in VCODE. Most other instruction sets contain many
more specialized instructions, such as the JVM’s Java method dispatch instructions.
Even VCODE has � 	 � � and � 	 � � for changing host byte order to network order and
vice versa. Mite omits both in the interests of language neutrality and simplicity. Un-
like ANDF and Juice, whose virtual instruction sets are focused on programs, Mite’s
is focused on the machine. In this respect, it is very like

��� �
, despite the superficial

difference that
�����

looks like a high level language while Mite is a virtual assembly
language.

The rest of this section first discusses some more specific features: register man-
agement, flags, function calling, division and the escape instruction (

� � �). It ends
with an examination of some features that at first sight might seem superfluous.

4.3.1 Registers

Section 4.2.1 discussed the need for an unlimited number of registers; here we ex-
amine the instructions needed to support their use. There are two main aspects to
register management: creation and destruction, and ranking. Finally, the

����� � �
	
in-

struction is explained.

4.3.1.1 Creation and destruction

The creation and destruction of registers performs three functions: it defines the live
ranges of virtual registers, declares subroutine and function arguments, and gives
the types of subroutines and functions.

This lumps a lot of functionality together, and omits some obvious distinctions.
Sections 5.2.3.2 and 6.3 discuss the disadvantages of not distinguishing temporaries
from register variables, and not identifying function arguments. The use of ����� and
� � ���

to give the types of a function or subroutine’s arguments may seem odd at first,
but it simplifies the translator, by not requiring extra code to read and construct a
new virtual stack configuration for each function and subroutine entry point.

39

4 Rationale

The ����� instruction is also used to create chunks, which were discussed in sec-
tion 4.2.2. Using

�����
and

� � � �
for chunks, and using the same numbering scheme

for registers and chunks, simplifies stack allocation in the translator: spill slots for
virtual registers can be allocated contiguously in the stack frame, along with chunks.
If such a scheme is used, then the space used by a stack item cannot be reused un-
til all the items above it have been destroyed. This leads to the requirement that
items are

� � � �
ed in stack order (as mentioned in section 4.2.2), which again simpli-

fies the translator. Note that the abstract semantics of KILL allow any stack item to
be destroyed (see section A.5.7). Similarly, chunks are forced to have a statically de-
termined size so that the address of each spill slot within the stack frame is known
statically, and code to access stack slots can be generated by the translator in a single
pass.

4.3.1.2 Ranking

Register ranking is perhaps Mite’s most important innovation, enabling the com-
piler and translator to cooperate to assign virtual registers to physical registers in-
telligently. The key problem that it attempts to overcome is that, whereas a native
compiler knows how many registers it has to allocate, and can thus perform regis-
ter allocation and assignment accurately, a code generator targeting Mite does not
know. Hence, virtual register allocation becomes trivial: all quantities that can occupy
a register may do so. Virtual register assignment is trickier: although the supply of
virtual registers is unlimited, performance is improved by minimizing the number
used, and by arranging registers on the stack so that their live ranges nest as well as
possible (see section 6.3.3).

Physical register allocation and assignment, however, become rather more diffi-
cult. There are several problems. Fundamentally, the difficulty is that register allo-
cation is usually performed entirely by one program, either the compiler, in direct
native code compilation, or by the translator, where the compiler generates virtual
code (for example, Java JIT translators must perform register allocation and assign-
ment). However, good register allocation and assignment are expensive: traditional
algorithms such as graph colouring have quadratic cost [127], and more recent al-
gorithms trade off performance against running time [51, 97, 127]. A Mite translator
performing full register allocation and assignment would therefore have to make the
same tradeoff. Hence it is necessary to find some way for the compiler to do most of
the work, allowing the translator to use a quick and simple register allocation algo-
rithm to obtain a good result.

This leads to another difficulty: traditional algorithms assume a constant num-
ber of physical registers, and perform spilling in tandem with allocation. Mite must
allow for all possible numbers of physical registers at compile time. Furthermore,
register allocation is not necessarily stable: an allocation for 8 registers might well
bear no resemblance to that for 9.

A register allocation algorithm can be turned into a ranking algorithm as follows:
perform register allocation assuming that there is only 1 register available. Then,

40

4.3 The instruction set

fixing this allocation, run the algorithm again, this time with 2 registers. Continue
until all the virtual registers have been allocated. The order in which virtual registers
are allocated to physical registers at each point in the program then gives their ranks.
Fixing the allocation after each pass gives stability, but means that the allocation is
not necessarily as good as the algorithm can achieve. The allocation is also limited
by the fact that stack items must be killed in stack order, and hence live ranges must
be nested (though this limitation could be removed; see section 7.1.1.1). However,
the success of basically linear algorithms such as [97, 127], which are perforce stable,
suggests that requiring stability need not mean a huge drop in code quality. Hence,
register allocation algorithms can be encoded directly using ranks, without needing
explicit support in the translator, so Mite can take advantage of improvements in this
field not only without changing its design, but without changing its implementation.
This ability seems to be unique to Mite.

A naïve compiler can simply ignore ranking completely. In this case, virtual regis-
ters are simply allocated to physical registers in the order in which they are declared.
This is what the LCC Mite back end does (see section 6.2.2), and even then, the code
quality is not disastrously poor.

Other systems rely on either an intelligent translator, like the JVM and Dis, or
ad hoc mechanisms, like VCODE, whose dynamic code generation interface forces its
clients to manage register allocation and spilling. ICODE is closest to Mite: it allows
its input to be annotated with information about usage frequency of code, and then
performs its own live range analysis and register allocation. It is hence rather more
complex than Mite, while allowing less communication with the compiler.

The quantitative effects of ranking on execution speed are discussed in sec-
tion 6.1.2; section 6.1.3 discusses their effect on code density.

4.3.1.3
����������	

Several different schemes for indicating the relative importance of different parts
of the program were considered. The aim was to enable the translator to generate
the best native code for the parts of the program executed most frequently. Most
of these schemes involved a code priority being attached to each basic block. These
schemes seemed awkward to implement, and the information they gave difficult to
use without global analysis of the Mite object code, which is typically slow and hence
runs counter to Mite’s goal of fast translation.6

By making the problem less general, it can be simplified: without inter-function
optimization, the only reason for one section of code to be executed more frequently
than another is that it is in a more often executed loop. The translator is not concerned
with optimizations such as finding invariants or unrolling; these are the compiler’s
job. The translator’s only concern is physical register allocation and assignment. In
straight line code it does not matter in what order register allocation is performed,
nor where spill code is placed. In the presence of loops, however, it makes sense to

6The possibility of using global optimization is discussed in section 7.2.3.

41

4 Rationale

perform register allocation for inner loops before outer loops, to give the translator
more freedom on code that will be executed more often. Also, spills and restores
should be moved out of loops wherever possible.

Performing register allocation for inner loops before outer loops is not easy in the
current design; a possible mechanism to introduce it is discussed in section 7.2.3. The���������
	 instruction (introduced in section 3.2.10) is a simple way to move spills out of
loops. Instead of trying to move spill code once it has been generated, a

���
� ����	
hints

that the mapping of virtual to physical registers should be brought up to date at that
point. Hence, virtual registers that happen to have a lower rank than the number
of physical registers are spilled, while virtual registers with a high rank that are not
currently assigned to physical registers are reloaded. This register traffic takes place
only once, outside the loop, and the loop is entered with the best possible register
binding (assuming that the ranks are optimal). Then, spills and restores should only
be generated in the loop if more virtual registers are used inside the loop than can fit
in physical registers, when spilling is inevitable anyway.

The quantitative effects of ���
� ����	 are discussed in sections 6.1.2 and 6.1.3.

4.3.2 Flags

Flags are normally computed as the result of an arithmetic or logical operation. They
are mostly used to decide the outcome of conditional branches, although their value
may be used directly, as when the results of several comparisons are combined, or
the carry out of an addition is used to perform multi-word arithmetic.

The implementation of flags varies widely. The Intel processor has a dedicated
flags register while the Alpha writes the result of comparisons to a general purpose
register specified by the instruction. The Intel sets the flags after each instruction
while many other processors do not; the ARM allows any instruction to be executed
conditionally on the contents of the flags, while most processors provide only condi-
tional branches and compare-and-set instructions.

Mite’s flags model is compatible with all these implementations. There is a vir-
tual flags register, which implements the four commonest flags: zero, negative, carry
and overflow. Each instruction’s effect on the flags is compatible with most common
processors; where their behaviour differs, Mite’s is undefined: for example, most
processors agree on how all four flags are set by addition, so

� 	
	
has a defined ef-

fect on all four flags, whereas there is little agreement about multiplication, so
��� �

has a completely undefined effect on the flags. Use of the flags register is heavily re-
stricted: it may only be read by a conditional branch occurring immediately after the
instruction that set the flags. Hence, on machines that lack a flags register, there is
no need to simulate the virtual flags register at run time. Instead, a temporary regis-
ter can be used to store the result of the instruction before a conditional branch, and
then released immediately after the branch. In addition, many common comparison
and branch pairs can be implemented as a single compare-and-branch instruction
(as available on the MIPS, for example).

42

4.3 The instruction set

Most systems, like the JVM and VCODE, use compare-and-branch instructions
rather than an explicit flags register. Section 7.1.3 discusses modifying Mite to use
this approach.

4.3.3 Function calling

In order to be able to interwork with system calling conventions, which are typically
geared to C, Mite needs special call and return instructions, and special function
labels, as described in section 3.2.7. The main features of system calling conventions
that these are needed to support are:

Callee-saved information Since many calling conventions save certain machine reg-
isters along with the return address, entering a function causes a chunk of in-
determinate size to be placed on the stack directly above the arguments. Since
the contents of the chunk is largely system-dependent, it is not specified (ex-
cept that it contains the return address), and writing to it is prohibited. This can
cause problems for programs that wish to inspect the contents of stack frames
(see section 7.1.2).

Variadic functions Calling conventions often treat variadic arguments differently
from normal arguments: for example, they may always be passed on the stack,
even if argument registers are available. Because of this, and in order to allow
a native function to access variadic arguments passed to it by a Mite function,
the layout of variadic arguments must be system-specific. This is unfortunate,
as it means that in general there is no portable way for Mite functions to read
variadic arguments. However, since function arguments tend to be passed as
a series of words, all this means in practice is that the stack direction of the
host machine must be computed at run time, to discover the order in which the
variadic arguments are laid out within the chunk.

Structure-returning functions Like variadic arguments, structure return values are
treated specially by most calling conventions, but not uniformly, so they need
special annotation in Mite code. If the address at which the result is stored is
determined by the caller, then the return item specifier given to the

��� � ��� �
in-

struction can be passed to the function; otherwise, the necessary manipulations
can be performed at the call site. Some rare conventions are not supported by
Mite’s scheme: for example, the ARM Procedure Call Standard [9] allows small
structures to be returned in a register rather than on the stack under some cir-
cumstances. Fortunately, this option is not widely implemented by compilers
precisely because it makes calling between native code from different sources
more error-prone.

4.3.4 Division

The
	 � �

instruction is intended to work well with both hardware and software divi-
sion. It takes advantage of the fact that software division routines usually calculate

43

4 Rationale

both quotient and remainder, while allowing optimization when using hardware di-
vision which usually calculates one or the other. The two types of signed division
reflect the fact that both are used. Mite is rare in providing this degree of flexibility
and precision: the JVM provides only rounding-to-zero division, and neither Dis nor
VCODE documents the type of division provided in their documentation.

4.3.5 Escape
� � � is a general-purpose trap-door instruction. Its main purpose is to allow system
calls to be made inline: since the function number is encoded in the instruction, it can
be directly translated to similar machine instructions such as the ARM’s � � � [54] and
the Motorola’s 	�� �
 [136]. However, there is nothing to stop implementations using
it in a more portable manner, for example to access functions in a run-time system;
it is sometimes more convenient to do this by number than by name, using ordinary
branches.

There is no set mechanism for passing parameters to � � � . In the ARM implemen-
tation of Mite, the given system call is performed with whatever is the current con-
tents of the physical registers; by knowing how the translator allocates subroutine
parameters and results, it is straightforward to use

� � � by wrapping each invocation
in a subroutine. An alternative, presented in section 4.6, would be to pass parameters
to � � � in the same way as to call a function. In the case of the ARM, this would avoid
loading and storing ten registers around system calls that only use one, for example.

Several other systems provide comprehensive I/O libraries. The JVM as part of
Java and Dis as part of Inferno are exemplary in this respect.

4.3.6 Seeming superfluities

4.3.6.1
����� ��

and
�
 �����

���
� ��
and

�� ����� may at first seem rather high level constructs to implement in Mite,
but they are in fact the only mechanism for non-local return from a subroutine or
function. In addition, as demonstrated in section 5.4.2, they can be used to implement
most common styles of exceptions in high-level languages.

The reason for such high-level primitives is that non-local return involves un-
winding the stack. Although this is generally implemented by simply setting the
stack pointer to a previously saved value, then branching to the return address, in
Mite it must be handled rather more delicately.

Most of the difficulty in designing a mechanism for non-local return arises from
Mite’s register stack. There are three main problems. First, the physical to virtual
register binding must be restored correctly when a handler is reached by a

�
 � � �
.

Secondly, unlike a
��� ��� instruction, which calls a routine with a known return type, a

handler may be reached from anywhere, with different types of return value. Thirdly,
the stack pointer must be reset correctly by a

�
 �����
, a delicate operation when the

virtual register stack is taken into account.

44

4.3 The instruction set

in this part of the stack
saves only registersSYNC

THROW code goes here

callee-saved registers

incoming arguments

top of stack at handler

top of stack

handler

thrower

handler’s
callee

Figure 4.1: Throwing from one stack frame to another

When a
��� �

is executed, the physical register set current at the return site must
be restored, and any return values written to the correct registers and memory lo-
cations. The same process must occur when a

�
 ��� �
is made to a handler label.

However, while a
��� �

instruction returns to code just after a
��� � �

, which can restore
caller-saved registers and store results, a

�� ����� instruction goes straight to a handler
label. Hence, the label itself must cause native code to be inserted to deal with the
result passed to the

�
 ��� � , and the virtual to physical register binding. This is easily
achieved by having a standard register binding enforced at handler labels, with just
the return value mapped into a register, and all other virtual registers spilt. It is most
natural for

�
 �����
to pass its result in a register rather than on the stack, since it alters

the stack pointer as part of its operation. This method has the further advantage that
handler labels may also be reached by a normal branch, or by falling through from
the previous instruction (provided that the translator inserts code just before the han-
dler label to spill all the virtual registers, except the one that is normally overwritten
by the result, which should be moved into the appropriate register). This allows a
natural implementation of C’s ��� 	 � ��
 and

� � � � � ��
 (see section 5.4.2.1).

There is one more piece in the puzzle of ensuring the correct virtual to physical
register binding when a handler label is reached: the virtual registers that are as-

45

4 Rationale

thrower
and

handler

in this part of the stack
saves only registersSYNC

THROW code goes here

SP is reset to here

Figure 4.2: Throwing within a single stack frame

sumed to be spilled when the handler label is reached must indeed be spilled, and to
the correct location.

Call the routine that executes the
�� ����� the ‘thrower’, and that in which the han-

dler label is found the ‘handler’. The two possible situations are illustrated in fig-
ures 4.1 and 4.2: either the thrower is the same routine as the handler, or it is deeper
in the call chain. Clearly, the registers active at the handler label must have been spilt
by the time the

�
 �����
is performed. If the thrower is the same as the handler, this

is easy: the
�� ����� instruction itself can perform the necessary spilling. In order to

minimize the amount of spilling, this is done by means of a ��� � � annotation, which
effectively enforces a caller-saves calling convention; indeed, it is superfluous if the
system calling convention is purely caller-saves.7 Only registers active at both the�� � � �

instruction and at the handler label need be spilt. If the thrower is not the
same as the handler, it is not possible to wait until the

�� � � � instruction to perform
the spilling: the thrower has no way of knowing which registers need to be spilt and
where their current values reside. Instead, the ��� � � annotation is placed on the

��� � �

that leaves the handler.
Whether it is used on

�
 ��� �
or

��� ���
, ��� � � is optional: for

�
 �����
it need only be

used when the handler could be the same as the thrower; for
��� � � , when the callee

(or any more deeply nested callee) could
�� �����

to the caller.
The second problem, dealing with the return type of a

�
 � � �
, is much simpler.

At a normal ��� � , the return type is known; handlers, however, may be “returned”
to from anywhere. Mite’s solution is to fix the “return type” of

�
 � � �
to be a single

register value. If more than a single value needs to be passed, the value can be a
pointer, and the actual result placed in the heap, or deeper in the stack.

7 ������� is the same as
�����

’s 	�
��� annotation. This is used at a call site to specify variables that are live
at another point in the procedure, which may be reached by a non-local return from the call about
to be made.

46

4.3 The instruction set

The third problem is to ensure that the stack pointer is correctly reset by a
�� � � � .

A
��� ���

instruction implicitly saves the current value of � � , to be restored by the
corresponding ��� � . Obviously this is not possible for

�
 � � � , where the return site is
not known, nor who will return to it. Hence saving and restoring � � for non-local
return must be done manually. Unfortunately, it is not possible just to read the value
of � � , and then write it back later. First, making � � directly readable and writable
would involve devising rules for its use in portable code, which would be hard to
get right, as its use would have to be heavily restricted. Secondly, how would one
calculate the value of � � needed at the handler label from elsewhere in the function?
The value of � � will typically vary during a function as virtual registers and chunks
are created and destroyed. Hence, the

���
� ��
instruction is used to obtain the correct

value of � � , by allowing the translator, with its knowledge of the generated code, to
calculate it.

For similar reasons,
�
 � � � is needed. It may seem to be merely an abbreviation

for

return value in 1����� � � ���
set

� �

� � � branch to handler

but it covers up some nasty surprises: what if having executed the first instruction it
turns out that register 3 in the next instruction is currently spilt? It has to be reloaded
from its spill location, probably on the stack, but that is no longer accessible, as � �

has already been reset to the value it takes at the handler.
Having obtained a model of non-local return that is rather high-level compared

with the rest of Mite’s instruction set, it must be demonstrated that it is expressive
enough. As the names “

����� ��
” and “

�
 ����� ” suggest, the aim is to support excep-
tions; this is demonstrated in section 5.4.2. Other sorts of non-local return, such as
tail call (see section 7.1.5), continuations and coroutines, are not covered. Simple
continuations can be implemented with indirect branches; coroutines, which require
multiple stacks, are beyond the scope of Mite’s design, and would currently require
the multiple stacks to be emulated for a portable implementation.

���
� ��
and

�� �����
are unlikely to be used by back ends for existing high-level

language compilation, where exceptions are generally implemented by the run-time
system, which may even be part of the operating system, as in the case of

� � � � � �

and � � � � � on many operating systems. However, if Mite is to be used in OS ker-
nels, it can usefully provide an exception mechanism to be used by all language
implementations.

Given the lengths to which Mite’s design has to go to provide portable non-
local return, it is hardly surprising that other VMs tend not to, apart from those
whose model of control flow is completely concrete, like Cintcode, and hence have
no need of explicit support.

� � �
, which explicitly models non-local return, and the

JVM, whose Java exceptions mechanism can encode many sorts of non-local return,
are exceptions. Dis and VCODE, on the other hand, do not provide any sort of non-
local return.

47

4 Rationale

4.3.6.2 � � ���

� � ��� is rarely useful, but it is cheap to implement, because Mite must provide rou-
tines to swap two registers for register shuffling. Other ways of expressing the op-
eration will tend to generate less efficient native code, so it seems more of a waste
to omit that to include it. Having a more general register-permutation operation,
though by the same argument it would use extant routines in the translator, would
have almost no practical benefit.

4.4 Object format

The object format’s main aims, as stated in section 1.2.2, are to be simple, quick to
read and write, and endianness-independent. The encoding described in appendix C
achieves these aims by being a simple byte code. Multi-byte quantities are encoded
as single bytes in a uniform way rather like the UTF-8 encoding of Unicode [53];
uniform methods of packing structures such as lists are also used, and instructions
have a one-byte opcode, which is quick to read and decode; bit-field patterns within
opcodes are reused where possible. Hence, object files can be read with a few primi-
tive routines, thus making it easier to write a correct decoder. The lengths of lists are
stored before their contents; similarly, the length of the object file and the number of
labels it contains is given in the header. This means that most data structures can be
allocated to their final size in advance, and means that the end of lists (or the object
file, when loading it) do not have to be detected by a marker, which makes reading
an object file quicker, and writing a robust translator simpler.

The object format is not particularly compact, although it compares reasonably
with native code (see section D). However, it is arguably better to use compres-
sion techniques such as SSD [68] rather than make the object code itself extremely
compact. The advantages are that a better compression method can be introduced
without changing the format; conversely, a new format can be introduced without
needing to rework the compression scheme; finally, ease of decoding and traversing
the object code is not hampered by built-in compression. SSD-compressed code can
be decoded at a fine grain; it is not necessary to decompress an entire program be-
fore starting to translate it. Finally, SSD exploits the structure of both the instruction
set and individual programs to achieve compression ratios comparable with good
general-purpose data compression algorithms; it would be time-consuming to de-
sign a special-purpose encoding that gave as good compression, and it would be
highly sensitive to changes in the instruction set, unlike SSD.

Other VMs use a wide range of object formats. At the highest level,
��� �

has no
object format, but stores its programs in conventional text files, using a C-like nota-
tion. Juice’s “slim binary” format takes advantage of the compressibility of abstract
syntax trees. The JVM’s class file format is complicated, with detailed support for
the Java type system; Cintcode is a simple byte-code in which literal data and in-
structions are intermingled. Dis’s object format is a half-way house: structured, but

48

4.5 Semantics

simply, separating code, data, types and symbols. It makes little sense to compare
the different object formats directly, as they reflect strongly the widely differing ends
for which their VMs were designed.

4.5 Semantics

The aim of Mite’s semantics is not primarily to allow proofs about programs, but
simply to make Mite’s definition as brief and unambiguous as possible. Mite needs
a mathematical definition because it is designed for multiple implementations on
widely differing machines.

The semantics given in appendix A is a small-step operational semantics; it de-
fines Mite’s behaviour in terms of changes in state on an instruction by instruction
basis. In linguistic terms, it can be thought of as a dynamic semantics. Unfortunately
there is a tension between the needs of the designer and user, for whom a dynamic
semantics is easier to specify, understand, and reason about, and the needs of the
translator, which must reason about the program statically. The meaning ascribed to
Mite’s assembly language in appendix B is therefore static, and in some places it con-
flicts with the dynamic semantics, such as over the meaning of

�����
and

� �����
. Other

elements, such as register ranking, are deliberately omitted from the semantics, as
they do not affect the meaning of programs, but are rather hints to the translator.

Overall, the semantics provides a clear and simple specification of Mite’s be-
haviour, but needs further work to turn it into a basis on which proofs can be
made. The obstacles are discussed further in section 6.3.3, and their resolution in
section 7.1.7.

Other than Mite, only TAL was designed with formalization in mind. However,
largely because of its popularity, many attempts have been made to give a formal
semantics to the JVM [5], which illustrates the value that is increasingly attached to
formal descriptions of key software components.

4.6 Shortcomings

Mite’s design has some shortcomings, which have arisen for different reasons. Some
are due to compromises between the different goals, and lack of time; these are dis-
cussed in section 6.3.3. Some lie outside the scope of Mite’s goals (section 1.2.2); nev-
ertheless, it is worth looking at how hard they would be to add. Dynamic code gen-
eration is discussed in section 7.2.5, sandbox execution and threads in 7.2.6, and ver-
ifiable code in 7.1.7. Garbage collection is considered in section 5.4.3. Possible future
improvements and extensions to Mite are presented in chapter 7.

Finally, some features have simply been omitted or implemented in a less than
ideal way. As well as the more important deficiencies, there are a myriad tiny lacunae
in the design, and simply not enough time to deal with them all. A few examples
follow:

49

4 Rationale

�
	
with sign extension Allowing �
	 to sign-extend the quantity it loads would be

used by most compilers, and is directly supported by most processors.

Strict constant registers Allowing constants to be loaded with � ��� conflicts with
the intent of section 4.2.5, and was only left in because LCC could not use con-
stant registers (see section 6.2.2). It should only be possible to make a register
variable with ���
	���� .

Indicate stack space usage in functions If each function had the total amount of
stack space used by that function encoded at its start, the translator could eas-
ily implement stack pollution, and avoid the problem of frequent stack pointer
updates discussed in section 6.2.3.2. Since the assembler can calculate this in-
formation itself, no change would be required to the semantics or assembler
syntax.

Parameters to
� � � The

� � � instruction could be more efficiently implemented for OS
call mechanisms that take a variable number of parameters if it took parame-
ters in the same way as

��� ���
, as only those virtual registers holding parameters

would need to be passed. However, the first parameter should still be immedi-
ate, as discussed in section 4.3.5.

Code sharing As mentioned in section 3.5, code sharing between subroutines and
functions is restricted in Mite. Code sharing was omitted because it is tricky
to implement and only of use to compilers that perform inter-procedural op-
timization. Most systems avoid this problem, either through having simpler
semantics for the stack than Mite, like Dis, or by being lower level, like Cint-
code. Systems similar to Mite, such as PASM and VCODE, tend to forbid code
sharing; in any case, it is hard to reconcile with their code generation interfaces,
which translate one function at a time. Sections 6.1.6 and 6.2.3 suggest that Mite
should also translate one function at a time, and per-function translation is one
of the changes to the implementation proposed in section 7.1.6. Ways of intro-
ducing code sharing that are compatible with function-at-a-time translation are
discussed in section 7.1.4.

4.7 Summary

This chapter has shown why, given the goals set out in section 1.2.2, Mite was de-
signed the way it is. Some of the features discussed, such as the load-store architec-
ture, were chosen from the range of existing solutions to the problem of VM design.
These can also be thought of as features which classify Mite, or again, Mite’s view of
the “right way” to do things. Others, such as the register stack and three-component
numbers, add flexibility to Mite’s design, and make it harder to classify precisely,
moving tradeoffs out of the hands of the VM designer and into those of the compiler
writer. While the second class of features may seem more important, and certainly
contains Mite’s novel contributions to VM design, the first contributes just as much

50

4.7 Summary

to its usefulness. The success of a new design often rests more on the skill with which
it chooses the best elements of the state of the art than the degree to which it inno-
vates. Indeed, as mentioned in section 2.1, perhaps the greatest strength of the JVM
is that it contains no innovations, but is a novel and skilful combination of existing
techniques. Mite must innovate, as it attempts to combine a range of features and
abilities previously seen as mutually incompatible. However, it nevertheless recog-
nizes the dangers of pointless innovation, and within the limits set by its design
goals, is as conservative as possible.

51

5 Implementation

Mite’s implementation consists of two programs: the assembler, which works like a
conventional assembler, producing object files from assembly source, and the trans-
lator, which loads, translates and executes object files. The translator currently pro-
duces code only for the ARM processor. To test Mite’s suitability as a compiler tar-
get, a Mite back end was added to LCC [38], a well-documented retargetable ANSI C
compiler. The assembler and translator are literate programs. The system is available
under the GNU General Public License from http://sc3d.org/rrt/.

This chapter is organized as follows. First, section 5.1 gives a brief description of
each component; then in section 5.2 a sample translation is followed from C source
through Mite assembler to ARM code, to illustrate the translation process. Section 5.3
then discusses highly optimizing compilation for Mite, by taking the output of LCC’s
Mite back end and hand-optimizing it using the same tricks as GNU C.

This, however, only illustrates the translation of one language for one processor,
and Mite is supposed to be machine and architecture-neutral. To show how Mite
can be used for other languages, section 5.4 discusses three mechanisms not found
in C: static chains, exceptions and garbage collection. In each case, several possible
implementations are discussed, a few involving additions to Mite’s design.

Section 5.5 demonstrates Mite’s architecture neutrality in a similar way. Since
most current workstation architectures are RISC machines like the ARM, translation
for them is mostly straightforward. However, most other RISC processors do not
have a dedicated flags register, so Mite’s flags register must be treated differently.
This is discussed before turning to the more daunting prospect of translating Mite
code on Intel IA-32 machines. Two of the main difficulties presented by this architec-
ture are discussed: the paucity of registers, along with the special purpose nature of
several of them, and the fact that its instructions are not three-operand, but two, one
or even zero-operand.

5.1 Mite’s components

An overview of each component is given below; more details of key algorithms are
given in the next section.

52

5.1 Mite’s components

Fix up

Initialize
data structures

Decode

Translate

Virtual
code

Native
code

Figure 5.1: Block structure of the Mite translator

5.1.1 Assembler

The assembler is written in ANSI C. Its only system dependency is on the word
length; this could be removed by using the new ISO C headers. The module which
writes object files can be used separately, for example by a compiler which generates
binary code directly.

5.1.2 Translator

The translator is also written in ANSI C, and most of its system dependencies are
isolated in a single module. Its block structure is shown in figure 5.1; it is about
3, 500 lines long. It operates as follows:

1. The object file is read in, and its header’s validity is checked.

53

5 Implementation

2. Based on the header, some data structures are initialized, such as the array that
holds label information.

3. The instructions are decoded and translated (these phases are combined) into
a series of native code fragments, roughly corresponding to basic blocks.

4. The code is fixed up by inserting the correct values for branch targets and ad-
dress constants; at the same time, it is concatenated into a single block of native
code, which includes literal data.

5. The native code is executed.

5.1.3 Compiler back end

The LCC back end was written using LCC’s back end generator system,
����� � � . This

generates the back end from a tree pattern grammar for turning LCC’s intermediate
code into assembler, and some hand-written routines which implement part of LCC’s
code generation interface for instructions that cannot be handled by

����� � � , such as
function call and block copies. A typical back end is about 1, 000 lines, of which 150
or so are always the same; Mite’s is less than 600, because many details that must be
dealt with by native back ends, such as calling conventions, are left to the translator.

Writing a back end for an existing compiler tested Mite’s goal of integrating well
with current compiler technology. Two other reasonable courses of action would
have been to write a custom back end, or to have used LCC as the basis for a new
compiler. The success of the approach used is analysed in sections 5.2.3 and 6.2.2.

5.1.4 Run-time system

The translator has a minimal run-time system, containing just implementations of
Mite instructions whose implementation is too long to inline each time the instruc-
tion occurs. In the ARM implementation division and memory block copy routines
are provided (the ARM has no divide instruction). On most architectures, probably
just the block copy would be required; on CISC machines such as the IA-32, no run-
time system would be needed.

5.1.5 Standard library access

One problem with compiling C portably is that there is no portable way of calling
library routines. Some operating systems provide dynamic linking; others do not,
and where it is provided, the mechanisms differ. Mite needs dynamic linking in some
form because it translates its programs at load time, and hence also needs to link
them to system libraries at load time.

The current Mite translator uses a simple trick to provide portable access to the
standard ANSI library routines (except those which may be defined as macros): it ini-
tializes an array of pointers with the entry point of each routine, and then looks up all

54

5.2 A sample translation

external function calls (those where the label is preceded by �) in the corresponding
symbol table.

With static linking, this results in the entire standard library being linked into the
translator, but with dynamic linking, this is avoided. There is no speed penalty in
either case, as the translator compiles normal function calls to the addresses stored
in the lookup table.

Another problem with compiling C portably (as with any language) is mar-
shalling. In general this problem must be solved by forcing libraries to present a
portable interface, whether directly, or via an interface description language. Mite
ignores the problem; indeed, for most functions on most machines, it can be avoided
by assuming standard representations (for example, � � �� is generally a byte, ��� 	
four bytes,

� ��� � and pointer types a word), but this is not good enough for fully
portable code.

5.2 A sample translation

To see how Mite in action, we now follow a sample translation from C to Mite code,
and then to ARM code. So that the translation process can be followed in some detail,
only a single short function is examined. It is the � ���

���
function of the � � � bench-

mark (see section D), which counts the number of times each word occurs in a text
file.

5.2.1 C code

The C code is as follows:
��
 ��������

� �
	 � � � �� � ���	 �������
� �
 	����	 � � ����� �
	 ������� � �
��
����� � �
� � �
������� �
�
���	 � �����	 � ���

������� � 	������	 � ��� 	 ������� ��� �
� � ���! � "�
��	�	��������	 �������#�
	 �
� � 	 � � �$

Here, � � � 	 is the root of a binary tree, whose nodes are statically allocated, and ��� � 	
is the number of the next unused node. The tree is initialized by the two assignments,
and then the main loop is entered: � � 	 � � � �

���
returns the next word in the input

stream, and
� ���!% �

��
looks it up in the tree, installing it if it is not already there.

Finally, 	�
�� ��� 	
��

displays the words in frequency order.

5.2.2 Translation to Mite virtual code

The output of LCC for this code is as follows:

55

5 Implementation

�
��	 � ��
 ������� return value����� ����� ���	 ������ � � 	 ����������
three temporaries�����

�����
����� ��� � 	 ������� �
����� ��� ���
� �� � ����� ���
����� ��� � ������ ��
����� �
����� ��� ���
� �� � ����� ���
� � � ��� go to test of � � �
��� loop
��� ������ ��� �

get address of 	 ����������
declare argument register����� ��� �
load argument

� 	 ���������� ���	
get address of ���	 ������
declare argument register����� ��� � load argument � ��	 �

��� ����� ��������� � 	 � � � �
 � call ������� � 	����� ��� � get returned value������� discard returned value����� � ����� ��� indirect through pointer����� ��� ��
 load 1 into temporary� ��� ���	��� � increment counter� �� � ����� ���
��� ����� ���	

get address of ���	 ������
declare argument register����� ��� �
load argument � ��	 �

��� ����� � � �������	 � �
�� �
��
call � ���
� ��	 � � ������ ��� �
get returned value������� kill returned value register����� ��� ��� load 0 into temporary� ��� � � ��� test of � � �
��� loop����� ��� � loop while true����� ��� � get � 	 ���������� � ����� ���

����� declare argument register����� ��� � load argument 	������
��� ����� � ��	!	����� �
�� �
 �

call ��	!	�� ����� ������ ��� �
get returned value�������
discard returned value register����� ��� ���
load return value of ��
 ���� �

���
	 ����
���� ��� return from ��
 ���� �������� kill remaining stack items

56

5.2 A sample translation

��� ���
��� ���
��� ���
��� ���
��� ���
��� ���

In examining this translation, the focus will be mainly on the issues raised by
writing a Mite back end for LCC. Details of LCC’s workings that are not pertinent to
code generation for Mite are not elaborated.

As shown by the comments, the C program has been translated straightforwardly
into Mite code. There are several interesting features of this translation:

Function prologue The function itself starts with a label preceded by � ��
 . � indicates
a function label, � that the function is variadic (since it was not given a proper
ANSI declaration), and
 that it is publicly visible (since it is implicitly declared
� � 	 � � �). Stack items are then declared: first, the return value (a register, since
� ���

���
returns an ���), then the automatic variable. Two of these are chunks:

� � � � because it is an array, and � ��� 	 because its address is taken, and Mite
registers, like ordinary machine registers, do not have an address. Note that the
bottom-most stack item is the return chunk, which is implicitly declared by the
function label (see section 3.2.7). It contains the return address and any callee-
saved registers or other information required by the system calling convention.

Temporaries Temporaries are declared at various places in the function, starting
with three immediately after the prologue. Because LCC does not handle vari-
able numbers of registers gracefully,1 registers once declared remain live until
the end of the function, with the exception of outgoing function arguments and
incoming return values. A better approach would be to declare registers used
to hold automatic variables at the beginning of the block in which they are de-
clared, and to destroy them at the end. In this example, there is only one block,
so this strategy would not help; here, the other register allocation problems
described below are more relevant.

Constants Where constants are used, as in the test of the � � � � � loop, the constant
value is always loaded into a virtual register. In a simple-minded translator,
this will generally result in a physical register being allocated to hold the con-
stant. Mite provides constant registers to avoid this problem, but LCC does
not use them because it has no way of distinguishing constant from variable
registers.

1Among other problems, the hooks
����� 	�� ���
	��� and

����� 	�� �������� , which are run at the beginning and
end of each code block respectively, are called before the number of registers used by the block is
known.

57

5 Implementation

Register targeting Since LCC’s intermediate code does not give information about
the number of arguments to a function, the Mite back end cannot use LCC’s
register targeting mechanism for function calls, because the relevant register
numbers are not known until the code has already been generated. This results
in inefficient code, as shown in the example below on the left; a better compiler
might generate the code on the right.

����� ���	� get address of
 ��������
declare argument register

���
����� �����

load argument
 ���
� �����������

Return values are similarly handled inefficiently; again, the examples below
show the code actually generated on the left, and that which a more intelligent
compiler could generate on the right.

��������� � 	�� ��
 ���
��������� �"!
call

	 � ��
 ����� �� ������� � 	 � ��
 ���������#��� �$!
����� ���	%

get returned value&(' ���
kill returned value register�����)��	*+ load 0 into temporary ���,�)��-*+

�,.�/ �	����)
test of
�021 �
� loop

�,.�/ �	%���)
kill returned value register

&(' ��

��������� � ��3 � 1 � � ������� �$!
call ��3 � 1 � � � ������� � ��3 � 1 � � �����4� �$!

����� ���	%
get returned value&(' ��� discard returned value &�' ��

(In the second case, it might seem even better just to generate

��� ����� � ��	!	����� �
���� � call ��	!	������� �

but this would violate 	�
�� ��� 	
��

’s type, and might not work on some systems.)

Common sub-expression elimination LCC is rather poor at this optimization; the
immediate constant 0 is loaded once redundantly while initializing ��� � 	 near
the start of the function.

Functions and function calls While all the above points concern limitations of
LCC’s Mite back end, most of which are at least partly due to Mite’s design,
there is one respect in which the Mite back end is superior to those for other
architectures: it has far less work to do to generate code for function entry, exit
and call. The resulting virtual code is also simpler in these areas; the trans-
lator must take care of all the fiddly details. This is a good example of reuse
arising from Mite: the code to handle functions is implemented just once, in
the translator, and can be used by any number of compiler back ends. This is
especially beneficial as functions and function calls are often one of the trickiest
and most time-consuming parts of a compiler back end to implement. Indeed,
� � � � 	 � ���

���
, which generates function prologues and epilogues, averages 112

lines long in the native LCC back ends, but is only 49 in Mite’s. The only native

58

5.2 A sample translation

back end whose � � � � 	 � ���
���

is less than 100 lines is that for the Intel IA32,
which is only 35 lines.

5.2.3 Translation to ARM assembly

The Mite translator produces the following ARM code from the Mite code above:

� ��
 ��
� � � � 	 � � 	 function prologue
� � � � � � 	 ��� � ��	 � � 	 $
� � � � � � 	 � � ��	 � � 	 ��� ��	 � � 	 � ��	 � 	 �

$
����� ��	 � � 	 � �����
� � 	 � 	 � � �
� ���
� � � � �
 �� � � � � ��
������� � 	 � � 	 � ��� �

reserve stack space

 � ��� 	 ��� � 	 � ��
 � 	 ������� �
� � � 	 ���	���
� �
	 	 ��� � 	 ��� �����

 � 	 	 ��� � �����������
 � load address of ��
���

 � � 	 ��� 	 ��� �
� �������
�� 	
� � � 	 ���	��� �������� �
� �
	 	 ��� � 	 ��� �����
� ��� go to test of � � �
��� loop
��� �

 � ��� 	 ��� � 	 � ��
 �

get address of 	 �����
� � � � 	 ��� 	 � load argument

� 	 �����
������� � 	 � � 	 � ���

reserve spill slot for argument regis-
ter

 � ��� 	 ��� � 	 � �����
get address of ���	 �

� � � � 	 ��� 	 � load argument ���	 �
����� � 	 � � 	 � ��� reserve spill slot for argument regis-

ter
� � � 	
�� 	 � load arguments into correct registers
� � � 	 ��� 	 �

 � � � 	 � � 	 � � � remove argument register spill slots
� � ��������� � 	 call ������� � 	�� �
� � � � 	 ��� 	 � get returned value
� � 	 	 ��� � 	 ��� �����

indirect through pointer
� � � 	 ���	��

load 1 into temporary

 � ��� 	 ��� 	 ��� 	 � increment counter
� �
	 	 ��� � 	 ��� �����
���

 � ��� 	 ��� � 	 � ��
��

get address of ���	 �
� � � � 	 ��� 	 � load argument ���	 �

2The � causes the stack pointer ($3) to be updated by the store instruction, so that the instruction is
effectively a multi-register push.

59

5 Implementation

��� � � 	 � � 	 ����� reserve spill slot for argument regis-
ter

� � � 	 � � 	 � load argument into correct register

 � � � 	 � � 	 �����

remove argument register spill slot
� � � �����
���	 � call � �
�
���	 � � �
� � � � 	 � � 	 � get returned value
� � � 	 � �	���

load 0 into temporary
� � 	 	 � � 	 � test of � � � ��� loop
� �� ��� loop while true

 � � � 	 � � � 	 ����
 � get 	 ���
�
� � 	 	 � � � 	 ��� �����
� � � � 	 � � 	 � load argument 	 �����
��� � � 	 � � 	 ����� reserve spill slot for argument regis-

ter
� � � 	 � � 	 � load argument into correct register

 � � � 	 � � 	 �����

remove argument register spill slot
� � � ��	!	����� call ��	�	���������
� � � � 	 � � 	 � get returned value
� � � 	 � �	���

load return value of ��
 ���� �
���

� � � 	 � � 	 � put return value into correct register
� �	��� � ��	 � ��	 � � 	 � � ��	 � � 	 � 	 �

$ � � return from ��
 ���� �

For clarity, labels have been inserted and branch targets turned into symbolic ad-
dresses. The following special registers are given names:
 � the program counter,

� �
the link register (saved return address), �
 is the stack pointer, �
 the frame pointer,
� � the stack chunk limit and �
 , a scratch register. The other registers are named � �

to ��� (the ARM has sixteen registers).
By way of comparison, the ARM code generated by LCC’s ARM back end is:

� ��
 ��
� � � � 	 � � 	 function prologue
� � � � � � 	 � � � � � � � ��� ��	 � � 	 � ��	 � 	 �

$
��� � ��	 � � 	 �����
� � 	 � 	 � � �
� ��� � � � � �
 �� � � � ��	 � �����
��� � � 	 � � 	 �������

reserve stack space
� � � �

� �	��� 	������ � �

� � 	 � 	 � � 	 � � ����� load constant 8 bytes ahead4

� � � 	 � � 	 � branch past constant
� � � � constant 0
� ��	 �

� � � � 	 � � 	 �
� � 	 �

� � � 	 � � ����� load address of ������
� � � 	 � � 	 �

3The � causes the condition flags, which are stored in the top 6 bits of 3 	 , to be overwritten by the
load, thus preserving the flags across the function.

4 3 	 holds the address of the current instruction plus 8 bytes.

60

5.2 A sample translation

� � � � ������ constant address of ������
� � � �

���	���
� �
	 �

��� �
�
��� ����� �������� �

� ��� go to test of � � �
��� loop
��� �

 � �

�� � 	 � ���

load argument ���	 �
� � �
 ��� � 	 load argument

� 	 �����
� � ��������� � 	 call ������� � 	�� �
� � 	 �

��� �

�� ����� indirect through pointer

 � � �

���
�
��� ��
 increment counter

� �
	 �
��� �

�� �����

���

 � �

�� � 	 � ��� load argument ���	 �
� � � � ���
� ��	 � call � ���
���	 � � �
� � 	

��	��� test of � � �
��� loop
� � � ��� � loop while true
� � � �

��� � 	 load argument 	 ���
�
� � 	

�� �

�
��� �����

� � � ��	!	�� ��� call ��	!	������� �
� � �

��	���

load return value of ��
 ������
���

� ��� �
 ��	 � � � � � � ��� ��	 � � 	 � 	 �

$ � return from ��
 ������

The following sections compare the two translations.

5.2.3.1 Idiosyncratic code

Most of the ARM instructions clearly correspond (usually one-to-one) to Mite in-
structions. Others have a less clear correspondence, or none at all; they are as follows.

The first five instructions are the function prologue, including stack checking
code (the fourth and fifth instructions) that allocates more stack space if necessary.

The adjustments of �
 generally correspond to the creation and destruction of
registers. Mite’s translator reserves a spill slot for each register, in the position on the
stack corresponding to the register’s number. This avoids needing a spill slot allo-
cator, at the cost of higher stack usage. Many compilers allocate all the stack space
required by a function at the beginning, and deallocate it at the end; in addition,
they often let outgoing function arguments accumulate until the present function re-
turns, a practice known as “stack pollution”. Mite uses the stack more conservatively,
which incurs a slight time penalty, because of the more frequent adjustments of the
stack pointer, and more than claws back the extra stack usage caused by using fixed
spill slots.

Two other features of stack management are worth noting. First, Mite updates �

lazily, waiting until its value is needed. This avoids updating it at all in leaf functions
that do not spill or use stack-allocated chunks. That is why the instructions that al-
locate the spill slots for argument registers often appear after the register has been
given a value, whereas the ����� instruction declaring the register in the Mite code

61

5 Implementation

must appear before the register is first used. Secondly, the spill slots for argument
registers must be removed before the function is called, so that arguments passed
on the stack appear in the right place: this is the reason for the adjustment of �

(� �) just before the call (

���
). This code could be omitted for functions which take

all their arguments in registers, but is not. Also, some function calls, such as that to
� � 	 � � � �

���
, cause code that updates �
 to be generated needlessly: �
 is updated be-

fore the arguments are moved into the correct registers, in case any argument needs
to be loaded from or stored to the stack.

5.2.3.2 Physical register usage

Unfortunately, rather more physical registers are used than is strictly necessary, and
quantities such as argument and return values are often copied more than they need
be. This is partly due to the lack of virtual register targeting in the LCC back end,
which was discussed in section 5.2.2. The rest, such as the copying of arguments
into the correct physical registers before each function call, is due to Mite’s lack of
physical register targeting: the virtual code has no way of signalling to the transla-
tor that a particular quantity is a function argument. There is also a lot of physical
register spilling, reloading and shuffling at branches; this is explained further in sec-
tion 5.2.3.5. A change to the design to allow physical register targeting is discussed
in section 7.1.1.3.

Any implementation of Mite also has to deal with register allocation issues spe-
cific to the host machine. These tend to centre on the calling convention, which dic-
tates both how registers are used within a function, and how they must be arranged
at the instant of procedure call and return. Most ARM-based operating systems use
the ARM Procedure Call Standard [9]. This allocates the first four registers as pro-
cedure arguments; any that are not used for arguments may be used freely by the
callee, and they are therefore caller-saved. The next six registers are callee-saved,
and therefore generally used as register variables. The remaining six registers are
reserved by the calling convention, as described at the start of section 5.2.3.

Since Mite has no register typing, the translator uses the first ten registers without
distinguishing register variables from temporaries, but to avoid excessive saving and
restoring around calls, the registers are allocated in order from highest to lowest, so
that the register variables are used before the argument registers.5 The translator tries
to reload spilled values into the registers they occupied before the call, so that at the
end of loops the virtual registers tend to be held in the same registers as at the start,
and little shuffling is required before the branch back to the start (see section 5.2.3.5).
Apart from this, there are few optimizations. The translator avoids the expense of
counting how many registers each function uses, and thus saves all the callee-saved
registers in every function (see sections 5.3.3.2 and 6.2.3.2.

5The test results in figures 6.7 and 6.6 which are discussed in sections 6.1.7 show that most of the
time it is better to use the caller-saved registers, as the generated code tends to be both quicker and
smaller.

62

5.2 A sample translation

Function calls leave little room for manoeuvre: the arguments must be moved
into the correct registers, any unused argument registers that are currently in use
must be spilled, then the call is made. On return the return value is in the first argu-
ment register. This interacts well with the translator’s trying to reload values into the
register they last occupied, as the first argument register is the last to be allocated,
and is hence rarely used.

5.2.3.3 Immediate constants

As discussed in section 5.2.2, LCC’s Mite back end does not use constant registers,
which means that the translator does not use immediate constants. For example, the
example in section 5.2.2 contained the Mite code shown below on the left, for which
the translator emitted the code on the right:

����� � ��*2� define constant 1 �
��� � � �	*2�

�����)���)�� �
increment counter �

��� ��%��-�%��	� �

If LCC’s Mite back end used constant registers, it could generate the following
Mite code, whose ARM translation saves a physical register and an instruction:

���� � ��*2�
define constant 1�����)���)�� �
increment counter �

��� ��%��-�%���*2�

5.2.3.4 Address constants

Address constants are tricky to deal with on the ARM, which lacks absolute address-
ing and does not have an load effective address instruction. Compilers tend to store
address constants in literal pools, which can be placed between functions and in-
dexed with PC-relative addressing (relative address offsets may be up to±4Kb). For
simplicity and speed of translation, the translator turns addresses into immediate
constants. On the ARM, these have eight significant bits, so it takes up to four in-
structions to load an arbitrary 32-bit constant. Since the addresses of labels are not
known until code generation is complete, the maximum number of instruction slots
must always be reserved, and padded with no-ops (see section 6.2.3.2). The ARM
translator restricts addresses to 24 significant bits, a reasonable limit, as executables
are always loaded into low memory. This means that it must allow three instructions
for each address load. This explains the � �
 instruction in the code above.

The elimination of no-ops is discussed in section 6.2.3.

5.2.3.5 Register allocation and spilling

One important aspect of the translator has been only tangentially dealt with: the
mechanisms for register allocation and spilling. There are three points of particu-
lar interest: spilling, register bindings around branches, and dealing with registers
at calls. Since the first two are not well illustrated by the example used above (in
particular, there is no spilling there), a different code fragment is used, from the ��� 	
benchmark program. Register bindings at calls were covered in section 5.2.3.2.

63

5 Implementation

The C code is shown below. The Mite code under consideration does not corre-
spond exactly to a contiguous fragment of C, so the extract below is rather schematic.
LCC compiles the test of � ��� � � and � � � loops after the body of the loop; the Mite code
goes from the test at the end of the first � � � loop below up to part way through the
second loop, as shown.

�
�����
����	 � ��� � � � � � �
 � � � � �

�����$
$

����	 � � �
 � � � � ����� �
 ���
���� � �
 ��� � �
���� � � � � ���
 �
�����$

The Mite code produced by LCC for this code is shown below on the left, and the
ARM code it translates to on the right:

� .�/ � ���� ���
comparison of � ��� loop 	 � 3 ��)��	��

� ���� � ������� 3 ��*(����%�!
/��	� � �(� � ��� �
 ++�+++	� � �

spill �#� �� � �#�#��� ��3 �	*%�!
� ��� � ��*2�

initialize �
��� �2����*2�

� �/ ' ���
reorganize registers to �� � ��+���� 3 ��*2����+�!
match the virtual-to-physical �� � � � ��� 3 ��* � ��!
register binding at the end �� � ��%���� 3 ��*�)�!
of the loop �� � ������ 3 ��*���)�!

�� � ��)���� 3 ��*����!
�� � ������� 3 ��*���%�!
�� � � ����� 3 ��*����!
�
� � ��+��-�#�

�
� � �#���-���

�
� � �����-���

/��� � ���2�
branch to the loop test

�
 +++�++�� ��%� ����%
spill

��+ �� � ��+���� ��3 �	*�!
� ��� ��+���*2�

��� ����� �
� � ��+��	*2�

(spill
� �

) �� � � � ��� 3 �	* � ��!
�,� �)�����+�� �

�
� � � � �-��+�� � � �#�

� ��� ��+���*2�
�
� � ���� � �

� � ��+��	*2�
� � � ����� �)�����+

�
� � �����-� � �

�� � ��+

At first sight the ARM code appears to contain a large number of register moves
and stores which have no counterpart in the Mite code. It turns out that they arise
from the points mentioned above. The two stores (� 	��) near the end of the native
code are spills of � � and � � . The translator generates spill code at the point in the
code where the register is needed again, rather than trying to find a better position

64

5.3 Optimizing compilation

for the code. This is only sub-optimal if the spill is in the middle of a loop, and
could have been moved outside the loop; that case is partly handled by the

���
� ����	

directive (see section 4.3.1.3). The series of seven stores and three moves near the start
of the ARM code are caused by a

����������	
directive rearranging the registers before

the second � � � loop. The second instruction,
� � � � 	 , is a conditional load. It is caused

by the following conditional branch, which goes back to the beginning of the first
� � � loop. During the loop the register �

�
is spilled, but it is held in a register at the

beginning of the loop, so it must be reloaded before the branch.

5.2.4 Summary

There is a straightforward correspondence between the native ARM code produced
by LCC’s ARM back end and that emitted by Mite’s ARM translator. Most of the dif-
ferences arise from the treatment of registers, and in particular, in the register shuf-
fling code generated by Mite for spilling, and at branches and function calls. Virtual
registers are also the source of most difficulties with the LCC Mite back end, such as
the inability to perform physical register targeting or to use constant registers. These
problems are discussed further in section 6.2.2.

5.3 Optimizing compilation

While the translation above demonstrates that Mite produces a reasonable approxi-
mation to LCC’s native back end, it is not yet clear that it would do as good a job on
the output of a heavily optimizing compiler, compared with that compiler’s native
code generator. In this section, the gradual optimization of Mite’s translation of one
of the benchmark programs used in chapter 6 is used to show the sort of Mite code
an optimizing compiler might produce.

The optimizations were applied by hand in two stages: first, the optimizations
that LCC makes when generating ARM code, to show that very similar code can
be obtained from Mite. Secondly, some of GNU C’s more aggressive optimizations
were applied to give dramatically better code; the result is compared with the code
produced by GNU C’s native ARM back end. The quantitative results of the opti-
mizations are discussed in section D.

5.3.1 The test program

The test program used to demonstrate Mite’s potential for optimizing compilation
is ��� 	 , a fast-Fourier transform program, adapted from a BCPL program by Martin
Richards. It was designed to be a good test of register allocation: most of the code
resides in two functions, which contain nested loops and many local variables. Sec-
tion D.1 gives a listing of the program.

The performance of the various forms of the program are shown in figure 6.1,
and discussed in section 6.1.2. ��� 	 � � is the original program, ����	 � � has the LCC-

65

5 Implementation

style optimizations added, and ����	
� � has GNU C-style optimizations added. ��� 	

���

is the same as ����	
� � , but without virtual register rankings.

5.3.2 LCC-style optimization

The first set of optimizations was mostly restricted to those which LCC makes in
its ARM back end (as noted above, and discussed further in section 6.2.2, LCC’s
ARM back end is able to make some optimizations that LCC’s Mite back end cannot),
namely:

Redundant move elimination Move instructions that move a register to itself were
removed; LCC’s Mite back end is forced to generate some such instructions
after the optimization phase that removes them.

Constant register use Constants were put in constant registers, just as the LCC’s
ARM back end puts constants in immediate operand fields.

Precompute manifests Manifest constants were computed by the compiler. LCC re-
lies on the assembler to do this, which Mite’s assembler cannot.

Register targeting Function argument and result registers were targeted directly as
in LCC’s ARM back end, rather than using intermediate temporary registers,
as LCC’s Mite back end does.

Shorter live ranges for temporaries The live ranges of temporaries were reduced to
the length of the statement in which each was created, rather than lasting from
the point of creation to the end of the function.

One other simple optimization was made: a
����������	

instruction was added just
before each loop. This causes the virtual to physical register binding to be brought
in line with the ranks, thus potentially avoiding register spilling inside the loop (see
section 4.3.1.3).

The resulting improvements in the virtual and native code are shown by the fol-
lowing fragment, in which the left-hand column is the original code, and the right-
hand column the hand-optimized version:

66

5.3 Optimizing compilation

create constant register
���

� ��� ����*2�
constant 1

��� ����*2�
create result register

���
� ��� ��� � ��� load ��� ����� ��� � ���
���

�

� ����� ��! ���
�

� ����� �!
�,� ��� ����� � ��������� ��� ���	��� �
� .�/ ��� ��� � � ��������� � � �,.�/ ��� �����
� ��� ��� �

(redundant move)� ��� ����*	�
constant 2

��� ����*	�
�,� ��� ����� �
�"��������� � �
 ��� � ��� ��� �����
����
� ���)�� �

load argument of � �
����� 	�������� � �

� �
����� 	 � ���4� �$!

call � �
�
��� 	 ��������� � �

� �
���
� 	 � ����� �$!

� ��� ����) get return value&�' ��

The corresponding native code translations are:

�
� � ������*(�

constant 1
�
�� ��%��
 +++++�+++ load ���

�
�� �����
 +++�+++++��� 3 ��� 3��� 3 ��� 3� �� ��%���� ��%���*+�! � �� ������� ������*�+�!

constant 1 �
��� �%���*2�

�
� � ��%��	���� � � ��% � ���������

�
� � �����-��%�� � � ���

 � �����	�%��	��� � ��������� � � �
 � �����-�����-�%
�
� � �����	�� (redundant move)

�
� � ��%���*�� constant 2

�
� � �����	���� � � ��% �
�"��������� � �
 ��� �

�
� � �����-����� � � *	�

make spill slots for
���

ed registers �
 � 3 � 3 �	*�%
�
� � � � �	�� load argument of � �

����� 	

 � 3 � $3 ��*� reserve spill slot for argument
�
� � ��+��	� �

copy argument into its register �
� � ��+��-���

�
��� 3 � $3 ��*�

get rid of spill slot �
��� 3 � 3 �	*�

��� � �
� �

����� 	 call � �
����� 	 ��� � �

� �
����� 	

�
� � �����	�+

copy return value

Notice that the redundant � ��� has disappeared, so that the corresponding ARM � � �
has also gone; the constant 2 now appears as an immediate constant, while 1 is still
loaded into a register, as the left-hand operand of a shift cannot be immediate on the
ARM. The unnecessary intermediate register used to hold � � � � � ’s parameter and
result is no longer present, resulting in shorter, faster code. Finally, the temporary
constant 1 has a shorter live range than before. In the event, it does not affect the
efficiency of the generated code, but it could well have done if there had been more
demand for registers at that point in the program.

5.3.3 GNU C-style optimization

The second set of optimizations was much more pervasive and thorough. The ARM
assembly code produced by GNU C at its highest optimization level (

� � �) was exam-
ined, and its structure applied to the Mite virtual code. This ranged from low-level
optimizations such as more efficient register use to higher-level code transformations

67

5 Implementation

such as moving invariants out of loops and inlining short functions. Additionally, the
registers were ranked according to a simple algorithm that GNU C could easily use:
inside each block, register variables used in that block were given the highest rank.
After discussing some successful optimizations and how they were made possible
by Mite’s design in section 5.3.3.1, some of the GNU C optimizations that could not
be expressed in Mite are examined in section 5.3.3.2.

5.3.3.1 Hits

Many common compiler optimizations can be expressed directly in Mite code, and
the optimizations carry through as expected to native code. This section shows some
examples of how optimizing the virtual code resulted in optimized native code.

The function � � was inlined. The body of the function before was
� ��� ��������
 add the arguments����� ���	� ������ � compare result with 65, 537� ��� ����� �
� � � ��� � if greater, go to � ������ �����

copy result into return value� � � ���
�� branch to exit
��� ������ ���	� ������ � subtract 65, 537 from result� ��� ������� �

���
������� � � � copy return value into the correct register

A typical inlined call is shown below on the left, with its translation on th right.

����
����� ��� *2�
�,� ��� ���	�

(add optimized into a shift) �
��� �����	����� � ��*(�����

create result register����
create constant register

�����)���*)������ � constant 65, 537 �
� � ��%��	*2�
����� ��%��	��%���*)�����)

� .�/ ��� ���-)
result −65, 537 �
 � � � �-�����	��%

&�' �� kill the constant register/��	� � ��(� if sum less than 65, 537, go to ��(� �
 ��� � 3 � 3 ��*��
��� � � ��(�

� ��� ��� �
otherwise load result−65, 537 �

��� �����	� �
reserve space on stack �
 � $3 � 3 �	*�

� ��(�

This compares with GNU C’s
� � � 	 � � 	 � � � � � ��
 (add optimized into a shift)
��� � � 	 � 	 � �	��
 result −65, 537
��� � � 	 � � 	 �	����������
� � 	 	 � ��� �������� if sum less than 65, 537, load sum
� � ���� 	 � � 	 �
� � ����� 	 � � � 	 otherwise load new result

68

5.3 Optimizing compilation

Another stretch of code was originally

��� �
 � � ��� constant 2� �
 � ��
�����
 � make count into address offset� ���
 � ��
 � �	
add offset to base address��� � �
 ����
 � �
load contents of address plus offset��� �
 � � ���
constant 2� �
 ����
�����
 �
make count into address offset� ���
 ����
����	
add base address to offset� �
 � ��
�
���
 � make count into address offset� ���
 � ��
 � �	 add base address to offset��� � �
 � ���
 � � transfer 4 bytes� � �
 � ���
����

��� �
 � � ��� constant 2� �
 � ��
�
���
 � make count into address offset� ���
 � ��
 � �	 add base address to offset� � �
 ����
 � � transfer 4 bytes

This was transformed into the following Mite code (again, shown with its ARM
translation):

���� �)��	*	�
constant 2��� �����	%�� �)
make count into address offset �

� � �����	� � � � � *	�
reserve spill slots for new registers �
 � 3 � 3 ��*���+
spill �	� �� � ������� ��3 ��*(����!

��� � ���	��� �)
make count into address offset �

� � �����	�)�� � � *	�
&(' ��

constant no longer needed
reserve spill slot for constant register �

��� 3 � 3 ��*��
spill �2� �� � �#����� ��3 ��*�%�!

���
�

� ������� ��� ����!
load first quantity

� �� �#�#��� ��+��-����!
spill

�% �� � ��%���� 3 ��*��)�!
���

�

� �,����� ��� � ��! load second quantity � ��� �%���� ��+��	����!
���

�

� ������� ��� � ��!
store first quantity �� � �2����� ��+��	����!

���
�

� �,����� ��� ����!
store second quantity � � ��%���� �+��	����!

Note that there are far fewer actual instructions in the optimized version, which con-
tains a lot of stack directives. This compares with GNU C’s

� � 	 	 ����� � 	 � ����� load addresses
� � 	 	 ����� � 	 � �����
� � 	 � 	 ��� 	 ��� 	 � � � � � �����

transfer quantities
� � 	 	 ����� 	 ��� ��	 � � � � �����
� �
	 � 	 ��� 	 ��� ��	 � � � � �����
� �
	 	 ����� 	 ��� 	 � � � � � �����

There is little point in giving other examples; by now it should be clear that Mite’s
success stems from its similarity to real processors: the optimizations that GNU C ap-
plies to ARM code can be applied in exactly the same way to Mite code. This does
not by itself vindicate Mite’s approach; it is this ease of optimization combined with
the performance figures (see section 6.1.2, which demonstrates that these optimiza-
tions are sufficient to give good performance. It is possible that low-level machine-

69

5 Implementation

dependent optimizations such as those discussed in the next section are also suffi-
cient to give good performance. Such optimizations can be implemented in the trans-
lator, and hence used with all compilers. Using code transforming optimizations has
the opposite advantages, that they are implemented in the compiler, so do not slow
translation down, and are applicable to all machines.

5.3.3.2 Misses

Some of the optimizations made by GNU C cannot easily be imitated by the trans-
lator, at least not quickly, owing to limitations of Mite’s design. Such optimizations
can be divided into two classes: machine-specific optimizations and those of more
general applicability.

The first class represents Mite’s tradeoff between simplicity and universality: ac-
commodating such machine-specific features would generally come at the expense of
making Mite more complex or less machine-neutral. In the case of the ARM, the most
obvious examples are conditional execution and multiple register load and store.
Conditional execution is used in GNU C’s version of the inlined � � function in sec-
tion 5.3.3.1, where both possible results are calculated, and only one of the last two
instructions is executed to move the result into the result register. Multiple register
load and store are mostly used for function entry and exit, where Mite uses them
too, but GNU C also uses them for spill and restore code, as well as a way of com-
bining memory transfers. This requires peephole analysis which Mite currently does
not do, because it is slow (but see section 5.5.2.1). Optimal use of multiple loads and
stores requires interaction with register assignment, since registers are transferred to
and from memory in numeric order (the lowest numbered register corresponds to
the lowest address, and so on), which would slow the translator down.

The most important examples of the second class are physical register target-
ing and function entry and exit sequence optimization. The former has already been
discussed in section 5.2.2, and changes to Mite’s design to accommodate it are dis-
cussed in section 7.1.1.3. There is already limited support for the latter in the form
of leaf routines, but other measures, such as saving only those callee-saved registers
that are actually used, would require Mite do to more work at translate time (see
section 5.2.3.2). Sophisticated methods such as moving the entry sequence inside a
top-level conditional are probably out of Mite’s reach.

5.4 Other languages

Rather than sketching the translation of whole languages, it seems more sensible to
treat the implementation of a few key mechanisms in detail. The mechanisms chosen
are static chains, often used to implement Modula-like languages that allow nested
procedure definitions; exceptions as found in C, Java and ML; and garbage collection,
which is required by almost all modern languages.

70

5.4 Other languages

Static chain
pointer

Variables

Static chain
pointer

Variables
Frame 1

Frame 2

Figure 5.2: Static chaining

5.4.1 Static chains

Languages such as the Modula family and ML allow procedure definitions to be
nested, and lexical scoping means that variables declared in one procedure are visible
in nested procedures. This means that such variables must be accessible even when
they are not in the current stack frame. Two common methods used to implement
this are static chains, where a pointer in each stack frame points to the suspended
frame of the lexically enclosing procedure, if any, and displays, where each stack
frame contains a pointer to each of the lexically enclosing procedures. Since displays
are simply a way of flattening the static chain, their implementation is just a fancy
variant on that of static chains, and need not be elaborated separately.

The mechanism of static chains is illustrated in figure 5.2. Each stack frame con-
tains some variables which must be accessible via the static chain from inner pro-
cedures. These are stored in a block which starts with a static chain pointer, which

71

5 Implementation

points to the corresponding block in the next innermost procedure. Each time a pro-
cedure is called, a pointer to the current variable block is passed as an implicit argu-
ment, and becomes the value of the new static chain pointer. Now, a variable in an
outer stack frame can be accessed by following the static chain back to the procedure
to which it is local, and then indexing off the static chain pointer in that procedure.

Two implementations of static chains are discussed. The first (section 5.4.1.1) is a
little awkward, but requires no changes to Mite’s design to implement portably. The
second (section 5.4.1.2), which involves walking the stack directly, is simpler and
lighter weight, but cannot be implemented portably in the current model.

5.4.1.1 Putting variables in a chunk

A simple solution, which can be implemented portably in the current model, is to
place the variables to be accessed via the static chain in a chunk. A chunk large
enough to hold all the variables is declared, and they are stored at fixed offsets.
The first word of the chunk is used to hold the static chain pointer, and the chunk’s
address is passed to inner procedures. The layout of the chunk is independent of
whether the system stack happens to be ascending or descending. However, some
overhead is incurred: the variables are not directly accessible, but must be loaded
into virtual registers and stored back when they change, which is a potential waste
of space and time; for example, variables which are passed as parameters to the pro-
cedure must be stored into the chunk as part of the entry sequence. This effectively
means that the virtual register mechanism of Mite must be duplicated manually for
variables that are to be accessible via the static chain. A partial solution to this prob-
lem is proposed in section 7.1.1.4.

5.4.1.2 Walking the stack

It would be better if virtual registers could be used directly for variables to be ac-
cessed via the static chain, but this requires a way to find the value of a virtual reg-
ister in an outer procedure. Mite’s design denies access to virtual registers in outer
procedures for efficiency reasons; is it possible to allow such access without it impos-
ing overheads where it is not needed?

Being able to find the value of a virtual register in an outer scope breaks down
into four requirements. First, the stack layout must be fixed. Secondly, it must be pos-
sible to find the start of a stack frame. Thirdly, the stack direction must be known.
Fourthly, it must be possible to ensure that when a function call is made, any vari-
ables in the current procedure whose values are accessible via the static chain are up
to date. Otherwise, under a callee-saves convention, a variable whose value is held
in a register just before a call may have its current value saved in the callee’s stack
frame; meanwhile, the value accessible via the static chain is out of date.

The stack walking mechanism introduced in section 7.1.2 solves all these prob-
lems. The stack layout is fixed by requiring all virtual registers to have a stack slot,
allocated in order of register number. The register � � , which points to the start of the

72

5.4 Other languages

current stack frame, is made visible in the assembly language. Manifest constants
are extended to allow them to be multiplied by the stack direction. Finally, ��� � � is
extended to allow the registers to be ��� � � ed to be specified, so that variable values
can be saved before a call without requiring all registers to be flushed.

Section 7.1.2 discusses the modest implementation effort that would be required
and, along with section 5.4.3.3, some other benefits that would accrue from its intro-
duction.

5.4.2 Exceptions

Most languages have non-local exits, or exceptions, but the details of how they work
vary widely. In C, only a simple value can be passed by an exception. In Java and
ML exceptions can pass values of arbitrary type. Each of these requires a different
implementation, but all can be built in terms of Mite’s

����� ��
and

�� �����
instructions.

5.4.2.1 C style exceptions

Although C has already been implemented on Mite, the implementation of excep-
tions has not been discussed, and it is worth comparing it with the others. C uses
the ��� 	 � ��
 and

� � � � � ��
 macros to implement non-local return. Since these macros
vary from system to system, they cannot be used in portable code. The current ARM
translator ignores the issue, as ��� 	 � �
 and

� � � � � �
 are simply function calls on the
system on which it runs, and are hence accessed just like any other standard C library
routine (see section 5.1.5).

This approach is compatible with natively compiled code, but is not portable
(although it works on any system where ��� 	 � �
 and

� ��� � � �
 are true functions).
A portable mechanism can be built quite simply with

���
� ��
and

�� � � �
(although it

is hard to see how an implementation could be both portable and interwork with
natively compiled code efficiently).

A call to ��� 	 � �
 is translated as follows:

register 1 will contain the result of � ���
� � 	

register 2 contains the address of the
� � 	 � � � ������ scratch register�����

constant����� � �	�
 one-word offset
��� ��� �� � �
 � � ����	� ��
 �� � ���

store the address in the
� � 	 � � � ������ ��� � �
 � � ����	 get the address of the handler� ��
 �� � ��� � �

store the handler address in the
� � 	 � � � �������� kill registers that are no longer needed�������

�������
�����
��	��� set result of � ���

� � 	 to 0
� � �
 � � ����	 the point reached by �����!� � � 	

73

5 Implementation

When control reaches � � � � � � � , register 2 contains either 0, if the code was entered
at the top, or the

� � � � �
��
 value, if the handler was reached by a

�
 � � �
instruction.

The call to � � � � �
��
 is implemented as:

register 1 contains the address of the
� � 	 � � � �

register 2 contains the return value�����
register to hold the stack state�����
constant����� � �	�
 one-word offset�����
 �� �
��
get stack state�����

�� �
�� � � get handler address ��	 � �
�����	� perform the ��	 ���

This causes the handler to be reached with the given return value.
There is a further subtlety: to ensure that the stack state is consistent when a

� � � � �
��
 is executed, all

��� ���
s and

�
 �����
s in a function that calls ��� 	 �

��
 must be
followed by ��� � � � � � � � � � .

5.4.2.2 Java style exceptions

Exceptions in Java work as follows:6 a code block guarded by 	���� can raise an excep-
tion, which is an object whose type is a sub-class of

� � � �
�	 � � � . A 	���� block is fol-
lowed by a number of � �	 � � blocks, each of which has an associated exception type.
The first whose type is a super-class of that of the exception object is executed. After
the � �	 � � blocks there may be a � ��� � � � block, which is always executed, whether
the 	���� block terminates normally, or with a � � 	 � � � or

� � � % , or by an exception.
This applies even if a further exception is raised in one of the � �	 � � blocks. Excep-
tions may be raised anywhere by 	 � � � � , which is given the exception object. This is
often created at the same time:

	 � � � � ��� � � � � � � �
�	 � � � � � � �
� � � � � � � � ��� � ��� � ���

is a common idiom.
Since user-supplied exception classes can add extra instance variables and meth-

ods, exceptions are naturally value-passing.
As exceptions have a special syntax in Java, the implementation is more straight-

forward than that for C. The 	���� block starts with a
���
� ��

, and all method calls
and 	 � � � � s inside it are ��� � � ed. The first � �	 � � block is preceded by a handler la-
bel, whose address is used as the current innermost handler. When an exception is
thrown to this handler, it determines which � �	 � � block to run, according to the type
of the exception, and then branches to it. Each � �	 � � block ends with a branch to
the end of the last such block, where the � ��� � � � block occurs, if any. If no suit-
able exception value is found, the exception must be re- 	 � � � � n to the next innermost
handler.

6Java experts should note that this picture is not intended to be complete.

74

5.4 Other languages

Any � � 	 � � � s, � � � % s or � � � 	 ��� � � s within the 	���� block must also cause the
� ��� � � � block to be run before the appropriate action is performed. Thus it might
be best to translate the � ��� � � � block as a subroutine, or alternatively to pass it a
continuation address. Since an exception may be raised inside a � �	 � � block, an ex-
tra handler must be installed for the duration of the � �	 � � blocks, which causes the
� ��� � � � block to be executed before the exception is re-raised.

Note that although Mite’s
�� �����

instruction only allows a single register to be
passed, rather than the compound values allowed in Java, no run-time penalty is
incurred, since the value, being an arbitrary Java object, must in any case be allocated
on the heap, so the exception value is naturally just a pointer to the exception object.

5.4.2.3 ML style exceptions

In ML, an exception is simply an exceptional value. Exceptions are datatype con-
structors, and may thus pass arbitrary data. An exception e is raised with �� � ��� e.
An exception causes immediate termination of expression evaluation, and the value
of the expression is the exception value. Exceptions thus propagate outwards like
any other result, except that they prevent any further evaluation.

An exception handler is a guard on an expression of the form

E � � � � � P1
� � E1

�
. . .

�
Pn
� � En

Where E is the guarded expression, the Pi are patterns whose top-level construc-
tor is an exception, and the Ei are expressions. There is no equivalent of � ��� ��� � in
ML.

When an exception value is propagated into an expression that has a handler, the
exception value is matched against each clause in the handler; if a match is found,
the corresponding handler expression is evaluated, and its value becomes the value
of the expression. Otherwise, the exception value becomes the value of the whole
expression, just as if there were no handler.

The implementation is similar to the Java case. Since exceptions are propagated
until they reach a handler, intervening unguarded expressions can be ignored, and
exceptions can be

�
 �����
n straight to the next innermost handler, just as in Java. When

a handler is reached, the exception is dispatched by ML pattern matching rather than
according to the Java class hierarchy, but this does not affect the implementation per
se.

Unlike the Java case, since ML exceptions need not be constructed on the heap,
there is a potential speed penalty in having to place them there, rather than simply
treating them as return values. On the other hand, if an exception has to be prop-
agated through several handlers before being handled, it may well be quicker to
allocate space for it on the heap than have to copy it between stack frames once for
each handler.

75

5 Implementation

5.4.3 Garbage collection

Most modern languages have automatic memory management, and this generally
means having a garbage collector. There are two main types of garbage collection:
tracing collection, which periodically scans data structures to discover garbage, and
reference counting, which acts at each pointer update, and reuses storage immedi-
ately it is no longer in use by the program. Garbage collectors may also be catego-
rized as conservative, meaning that they do not have a precise idea of the layout of
memory, and must occasionally leave garbage uncollected, or accurate, meaning that
all garbage is collected.7 [56] is a thorough guide to the field.

5.4.3.1 Reference counting

Reference counting requires full support from the compiler (and sometimes the pro-
grammer), as it affects every pointer update; this has the advantage that it can be
implemented entirely portably, and is no harder to implement on Mite than on any
other system.

5.4.3.2 Conservative

Conservative garbage collectors such as the Boehm–Dehmers–Weiser collector [15]
are generally used for languages that do not explicitly support garbage collection,
such as C and FORTRAN. They make more or less weak assumptions about the con-
tents of memory and machine registers and in case of doubt must leave garbage
uncollected. Hence, using such a collector with Mite is straightforward: provided
that calls to the garbage collector are ��� � � ed, so that the contents of all virtual reg-
isters are available on the stack, the usual heuristics can be used to find garbage by
scanning the stack and heap.

Less conservative collection, which requires more accurate information about the
layout of the stack, would be made possible by the techniques used for accurate
tracing which are discussed in the next section.

5.4.3.3 Accurate tracing

Accurate tracing collection is sometimes not merely desirable, but necessary to
avoid serious space leaks, for example in functional languages implemented by
graph rewriting, such as KRC [129] and Haskell [92]. In order to function, the collec-
tor needs to know what every value on the stack and in registers is. In Mite terms,
this reduces to knowing what every item on the virtual stack is, and where it is. The
compiler obviously knows what each virtual stack item contains, but the garbage
collector cannot, under Mite’s current design, know where they are stored.

7No-one, to my knowledge, has ever implemented the logical complement of a conservative garbage
collector, that is to say, an optimistic garbage collector, which occasionally reclaims storage that is
in fact still live.

76

5.5 Other target processors

The changes to Mite’s design proposed in section 7.1.2 fix the stack layout, with
one exception, and allow garbage collectors to traverse the stack. The one part of
the stack whose layout is not fixed is the return chunk, whose format is system-
dependent. This may contain callee-saved registers, which may hold the values of
virtual registers belonging to the caller. Although they have stack slots in the caller’s
stack frame, the values held there may not have been up to date when the call was
made, so the correct value is now only available in the return chunk, whose format
is unknown.

This problem can be overcome by ��� � � ing all calls. Then, all virtual registers’ cur-
rent values are accessible via the stack walking mechanism, and the return chunks
can be ignored. However, as discussed in section 7.1.2, ��� � � ing all calls is inefficient.
Hence, selective ��� � � is introduced, which allows only those virtual registers con-
taining values that might be of interest to the garbage collector to be ��� � � ed.

This still leaves some inefficiency, and does not permit the use of such standard
tricks as finding the stack layout of the caller by looking at the return address. These
and other subtleties of supporting garbage collection have been examined by the
designers of

�����
[91]. To be as efficient as

�����
, Mite would need to allow the re-

turn chunk to be deciphered; this adds considerable extra complexity, though it also
goes a long way towards supporting even more facilities, such as multi-threading.
Whether it is necessary to make these further extensions to achieve a reasonable level
of performance, or whether the changes suggested so far would suffice, remains to
be seen.

5.5 Other target processors

Implementing Mite on processors other than the ARM introduces a range of differ-
ent problems. Here, some of them are considered to show that Mite is indeed im-
plementable on a wide range of processors. First, a problem typical of other RISC
machines is investigated: that many do not possess a dedicated condition codes reg-
ister. Secondly, some of the problems thrown up by the most problematic common
architecture, the Intel IA-32, are discussed.

5.5.1 Flags without a dedicated register

Some RISC architectures, such as the Alpha and MIPS, do not have a dedicated flags
register, and conditional branches take one or two register operands: either a sin-
gle register which is compared with 0, or two registers that are compared with each
other. On such architectures, the translator must take the instruction before a con-
ditional branch into account when generating the branch. If it is a comparison in-
struction, that is, it has no destination register, it may be possible to emit a single
compare-and-branch instruction; for example, the Mite code on the left could be-
come the MIPS code on the right:

�,.�/ ��� �	� ��� � � %�� � ��� � � � ��� ���/��� � � � ���
���

77

5 Implementation

Otherwise, the result of the operation must be examined by the conditional
branch, as the MIPS has no “compare and branch on less than” instruction. In this
case, the translation might look like this (the MIPS register

� �
always has the value

zero):
�,.�/ � ���	� set �

�
if � % < � � � � � � � � %�� � �

/�	� � � � ���
��� branch if comparison was true
����� � � � � +�� � � � ���
���

In some cases, it may be necessary to generate rather more code than for the
ARM, for example, when implementing a

��� � (branch on overflow set) instruction
on the MIPS:

����� �������-� get carry bit in $10 �
�
� � � � � %�� � �
� � � ���� � � ��*�(�
�
��� � ���� � ���� � � +

/ � � � � � ��� � ���
 ����� � � +�� � +�� � ��� ��� � �
�

Such instructions are rare, however, and must sometimes already be synthesized by
native code compilers, as in this case. Similarly, the Alpha has no built-in carry detec-
tion, so carry after an add must be detected by performing an unsigned comparison
of the result with each operand to see if it is less than either.

Finally, note that the MIPS’s lack of a flags register is supported by Mite’s prohi-
bition on chained conditional branches (see section 4.3.2).

5.5.2 Targeting the IA-32

The Intel IA-32 architecture is probably the hardest common architecture on which
to implement Mite. It throws up many implementation problems; just two of the
most important will be considered here: register allocation, and implementing three-
operand instructions using two-operand instructions.

When generating code for the IA-32 it is worth remembering that the difficulty
of code generation is compensated for to a certain extent by the intelligence of the
hardware; most IA-32 processors perform many basic block optimizations in hard-
ware, so that what appears prima fecie to be terribly naïve code will often execute
reasonably well.

5.5.2.1 Register allocation

Register allocation is difficult on the IA-32 architecture because it has only six
general-purpose registers; in addition, each of these registers has a special purpose
for certain instructions. Many IA-32 instructions can have memory operands and
destinations, so it may sometimes be better to access a virtual register directly on
the stack (as a constant offset from the stack pointer) rather than load it into a
physical register. Mite’s translator has no time to analyse the code deeply in order
to determine when to allocate virtual registers to physical registers, and when to
access them on the stack, so heuristics must be used. For example, a virtual register
could be accessed directly on the stack if its rank is outside the range 1–6. It might
also be sensible to spill the physical registers in a fixed order rather than according

78

5.5 Other target processors

to rank, spilling first those registers which are most frequently needed for their
special-purpose operations.

One example of an operation which uses fixed registers is division, which uses
� � and � � � to hold a double-length dividend (the dividend must be double-length);
the same registers hold the quotient and remainder. Another is shift by a variable
amount, which uses �

�
(the low byte of � � �) to hold the shift amount.

Division on the IA-32 will in practice be no worse than on RISC machines that
lack hardware division such as the ARM, where division is implemented as a sub-
routine, and hence uses fixed registers for the operands and results.

The converse operation, namely assigning virtual registers to the physical regis-
ters they must occupy is harder: for example, if a virtual register is first used as the
destination of an � � , then the divisor of a � � � , the translator must scan ahead to find
the second virtual instruction before it can know that assigning the virtual register to
� � � is a good idea. This effectively involves peephole optimization of virtual code.

It may be better simply to have a peephole post-pass on the native code, as men-
tioned in section 1.2.2, and discussed in sections 5.3.3.2 and 6.2.3.2. This would have
two particular benefits on the IA-32, over and above the benefits of peephole opti-
mization on a RISC machine. First, it could locally improve register allocation, and
secondly, it could take advantage of the rich instruction set and addressing modes,
for example combining scaling a load offset with the load instruction:

��� ���
�� 021���� scaling constant��� � �����	�

shift the offset���
� �

�#��� ��� ��! load with word offset �
� � �

� � ��� �
� � � ��� � 	 � !

5.5.2.2 Three-operand instructions

Most of Mite’s instructions have three operands, but with a few exceptions, such as
multiplication by a constant, the IA-32 instruction set is two-operand, and sometimes
fewer, when one or both operands are in fixed registers. Three-operand instructions
must be synthesized by first moving one of the operand registers to the destina-
tion register, then performing the operation using the destination register and other
operand register:

copy left-hand operand �
� � �

� � � � 	 �

����� �#�����	�
perform addition �

��� �
� � � �
� �

When the destination is the same as the left-hand operand, it may not be neces-
sary to generate an extra � � � ; this case can easily be spotted by the translator. Com-
pilers can easily be made to generate instructions with the destination the same as
the left-hand operand wherever possible. The opportunity arises quite frequently, as
operands are often discarded after being read, so operand registers can frequently be
reused for results.

79

5 Implementation

5.6 Summary

This chapter has shown in detail the workings of the LCC back end for Mite, demon-
strating that it produces reasonable code relative to the native ARM back end. It
was then shown that several optimizations applied by a more aggressive compiler,
GNU C, could also be applied to Mite code. Then, the implementation of key features
of some other languages was discussed. These can all be accommodated within the
present design, but could be supported more simply and efficiently by a mechanism
for stack frame traversal that would be both simple and cheap to implement. Finally,
some apparent difficulties in translating Mite for other architectures than the ARM
were investigated; in particular, it was shown how Mite could be translated effec-
tively for the Intel IA-32.

It seems that, from a design point of view, Mite is sufficiently flexible to allow
both fast translation and good native code across a wide range of languages and
machines. The next chapter tests Mite more practically, by examining its quantitative
performance in a series of benchmarks.

80

6 Assessment

This chapter assesses Mite’s performance in two ways. First, in section D, a series
of tests run on the ARM implementation of Mite is described, and the results are
analysed. Next, section 6.2 evaluates the implementation in the light of the results;
then, section 6.3 evaluates the design in the light of both, considering how well it has
performed and what compromises have been made. The findings are summarized in
section 6.4.

6.1 Tests

The test machine was an Acorn RISC PC with a 200MHz StrongARM processor and
16MHz system bus running Acorn RISC OS 3.7.

Three sets of tests were run: some hand-written assembler programs, to test the
correctness of the assembler and translator, some of LCC’s test suite, to test that the C
back end and translator were working, and some benchmark programs. The tests dis-
cussed here are drawn from the last two sets. As well as being run on Mite, they were
compiled natively for the ARM with LCC1 and GNU C [35]. Since LCC was also used
to produce the Mite code, its native back end was the main point of comparison. The
results of GNU C, which was used with full standard optimizations (

� � �
), were in-

tended mainly as an indication of the maximum performance that could be expected
from the test platform; LCC performs few optimizations, so its code, whether na-
tive or for Mite, cannot be expected to compete with GNU C’s.2 As a broad measure
of comparison, and to indicate the absolute speed of the test platform, the Dhrys-
tone 2.1 benchmark [134] was also run, giving the results in table 6.1. To provide a
comparison with more familiar hardware, the benchmark was also run on a 150MHz
IBM PC compatible under Linux.

The tests are as follows. � � � 	 � � , � � � and � � � are from the LCC test suite (respec-
tively a switch statement test, a 14-queens solver and a word frequency counter).
� 	� � is the Stanford Integer Benchmarks [46], which are implemented as a single

1It is unfortunate that I wrote LCC’s ARM back end, doubly so because the combination of peculiari-
ties of the ARM architecture and deficiencies in LCC’s code generation interface and the assembler
used meant that code quality was not as good as might have been hoped. Nonetheless, correspon-
dence with the author of another ARM back end [112] and with the compiler’s authors indicated
that my back end was reasonable under the circumstances.

2Section 5.3 considered how well a Mite back end for an optimizing compiler such as GNU C would
perform.

81

6 Assessment

System Speed/VAX MIPS Relative to Mite

GNU C 100 1·81
GNU C

� �
187 3·40

GNU C
� � �

191 3·47
GNU C

� � � 195 3·54
LCC ARM 69 1·25
LCC Mite 55 1·00
150 MHz IBM PC (GNU C

� � �
) 200 3·64

Table 6.1: Dhrystone 2.1 results

program. ��� 	
� � to ����	

� � are versions of the ��� 	 benchmark, an integer fast Fourier
transform (see appendix D.1), whose Mite translations have been successively hand-
optimized, as discussed in section 5.3.1.
������� and
����

� � � comprise an artificial test
of register allocation. The results of ����	

� � , ����	
� �

, ��� 	
� � and
����

� � � are excluded
from quoted averages.

The next section explains the measurements that were made, and the figures
that summarize the results. Next, the various sets of results are analysed. In each
case a reasonable expectation is compared with what actually happened. Where per-
formance was worse than expected, the reasons are investigated and remedies dis-
cussed.

6.1.1 Measurements

Relative rather than absolute figures are used for the most part to concentrate atten-
tion on the relative performance of Mite, LCC and GNU C. Absolute measurements
often seem to exercise a seductive fascination far beyond their importance: witness
the current craze for marketing processors purely on the strength of their clock speed.
Mite must be taken in context, and its success judged according to how well it per-
forms relative to its established competitors. Any intuitive advantage that concrete
data may have is quickly eroded by rapid advances in the size and speed of hard-
ware, so that grasping absolute performance measurements even a year after they
were taken requires a mental effort to remember what typical systems were like at
the time. Note that where averages are quoted for relative measurements, they are
geometric means [34].

The following measurements were made of each test program:

Execution speed Figure 6.1 shows the relative execution speed of each program.
The total time taken to load and run each program was measured; in the case
of Mite, this included loading the translator and translating the program into
native code.

82

6.1 Tests

0.0

0.5

1.0

1.5

2.0

2.5

GNU C/Mite
LCC/Mite

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.1: Relative execution speed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Mite/GNU C
Mite/LCC
Mite−nops/LCC

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.2: Relative code size

83

6 Assessment

0.0

0.5

1.0

1.5

Mite/GNU C
Mite/LCC

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.3: Relative executable file size

0.001

0.01

0.1

1

10

100

Translation
Run

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

time/s

Figure 6.4: Translation versus running time

84

6.1 Tests

Memory allocated
Code+data generated

memory/bytes

105

104

103

switch wf1 14q stan fft-1 fft-3 fft-6 fft-7 pyrampyr-bad

Figure 6.5: Memory consumption of the translator

3 4 5 6 7 8 9 10
0
5

10
15
20
25
30
35
40
45
50
55

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% speed increase

Figure 6.6: Variation in running time with number of physical registers

85

6 Assessment

3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% reduction

Figure 6.7: Variation in code size with number of physical registers

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% speed increase

Figure 6.8: Variation in translation time with number of physical registers

86

6.1 Tests

3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10
11
12
13

switch
wf1
14q
stan
fft-1
fft-7
pyram
pyr-bad

% reduction

Figure 6.9: Variation in memory consumption with number of physical registers

Code size Figure 6.2 shows the relative size of the native code produced for each
test. The counts exclude out-of-line data, and those for Mite are shown with
and without no-op instructions (see section 6.1.3). The counts for Mite were
obtained by instrumenting the translator, and those for LCC and GNU C by
hand-counting the number of instructions in the assembler output. Run-time
routines, start-up code and the like were not counted, to make the comparison
between the code generators more accurate.

Executable size Figure 6.3 shows the relative size of the executable files for each
test. In Mite’s case this is simply the object file output by the compiler, which
is loaded and translated by the translator. It includes optimization directives.
For the other two compilers, it is the size of the program executable, which
includes start-up code and some run-time routines, though not library code, as
the executables are dynamically linked.

Translation time versus running time Figure 6.4 gives a breakdown of the time Mite
took to perform each test into translation time and run time; loading time is
ignored.

Memory consumption Figure 6.5 shows the amount of memory dynamically allo-
cated by the Mite translator while translating each benchmark, compared with
the memory required by the final code image (including static data, unlike the
counts of generated native code in figure 6.2). Measured memory consumption
excludes memory allocated internally by the � ��� � � system.

87

6 Assessment

Variation in running time with physical registers Figure 6.6 shows the running time
of Mite’s code for each test when the number of physical registers available to
the translator was artificially restricted, from a minimum of 3, which, on the
ARM, is the fewest registers it can work with, up to a maximum of 10. Note
that only the time taken to run the test was measured; translation and loading
time was excluded.

Variation in code size with physical registers Figure 6.7 shows the size of the native
code obtained by Mite for each test when the number of physical registers was
varied as above.

Variation in translation time with physical registers Figure 6.8 shows the time tak-
en to translate each test when the number of physical registers was varied as
above.

Variation in memory consumption with physical registers Figure 6.9 shows the
translator’s memory consumption for each test when the number of physical
registers was varied as above.

All timings were obtained with the computer running just the test process (other
than interrupt-driven tasks), and each test was performed several times consecu-
tively to minimize differences between runs due to caching and buffering. The timing
resolution was 0.01s; the translation times in figure 6.4 were obtained by performing
the translation fifty times in a row and dividing by fifty.

The measurement data collected from the tests are shown in appendix E.

6.1.2 Execution speed

The similarity of Mite’s machine model to a real processor suggests that a compiler
should be able to generate Mite code similar to the native code it generates for other
platforms. This is certainly borne out by comparing the ARM and Mite code gener-
ated by LCC for the examples in chapter 5. As Mite’s translator naïvely maps Mite
instructions to native instructions, the resulting native code should also be similar to
that generated directly by a compiler’s native back end. Hence, the execution speed
of Mite’s native code should be about the same as that of LCC’s. On the other hand,
Mite’s looser coupling to the machine, combined with its insistence on rapid trans-
lation, could mean that it ends up a little slower. What is an acceptable slow-down?
Mite is aiming for performance comparable to that of native compiled code, so it
must not be too great; 10–20% seems a reasonable figure. If the slowdown were much
bigger than that, use of Mite versus ordinary compilation would turn into a serious
tradeoff; on the other hand, for mid-range CPU speeds,3 a 20% faster processor costs
only a few dollars more.

3Say, 400–500MHz at the time of writing.

88

6.1 Tests

From figure 6.1 it transpires that, on average, Mite’s code runs 21% slower than
LCC’s. However, in the � � � 	 � � and � � � benchmarks, translation takes a large pro-
portion of the total execution time (see figure 6.4). If these tests are neglected, along
with the artificial boost to Mite given by
���� � , the mean slow-down is 13%, well
within the acceptable range. The Dhrystone benchmark runs 20% slower on Mite
than the native LCC version; this is also just within the acceptable range.

Whether the slow-down in � � � 	 � � and � � � is important is largely a matter of
perspective. If they are considered to be interactively-run user commands, then the
overall running time is so short that doubling it hardly matters. If on the other hand
they are taken to be frequently-run system processes, then the native code version
should probably be cached in any case; as can be seen from figure 6.4, this would
nearly double their speed, bringing them back in line with the desired performance.

It is also interesting to note the effect of the optimization directives. ����	
� � and

��� 	
� � were timed with and without

���
� ����	
. There was no measurable difference,

possibly because there were no loops in which substantial spill code was being gen-
erated in any case. Alternatively, the register shuffling required at the end of loops in
order to match the virtual to physical register binding in effect at the start of the loop
may have outweighed the effect of spills.

� � � �
on the other hand turned out to have

a slight but definitely positive effect: ����	
� � , which is just ��� 	 ��� with ranking added,

ran 2.5% faster than ��� 	 ��� .
To see the full potential of ranking, the
���� � test was written; its source code is

given in section D.2. It consists of a series of assignments which gradually involve
more and more assignments, hence the name, a contraction of “pyramid”. The idea
is that there should be too many variables to hold in physical registers; furthermore,
the variables nearer the start of the alphabet are used much more frequently, and
so should be given higher priority during register assignment. The alternating use
of addition and subtraction, coupled with the initial assignment of random values
to the variables, aims to prevent a cunning compiler from generating trivial code.

������� is an optimally ranked version of the test, and
���� � � � a pessimally ranked
version. The results are dramatic: not only does
���� � run much faster, but its per-
formance increases much more than
���� � � � ’s as the number of physical registers is
increased (see figure 6.6). The same effect applied to the amount of code produced
(see figure 6.7).

Overall, Mite’s execution speed is acceptable. The program that gives most cause
for concern is � � � : it is long-running, and the Mite version runs 25% slower than
LCC’s native version. This is mostly due to a large number of register spills around
function calls caused by LCC’s lack of virtual register targeting (see section 6.2.2), as
� � � has a high proportion of function calls. ��� 	

� � , which has this optimization added
by hand, and runs as fast as the LCC ARM version of ����	 , suggests that adding vir-
tual register targeting to LCC’s Mite back end would remove the difference. The
prospects for the performance of an optimizing back end targeting Mite were dis-
cussed in section 5.3.

This, though, is not the end of the story. While Mite’s performance relative to
LCC is reasonable, it must be remembered that LCC is not a heavily optimizing

89

6 Assessment

compiler. It is far easier for a portable system to be competitive with a relatively
straightforward native compiler than with a highly optimizing code generator such
as GNU C’s. Fortunately, figure 6.1 shows that the optimized version of the pro-
gram discussed in section 5.3, ��� 	

� � , runs almost exactly as fast as ����	 compiled by
GNU C

� � �
. This is only one benchmark, and it was hand-optimized (though in a

mechanical way, as explained in sections 5.3.2 and 5.3.3). Nevertheless, it is an in-
dication that Mite’s virtual code can indeed benefit from conventional optimizing
compilation to much the same degree as native code.

Finally, it should be remembered that all these benchmarks are compute-intens-
ive; most real-world applications contain a far higher degree of I/O, which will tend
to reduce the difference between Mite and its competitors.

6.1.3 Code size

By the argument used in the previous section, the size of Mite’s native code should
be about the same as that of LCC’s, quite probably slightly greater. Bloat of 10–20%
over natively compiled code seems reasonable: memory is cheap, and at any rate, this
sort of figure is no worse than the cost incurred by moving from a typical imperative
language, such as C, to an object-oriented or functional language, such as Java or
ML.

Figure 6.2 shows that, on average, Mite produces 25% more native code than
LCC. In the worst case, � � � 	 � � , Mite produces over twice as much code as LCC’s
native back end; if this test is neglected, the average is 12%.

While the average increase is acceptable, it is worth seeing how it could be im-
proved, especially in the worst case. There are four main reasons for the bloat. First,
LCC’s Mite back end does not use constant registers, so immediate constants are
never used in the native code (see section 6.2.2); this means that constants must
always be loaded into a register, which takes an extra instruction, and may incur
spills. Secondly, the translator takes up to three instructions to load the address of
a label, but since it does not know the address until after code generation, it has to
leave space for the instructions and patch them afterwards; the final code must be
padded with no-ops (see section 6.2.3). Thirdly, Mite’s lack of physical register tar-
geting (see section 6.3) causes excess register shuffling around branches and calls.
Finally, as above, the lack of virtual register targeting in LCC’s back end (see sec-
tion 6.2.2) causes unnecessary virtual register traffic.

optimization directives have little effect on code size: ���
� � �
	 made ����	 � � 1.0%
bigger, while the code for ��� 	 � � remained identical in size when

����������	
directives

were added. The � � � � ed ��� 	 � � produced 1.1% less native code than ����	 ��� , which
has no rankings.

6.1.4 Executable size

As for the native code, it seems reasonable to expect the virtual binaries to be about
the same size as the native binaries. In fact, they are much smaller: on average, Mite’s

90

6.1 Tests

virtual binaries are only 65% of the size of LCC’s native executables. Since most of
the tests are less than 2Kb long, this might be thought to be caused by the standard
initialization code present in each LCC binary (a minimal “hello world” program is
about 500 bytes long), but even if 500 bytes is subtracted from each of LCC’s binaries,
Mite’s are still 19% shorter on average.

It is also interesting to see how much optimization directives add to the size of
a program: ��� 	

� � is 5.5% longer than the same program without the optimization
directives.

Mite’s virtual code density is therefore perfectly acceptable. Were greater com-
pactness required, there are several options available. First, the encoding has some
room for improvement: successive

�����
s and

� �����
s, of which there are often several in

a row, could be combined, and it could be made possible for register numbers to oc-
cupy less than a byte. Secondly, a general-purpose compression algorithm could be
used to compress the files on disk; decompression algorithms exist that have a tiny
fixed space overhead, and decompress data faster than it can be read from disk [84].
Finally, a compression scheme such as SSD [68] could be used, as discussed in sec-
tion 4.4. However, none of these steps is urgently needed.

6.1.5 Translation speed

Mite is designed to translate virtual code rapidly into native code, though not as
rapidly as a system like VCODE that does not need to decode a virtual binary before
generating code. It should generate code fast enough that it does not add signifi-
cantly to program execution time; this effectively means that it should not signifi-
cantly reduce execution speed, which was discussed in section 6.1.2. However, for
interactive use the translator must also start running the program quickly enough
not to annoy the user, so the program’s start-up time must not noticeably be in-
creased. Without going deeply into psychology, the following rule of thumb seems
reasonable: allow 0.1s for programs up to 10Kb, 1s for programs up to 100Kb, and so
on. Few programs are larger than 10Mb, which this logarithmic rule allows 3s.

It turns out from figure 6.4 that Mite generates about 270Kb/s of native code
on average, and that code generation speed is roughly linear in the size of the pro-
gram. For all but the largest applications this is an insignificant addition to startup
time. Figure 6.8 shows further that translation time does not vary greatly with the
number of physical registers. Indeed, profiling the translator (as discussed in sec-
tion 6.2.3.1) suggests that the number of physical registers is irrelevant: what counts
is the amount of code generated. As can be seen from figure 6.7, using more registers
tends to reduce code size; thus, the translator tends to run faster when it has more
registers are available.

By way of comparison, the test machine loads from hard disk into memory at
a rate of about 1Mb/s, or about 3.7 times the rate of translation. Given that Mite’s
virtual binaries are generally about 65% the size of the generated native code, this
makes starting a program with Mite about 6.1 times slower than simply loading it
from disk (neglecting the time taken to load the translator). This figure would be

91

6 Assessment

rather lower when loading from other media, or downloading code over a network,
where latencies are typically much higher; it could also be reduced by compressing
the virtual code on disk, as suggested in the previous section, using a decompression
algorithm that is faster than reading from disk.

6.1.6 Memory consumption

Low memory consumption is not an explicit goal of Mite; nevertheless, it should
stay within reasonable bounds. So that Mite can remain resident in a system when
it is used frequently, static memory usage should be low, say less than 0.5Mb. Peak
memory consumption during translation might reasonably reach 1Mb.

In fact, static memory consumption is modest: the translator uses about 80Kb
for the program, static data, C heap and stack. Peak dynamic memory usage on the
other hand, as shown in figure 6.5, varies roughly linearly with code size, and aver-
ages about 12 times the size of the program produced. This may seem excessive, but
it is largely due to easily removed inefficiencies in the design of the translator. First,
although Mite’s translator performs no inter-function optimizations, each module is
translated as a whole. Secondly, the code is generated as a series of fragments which
are later sewn together to form the binary image; these fragments are of fixed size,
and many are partly unused. Changes discussed in sections 6.2.3 and 7.1.6 would
greatly reduce peak memory consumption by generating almost all code in-place
and translating one function at a time. This would limit total peak memory con-
sumption to well under 100Kb except for programs with pathologically large func-
tions (perhaps produced by compilers that output C).

6.1.7 Usage of physical registers

Figures 6.6 and 6.7 show how execution time and code size vary when the number
of physical registers available to the translator is artificially limited. The translator
makes good use of extra registers on the whole, as both execution time and code
size are almost always reduced by increasing the number of registers available. As
already noted in the case of the
����� � and
���� � � � test in section 6.1.2, the effect can
be quite dramatic.

There is an exception to this: some benchmarks perform best with about 7 regis-
ters, or experience a performance dip in the range 6–8 registers before climbing again.
This is most noticeable in the � � � benchmark, for which both the best performance
and smallest code is obtained with 7 registers.

This strange result is an artefact caused by the lack of virtual register typing. The
ARM calling convention allows ten registers for general use (hence the maximum
number), of which six are callee-saved and four caller-saved. The translator uses
callee-saved registers in preference, as they are saved efficiently on entry to a func-
tion with a single multiple register store instruction, whereas caller-saved registers
must be individually saved and restored around each call. When the translator is not
allowed to use more than six registers, it uses only callee-saved registers, and hence

92

6.2 Evaluation of the implementation

never has to save caller-saved registers around calls. When more registers are added,
this becomes a possibility, and if the caller-saved registers happen to be heavily used,
a large amount of spill code may result.

If the virtual registers were typed, as suggested in section 7.1.1.2, this would be
less of a problem, as the compiler would be able to specify whether virtual registers
are short-lived or long-lived, and hence whether they should be mapped to callee-
saved physical registers or caller-saved physical registers. In addition, as discussed
in sections 5.2.2 and 5.2.3.2, physical and virtual register targeting would alleviate
the problem by reducing the number of physical registers used, and the number of
inter-register moves. A way to add targeting is outlined in section 7.1.1.3.

6.2 Evaluation of the implementation

This section evaluates the implementation of Mite in the light of the test results. The
three parts of Mite are discussed successively: the assembler in section 6.2.1, the LCC
back end in section 6.2.2, and the translator in section 6.2.3.

6.2.1 Assembler

There is little to say about the assembler, as the demands on it are slight. It is required
to assemble correct code, and extensive checks both inside it and in the translator
ensured that this was so. Its performance is of little importance, as it is used only
during compilation. In any case, it assembled each of the tests in less than a second.

The only problem experienced with the assembler was its lack of an expression
evaluator: when writing LCC back ends it is often convenient to insert constant ex-
pressions in the generated assembler code. Strictly speaking, this is a failing of the
assembler syntax, or of the compiler, according to one’s point of view. In either case,
it would be straightforward to remedy.

6.2.2 LCC back end

Although LCC’s Mite back end is simpler than the native back ends, there are several
problems with it, as discovered in section 5.2, and a few changes had to be made to
the machine-independent part of the compiler to make it work at all.

The major difficulties were as follows:

Register live range Ideally, each virtual register should be created when the value
it holds becomes live, and destroyed when it ceases to be live (or, since regis-
ters must be destroyed in stack order, as soon afterwards as possible). Unfor-
tunately, LCC’s back end generator does not provide hooks to do this easily.
Hence, the back end creates and destroys registers at the beginning and end of
each function. This lack of control leads to greater run-time stack space usage,
and many unnecessary loads and stores of physical registers whose contents
are dead.

93

6 Assessment

Register targeting Although LCC supports register targeting, it could not be used
for Mite, because the register numbers to be targeted for function parameters
and return values are not known when the appropriate back end routine is
called. The lack of targeting causes many extra virtual registers to be declared,
and many pointless register move instructions, as discussed in section 5.2.2. A
solution is discussed in section 7.1.1.3.

Ranking LCC provides no register ranking information, as it has an extremely sim-
ple spiller. Support for ranking really requires a more heavily optimizing com-
piler, such as GNU C, as discussed in section 4.3.1.2.

Number of registers LCC allows as many machine registers as bits in an unsigned
integer, typically 32. This has not so far been a problem for the Mite back end, as
LCC does not allocate registers aggressively, and none of the tests needed more
than 32 registers. However, since one register is allocated for each automatic
variable, this limit could easily be exceeded.

Immediate constants LCC has no notion of constant registers. Without them, the
Mite translator cannot use immediate constants, and small constants take an
extra register and instruction to load.

Fixed-size types LCC requires the sizes of all types to be fixed, so cannot easily
cope with variable-sized registers. The code generated by the current back
end assumes a 32-bit machine word. A 64-bit back end could be obtained by
merely altering the type sizes, but to produce fully portable code would re-
quire variable-sized types to be added to LCC. In fairness to LCC, this is likely
to be a problem with any compiler, as discussed in section 4.1.3. Also, obtain-
ing portable binaries from C programs is problematic; this is discussed further
below.

� � 	 � � � objects LCC does not note (or in some cases, know) whether a particular
object is defined in the current source file or not. Mite demands that references
to labels in the current object module are local. The LCC back end therefore as-
sumes that a given object is defined outside the current module if it is declared
� � 	 � � � . Problems occur mostly with old-style functions which are used before
they are defined; this was solved in the tests by declaring each function at the
beginning of the C source file. To support all standard programs would require
LCC to obtain this information.

Overall the back end was easy to write, despite the trickery required to make it
work: Mite’s close resemblance to a conventional processor made it a straightforward
target. In retrospect it was perhaps unwise to use LCC’s back end generator; a custom
version of LCC would have been better, generating code that fully exploited Mite.
However, using the back end generator made the task easier. In the end, no version
of LCC can hope to exploit Mite fully. The advantages of using GNU C to target Mite
are discussed in section 7.2.4.

94

6.2 Evaluation of the implementation

C itself is problematic, irrespective of the compiler: Mite has the same problems
as ANDF (see section 2.4) with differences such as the size of types on different ma-
chines, as discussed in section 5.1.5. For Mite they are harder to solve, as the virtual
code is so low-level. C is simply not a good choice of language for binary-portable
code; however, it can still benefit from Mite’s other advantages on a single machine
architecture.

6.2.3 Translator

The two most important criteria by which the translator should be judged are speed
of translation and quality of the generated code. Speed of translation, along with the
subsidiary concern of memory consumption, is discussed in the next section, and the
quality of the generated code in the following section.

6.2.3.1 Speed and memory consumption

In section 6.1.5 the translator was judged to be fast enough for all but the largest ap-
plications. The only other reason to require faster translation would be for dynamic
code generation, as discussed in section 7.1.6. VCODE, which is designed for dynamic
code generation, executes on average about 10 machine instructions per generated
instruction [29], which on the test platform equates to about 10Mb of code per sec-
ond, assuming sustained performance of 100 MIPS. This is roughly 35 times more
code per second than Mite. A rough hand-count of the number of instructions Mite
needs to generate a single machine instruction gives about 200 instructions in the
optimal case, a similar ratio of 20 : 1. As mentioned in section 6.1.5, an important
reason for this is that Mite has to decode the virtual binary before generating code;
nevertheless, it could take a leaf from VCODE’s book, and use macros for code gener-
ation rather than functions; this would speed up code generation by inlining many
of the code generation functions in the translator.

Profiling the translator shows that there are three main bottlenecks:

Decoding virtual instructions The main loop of the virtual binary decoder is an in-
efficient multiple conditional statement. In addition, some instructions are de-
coded in two or three stages, being dispatched to the final code generation
routine by intermediary functions. This structure made the translator easier to
write, and to modify as the design evolved, but is inefficient; a simple 256-way
switch based on the opcode of the current instruction (each opcode occupies a
byte) would be much faster.

Emitting code As it is generated, the code is emitted into small 32-byte � � � � � ed
chunks, which are held in a linked list. A new chunk is started after each branch
and before each label, and at any other place where register shuffling code may
need to be inserted after code generation. The resultant � � � � � ing of many
small blocks wastes both memory and time. By emitting code into a single
block, this overhead could be removed. The block could be large enough for

95

6 Assessment

the majority of functions, and would only need to be enlarged for exception-
ally large functions. This also requires code generation to be performed on a
per-function basis. This was already seen to be a good idea in section 6.1.6, and
is part of the list of suggested changes to the translator in section 7.1.6.

Producing the final image The final code image is produced by copying the code
fragments into a single memory block, at the same time generating fix-up code
as described in section 5.1.2. Generating the code into a single block in the first
place, as suggested above, would leave the same amount of code to be copied
into the final image, but vastly reduce the number of blocks, and hence the
administrative overhead.

These shortcomings are peripheral, however, and do not detract from the trans-
lator’s good performance.

6.2.3.2 Quality of the generated code

Section D judged the quality of the native code generated by Mite’s translator to be
adequate. It is interesting to see how much the code quality is dependent on the
translator; after all, Mite aims to make code quality dependent on the compiler, not
the translator (see section 1.2.2).

The answer turns out to be that there is very little more that the translator could
do without considerably greater effort, which would make it slower, contrary to an-
other of Mite’s goals. Compared with GCC, Mite’s native code output has the fol-
lowing shortcomings:

No-ops The translator loads address constants using one to three immediate move
instructions. The number of instructions needed is not known until the labels
have been generated. Rather than repeatedly adjusting the number of instruc-
tions used and then the label addresses, with the attendant possibility of non-
termination, the translator simply reserves three instruction slots during code
generation, and any unused slots are padded with no-ops. This has little effect
on execution speed, but increased the code size by 4% on average. It is hard to
see how to improve code size without affecting speed of translation, other than
by adding an optional post-pass to compress the native code, perhaps as part
of a peephole optimiser, as discussed in section 5.5.2.1.

Incomplete use of instruction set GNU C makes better use of the ARM’s instruc-
tion set than Mite. In particular, it uses the ARM’s ability to execute any in-
struction conditionally on the contents of the flags, which often helps to avoid
short compare-and-branch sequences; it uses multiple-register loads and stores
for spilling and reloading; it makes good use of instructions that Mite does not
possess, such as the ability to combine shifts and arithmetic operations; and it
uses addressing modes that Mite lacks, such load and store with write-back to
the index, which allows an increment to be added to the base register as part of

96

6.2 Evaluation of the implementation

a load or store instruction. A peephole optimiser, as discussed in section 5.5.2.1,
suffices to make all these optimizations (as it does in GNU C); it is hard to see
how they could be made without one.

Conservative callee saving In every function except leaf functions, Mite saves all
the callee-saved registers on the stack. GNU C saves only those that were used.
Mite’s translator could do the same, but currently does not, owing to a design
flaw centred on the fact that it does not model the ARM’s frame pointer in
the machine-independent part of the translator. If the proposals of section 7.1.2
were adopted, Mite would have a virtual frame pointer which the translator
would have to model, and this problem would disappear.

Excessive stack pointer updates The Mite translator updates the stack pointer ev-
ery time a register is created or destroyed, rather than claiming all the space re-
quired by a function at the start, as GCC does. This leads to Mite making more
parsimonious use of stack space, but at the expense of frequent updates to the
stack pointer, even though they are combined into a single instruction where
possible. In retrospect, this is probably a mistake, although to prevent the trans-
lator having to scan the virtual code for a function to calculate its maximum
stack usage before translating it, it would be worth storing this information at
the start of each function, as suggested in section 4.6.

None of these shortcomings is disastrous for Mite. The last two can be easily rec-
tified, and it is hard to see how the first two could be improved without peephole op-
timization, which would significantly decrease Mite’s translation speed. In any case,
the higher level optimizations that can already be expressed in Mite code, such as
constant folding, loop invariant removal and inlining, are generally more significant
for performance than these micro-optimizations, as demonstrated by the increase in
speed obtained in section 5.3 during the optimization of the ����	 benchmark, which
brought Mite’s performance close to GCC’s without peepholing.

On the positive side, Mite is able to do about as well as GCC in its use of immedi-
ate fields, both in arithmetic instructions, and loads and stores. These optimizations
are performed solely on a per-instruction basis, and hence are easy to implement in
Mite’s simple-minded translator. Also, Mite optimizes register shuffling code to use
the minimum number of loads and stores.

Hence it seems that the quality of Mite’s native code is not critically dependent
on its translator (provided that it is implemented sensibly!). There is nothing particu-
larly clever about the current translator, yet it generates good native code when given
good virtual code. Indeed, because of Mite’s insistence on fast translation, there can-
not be anything too clever about the translator. Hence the quality of its output is less
a vindication of the translator’s implementation than of Mite’s design, which is what
the next section goes on to consider.

97

6 Assessment

6.3 Evaluation of the design

Mite’s design is fundamentally sound: most of the problems with its implementation
and performance have been traced to the translator or compiler back end, as dis-
cussed in the previous two sections. However, it is still valuable to weigh the design
carefully in the light of experience, and this section does so from three angles. First,
the ease of implementation is discussed: the best design in the world is useless if it is
too hard to implement. Secondly, the importance of Mite’s more innovative features
is considered: the considerable effort that went into their conception and implemen-
tation will have been worth little if they did not repay that investment by improving
Mite’s performance. Finally, the design compromises that were due to conflicts be-
tween Mite’s goals are examined, along with ways of solving the weaknesses that
they introduce.

6.3.1 Implementability

There are two sorts of implementability to consider: first, how easy the design was
to implement; and secondly, how easy it was to map on to the target architecture.

Mite was straightforward to implement. The only algorithm of any complexity
was that required to deal with register shuffling, and it was complex principally
in order to avoid needing temporary storage (other than a single physical register)
while moving the values of virtual registers around. Other parts of the translator
that dealt with registers and their ranks, such as the physical register spiller, also
proved tricky, but were in fact less complicated than the equivalent code in most
compiler back ends. Finally, implementing function call and return was tedious and
error prone, but again, this is a common problem when writing compiler back ends.

The ARM posed few difficulties as a target for Mite. The greatest annoyance was
the lack of two-byte load and store instructions. Other oddities included the special
code needed to implement shifts of 32 places where the shift amount was specified by
an immediate constant, and the fact that the multiplication instruction’s destination
register must be different from its first operand register.

Over two-thirds of the code in the translator (2, 500 lines out of 3, 500) is machine-
independent, and could be reused when targeting another architecture (although see
section 7.1.6). The routines that deal with register rebinding, while not completely
portable, could be reused with slight adaptations; only the functions that perform
instruction selection would have to be rewritten from scratch.

In summary, Mite’s design, though novel in some respects, presented few chal-
lenges to the implementor. Difficulty of implementation is not an obstacle to Mite’s
adoption.

6.3.2 Importance of innovative features

To see how important Mite’s more innovative features are, it suffices to imagine what
would happen without each of them in turn. Most of the relevant points have already

98

6.3 Evaluation of the design

been discussed; this section draws them together briefly, with references to the ear-
lier, fuller discussions.

Stack Mite’s stack is most important to the efficacy of its design. Section 4.2.2 ex-
plained how it unifies the unlimited-size register file, registers’ live ranges,
the system stack, function calling and stack allocation. Without this unification
Mite’s design would have been much more complex, and since the complexity
of the translator is directly related to the complexity of the design, this would
have made the translator much harder to write. Most importantly, separating
the register file from the system stack and doing without the stack discipline
of register creation and destruction would have made register spilling and live
range management much harder for the translator (see section 4.3.1.1), and led
to either less efficient code, or a more complex, and hence slower, translator.
Finally, the changes to Mite’s design proposed in section 7.1.2, which provide
stack frame traversal, which is required for efficient accurate garbage collec-
tion, and would also be required for concurrency and debugging, require the
virtual register file to be integrated with the stack.

Constant registers Without constant registers, code generators would have to move
all immediate values into registers in order to use them. This would cause
much more register usage, as discussed in section 5.2.2. Section 5.2.3.3 demon-
strates the savings possible when constant registers are used; while the same
benefits could be achieved by allowing instructions such as

� 	
	
and � ��� to

take a constant operand, other problems would then arise, as discussed in sec-
tion 4.2.5.

Register ranking The importance of ranking was discussed in section 4.3.1.2, with
an explanation of how it can be used by an optimizing compiler. The difference
in performance between
������� and
���� � � � (see section 6.1.2), shows its value
clearly; the same effect is also shown there in the difference between ��� 	 ��� and
��� 	 � � . Without ranks, Mite’s native code would simply not be able to run as
fast.

Three-component numbers The importance of three-component numbers for the
generation of portable code was discussed in section 4.1.3. Without them
machine-dependent offsets, such as those dependent on the size of point-
ers, would have to be calculated at run time. This would add considerable
overhead to accessing pointer arrays, such as the branch tables often used
to implement C’s � � � 	 � � statement. An extra shift would be required for ev-
ery access to a pointer array, and the size of the shift would have to be held
in a register, since it would only be determined at run time. More complex
data structures could require an extra two shifts and two adds (to calculate a
full three-component number dynamically). The only alternative would be to
generate non-portable code (or never to use addresses!).

99

6 Assessment

6.3.3 Design compromises

Given the degree to which Mite’s goals conflict, according to conventional wisdom,
surprisingly little compromise between them was necessary. Nevertheless, com-
promise was inevitable, and there was enormous tension between them at times,
with different goals pulling in different directions. Below, the main compromises are
listed, and the conflicting goals that caused them are discussed.

Lack of support for modern languages The twin goals of a low-level VM model
and portable virtual code militated against support for some mechanisms re-
quired by modern languages. Lazy functional languages tend to allocate large
amounts of memory quickly, and so need accurate garbage collection. As dis-
cussed in section 5.4.3, providing this is possible, but to do so efficiently would
require some changes to Mite’s design. Other features that would require
changes to support efficiently include full continuations (with environment
passing) and light-weight concurrency. However, the experience of

�����
[90,91]

shows that it is extremely difficult to reconcile efficiency and portability for
these mechanisms.

Limited optimization directives The optimization directives (see section 3.2.10) are
rather simple and limited in scope. This is largely because the low-level in-
struction set is directly optimizable; at the same time, however, the loss of infor-
mation such as types means that some optimizations used in higher level sys-
tems like ANDF and Juice cannot be expressed in Mite. Also, to keep the trans-
lator fast, there are no optimization directives that would require substantial
translate-time effort to implement. Some further directives that would not in-
crease translation time greatly are proposed in sections 7.1.1.3, 7.1.1.2 and 7.2.3.

Stack order creation and destruction of registers As mentioned in section 4.3.1.1,
in order to keep the translator fast, registers are created and destroyed in stack
order; therefore, registers’ live ranges must be nested, even when the live
ranges of the values they hold are not. It might be worth allowing out of order
� ����� s in order to get better native code.

No explicit 64-bit quantity support In order to have efficient support for explicit 64-
bit quantities, it would be be necessary to have 64-bit virtual registers. This
would be a heavy burden on the register allocator of translators for 32-bit sys-
tems, so was omitted. As observed in section 4.2.4, 64-bit quantities are rarely
required in practice.

Statically sized chunks As mentioned in section 4.2.2, chunks must have a statically
determined size to keep translation fast. Since variable-sized stack allocation is
generally just used as a low-overhead alternative to allocation in the heap, this
is not a serious problem.

High level features The combination of requiring portable virtual code, good qual-
ity native code, and a fast translator led to conflict with the ideal of a low-level

100

6.3 Evaluation of the design

VM model in several instances. Non-local return had to be handled by
���
� ��

and
�
 ��� �

; special versions of labels and call and return instructions were
required for implementing and calling C-style functions; it was necessary to
make virtual registers variable width (see section 3.1.1), which lead directly to
three-component numbers (see section 4.1.3); and an unlimited number of reg-
isters was required (see section 4.2.1). Most of these features tend to make more
work for the translator, but on the other hand, they simplify code generation
for Mite, with the exception of variable-width registers and three-component
numbers, which are awkward for compilers to handle.

Lack of support for faulting Mite has no support for signalling exception conditions
such as page faults or division by zero. It is hard to see how to handle them
portably,4 and easier for portable compiled code to check for errors, as this
can be achieved with a normal compare and conditional branch, and requires
no special semantics. Mite’s

�
 ��� �
instruction can also be used to deal with

exceptional conditions.

Overall, then, it seems that the hardest combination of goals to meet was that of
retaining fast translation and good native code quality; this is unsurprising, as they
are, in general, diametrically opposed.

One cause of compromise not yet mentioned is that of lack of time, which forced
some omissions from the design:

Floating point To support most programming languages fully, and for many real-
world programs, Mite needs floating point support. Its addition is discussed in
section 7.2.1.

Register typing and targeting As discussed in section 6.1.7, virtual register typing
and physical register targeting would both improve the quality of code gener-
ated in the presence of function calls. Additions to support them are proposed
respectively in sections 7.1.1.2 and 7.1.1.3.

Consistent semantics The formal presentation of Mite’s semantics has the advan-
tage of brevity and precision when compared with conventional expositions
such as those in [64, 69, 101]. However, the abstract semantics as presented in
appendix A are not fully consistent with their extension in the assembly lan-
guage as presented in chapter 3 and appendix B. The problem, as mentioned in
section 4.5, is that the abstract semantics are entirely dynamic, while those of
the assembler are partly static. This leads to differences in the meaning of some
instructions between the two. For example, ����� has a static effect in the assem-
bly language, so that a register is created at the point in the program where the�����

is. In the semantics,
�����

, like all instructions, is dynamic, so that each time a

4Of the other systems considered here, only
�����

has systematic support for faulting, and it proved
extremely difficult to specify well [100].

101

6 Assessment

����� instruction is reached, a register is created. The difficulty arose because the
semantics, which is a small-step operational semantics, is easier to specify in
dynamic terms, whereas the translator, in order to generate efficient code, and
generate it in a single pass, requires the program’s meaning to be easily deter-
mined statically. A way of fixing up the semantics is outlined in section 7.1.7.

6.4 Summary

The tests have shown that Mite performs well in practice, with slight reservations
about translation speed and the dynamic memory consumption of the translator,
both of which have been shown to be easy to improve. Furthermore, it was not a great
struggle implementation-wise to achieve these results, and several pointers to ways
of improving both the translator and code generator have been given, especially with
regard to the use of a more optimizing compiler.

It is extremely difficult to give a comprehensive objective assessment of Mite,
because of its broad goals which aim, effectively, to make it all things to all people.
An evaluation of it that took into account all the contexts in which it might be used
would fill many volumes. Nevertheless, it has been demonstrated that having fast
translation and fast execution together is possible, and it seems that Mite’s design has
indeed managed to reconcile its divergent goals in a practical and workable system.

The next chapter gathers up the loose ends of the design and implementation into
a plan for their consolidation and improvement.

102

7 Future work

This chapter suggests ways in which both the design and implementation of Mite
could be improved and extended. The recommendations fall into two categories:
improvements (section 7.1) which aim to address problems observed in previous
chapters (especially in section 4.6), and extensions (section 7.2) which either improve
Mite’s performance, or widen its application domain by broadening its functionality.

7.1 Improvements

Most of the improvements discussed here were among many features considered
and rejected while designing Mite. Now that Mite has been implemented and tested,
it is easier to see which of them are most useful, add least complexity to the design,
and are easiest to implement. Others result from the analysis of the last two chapters.

7.1.1 Registers

Several problems have been identified with the model of virtual registers, in partic-
ular the lack of virtual register typing and physical register targeting. This section
suggests some solutions.

7.1.1.1 Out of order
� �����

Section 6.3.3 pointed out that forcing stack items to be destroyed in stack order can
make the native code less efficient. The restriction was made to simplify, and hence
speed up the translator (see section 4.3.1.1). Allowing out of order � � ��� s, by adding
a parameter specifying the stack item to be killed, might not harm the performance
of the translator if it did not attempt to reuse the stack space thus freed until all
intervening items had been killed. The benefit would be that the translator would
not generate spill and restore code for registers whose contents is no longer needed,
but which cannot be declared dead until all the stack items above them have been
killed as well.

7.1.1.2 Typing

As discussed in section 6.3, registers should be given a type, temporary or variable,
allowing callee and caller-saved registers to be used more prudently by the transla-

103

7 Future work

tor. The type can be given in the register’s declaration by splitting ����� into ����� � and����� �
.

7.1.1.3 Targeting

Register shuffling could be reduced by targeting virtual registers whose physical
binding is known, such as function parameters and return values. This could be done
by adding an optional target to the ����� instruction, so that registers could be declared
as

����� �
���

, to indicate the third argument out of five. Alternatively, Mite’s
��� � �

and��� � instructions could take a list of the instructions used to calculate each argument
and return value. Within each list, register 0 could be used to mean the value be-
ing calculated. The lists would not be allowed to contain further

��� ��� s or ��� � s. This
would allow the translator to evaluate arguments left-to-right or right-to-left as ap-
propriate, as well as performing register targeting.

Then, code such as the following, which is taken from the example in sec-
tion 5.2.2:����� ��� �

get address of 	 ����������
declare argument register����� ��� � load argument � 	 ���������� ���	 get address of ���	 ������ declare argument register����� ��� � load argument � ��	 �

��� ����� ��������� � 	 � � � �
 � call ������� � 	

might become
��� ����� ��������� � 	 � � � �
 �

call ������� � 	
� ����� ��� �

get address of 	 ���������� ��� � $
load argument

� 	 �����
� ����� ����

get address of ���	 ������ ��� � $
load argument � ��	 �

Here, the braces group the code for each argument, and the argument registers are
declared implicitly. The following ARM code could be generated:

 � ��� 	 � � � 	 �	��
 �
get address of 	 �����

� � � � 	
�� 	 � load argument
� 	 �����

��� ��� � 	 � � 	 �	��� reserve spill slot for argument register

 � ��� 	 � � � 	 �	����� get address of ���	 �
� � � � 	 � � 	 � load argument � ��	 �

 � � � 	 � � 	 �	��� remove argument register spill slot
� � ��������� � 	 call ������� � 	

With a better compiler back end that used virtual register targeting too, the fol-
lowing code would be generated:

��� ����� ��������� � 	 � � � �
 � call ������� � 	
� � ��� � �	� $

get address of 	 �����
� � ��� � � $

get address of ���	 �

resulting in

104

7.1 Improvements

 � ��� 	
�� � 	 � ��
 �
load argument

� 	 ���
�
������� � 	 � � 	 � ���

reserve spill slot for argument register

 � ��� 	 ��� � 	 � �����

load argument ���	 �

 � � � 	 � � 	 � ��� remove argument register spill slot
� � ��������� � 	 call ������� � 	

Now, since the function arguments would be guaranteed to be in the right registers
or stack locations by the time of the function call, it would be easy to improve the
intelligence of the stack pointer modification code, leaving just:

 � ��� 	
�� � 	 � ��
 � load argument � 	 ���
�

 � ��� 	 ��� � 	 � ��
�� load argument ���	 �
� � ��������� � 	 call ������� � 	

7.1.1.4 Addressing chunks directly

Chunks are often used to hold records containing register-sized fields which are ma-
nipulated individually. Allowing these fields to be accessed directly would improve
native code quality, and could be seen as a less radical alternative to the changes
proposed in the next section. Registers could alias a word in a chunk, which would
be used for the register’s initial value and its spill location. It would have to be pos-
sible to force the register’s value to be written back, either by adding forced read
and write instructions, or by declaring a register “always read” or “always write”,
as in PASM [21]. More simply, chunks could be allowed as the base address in �
	 and
� � instructions; for chunks located at small offsets from the stack pointer, this could
frequently save a register and an instruction.

7.1.2 Walking the stack

Sections 5.4.1.2 and 5.4.3.3 discussed the need for a stack-walking mechanism. It
turns out that such a mechanism could be added to Mite with modest implemen-
tation effort, minimal overheads, and benefits beyond those already discussed.

There are two main elements to stack walking: knowing the layout of the stack,
and traversing the stack frame. The first is achieved by fixing the stack layout: each
virtual register is required to have a stack slot, and the slots are allocated in numerical
order from the start of the stack frame. This may seem wasteful, as even registers that
are never spilt must have a stack slot (indeed, even constant registers whose value
may be held entirely in instructions), but this is exactly what the current implemen-
tation does anyway, for simplicity and speed of translation. There is no intrinsic time
overhead, only a space overhead, and it is still permissible not to allocate stack slots
in leaf procedures. The only part of the stack whose layout is not now fixed is the
return chunk; section 5.4.3.3 discusses the consequences for garbage collection, and
how this lack of knowledge can be overcome.

Stack traversal is provided by making the register
� �

, which points to the top
of the stack on entry to the current function, visible in the assembly language. In
addition, manifest constants are extended so that they can be multiplied by the stack

105

7 Future work

direction. With these two mechanisms, stack items can be addressed using manifest
offsets from

� �
.

There is one final problem: since virtual registers are cached in physical registers,
the translator must be able to ensure that the values in their stack slots are up to
date when the stack is traversed. The ��� � � modifier to

��� ��� ensures that this is the
case at a procedure call; it remains to rule that traversing the current stack frame
may result in incorrect values being read for registers (though it may be useful for
chunks). Also, attaching a ��� � � to every

��� ���
is expensive, as it effectively forces a

caller-saves convention, which must be implemented on top of the system calling
convention; most systems use a mix of caller and callee saving. To minimize the
overhead, a second argument is added to ��� � � , which gives a list of registers that
should be updated. The syntax of ��� � � becomes:

<reg-list> = <reg> � ∗

<sync> = ��� � � [<handler>] � [<reg-list>]

With this new ��� � � , just those registers whose value may be needed in an inner
procedure can be updated, such as local variables that must be available to a lexically
nested procedure, or pointers that may be inspected by the garbage collector.

Finally, note that by giving knowledge about the stack layout and allowing it
to be traversed, these mechanisms support rudimentary debugging, although more
information about the return chunk would be needed to give a stack backtrace, for
example.

7.1.3 Flags

Processors without a dedicated flags register would be better served by combined
compare-and-branch and compare-and-set instructions, as discussed in section4.3.2.
Since these instructions decompose straightforwardly into a compare followed by a
branch or set on machines that do have a flags register, it seems sensible to adopt
this model (in a similar way to the use of three-address instructions, as discussed in
section 4.1.1). Thus, there would no longer be a flags register in Mite.

For each current conditional branch instruction, two instructions would be cre-
ated: one of the form � c d � x � y , and one of the form

�
c r � x � y . Here, c is a condition

code other than
� �

, and x and y are the operands; d is a destination address, and r is
a result register. In each instruction, x− y is calculated. Then, for the branch instruc-
tion (

�
), the branch is taken if the result is true according to the given condition code,

c; for the test instruction (
�
), 1 is written to register r if the result of the test is true,

and 0 otherwise.
This scheme only gives one way of generating flags directly: subtraction. Other

operations that can currently generate flags, such as addition and masking, will re-
quire an extra comparison to do so. However, this is all that many processors offer,
and even Mite’s restricted flags model is too demanding for some: for example, on

106

7.1 Improvements

the SPARC [133], logical shifts do not set the flags. Another disadvantage of compare-
and-branch is that it can cause extra register shuffling, because if the registers used in
the comparison are dead at the destination, they cannot be killed before the branch,
and so are likely to be spilled before the branch is taken. The extension to

� � � �
pro-

posed in section 7.1.7 would overcome this problem, as explained there. It might
seem that always requiring two operands to the comparison would result in spuri-
ous comparison instructions being inserted when no comparison is actually needed.
Consider the following code fragment:

����� � �	���
� ���
���� �

calculate a bit mask��� � � � ��	 � �
�� �
branch if all bits clear

When generating code for a machine such as the ARM, which has a flags register,
it seems that the following code might be generated:

 � � 	
�� 	 ��� 	 calculate bit mask
� � 	 	
�� ��� check if all bits clear
� ��� � � ��	 � branch if so

whereas in the current system, the virtual code� ��� � 	 � � 	 � calculate bit mask��� � � � ��	 � branch if all bits clear

could be generated, assuming that the bit mask’s value is not required, and this
would obviously translate to

� � � 	 � � 	 � calculate bit mask
� ��� � � ��	 � branch if all bits clear

(� 	 ands its operands and sets the flags accordingly). However, it is easy for the
translator to elide spurious comparisons with zero (this is the only case common
enough to be worth optimizing), and note that most processors do not have an equiv-
alent of the ARM’s 	 � 	 instruction, which makes the current model more problem-
atic for them: they have to use an extra register. The use of the extra register � � could
similarly be elided on the ARM.

7.1.4 Code sharing

Code sharing between subroutines and functions, as discussed in sections 3.5 and 4.6,
should be allowed if compilers use it. A way would be needed to indicate functions
that share a

��� �
, or which functions a given

��� �
can return from. It might be nec-

essary to restrict code sharing to functions with the same parameter types, as some
calling conventions’ procedure epilogues need to know the size of the stack frame.

7.1.5 Tail call

A tail call instruction, like that provided by
� � �

, would allow many function calls to
be optimized. The

� ��� � �
instruction could be like the

��� � �
instruction, except with

no return values.

107

7 Future work

7.1.6 Translator

The translator should be rewritten, to achieve the following aims (some of which
were discussed in section 6.2.3):

Layering The translator would be better organized as a series of layers: at the bot-
tom, an assembler, essentially a series of macros to generate machine instruc-
tions given physical registers; above this, register allocation for a finite number
of registers and label handling; next, spilling, with the object-file decoder on
top. It should be possible to use the layers independently; for example, the
instruction generation macros could be used as a VCODE-like system on their
own.

Isolation of machine dependencies It should be possible to port the translator by
simply replacing the assembler layer; other changes can always be made later
to improve the translator or the code it generates.

Faster translation If Mite is to be used for load-time translation of large binaries
and rapidly reconfigurable systems, its translation speed should be improved.
Layering gives control over translation speed, as it allows the translator to be
used at different levels, but standard translation should also be sped up as
discussed in section 6.2.3.1.

Reduced memory consumption Translating into native code a function at a time
would make peak memory consumption proportional to the size of the largest
function translated rather than that of the largest program. Memory allocation
overheads could be reduced by using arenas [44] for dynamic memory alloca-
tion. Further savings could be obtained by writing most of the native code into
a single memory block, using code fragments only for register rebinding, as
discussed in section 6.2.3.1.

Dynamic code generation support This is discussed in section 7.2.5.

Sandbox execution This is discussed in section 7.2.6.

When the translator has been rewritten, the first priority should be to port it to
other architectures. An IA-32 port should be made first, partly because it is the com-
monest workstation architecture, and partly because as the only mainstream CISC
processor family it is a stern test of Mite’s RISC-like design.1

7.1.7 Consistent semantics

An ideal resolution of the problems discussed in section 6.3.3 would make the as-
sembly language merely a sugaring of the abstract syntax, plus the optimization di-
rectives; at the moment, the assembly language adds to and changes the abstract
semantics.

1As noted in section 2.3, VCODE has no IA-32 implementation.

108

7.2 Extensions

The major problem is to find a unified semantics for the stack instructions. One
way to do this is to make the semantics of the assembly language dynamic, like
the abstract semantics. This can be achieved by two changes. First, the assembly
language is changed so that labels are declared before the start of the program. For
subroutines and functions, this includes their parameter and return types, rather like
a function prototype. Thus, the static

�����
s associated with function labels are no

longer needed, and the awkward semantics of
��� � �

, which effectively performs a
number of static � ����� s at the moment, become purely dynamic. Secondly, branches
are allowed to be decorated with

� � � �
s, that take effect only if the branch is taken.

This allows any change in the stack state between a branch and its destination to be
given explicitly in a dynamic way, rather than being static and implicit.

Labels would also have to be added to the abstract semantics to unify it with the
concrete; this is beyond the scope of the present discussion, but is not difficult. Fi-
nally, following TAL, it might be useful to define Mite by a series of axioms which
could be used to derive a typed assembly language, of the sort mentioned in sec-
tion 2.6. This would give a formal system more suited to making proofs about pro-
grams than the current definition.

7.2 Extensions

Mite is at the moment still quite limited in some ways. Partly, this is due to fea-
tures which its design completely omits, such as floating point arithmetic. On the
other hand, certain additions to the implementation would make Mite more attrac-
tive to users without requiring changes to the core design: for example, the ability to
perform dynamic code generation, or to run virtual code in a sandbox. This section
outlines some extensions of both kinds.

7.2.1 Floating point

If Mite is to be generally useful, it must support floating-point operations, which
were omitted for simplicity, and because of lack of time. Like almost all the systems
discussed in chapter 2, Mite should use the IEEE floating point model [52]. Floating-
point instructions and registers are straightforward to add: the instructions can use
the same three-operand format as the current arithmetic instructions, and floating-
point registers can be declared and used much like integer registers. If 64-bit IEEE
representation was required, then no change would be needed to three-component
numbers (see section 4.1.3) to accommodate floats in data structures. Extra flags
would be needed to indicate error conditions such as underflow; these would fit into
the current model, and the changes discussed in sections 7.1.3 apply equally well to
these new flags.

The most difficult area of any floating point implementation is error handling.
Java and VCODE do not fault, while Dis can, under the control of its floating-point

109

7 Future work

libraries. For Mite it is more useful to report errors than to fault, as errors can be more
easily dealt with by portable compiled code (see section 6.3.3).

7.2.2 Instruction scheduling

Instruction scheduling is obviously lacking. VCODE provides functions to perform
instruction scheduling, but they slow code generation down, and make it more awk-
ward. It seems better either to perform limited scheduling automatically, or to per-
form it as a post-pass, which could be combined with global optimization on some
systems, or omitted when code generation speed is crucial.

7.2.3 Global optimization

Mite’s current design makes no provision for global optimizations, because most
would force the translator to make at least one extra pass over the code. The best
global optimization to make would probably be global register allocation, which
could remove much register shuffling at control flow joins. It should be possible to
add this as an optional pre-pass to the translator; ICODE [96] adds a similar option to
VCODE.

Some simpler global optimizations would not require extra passes. Systems such
as interpreters would benefit from being able to bind key virtual registers perma-
nently to machine registers. Another register type to go with those introduced in
section 7.1.1.2 could hint that the translator should binding the virtual register per-
manently to a machine register. Register usage in loops and shared code could be
improved by giving an order in which to translate sections of the virtual code. The
most important parts would be translated first, and thus have greatest freedom of
register use.

Since it requires considerable effort to implement, and will slow down the trans-
lator considerably, full-scale global optimization should be postponed until the other
suggested improvements have been made and measured. In any case, it may be bet-
ter to use an independent native code global optimiser [12], or perform run-time
specialization [63], using Mite as the dynamic code generator.

7.2.4 Compiler back end

As discussed in section 6.2.2, LCC does not produce well-optimized virtual code.
GNU C [35] performs a much wider range of code transformations, and has a peep-
hole optimiser. LCC works on a limited range of machines, and only compiles C;
GNU C also supports C++, Objective C, Java, Pascal, FORTRAN and Ada, and is
widely ported and heavily used.

GNU C was not used because with its greater power and flexibility comes extra
complexity, and though its documentation is comprehensive, it is less exegetic than
LCC’s. However, for high performance Mite needs a good compiler, and GNU C
seems the best choice for development of a new back end.

110

7.2 Extensions

7.2.5 Dynamic code generation

Allowing Mite to perform dynamic code generation directly, rather than needing
to save out an object file and translate that, would make it a competitor to VCODE

and PASM. In any case, if Mite is to be used as the sole code generator in a system,
it must support dynamic code generation, which is increasingly widely used, for
example to translate portable code downloaded across a network. Mite’s design is
suited to dynamic code generation, and the layering of the translator proposed in
section 7.1.6 would allow the code generation functions to be called directly. Multiple
clients should be able to use Mite simultaneously in a thread-safe manner.

7.2.6 Sandbox execution

In order to run untrusted code safely, it is useful to be able to run it in a controlled
environment, or sandbox, in which it cannot make illegal memory references, or in
any other way affect the operation of the host in an unauthorized manner. Such code
is common in several applications, including user-written network packet filters that
must run in the operating system kernel, and applets downloaded from the internet.

There are two main approaches to sandboxing, which are usually used together.
One is to use an interpreter to run the virtual code, and check all operations such
as memory accesses. This results in poor performance; however, it is the simplest
way to ensure the security of the host machine, and so is widely used, for example
by Cintcode. The other common approach is to verify the virtual code according to
some security policy. This is how proof-carrying code [82] works: the program comes
with a proof that it has certain properties. This proof can be checked by the recipient,
and if it is either invalid for the given program, or does not prove strong enough
properties, the program is not run. Otherwise, the program, which is ordinary native
code (with some restrictions) can be run normally, at full speed, and the host can be
confident that it will be safe. The JVM uses a combination of the two approaches, us-
ing type-based byte-code verification to catch many potential errors before running
the program, which can then be run with far fewer dynamic checks than it would
otherwise have needed.

Mite’s low-level design means that it can easily be interpreted, but this would
lose all its performance benefits. On the other hand, its precise specification makes it
possible to design security policies based on properties of the virtual code. In either
case, though infrastructure would be needed that is beyond the scope of Mite’s orig-
inal design, Mite openness would allow the necessary additions to be made without
having to change the core specification.

111

8 Conclusion

To conclude, an appraisal of Mite with reference to its goals is followed by a final
perspective on its place in the space of virtual machines.

8.1 Appraisal

This section appraises the degree to which Mite meets each of its goals (see sec-
tion 1.2.2).

A low-level processor-based VM model Mite’s VM model is indeed low-level, and
very similar to that of typical processors: especially on RISC machines, most of
Mite’s computational instructions translate into a single machine instruction.
As discussed in section 6.3.3, some high-level features had to be introduced to
combine portable virtual code with high-performance native code, but these
do not compromise the aim of having a low-level model, which was to make
translation of virtual into native code simple.

Architecture neutrality Mite achieves a high degree of architecture neutrality largely
by dint of implementing a subset of the facilities provided by most proces-
sors. Despite its RISC-like appearance, section 5.5 demonstrated that translat-
ing Mite for CISC architectures is straightforward.

Language neutrality Mite is less language neutral than it might be, because mecha-
nisms such as accurate tracing garbage collection and closures, which are relied
on by many languages, especially the more modern ones, cannot currently be
implemented both efficiently and portably. Section 7.1.2 described how stack
walking, which would aid efficient implementation of these and similar mech-
anisms, could be added to Mite. This outcome largely reflects Mite’s similarity
to real processors, which lack direct support for these mechanisms, and there-
fore force them to be programmed in a machine-dependent way if they are to
be efficient.

Portable virtual code It is straightforward to generate completely portable code for
Mite. As discussed in section 5.1.5, this does not completely solve the portabil-
ity problem; for that, any libraries which are used by the portable code must be
callable in a machine-independent manner.

112

8.2 Perspective

Fast JIT translation Section 6.1.5 showed that Mite gives reasonably fast single-pass
JIT translation, and section 6.2.3.1 discussed ways of improving the speed fur-
ther.

High-quality native code Mite’s performance was shown in section 6.1.2 to be good
in the current implementation; however, an optimizing compiler back end and
translators for more machines are needed to make this demonstration unequiv-
ocal.

Virtual code annotation Mite’s virtual code annotations were shown to be both nec-
essary and sufficient to ensure that good native code is produced (see sec-
tion 6.1.2). Further annotations to improve the code generated around function
calls were suggested in section 7.1.1.

Interworking with native code Since Mite can use the system calling convention on
its host machine, and can address data anywhere in its host address space (if
permitted to), it can easily and fully interwork with native code. All the tests
in section D were linked against the unmodified system libraries, using the
method described in section 5.1.5.

Portable object format Mite’s simple byte-oriented object format is fully portable.

Precise definition Mite’s definition is precise and unambiguous. Some problems
with it were identified in section 4.5, but these affect only the semantics’ use
for proof, and a solution was given in section 7.1.7.

Mite has substantially met all its goals. To be practically useful, however, it needs
to be more implemented for more processors, and targeted by better compilers for
more languages.

8.2 Perspective

The emergence of a new wave of VMs in the last few years shows that a portable, fast
execution platform is desirable. Their proliferation and lack of general acceptance
points to the need for a more general-purpose system.1 Recent interest in typed as-
sembly languages [80] and the many attempts to formalize the JVM [5] suggest that a
formal definition is important. After a period of homogenization, the processor mar-
ket appears to be on the crest of a new wave of architectural diversity; at the same
time, the long-predicted shift from 32 to 64-bit architectures is underway. Both these
factors increase the need for portable code, and in particular, a way of making legacy

1Despite sustaining enormous interest for several years, Java still shows no sign of fulfilling its
promise of delivering “write once, run anywhere” applications, destroying the barriers between
different OSs and machines for user and developer alike. I think that the most important reasons
are the over-specialization and poor resource consumption of the Java VM.

113

8 Conclusion

code easily portable to new architectures. Networks and distributed applications are
now of central importance: these too demand portability, along with distribution and
security. However, any system offering all these features is doomed to fail; it cannot
be flexible enough to be universal, nor can it evolve as better answers to these prob-
lems are found.

Mite provides a flexible way to address all these needs, without attempting to be
a complete solution. Its similarity to independent recent work such as VCODE [29]
suggests that its design is on the right track; at the same time it is simpler than com-
parable systems. Its performance is adequate, and readily bettered. The improve-
ments recommended in the previous chapter would make Mite a compelling choice
for all its target applications. Instead of being a solution, a rightly maligned concept,
Mite is a tool: simple and small enough to be adopted and adapted as a central part
of every software system. Only the simple should be ubiquitous.

114

A Semantics

A.1 Introduction

Mite’s semantics are defined in terms of an abstract machine, which consists of a
state and a set of rules for transforming it according to a program.

A.2 Definitions

Quantity a string of bits

q[i . . . j] the quantity consisting of bits i to j inclusive of quantity q

Width the number of bits in a quantity

A either 32 or 64

Word an A-bit quantity

w-aligned a multiple of w

Size an expression of the form b + w + r, where b, w, and r are non-negative integers,
whose value is b + Aw + 32 bA/64c r

ρ an undefined quantity of infinite width

[S] a bit representing the truth of statement S; if S is true then [S] is one, otherwise it
is zero

q← E the assignment of expression E to quantity q; before assignment, E is trun-
cated or zero-extended to make it the same width as q

Stack a last-in-first-out stack whose items are said to be added to the top, and are
numbered from one, counting from the bottom

s[i] the ith item of stack s

s[i . . . j] the stack consisting of items i to j inclusive of stack s

s⊕ E the stack s with an extra item added whose value is E

115

A Semantics

A.3 State

Mite’s state consists of the following elements:

Flags fZ, fN , fC, fV one bit each

Execution pointer EP a word

Temporary register T a word

Memory M a quantity

Permutation functions p8, p16, p32, pA

Stack S a stack

Frame stack F a stack

An index into M is called an address.
The function pw takes a quantity of width w and returns it with its bytes per-

muted.
F is a stack of pairs of naturals. FP is the index of the top-most item in F. FS(i)

and FN(i) denote respectively the first and second component of the ith item of F. A
stack position is a natural p in the range 1 . . . FN(FP).

S holds items of two sorts: a register is a word created by NEW(), and a chunk is
a quantity of arbitrary size created by NEW(c) (see section A.5.7). The stack items are
held in M at word-aligned addresses.

Sp, where p is a stack position, denotes S[FS(FP) + p − 1]; &Sp denotes the ad-
dress of Sp. SP is an abbreviation for FS(FP) + FN(FP)− 1.

A.4 Program

An instruction consists of an operation and a tuple of operands. Each operand has
a type, given by its name; a subscript is added to distinguish operands of the same
type. The allowable instructions are given in section A.5. The program P is an array
of instructions; P[i] denotes the ith element of P.

The types are:

Stack position p a stack position

Natural n a non-negative integer

Register r a stack position p such that Sp is a register, or T

Chunk c a stack position p such that Sp is a chunk

Width w a member of the set {8, 16, 32, A}

Size s a size

116

A.5 Instructions

A.5 Instructions

The state is transformed by repeatedly performing EP ← EP + 1 then the semantics
of P[EP− 1]. The semantics of each instruction are given below in terms of assign-
ments to state elements, and other instructions; the operations are performed sequen-
tially. An underlined expression is a predicate that must evaluate to true when the
instruction is executed; otherwise the instruction has no effect.

Arithmetic is integral, performed on A-digit binary numbers using two’s com-
plement interpretation. Quantities are evaluated with bit zero as the least significant
digit.

The semantics of every instruction have the assignment T ← ρ prepended, and
also, for all instructions except branches (see section A.5.4), the following:

fZ ← ρ

fN ← ρ

fC ← ρ

fV ← ρ

For branches, the four instructions above are added to the end of the instruction’s
semantics.

A.5.1 Assignment

MOV(r1, r2) : Sr1 ← Sr2

fZ ← [Sr1 = 0]
fN ← [Sr1 < 0]

MOV(r, c) : Sr ← &Sc
fZ ← [Sr1 = 0]

SWAP(r1, r2) : T ← Sr1

Sr1 ← Sr2

Sr2 ← T

A.5.2 Data processing

All the data processing instructions except MUL, DIV[S[Z]] and REM[S[Z]] have

fZ ← [Sr1 = 0]
fN ← [Sr1 < 0]

appended to the end of their semantics.

117

A Semantics

A.5.2.1 Arithmetic

NEG(r1, r2) : Sr1 ← −Sr2

fC ← [Sr1 = 0]
fV ← [Sr1 = −2A−1]

ADD(r1, r2, r3) : Sr1 ← Sr2 + Sr3

fC ← carry out of most significant bit
fV ← [signed overflow occurred]

SUB(r1, r2, r3) : Sr1 ← Sr2 − Sr3

fC ← carry out of most significant bit
fV ← [signed overflow occurred]

MUL(r1, r2, r3) : Sr1 ← Sr2 × Sr3

DIV(r1, r2, r3) : Sr3 6= 0

Sr1 ← Sr2 ÷ Sr3 , treating Sr2 and Sr3 as unsigned, and
rounding the quotient to 0

DIVS(r1, r2, r3) : Sr3 6= 0

Sr1 ← Sr2 ÷ Sr3 , treating Sr2 and Sr3 as signed, and rounding
the quotient to −∞

DIVSZ(r1, r2, r3) : Sr3 6= 0

Sr1 ← Sr2 ÷ Sr3 , treating Sr2 and Sr3 as signed, and rounding
the quotient to 0

REM(r1, r2, r3) : DIV(T, r2, r3)
r1 ← r2 − T× r3

REMS(r1, r2, r3) : DIVS(T, r2, r3)
r1 ← r2 − T× r3

REMSZ(r1, r2, r3) : DIVSZ(T, r2, r3)
r1 ← r2 − T× r3

A.5.2.2 Logic

NOT(r1, r2) : Sr1 ← one’s complement of Sr2

AND(r1, r2, r3) : Sr1 ← bitwise and of Sr2 and Sr3

OR(r1, r2, r3) : Sr1 ← bitwise or of Sr2 and Sr3

XOR(r1, r2, r3) : Sr1 ← bitwise exclusive-or of Sr2 and Sr3

118

A.5 Instructions

SL(r1, r2, r3) : 0 ≤ Sr3 ≤ A

Sr1 ← Sr2 shifted left Sr3 places
fC ← carry out of most significant bit, if Sr3 > 0

SRL(r1, r2, r3) : 0 ≤ Sr3 ≤ A

Sr1 ← Sr2 shifted right logically Sr3 places
fC ← carry out of least significant bit, if Sr3 > 0

SRA(r1, r2, r3) : 0 ≤ Sr3 ≤ A

Sr1 ← Sr2 shifted right arithmetically Sr3 places
fC ← carry out of least significant bit, if Sr3 > 0

A.5.3 Memory

LD(w, r1, r2) : Sr1 ← 0
Sr1 [0 . . . w− 1]← pw(M[Sr2 . . . Sr2 + w− 1])

ST(w, r1, r2) : M[Sr2 . . . Sr2 + w− 1]← p−1
w (Sr1 [0 . . . w− 1])

COPY(s, r1, r2) : Sr1 + s ≤ Sr2 or Sr2 + s ≤ Sr1

M[Sr1 . . . Sr1 + s− 1]← M[Sr2 . . . Sr2 + s− 1]

COPY(s, r, c) : Sr + s ≤ &Sc or &Sc + s ≤ Sr

M[Sr . . . Sr + s− 1]← M[&Sc . . . &Sc + s− 1]

COPY(s, c, r) : &Sc + s ≤ Sr or Sr + s ≤ &Sc

M[&Sc . . . &Sc + s− 1]← M[Sr . . . Sr + s− 1]

COPY(s, c1, c2) : &Sc1 + s ≤ &Sc2 or &Sc2 + s ≤ &Sc1

M[&Sc1 . . . &Sc1 + s− 1]← M[&Sc2 . . . &Sc2 + s− 1]

A.5.4 Branch

BAL(r) : EP← Sr

BEQ(r) : fZ = 1

EP← Sr

BNE(r) : fZ = 0

EP← Sr

BMI(r) : fN = 1

EP← Sr

119

A Semantics

BPL(r) : fN = 0

EP← Sr

BCS(r) : fC = 1

EP← Sr

BCC(r) : fC = 0

EP← Sr

BVS(r) : fV = 1

EP← Sr

BVC(r) : fV = 0

EP← Sr

BHI(r) : fC = 1 and fZ = 0

EP← Sr

BLS(r) : fC = 0 or fZ = 1

EP← Sr

BLT(r) : fN 6= fV

EP← Sr

BGE(r) : fN = fV

EP← Sr

BLE(r) : fZ = 1 or fN 6= fV

EP← Sr

BGT(r) : fZ = 0 and fN = fV

EP← Sr

A.5.5 Call and return

CALL(r, p) : NEW(s)
S[SP][o . . . o + A− 1]← EP
EP← Sr
F[FP]← (FS(FP), FN(FP)− (p + 1))
F← F⊕ (SP + 1, p + 1)

RET(c) : EP← Sc[o . . . o + A− 1]
KILL(c)
F← F[1 . . . FP− 2]⊕ (FS(FP− 1), FN(FP− 1) + FN(FP))

o and s may vary between instructions, but should be the same for corresponding
CALLs and RETs; s is at least A, and 0 ≤ o ≤ s− A.

120

A.5 Instructions

A.5.6 Catch and throw

CATCH(r) : Sr ← FP

THROW(r1 , r2, r3) : EP← Sr1

F← F[1 . . . Sr2]
S← S[1 . . . SP− 1]⊕ Sr3

A.5.7 Stack

NEW() : S← S⊕ ρ[0 . . . A− 1]
F[FP]← (FS(FP), FN(FP) + 1)

NEW(s) : S← S⊕ ρ[0 . . . s− 1]
F[FP]← (FS(FP), FN(FP) + 1)

KILL(p) : S[FS(FP) + p− 1 . . . SP− 1]← S[FS(FP) + p . . . SP]
F[FP]← (FS(FP), FN(FP)− 1)
S← S[1 . . . SP]

121

B Assembly language

B.1 Introduction

Mite’s assembly language is based on the abstract syntax. Where the two correspond
exactly the semantics are the same; the semantics of departures from and extensions
to the abstract syntax are given below.

B.2 Metagrammar

The grammar is described in a BNF-like notation. Terminal tokens are shown 	 � � � ,
and non-terminal tokens <thus>. Space or lack of it between tokens, including line
breaks, is significant. Terms are formed from tokens and the following operators,
given in decreasing order of precedence:

Zero or more repetitions of a term are denoted by appending an asterisk, thus: A∗.

One or more repetitions of a term are denoted by appending a plus sign, thus: A+.

Lists are denoted by a single terminal character before a repetition symbol: for ex-
ample, <ship> � + denotes a comma-separated list of one or more ships.

Concatenation is denoted by textual concatenation, thus: AB.

Alternation is denoted by a vertical bar, thus: A | B.

Optional terms are enclosed in brackets:
� � �	 � � [

� 	 � � [� � ��� �]] � � � � � ���

Parentheses may be used to override precedence: for example, (<A> |)<C>
means “<A> or , followed by <C>”.

A production consists of the non-terminal being defined, followed by an equals
sign, followed by the defining term: <insect> = <head><thorax><abdomen>.

122

B.3 Identifier

B.3 Identifier

<d-digit> =
�
| � |

�
| � |

�
|
�
|
�
| � |

�
| �

<h-digit> = <d-digit> |
�
|
�
|
�
|
	
|
�
|
�

<letter> = | . . . | � |
�
| . . . | !

<alphanumeric> = <letter> | <d-digit> | � | �

<identifier> = (<letter> | �)<alphanumeric>∗

An identifier is a string of letters, numbers, underscores and full stops, starting with
a letter or underscore.

B.4 Number

<natural> = <h-digit>+[� (� | � | � | �)]

<integer> = [
�
]<natural>

<size> = <natural>[� <natural>[� <natural>]]

<offset> = <integer>[� <integer>[� <integer>]]

<width> = � |
�
|
�
|

A natural number is a string of hex digits (see section B.3) optionally followed by
a colon and a base (

�
for binary, � for octal, � for decimal and � for hexadecimal);

numbers may only contain digits allowed by the base. If there is no base the number
is decimal. An integer is a natural with optional initial minus sign. Three-component
numbers have the components separated by � .

Widths are given in bytes; represents A/8.

B.5 Item

<item> = <natural>

<reg> = <item>

A <reg> is a register; T is not directly accessible.

123

B Assembly language

B.6 Label

<l-label> = � <identifier>

<x-label> = � <l-label>

<label> = <l-label> | <x-label>

<label-exp> = <label>[� <size>]

A local label (<l-label>) is the address of a location (see section B.9). An external label
(<x-label>) refers to a label in another module.

When a label is used as an address the semantics of the instruction are preceded
by T ← l, and the label is replaced by T in the instruction’s signature.

B.7 Manifest

<constant> = ����� ��	

<manifest> =
�
<offset> | <constant> | <label-exp>

The value of the constant ����� ��	 is log2 A/8.

B.8 Instruction

<instruction> = <assignment> | <dataproc> | <memory> | <branch> |
<callret> | <throwcat> | <stack> | <escape> | <datum>

B.8.1 Assignment

<assignment> =
� ���

<reg> � (<reg> |<manifest>) |	����
<reg> � <manifest> |

����	����
<reg> |

� � ��� <reg> � <reg>

The instruction
� ��� r � m , where m is a manifest, has the semantics

Sr ← m

The instruction 	���� r � m has the same semantics as � ��� r � m , but the register is
made constant. The instruction

���
	���� r makes r non-constant, as does
� ���

when
applied to a constant register. Constant registers may only be modified by

	����
,
���
	����

,
or � ��� .

124

B.8 Instruction

B.8.2 Data processing

<dataproc> = <2-op> <reg> � <reg> |
<3-op> [<reg>] � <reg> � <reg> |
<4-op> [<reg>] � [<reg>] � <reg> � <reg>

<3-op> = <arithmetic> | <logical> | <shift>

<2-op> =
�����
|
� � �

When a destination is omitted, it is T. The only 3-operand instructions whose desti-
nation may be omitted are � ��� ,

� �
	 and ����� . At most one destination may be omitted
in a 4-operand instruction.

B.8.2.1 Arithmetic

<arithmetic> =
� 	
	
| � ��� | � � �

<4-op> =
	�� �

[� [!]]

The instruction
	 � �

[� [!]] q � r � x � y has the semantics

DIV[S[Z]](q, x, y)
REM[S[Z]](r, x, y)

q and r must be distinct.

B.8.2.2 Logical

<logical> =
� �
	
|
���
|
� ���

<shift> = � � | � � � | � � �

B.8.3 Memory

<memory> = �
	
� <width> <reg> ��� <reg>[� <reg>] � |

� � � <width> <reg> ��� <reg>[� <reg>] � |
� � � � � <size> <item> � <item>

��	 or � � � w r1 ��� r2 � r3 � has the semantics

T ← Sr2 + Sr3

LD or ST(w, r1, T)

125

B Assembly language

B.8.4 Branch

<condition> =
� �
|
� �
|
���
|
���
|
� �
|
� � | ��� | � � | � � | � | � � | � � |�
�

|
���
|
� �

<address> = <reg> | <label>

<branch> =
�
<condition> <address>

A branch to the value of a register must be to an indirectable label (see section B.9.2).
The types of stack items active at both branch and destination must match (including
the constancy of registers and values of constants).

B.8.5 Call and return

<type-list> = � (<natural> � <size>) � ∗[<natural>] �
<reg-list> = � <reg> � ∗ �
<callret> =

��� ���
[
�
[
�
]] <address> � <natural> � <type-list> [<sync>] |

��� ����� � [�] <address> � <natural> � <item> [<sync>] |��� �
[
�
] <item> � <reg-list>

In the instruction
��� ��� a � p ��� t1 � . . . � tn � , a must be the value of a subroutine label

(see section B.9.4). If the address is a register, it must hold the address of an indi-
rectable subroutine (see section B.9.2). p is the number of parameters. The type list
gives the format of the return values, from bottom-most to top-most on the stack.
The list items give alternately a number of registers followed by the size of a chunk.
All chunk sizes must be non-zero. Any registers returned are ranked in descending
order from the top of the stack downwards, and the return values are ranked above
registers already on the stack. <sync> is described in section B.8.6.

��� � ���
has the same effect as

��� ���
except that the system calling convention is

used, and the number of return values must be zero or one. The first argument goes
on top of the stack.

��� ����� �
and

��� � ��� � �
are used to call a variadic function (see

section B.9.4); in this case the second operand is the total number of parameters being
passed.

��� ����� �
and

��� � ��� � �
are used when the function returns a chunk, and the

third operand gives either a register holding the address to which the return value
should be copied, or the chunk in which it should be stored.

In the instruction ��� � c ��� r1 � . . . � rn � , c must be the chunk placed on the stack on
entry to the subroutine or function. The register list gives the return values, which
must be in ascending stack order, and match the types in the corresponding

��� � �

instruction. A
��� �

is assumed to return from the textually most recently declared
subroutine or function.

��� �
must be used to return from subroutines, and

��� � �
from

functions.

126

B.8 Instruction

B.8.6 Catch and throw

<throwcat> =
���
� ��

<reg> � <l-label> |�� � � �
<reg> � <reg> � <reg> [<sync>]

<sync> = ��� � � <l-label>

In the instruction
����� ��

s � l , l must be a handler’s label (see section B.9.3) in the

current subroutine. s is set to the corresponding stack pointer. In
�� � � � l � s � c , l must

be the value of a handler’s label, and s the address returned by
���
� ��

for that label.
The

���
� ��
must have been executed in the current subroutine or function, or one of

its callers.
A ��� � � is performed before the semantics of the instruction to which it is attached.

In ��� � � l , l must be a handler’s label in the current subroutine. When a handler is
reached via a

�� ����� instruction, registers other than the top-most stack item have
the same value as just before the last ��� � � performed for that handler’s label in the
instantiation of the subroutine or function which is thrown to, provided they have
not been altered since.

B.8.7 Stack

<stack> = ����� [� <size>] |
� � � �

|� � � �
<reg> � <natural> |���������
	

The instruction ����� creates a register with undefined value. The instruction �����
� s

creates an s-byte chunk.
� � � �

kills the top-most item on the stack. Items further
down may not be killed.

Registers are ranked, the ranking giving the order in which they would ideally be
assigned to physical registers. The rankings are distinct and contiguous, the highest
being 1. The instruction

� � � � r � n changes the rank of register r to n. n must be be-
tween 1 and the number of registers. When a register is killed or ranked, the rankings
of the other registers are adjusted accordingly. Newly created registers have rank 1.���
� ����	

causes the bindings of virtual to physical registers to be updated to reflect
the current ranking.

Stack instructions are interpreted statically: the
�����

and
� �����

for a register must
textually enclose all other uses. Apart from

�����
and

� � ���
the only instruction that

affects the state of the stack seen by the textually next directive (see section B.10) is
��� ���

, which kills the parameters and creates the return values.

B.8.8 Escape

<escape> =
� � � �

<natural>
� � � performs arbitrary actions.

127

B Assembly language

B.8.9 Datum

<datum> = � � �
� <width> <manifest> � + |

� �
� � � [!] � <width> <size>

The instruction
� � �

� w v1 � . . . � vn places the values v1 to vn in contiguous locations,
starting at the next w-aligned address after the preceding datum, if any. Label values
may only be used when w is .

The instruction � �
� � � [!] � w n reserves n w-words, starting at the next w-aligned
address after the preceding datum, if any. If the ! modifier is used the space is zero-
initialised.

B.9 Location

<location> = <code> | <handler> | <subroutine> | <function> | <data>

A location assigns the address of the next piece of code or data to the given label.
A datum (see section B.8.9) may only appear after a <data>, and other instruc-

tions may only appear after a non-<data> location. The flow of control must never
fall through to a location other than a code or handler labelling.

B.9.1 Labelling

<labelling> = [
]<l-label>

If
 is used the label is public, and may be visible outside the module.

B.9.2 Code

<code> = [�]<labelling>

If � is used the label may be used as the target of an indirect (register) branch.

B.9.3 Handler

<handler> = � <labelling>

A handler is the same as a labelling, except that it may also be given as the label for
a
���
� ��

instruction (see section B.8.6). The top-most stack item at a handler must be
a non-constant register.

128

B.10 Directive

B.9.4 Subroutine and function

<subroutine> = � [
�
]<labelling>

<function> = � [
�
][�][�]<labelling>

The code in a subroutine or function extends from its labelling to the next subroutine
or function labelling. The state of the stack directly before the subroutine or function
specifies the number and type of its parameters (with the exception of a function’s
variadic parameters). Subroutines must be reached by

��� � �
, and functions by

��� � ���
.

If � is used in a subroutine or function labelling, the subroutine or function is a
leaf routine, and may not perform any

��� ���
instructions.

If � is used in a function labelling, the function returns a chunk. If � is used,
the function is variadic, and the

�
modifier must be added to

��� �����
. On entry to

a variadic function the variadic arguments are stored in chunk 1, which should be
declared with size 0. Their layout is system-dependent. The non-variadic arguments
should be declared as normal.

The return chunk, which is placed on top of the stack on entry to a function or
subroutine, must not be written to.

B.9.5 Data

<data> = � [�]<labelling>

If � is used the data up to the next data location are read-only; otherwise they are
writable. The data in a program define the initial contents of the memory. A data
labelling has the same alignment as the first datum following it (see section B.8.9).

B.10 Directive

<directive> = <instruction> | <location>

B.11 Module

<module> = <directive>+

B.12 Comments

A comment, starting with a semicolon, may be placed at the end of any line or on a
line by itself.

129

C Object format

C.1 Introduction

Mite’s assembler writes object modules in the format given below, which is a direct
encoding of the concrete syntax.

C.2 Presentation

Hexadecimal numbers are followed by an “h”; for example, 100 = 64h. Binary num-
bers are similarly suffixed “b”.

The encoding is presented diagrammatically. Boxes representing bit fields are
concatenated to make bytes or larger words:

These in turn are listed vertically. The contents of a bit field is given either as literal
binary digits (

� � � � � � � �), or as a name. Fields are usually labelled with their width:

5 3

The most significant bit is at the left-hand end of the word, and the least significant
at the right-hand end. Multi-byte words are stored with their bytes in little-endian
order.

Boxes labelled in ordinary type (box) represent units which themselves have in-
ternal structure. Boxes labelled in italics (scatola) are numbers (see section C.3). Op-
tional units are shown as dashed boxes:

Lists are denoted by a stack:

130

C.3 Number

C.3 Number

Unsigned numbers are encoded as follows:

1. A list of 7-bit words is formed by repeatedly removing the least significant
seven bits of the number until none of the remaining bits is set.

2. The 7-bit words are turned into bytes by the addition of a bit at the most sig-
nificant end, which is zero for all the quantities except the first.

3. The bytes are stored in the reverse order to that in which they were generated.

Signed numbers are encoded in the same way except that the list is formed by re-
peatedly removing the least significant seven bits of the number until all the remain-
ing bits are the same as the most significant bit of the previous 7-bit word. Three-
component numbers are encoded as three consecutive numbers.

C.3.1 Width

Widths of quantities are encoded as

Width Code

� 00b
�

01b�
10b

 11b

C.4 Identifier

All strings are ASCII-encoded, preceded by a number giving their length.

C.5 Item

Stack items are encoded as a number (see section C.3).

C.6 Address

Local addresses give the number of a label (see section C.10), and are stored as a
number. External addresses are stored as an identifier.

131

C Object format

Address types are encoded as

Type Code

Register 00b
Local label 01b

Global label 10b

C.7 Manifest

The type of a manifest quantity is given by an op type field, which is encoded as

Operand type op type

number 000b
3-component number 001b
constant 010b
local label 100b
local label plus offset 101b
external label 110b
external label plus offset 111b

Constants are encoded as a single byte; for � � � � 	 the byte is 00h. A label expression
is represented as the number or name of the label followed by the offset, which is a
three-component number (see section C.3).

C.8 Lists

The list elements are stored consecutively. The length is encoded as a number directly
before the list elements.

C.9 Instruction

Instructions are encoded as the opcode followed by the operands, encoded in order
from left to right. The operands are encoded as in the preceding sections; lists of
items and types enclosed in brackets are stored as lists.

132

C.9 Instruction

C.9.1
�����

and �����

A � ��� instruction whose second operand is a register is encoded as 0000 0000b. 	����

and
� ���

with a manifest second operand are encoded as

1
�

3
� � �

1

inst
3

op type

where the inst bit is clear for � ��� and set for 	���� , and the op type field gives the type
of the value, encoded as in section C.7.

C.9.2 Data processing

C.9.2.1 Three-operand

1
�

3

inst
3
� � �

1

dest

The inst field indicates the instruction:

Instruction inst
� 	
	

000b
� ��� 001b� �
	 010b���

100b� ��� 101b

The dest bit is set if the destination is present.

C.9.2.2 Four-operand

1
�

2

inst
3
� � �

1

quot
1

rem

The inst field indicates the instruction:

Instruction inst
	�� �

00b	 � � � 01b	 � � ��! 10b

The quot bit is set if the first destination is present, and the rem bit if the second
destination is present.

133

C Object format

C.9.3 Memory

1
�

1

inst
3
� � �

1

off
2

width

The inst bit is clear for ��	 and set for � � . The off bit is set if a third (offset) register is
given. The width field gives the width of the quantities being transferred, encoded as
in section C.3.1.

C.9.4 Branch
2
� �

2

adr
4

condition

The adr field encodes the address type as in section C.6. The condition is encoded as

Condition condition
� � 0001b� �

0010b���
0011b��� 0100b� �
0101b

� � 0110b
� �

0111b� � 1000b� �
1001b �
1010b

� � 1011b
� �

1100b�
� 1101b
�
�

1110b� �
1111b

C.9.5 Call and return
��� � �

is encoded as

3
� � �

1

f
1

c
1

v
2

adr

where the f bit is set for
��� � ���

, the c bit is set if the
�

modifier is used, and the v bit if
the

�
modifier is used. The adr field encodes the address type as in section C.6. The

argument types are alternately 1 and 3-component numbers.

134

C.9 Instruction

��� � is encoded as

4
� � � �

3
� � �

1

f

where the � bit is set for
��� � �

.

C.9.6
�������

��� � � is encoded as a separate instruction immediately following the instruction to
which it is attached. Its opcode is 0001 0101b. It is not counted as a separate directive
in the count in the module header (see section C.12).

C.9.7
�
���

4
� � � �

3
� � �

1

c

If the c bit is set, a chunk is being declared.

C.9.8 Datum

C.9.8.1 Literal

3
� � �

2

width
3

op type

manifest

The width field gives the width of the literals. The op type field gives the literal type,
encoded as in section C.7. The list of manifests follows.

C.9.8.2 Space

2
� �

3
� � �

1

zero
2

width

The zero bit is set if the space is zero-initialised; the width field gives the width of the
words being reserved.

135

C Object format

C.9.9 Other instructions

The remaining instructions are encoded thus:

Instruction inst
���
	����

0000 0001b
� � ��� 0000 0010b�����

0000 0100b��� � 0000 0101b� � �
0000 1000b

� � 0000 1001b
� � � 0000 1010b
� � � 0001 0000b
� � � � 0001 0001b
���
� ��

0001 0010b�� ����� 0001 0100b
� �����

0010 0000b� � � �
0010 0001b���������
	
0010 0010b� � � 0010 0100b

C.10 Location

Labellings, handlers and subroutines are encoded thus:

2
� �

3
� � �

2

lab type
1

ind

name

The lab type field gives the type of label, encoded as

Label type lab type

ordinary 00b
handler 01b

subroutine 10b
leaf subroutine 11b

If the ind bit is set the label is indirectable. A public label has an identifier after the op-
code byte, starting with an underscore. (This means that the encoding is ambiguous,
as the underscore could also represent part of another instruction.)

The labels are numbered consecutively from one.

136

C.11 Data

Functions are encoded

1
�

3
� � �

1

l
1

v
1

c
1

pub

name

where the l bit is set if the function is a leaf, the v bit is set if the function is variadic,
the c bit is set if it returns a chunk, and the pub bit if the label is public. A public
function has an identifier after the opcode byte.

C.11 Data
3
� � �

3
� � �

1

ro
1

pub

name

If the ro bit is set the following data is read-only; otherwise it is read-write. If the pub
bit is set it is public, otherwise it is private. A public data label has an identifier after
the opcode byte.

C.12 Module

header

directive

A module consists of a header and a list of directives.

32
� 	 � � � � 	�� �

8

version

24

length

labels

The header starts with a magic number. Next comes a byte containing the version
number of the encoding. The current version number is 0. Next comes the length of
the module in bytes excluding the header, and finally the number of labels.

137

D Source code of tests

D.1 The fast-Fourier transform test (
�����

)
� ��� � ��� � ��� � 	 � � � � � �

� ��� � ��� � ��� � 	 � � � � � � �

� � � � ����� � � � ����� � � � � � � � � �
�

�
� � �

� � � �
�

� � � � ����� � � � �
� � � � � � �

� � ��� 	 ��� 	 � � � � � �� � � � ����� � � � ��� � � � �
�
� � �
 � � � � � �

�
�
�

� � � � ����� �
 �
� � � � �

��� 	 � ���	
�

��� 	 � �
� ��� 	 � � ��� 	 �

���
��� 	 � � � �

�

� � 	 � � � � � � � ����� �
	 � � � � � ����� �
�

�

� � � � ����� ��� � � � � �
� � � ����� � �

� � � �
� � � � ����� � ��� � � � �

�
 � �

� � � � � ��� � � �
� �

��� 	 � � �
� ��� 	 � � ��� 	 �

���
� �

� � � � � � � � 	 � � � � �
� �

� � ��� � � � � � � � � 	 � � � � � �
� � � � � � � �

�
� � �

� � �

� � 	 � � � � �
�
� � � ���

� � � � � � � �
�
� � �

� � ���
�

�
� � � ��� 	

� ��� 	 � � � ��� 	 � �
�
��� 	 �

� �
�

� � � � � � � �
� � � � 	 � � ��� 	 � � � ��� 	�� �

���

��� 	 � � � �� � � �
��� 	 � � � � � �

� �

��� 	 � �

� ��� 	 � � �
�
� �

� � �
� � � � � ��� � � � � � � � ���

��� 	 % � � � � � �
� �

� ��� � ��� ��� 	 	 � 	
���

� � � � � � %�� � � ��� � � � % � % � � � � ��� �
�
� ��� � � � � ��� 	 � �

�
�

� � � % �
�

�

138

D.1 The fast-Fourier transform test (
�����

)

� � �
� � � � � ��� � � � � � � � ���

��� 	 � � � ��� � �
��� 	 �

� � � � � � �
��� 	 � % � � � � % �� � � � �

�
�

� �

� � �
� � � � � � � ��� � � � � � � � � � % � � � � � �

�
� % �� � � � % � �

���

� � �
� � � � � � � �

� � � � � ���
��� 	 �
 � �

� � �

� ��� � � �

 � � �

��� �
� 	 ��� ��� 	�	 � � � � � �
 � � �	 � � � �

�

��� 	 � ��
 � � � � ���
�

 � � � � � � % � �

��
 � � �
�
 � �

� �

 � � � � � � ��� � � � � �

 � � �
�

�

� % � � ���
�

� % � � % �� �
� �

�
�

�

�
� � �
��

� ��� 	 � � � ��� 	 � �
�

�

��� 	 � �

� � �
� � � � � ��� � � �

� � � � ���

�� ��� 	��
� ��� �

�
�
� � � � � � �

� �
� � � � � � � �
 � 	 � � ��

� ��� � � ���
�

 � 	 � � ��
� ��� � � ���

�

��� 	 � ���
�
�
� � �

�
�

��� 	 � �

�� ��� 	��
� � ��� 	 � � 	 � � � �

� � � � � � � �
�
� � � � ����� � � �

� � � � �
�
��

�
� � � � � � � � ����� �

� �

���	� �
� ��� 	 �

�
� � � � �

� �
 � � � ��� � � �
� ��� 	

� ���

� � �
� � � � � ��� � �
 �

� � � � � � �	� � � � � � �

��
�
���	 � � ���

��� 	
�
� �	� � � �

�
� � � �

� �

��
�
���	 � � ���

� � 	 � � � � �
�

139

D Source code of tests

D.2 Pyramid register allocation test (���������)
� ��� � ��� � ��� � 	 � � � � � �

� ��� � ��� � ��� � 	 � � � � � � �

��� 	 � ���
�
�
� � �

�
�

��� 	 � � � � � � � � � � � � � � � � � �
�
%
�
�
� � � � � � �
 � �

� � � � � 	 � � � � � � � � � � � � � �

�

 � � � �
���� � � �� � �

�� � � � �� � �
��� �

� � � � �
����

� � � � �
����

� � � � �
���� � � �� � �

�� � � � �� � �
��� � � � � � �

���� � � � � �
����

% � � � �
���� � � �� � �

�� �
� � �� � �

��� � � � � � �
����

� � � � �
����

 � � � �
���� � � �� � �

�� �
� � �� � �

��� � � � � � �
����

	 � � � �
����

� � � � �
����

�
� �� � �

�� �
� � �� � �

��� � � � � � �
����

� � � � �
����

� � �
� � � �
 � � � � ���
 � � � � � � � � � � � �
 � �

���

 � � �
�

� �
� � � � �

� � � �
� � � � �

� �
� � � � � � � �

�

� � � �
� � � �

� � � � �

� � � � � � � � � �
� � � �

�

� � � �
� � � �

� � � � � � � �
�

� � � � � � � � � �
� � � �

� � � � �
� � � �

� � � �
� � � � � � � � � � � �

�

� � � � � � � � � �
� � � �

� � � � � � � � �
% � � �

� � � �
� � � � � � � � � � � � � % � � �

� � � � � � � � � �
� � � �

� � � � � � � % � � � � �

� � � �
� � � �

� � � � � � � � � � � � � % � � � � � �
�

� � � � � � � � � �
� � � �

� � � � � � � % � � � � � � � �
�

� � � �
� � � �

� � � � � � � � � � � � � % � � � � � � � � � �
�

 � � � � � � � � �
� � � �

� � � � � � � % � � � � � � � � �
 � �
�

� � � �
� � � �

� � � � � � � � � � � � � % � � � � � � � � �
 � � � � �

� � � � � � � � � �
� � � �

� � � � � � � % � � � � � � � � �
 � � � � � �
�

� � � �
� � � �

� � � � � � � � � � � � � % � � � � � � � � �
 � � � � � � � �
�

	 � � � � � � � � �
� � � �

� � � � � � � % � � � � � � � � �
 � � � � � � � 	 � �
�

� � � �
� � � �

� � � � � � � � � � � � � % � � � � � � � � �
 � � � � � � � 	 � � � �
�

� � � � � � � � � �
� � � �

� � � � � � � % � � � � � � � � �
 � � � � � � � 	 � � � � � �
�

� � � �
� � � �

� � � � � � � � � � � � � % � � � � � � � � �
 � � � � � � � 	 � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � % � � � � � � � � �
 � � � � � � � 	 � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � % � � � � � � � � �
 � � � � � � � 	 � � � � � � � � � � � �
�

�

�� ��� 	��
� ���

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� � �

�
�

 � � � � � � � � � � � � � � � � � �
�
%
�
�
� � � � � � �
 � �

� � � � � 	 � � � � � � � � � �
���

� � 	 � � � � �
�

140

E Results of the tests

This appendix lists the data on which the figures 6.1–6.9 are based. The data are
tabulated in the same order as those figures.

Test GNU C LCC Mite Mite − nops
� � � 	 � � 1, 292 2, 228 4, 800 4, 532

� � � 616 1, 100 1, 820 1, 688
� � � 384 620 728 616
� 	 � 6, 364 12, 144 13, 352 12, 544
����	

� � 952 2, 076 2, 116 2, 044
����	 � � 952 2, 076 1, 740 1, 672
����	 � � 952 2, 076 1, 724 1, 652
����	 � � 952 2, 076 1, 604 1, 536

������� 1, 072 1, 980 1, 584 1, 576

���� � � � 1, 072 1, 980 2, 028 2, 020

Table E.1: Native code size/bytes

Test GNU C LCC Mite
� � � 	 � � 2, 260 2, 844 2, 609

� � � 1, 472 1, 628 1, 325
� � � 1, 168 1, 120 576
� 	 � 8, 136 13, 000 10, 626
����	 � � 1, 844 2, 604 1, 213
����	 � � 1, 844 2, 604 1, 116
����	 � � 1, 844 2, 604 1, 119
����	 � � 1, 844 2, 604 1, 132

������� 1, 980 2, 868 1, 116

���� � � � 1, 980 2, 868 1, 209

Table E.2: Executable file size/bytes

141

E Results of the tests

Test Memory allocated Code + data generated
� � � 	 � � 67, 754 5, 128

� � � 104, 392 33, 877
� � � 8, 356 1, 084
� 	 � 336, 390 83, 191
����	

� � 25, 383 2, 178
����	

� � 20, 006 1, 834
����	

� �
20, 395 1, 786

����	
� � 20, 207 1, 666

������� 18, 882 1, 660

����

� � � 20, 062 2, 104

Table E.3: Memory consumption/bytes

Test GNU C LCC Mite
� � � 	 � � 0·05 0·05 0·11

� � � 0·06 0·06 0·13
� � � 38·21 46·97 62·96
� 	� � 14·60 32·70 33·08
��� 	 � � 2·79 6·57 7·32
��� 	 � � 2·79 6·57 6·53
��� 	 ��� 2·79 6·57 2·82
��� 	 � � 2·79 6·57 2·80

���� � 1·01 1·66 0·93

���� � � � 1·01 1·66 1·72

Table E.4: Execution time/s

142

Test Translation Run
� � � 	 � � 0·021 0·05

� � � 0·037 0·06
� � � 0·003 62·92
� 	� � 0·113 32·93
��� 	

� � 0·008 7·28
��� 	

� � 0·010 6·48
��� 	

� �
0·010 2·77

��� 	
� � 0·007 2·75

������� 0·007 0·84

����

� � � 0·007 1·63

Table E.5: Translation and running time/s

Test 3 4 5 6 7 8 9 10

switch 0·07 0·07 0·07 0·07 0·06 0·07 0·07 0·07
wf1 0·09 0·09 0·09 0·09 0·09 0·09 0·09 0·09
14q 114·95 97·92 83·64 85·26 58·45 63·11 63·11 63·30
stan 44·46 41·18 37·73 35·16 34·19 33·88 33·68 33·44
fft-1 8·10 8·08 7·77 7·56 7·31 7·30 7·31 7·32
fft-7 3·23 3·02 2·81 2·77 2·77 2·76 2·76 2·75
pyram 1·91 1·69 1·45 1·44 1·44 1·02 0·95 0·93
pyr-bad 1·88 1·85 1·82 1·81 1·79 1·78 1·77 1·72

Table E.6: Effect of number of physical registers on execution time/s

143

E Results of the tests

Test 3 4 5 6 7 8 9 10

switch 5, 320 5, 044 4, 704 4, 788 4, 792 4, 800 4, 800 4, 800
wf1 2, 348 2, 180 1, 916 1, 868 1, 840 1, 820 1, 820 1, 820
14q 1, 164 1, 004 888 840 708 728 728 728
stan 17, 100 15, 644 15, 000 14, 188 13, 668 13, 536 13, 472 13, 352
fft-1 2, 464 2, 404 2, 252 2, 220 2, 140 2, 112 2, 096 2, 116
fft-7 2, 060 1, 900 1, 816 1, 688 1, 656 1, 700 1, 668 1, 604
pyram 2, 100 1, 968 1, 824 1, 816 1, 804 1, 636 1, 588 1, 584
pyr-bad 2, 344 2, 308 2, 276 2, 256 2, 084 2, 080 2, 068 2, 028

Table E.7: Effect of number of physical registers on code size/bytes

Test 3 4 5 6 7 8 9 10

switch 68, 658 68, 126 67, 658 67, 742 67, 746 67, 754 67, 754 67, 754
wf1 105, 656 105, 136 104, 584 104, 440 104, 412 104, 392 104, 392 104, 392
14q 9, 560 9, 112 8, 804 8, 660 8, 336 8, 356 8, 356 8, 356
stan 346, 340 343, 156 341, 136 338, 948 337, 308 336, 952 336, 664 336, 390
fft-1 26, 115 26, 087 25, 647 25, 583 25, 375 25, 315 25, 235 25, 383
fft-7 21, 303 20, 887 20, 739 20, 419 20, 355 20, 431 20, 367 20, 207
pyram 20, 166 19, 842 19, 474 19, 466 19, 454 19, 030 18, 886 18, 882
pyr-bad 20, 538 20, 470 20, 438 20, 418 20, 150 20, 146 20, 134 20, 062

Table E.8: Effect of number of physical registers on memory allocation/bytes)

144

Test 3 4 5 6 7 8 9 10

switch 0·021 0·021 0·021 0·021 0·020 0·020 0·020 0·020
wf1 0·037 0·036 0·036 0·036 0·036 0·036 0·036 0·036
14q 0·004 0·004 0·003 0·003 0·003 0·003 0·003 0·003
stan 0·116 0·114 0·113 0·112 0·111 0·111 0·111 0·110
fft-1 0·009 0·009 0·008 0·008 0·008 0·008 0·008 0·008
fft-7 0·008 0·008 0·007 0·007 0·007 0·007 0·007 0·007
pyram 0·008 0·007 0·007 0·007 0·007 0·007 0·007 0·007
pyr-bad 0·008 0·008 0·008 0·008 0·007 0·007 0·007 0·007

Table E.9: Effect of number of physical registers on translation time/s

145

F Word list

This chapter forms an alternative summary of the thesis. It consists of a listing of
all the words used (excluding this summary), in descending order of frequency. All
words have been lower-cased. A word of warning: LATEX commands that are English
words are included in the table. There are 3, 154 different words in total.

Count Word Count Word Count Word Count Word

2620 the 1250 to 1162 of 1016 and
939 is 812 in 658 be 527 code
505 it 481 as 470 th 440 mite
424 are 413 for 406 that 372 register
337 registers 306 this 300 section 284 by
278 with 265 which 253 on 232 stack
221 end 217 not 181 virtual 177 translator
173 label 172 an 167 can 167 no
163 or 162 at 156 used 154 item
142 than 142 would 138 instruction 134 more
134 time 131 begin 130 its 127 function
126 most 125 from 125 must 120 such
118 has 114 have 113 instructions 113 native
111 other 109 address 108 return 106 if
105 discussed 105 value 104 but 103 each
103 was 102 into 102 use 101 machine

99 all 98 memory 98 only 98 system
97 number 94 new 92 they 90 so
89 cite 89 physical 88 may 88 some
88 yes 86 back 86 call 86 design
86 one 84 could 84 load 84 there
81 compiler 81 see 81 two 77 constant
75 translation 74 argument 74 language 74 subsection
74 when 72 size 71 also 71 portable
71 should 70 run 69 arm 69 kill
69 word 67 generation 66 add 65 first
64 figure 64 same 64 test 62 functions
62 object 61 systems 61 these 61 vcode
60 allocation 60 data 60 three 60 were
58 possible 58 since 58 while 57 example
55 any 55 arguments 55 implementation 55 rather
55 speed 54 handler 54 like 54 result
54 set 53 program 52 does 52 many
51 however 51 order 51 then 51 type
50 branch 50 chapter 50 description 50 generated
50 model 49 gnu 49 level 49 support
49 way 48 case 48 flags 48 languages
48 optimizations 47 been 47 bit 47 machines
47 their 46 features 46 hence 46 loop
46 make 46 spill 45 because 45 current
45 do 45 where 44 about 44 given
44 good 44 how 44 semantics 44 single
44 them 43 before 43 both 43 different
43 directly 43 performance 42 allow 42 block
42 chunk 42 dynamic 42 just 42 throw
42 values 41 architecture 41 between 41 ex
41 main 41 simple 41 without 40 byte
40 execution 40 optimization 40 point 40 up
39 garbage 39 needed 39 next 39 well
38 constants 38 format 38 static 37 get
37 made 37 makes 37 sub 37 using
36 exception 36 pointer 36 targeting 36 tut
35 either 35 less 35 operand 35 problem
35 programs 34 compilers 34 hand 34 processors
34 range 34 required 34 though 34 types
34 whose 33 calls 33 goals 33 much
32 assembly 32 bytes 32 calling 32 cannot

146

Count Word Count Word Count Word Count Word

32 finally 32 fixed 32 implemented 32 need
32 results 32 space 31 perform 31 root
31 similar 30 following 30 immediate 30 out
30 saved 30 sections 30 those 29 implement
29 little 29 subroutine 29 table 29 uses
29 variables 28 allowing 28 assembler 28 better
28 binary 28 caption 28 exceptions 28 fast
28 generate 28 live 28 might 27 allows
27 even 27 information 27 lack 27 local
27 optimizing 27 several 27 store 26 being
26 frame 26 numbers 26 par 26 problems
26 second 25 further 25 general 25 gives
25 high 25 items 25 low 25 particular
25 ranking 25 shown 25 tests 24 above
24 catch 24 extra 24 means 24 procedure
24 simply 24 spilling 24 variable 24 will
24 work 23 after 23 chunks 23 collection
23 component 23 easily 23 footnote 23 necessary
23 provide 23 quality 23 seems 23 still
22 few 22 hold 22 independent 22 known
22 non 22 operands 22 right 22 stored
22 zero 21 access 21 although 21 callee
21 changes 21 comparison 21 declared 21 effect
21 lookup 21 offset 21 passed 21 processor
21 shows 21 slot 21 start 21 take
21 variadic 21 what 20 addition 20 bits
20 consumption 20 needs 20 often 20 quantities
20 require 20 shift 20 special 20 structure
20 tend 19 adds 19 allocated 19 based
19 caller 19 conditional 19 contains 19 correct
19 created 19 dependent 19 file 19 generally
19 important 19 neutral 19 requires 19 returned
19 running 19 target 19 top 19 written
18 array 18 define 18 executed 18 host
18 left 18 mechanism 18 mechanisms 18 quantity
18 read 18 rebind 18 relative 18 standard
18 taken 18 therefore 17 able 17 added
17 addressing 17 another 17 branches 17 common
17 compiled 17 designed 17 division 17 give
17 part 17 pass 17 performed 17 purpose
17 secondly 17 temporary 17 useful 17 within
17 write 16 already 16 always 16 below
16 destination 16 efficient 16 global 16 labels
16 list 16 loops 16 note 16 offsets
16 reasonable 16 st 16 switch 16 thus
16 translate 16 until 16 wide 16 words
15 addresses 15 appendix 15 bad 15 calculate
15 compare 15 compilation 15 convention 15 definition
15 directives 15 ends 15 enough 15 fact
15 four 15 generating 15 having 15 here
15 improve 15 move 15 over 15 pasm
15 provided 15 sets 15 slots 15 small
15 structures 15 version 15 whether 14 approach
14 benchmark 14 called 14 chain 14 complex
14 copy 14 described 14 easier 14 entry
14 introduced 14 layout 14 loaded 14 locations
14 longer 14 module 14 multiple 14 optimized
14 overhead 14 performs 14 rot 14 routines
14 sizes 14 specific 14 statically 14 straightforward
14 usage 13 aims 13 assignment 13 available
13 basis 13 blob 13 causes 13 contents
13 conventions 13 count 13 counter 13 difference
13 easy 13 effectively 13 except 13 faster
13 fig 13 follows 13 indeed 13 itself
13 large 13 last 13 mentioned 13 multicolumn
13 once 13 place 13 provides 13 ranges
13 seem 13 series 13 shortcomings 13 unlimited
12 abstract 12 according 12 advantage 12 architectures
12 arithmetic 12 around 12 best 12 comparisons
12 concrete 12 control 12 conventional 12 examples
12 floating 12 form 12 generates 12 generator
12 hard 12 held 12 inferno 12 integer
12 largely 12 limited 12 making 12 modes
12 nevertheless 12 noun 12 operation 12 points
12 produced 12 rank 12 reached 12 reserve
12 security 12 shuffling 12 significant 12 source
12 state 12 stores 12 takes 12 times
12 typically 12 typing 12 via 12 ways
11 accessed 11 accurate 11 amount 11 binding
11 clear 11 compile 11 completely 11 contain
11 corresponding 11 deal 11 defined 11 degree
11 destroyed 11 difficult 11 discusses 11 down
11 ed 11 encoding 11 every 11 expression

147

F Word list

Count Word Count Word Count Word Count Word

11 far 11 final 11 flexible 11 followed
11 fully 11 higher 11 improvements 11 least
11 libraries 11 lightning 11 loads 11 long
11 meaning 11 ml 11 neutrality 11 now
11 otherwise 11 output 11 parameters 11 portability
11 runs 11 sandbox 11 sharing 11 simpler
11 slow 11 specified 11 subroutines 11 suggests
11 syntax 11 too 11 true 11 widely
11 worth 10 again 10 algorithm 10 almost
10 along 10 avoid 10 blocks 10 carry
10 certain 10 collector 10 compared 10 complexity
10 considered 10 currently 10 declare 10 effort
10 ensure 10 examined 10 fill 10 frequently
10 harder 10 implementations 10 importance 10 increment
10 interface 10 length 10 obtained 10 omitted
10 previous 10 real 10 reason 10 saves
10 scope 10 simplicity 10 solution 10 style
10 thesis 10 through 10 translated 10 translating
10 translators 10 under 10 width 9 accessible

9 active 9 adding 9 aim 9 allocate
9 alternative 9 applications 9 average 9 binaries
9 cause 9 class 9 combined 9 components
9 compression 9 correspond 9 create 9 dealt
9 due 9 efficiently 9 especially 9 explicit
9 figures 9 files 9 full 9 functionality
9 generators 9 go 9 heavily 9 include
9 intermediate 9 know 9 modern 9 nested
9 normally 9 operations 9 ordering 9 peephole
9 placed 9 places 9 practical 9 present
9 probably 9 produce 9 proposed 9 ranks
9 requirements 9 restricted 9 safety 9 show
9 six 9 specify 9 spilled 9 spills
9 spilt 9 sum 9 summary 9 together
9 unlike 9 very 9 writing 8 affect
8 algorithms 8 allowed 8 built 8 chains
8 consists 8 creation 8 determined 8 differences
8 direct 8 during 8 elements 8 exit
8 explained 8 extensions 8 find 8 formal
8 giving 8 hardware 8 icode 8 instead
8 juice 8 key 8 killed 8 leaf
8 light 8 lines 8 loading 8 macros
8 mask 8 multi 8 numbering 8 ordinary
8 outer 8 partly 8 per 8 performing
8 perhaps 8 platform 8 pointers 8 portably
8 programming 8 reasons 8 reduced 8 representation
8 returns 8 routine 8 safe 8 scheme
8 seen 8 similarly 8 slower 8 smaller
8 sometimes 8 sort 8 suggested 8 temporaries
8 tradeoff 8 tree 8 usually 8 variation
8 walking 8 whereas 7 abstraction 7 achieve
7 against 7 applied 7 becomes 7 beginning
7 benefits 7 beyond 7 branching 7 caused
7 change 7 checks 7 combination 7 conservative
7 details 7 difficulty 7 dots 7 efficiency
7 entirely 7 extremely 7 fields 7 found
7 frames 7 had 7 header 7 heading
7 heap 7 holds 7 implementing 7 indicate
7 indirect 7 inside 7 interesting 7 leads
7 lists 7 management 7 manner 7 match
7 maximum 7 mm 7 mostly 7 my
7 normal 7 occupy 7 overflow 7 passing
7 procedures 7 produces 7 quite 7 remove
7 requiring 7 rest 7 say 7 storage
7 subs 7 supports 7 terms 7 tradeoffs
7 try 7 typical 7 whole 6 acceptable
6 achieved 6 advantages 6 analysis 6 annotation
6 anywhere 6 application 6 arbitrary 6 assessment
6 assuming 6 attempts 6 awkward 6 base
6 behaviour 6 calculated 6 compatible 6 compromises
6 compute 6 concurrency 6 condition 6 counting
6 date 6 dedicated 6 demonstrated 6 density
6 destruction 6 difficulties 6 disk 6 errors
6 evaluation 6 exactly 6 executable 6 existing
6 extended 6 future 6 goes 6 greater
6 handled 6 highly 6 idea 6 implicitly
6 improved 6 includes 6 including 6 index
6 inefficient 6 later 6 leave 6 library
6 limit 6 manifest 6 map 6 measurements
6 method 6 minimal 6 modulus 6 moving
6 necessarily 6 needing 6 network 6 never
6 none 6 nor 6 operating 6 others
6 overall 6 own 6 padded 6 parts
6 perspective 6 pitfalls 6 plus 6 potential

148

Count Word Count Word Count Word Count Word

6 preceded 6 precise 6 presented 6 processing
6 raised 6 rarely 6 reasonably 6 reduce
6 reference 6 references 6 removed 6 resulting
6 reused 6 rounding 6 saving 6 sized
6 software 6 specialized 6 statement 6 supported
6 techniques 6 tested 6 third 6 thrower
6 total 6 turn 6 turns 6 typed
6 unfortunately 6 updated 6 updates 6 user
6 varies 6 view 6 worse 5 ability
5 absolute 5 across 5 actually 5 appraisal
5 assume 5 assumed 5 automatic 5 avoids
5 benchmarks 5 benefit 5 changing 5 check
5 checked 5 choice 5 concern 5 context
5 cope 5 correctly 5 cost 5 counts
5 decode 5 demonstrates 5 done 5 dynamically
5 encoded 5 environment 5 execute 5 explicitly
5 expressed 5 fewer 5 field 5 forced
5 fragments 5 handle 5 handling 5 highest
5 image 5 immediately 5 inner 5 intended
5 inter 5 interest 5 interpreter 5 interwork
5 introduces 5 keep 5 lacks 5 line
5 location 5 logical 5 lot 5 mapped
5 mapping 5 mean 5 merely 5 methods
5 mobile 5 moved 5 name 5 natural
5 near 5 negative 5 nothing 5 novel
5 obtain 5 obviously 5 offer 5 ones
5 opcode 5 ops 5 optimal 5 optimiser
5 outside 5 overheads 5 parameter 5 peak
5 practice 5 problematic 5 process 5 product
5 prologue 5 proofs 5 providing 5 quickly
5 quotient 5 ranked 5 rationale 5 remain
5 respect 5 save 5 scheduling 5 scratch
5 shifts 5 short 5 simplifies 5 site
5 slight 5 success 5 supporting 5 targets
5 text 5 tracing 5 treatment 5 tricky
5 turned 5 undefined 5 unsigned 5 various
5 vary 5 verification 5 void 5 we
5 works 4 additions 4 alternatively 4 annotations
4 appears 4 appendices 4 approaches 4 appropriate
4 arrays 4 averages 4 basic 4 become
4 bibliography 4 build 4 building 4 cached
4 calculation 4 carefully 4 certainly 4 char
4 clearly 4 collected 4 come 4 complicated
4 compromise 4 conclusion 4 conditions 4 considerable
4 consistent 4 constraints 4 constructs 4 containing
4 copied 4 dealing 4 declares 4 declaring
4 decoded 4 designing 4 despite 4 detail
4 did 4 differ 4 direction 4 disadvantage
4 displays 4 ease 4 effects 4 elaborated
4 else 4 endian 4 equivalent 4 error
4 escape 4 executables 4 expected 4 expensive
4 expressions 4 extensible 4 extension 4 fit
4 fixing 4 flexibility 4 flow 4 force
4 formats 4 fragment 4 frequency 4 frequent
4 gave 4 goal 4 increase 4 increased
4 initial 4 inlined 4 innermost 4 input
4 inserted 4 installer 4 interpreters 4 involves
4 judged 4 knowing 4 knowledge 4 knows
4 largest 4 latex 4 linear 4 linked
4 linking 4 literal 4 lower 4 major
4 majority 4 me 4 measured 4 microprocessors
4 minimize 4 minimum 4 moment 4 multiplication
4 natively 4 naïve 4 neither 4 noted
4 obvious 4 occurs 4 off 4 omega
4 omits 4 open 4 optimize 4 option
4 optional 4 original 4 our 4 outgoing
4 outlined 4 overcome 4 particularly 4 penalty
4 permanently 4 poor 4 port 4 power
4 primitive 4 producing 4 programmer 4 proof
4 quantitative 4 quick 4 rapidly 4 rare
4 reach 4 recent 4 record 4 redundant
4 remainder 4 reserved 4 reside 4 respectively
4 restored 4 restrictions 4 restricts 4 roughly
4 rule 4 sample 4 semantic 4 sensible
4 shorter 4 sign 4 similarity 4 sorts
4 spaces 4 specification 4 starting 4 starts
4 storing 4 tail 4 targeted 4 tends
4 thirdly 4 tiny 4 towards 4 treated
4 unused 4 varied 4 verbatim 4 visible
4 why 4 widths 4 world 4 worst
4 yet 3 accesses 3 account 3 accumulate
3 accumulator 3 acorn 3 action 3 actual
3 additional 3 addressable 3 adequate 3 adopt

149

F Word list

Count Word Count Word Count Word Count Word

3 adopted 3 advice 3 afterwards 3 aimed
3 aligned 3 allocates 3 alone 3 alpha
3 among 3 analysed 3 appear 3 applicable
3 apply 3 areas 3 arise 3 arises
3 aspects 3 assigned 3 assignments 3 attached
3 attempting 3 author 3 big 3 bottom
3 brought 3 calculations 3 cases 3 categories
3 changed 3 cheap 3 chosen 3 classes
3 close 3 collectors 3 combine 3 commonest
3 compact 3 comparable 3 compares 3 competitors
3 compiles 3 compiling 3 complete 3 comprehensive
3 computation 3 computed 3 computes 3 conflicts
3 consider 3 continuations 3 contribution 3 convenient
3 core 3 correspondence 3 course 3 custom
3 dead 3 decoder 3 decoding 3 deeply
3 definitions 3 demands 3 depending 3 designer
3 desirable 3 detected 3 differs 3 digits
3 disadvantages 3 discard 3 discover 3 distinguishing
3 distributed 3 distribution 3 divided 3 dividend
3 document 3 documentation 3 documented 3 double
3 drawn 3 effective 3 elimination 3 emit
3 emitted 3 endianness 3 entered 3 equally
3 evaluates 3 excessive 3 excluded 3 executes
3 exist 3 expense 3 experience 3 explains
3 exploit 3 extern 3 familiar 3 fine
3 fix 3 follow 3 forcing 3 forms
3 freedom 3 freely 3 functional 3 furthermore
3 greatest 3 greatly 3 handlers 3 hands
3 happen 3 hardest 3 hardly 3 headers
3 headings 3 help 3 holding 3 ideal
3 identified 3 ignored 3 illegal 3 illustrated
3 implicit 3 importantly 3 improving 3 included
3 incoming 3 increases 3 increasingly 3 incurred
3 independently 3 indicates 3 indication 3 infinite
3 initialized 3 inlining 3 innovative 3 insistence
3 integral 3 introduction 3 investigated 3 involve
3 involved 3 issues 3 larger 3 layer
3 layering 3 layers 3 leaves 3 lexically
3 limbo 3 link 3 listed 3 looks
3 lowest 3 mainly 3 marked 3 matter
3 meets 3 minus 3 models 3 modest
3 moves 3 naturally 3 net 3 networks
3 notably 3 occupies 3 occur 3 opposed
3 options 3 organized 3 oriented 3 originally
3 padding 3 patterns 3 permit 3 permutation
3 policy 3 position 3 possibility 3 post
3 precision 3 prevent 3 previously 3 priority
3 propagated 3 properties 3 purely 3 put
3 quicker 3 rapid 3 rate 3 reconcile
3 records 3 reflect 3 relevant 3 reloaded
3 rely 3 remains 3 reserves 3 reset
3 resolution 3 restore 3 restriction 3 returning
3 rewritten 3 schemes 3 sense 3 sequence
3 serious 3 signed 3 significantly 3 solutions
3 specialization 3 speeds 3 step 3 straight
3 straightforwardly 3 strongly 3 subtraction 3 sufficient
3 suggest 3 swap 3 tables 3 tasks
3 ten 3 themselves 3 things 3 think
3 thought 3 threading 3 tied 3 took
3 tools 3 transfer 3 transform 3 transformations
3 translates 3 translations 3 traversal 3 traversing
3 treat 3 trivial 3 trying 3 ubiquitous
3 unique 3 unnecessary 3 useless 3 usual
3 verifiable 3 versions 3 versus 3 wherever
3 who 3 workings 3 workstation 3 years
2 accessing 2 accommodate 2 accordingly 2 achieves
2 act 2 ad 2 adapted 2 adjustments
2 adoption 2 advance 2 aggressive 2 ahead
2 aid 2 alias 2 aliasing 2 allocator
2 altered 2 alters 2 analyses 2 annotated
2 anything 2 anyway 2 apart 2 applicability
2 applies 2 area 2 arenas 2 arranged
2 artificial 2 artificially 2 assesses 2 assign
2 assigning 2 associated 2 assumes 2 assumption
2 attack 2 attempt 2 attention 2 attractive
2 automatically 2 avoided 2 avoiding 2 awkwardnesses
2 axis 2 becoming 2 behaviours 2 behind
2 beneficial 2 bib 2 bigger 2 bindings
2 bloat 2 body 2 book 2 borne
2 bound 2 boundaries 2 breadth 2 break
2 brief 2 broad 2 bugs 2 burden
2 calculating 2 capable 2 care 2 central
2 chapters 2 checking 2 choices 2 circumstances

150

Count Word Count Word Count Word Count Word

2 claim 2 classify 2 clever 2 client
2 clients 2 cm 2 coded 2 column
2 combines 2 combining 2 comes 2 commands
2 comments 2 comparing 2 compelling 2 complicate
2 compress 2 computational 2 computer 2 conditionally
2 confined 2 conflict 2 considerably 2 consisting
2 consuming 2 continuation 2 continue 2 contributes
2 conventionally 2 converse 2 copying 2 coroutines
2 corresponds 2 counted 2 coupled 2 covered
2 creates 2 creating 2 criticism 2 crucial
2 datatype 2 dcolumn 2 debugging 2 decide
2 declaration 2 declarations 2 decompress 2 decompression
2 deeper 2 deficiencies 2 defines 2 definitely
2 delay 2 demand 2 denotes 2 dependencies
2 descending 2 describe 2 describes 2 designers
2 destinations 2 destroying 2 destroys 2 detailed
2 detect 2 developed 2 differently 2 differing
2 directive 2 discipline 2 discussing 2 discussion
2 dispatched 2 dissertation 2 diversity 2 divide
2 dividing 2 divisor 2 doing 2 downloaded
2 dramatic 2 earlier 2 eight 2 elate
2 element 2 embedded 2 emitting 2 enable
2 enclosing 2 encode 2 encodes 2 enormous
2 entire 2 enumerate 2 epilogues 2 evaluated
2 ever 2 examining 2 exceeded 2 excellent
2 exceptional 2 excluding 2 executing 2 express
2 facilities 2 fail 2 fall 2 family
2 fault 2 faulting 2 favoured 2 fetch
2 fifty 2 finding 2 five 2 focused
2 forces 2 formally 2 forth 2 fortunately
2 fundamentally 2 glue 2 gone 2 gracefully
2 graph 2 graphs 2 great 2 group
2 guarded 2 hampered 2 heuristics 2 hexadecimal
2 hints 2 hoc 2 holes 2 hooks
2 hope 2 huge 2 identical 2 idiosyncratic
2 ignores 2 illustrate 2 illustrates 2 implementability
2 impose 2 improvement 2 incorrect 2 increasing
2 indexed 2 indicated 2 indirectly 2 individually
2 inevitable 2 inline 2 innovation 2 installers
2 integrated 2 intelligence 2 intelligent 2 interaction
2 internet 2 intervening 2 interworking 2 introduce
2 invariants 2 issue 2 job 2 keeping
2 kern 2 kindly 2 landscape 2 laptop
2 laser 2 latter 2 lburg 2 led
2 lengths 2 let 2 lexical 2 lie
2 likely 2 limitations 2 lips 2 listing
2 lit 2 lived 2 liveness 2 locality
2 locally 2 log 2 looking 2 loss
2 lost 2 manipulated 2 manually 2 maps
2 martin 2 matching 2 max 2 meet
2 met 2 mind 2 minded 2 mistake
2 modelling 2 modifier 2 modifiers 2 modules
2 monitors 2 moreover 2 multiplied 2 multiply
2 namely 2 names 2 neglected 2 node
2 nonetheless 2 notation 2 noting 2 notion
2 numbered 2 objective 2 objects 2 observed
2 occasionally 2 occupied 2 omit 2 opcodes
2 operates 2 operational 2 opt 2 optimizable
2 origin 2 outcome 2 outlines 2 overview
2 overwritten 2 owing 2 packages 2 partial
2 pattern 2 permuted 2 plain 2 platforms
2 pointless 2 pollution 2 polynomials 2 pop
2 porting 2 positions 2 positive 2 possess
2 possibly 2 postponed 2 potentially 2 practically
2 precisely 2 preclude 2 prepare 2 preprocessor
2 presence 2 primarily 2 primitives 2 printed
2 procedural 2 profiling 2 prone 2 proportion
2 prove 2 proved 2 pstricks 2 push
2 pushes 2 puts 2 pyramid 2 python
2 quadratic 2 quote 2 quoted 2 raise
2 ran 2 rankings 2 re 2 readable
2 reading 2 really 2 rebinding 2 receive
2 reflects 2 related 2 released 2 reload
2 reloading 2 remaining 2 remember 2 remembered
2 removes 2 repeatedly 2 report 2 resemblance
2 resembles 2 resides 2 respects 2 responsibility
2 restores 2 restoring 2 resultant 2 retaining
2 retrospect 2 reuse 2 rid 2 room
2 row 2 safely 2 savings 2 scaling
2 scan 2 separately 2 separating 2 share
2 shared 2 shifted 2 side 2 sight
2 signalling 2 simplify 2 simulate 2 slightly
2 solve 2 solved 2 solves 2 soon

151

F Word list

Count Word Count Word Count Word Count Word

2 sophisticated 2 spacing 2 specifying 2 spectrum
2 spiller 2 spurious 2 stability 2 stable
2 stacks 2 stages 2 stdio 2 strength
2 strictly 2 string 2 structured 2 subject
2 subset 2 substantial 2 substantially 2 subtleties
2 successively 2 suffices 2 suitability 2 suitable
2 suite 2 suited 2 superfluous 2 surprising
2 symbol 2 synthesized 2 technique 2 technology
2 tension 2 termination 2 textual 2 theoretical
2 theory 2 thorough 2 thread 2 threads
2 throwing 2 thrown 2 tightly 2 trade
2 traditional 2 traffic 2 trap 2 traverse
2 traversed 2 trees 2 trickiest 2 tricks
2 trusted 2 turning 2 twin 2 typeset
2 typewriter 2 unambiguous 2 unauthorized 2 uncollected
2 underlying 2 unfortunate 2 uniform 2 uniformly
2 universality 2 unknown 2 untyped 2 update
2 variety 2 verb 2 verified 2 verify
2 versa 2 vice 2 waste 2 wave
2 weight 2 whatever 2 writer 2 writes
1 abbreviation 1 abilities 1 abuse 1 acceptance
1 accommodated 1 accommodating 1 accrue 1 accurately
1 acting 1 activities 1 acts 1 adapt
1 adaptations 1 additionally 1 addressed 1 adjunct
1 adjusting 1 adjustment 1 administrative 1 advances
1 advised 1 aesthetically 1 affected 1 affecting
1 affects 1 aggressively 1 agree 1 agreement
1 aiding 1 aiming 1 algebra 1 alignment
1 alike 1 alleviate 1 alphabet 1 alter
1 altering 1 alternating 1 alternatives 1 altogether
1 amassed 1 ambitious 1 amenable 1 amounts
1 analyse 1 ands 1 angles 1 annotating
1 annoy 1 annoyance 1 answer 1 answers
1 apparent 1 appearance 1 appended 1 applets
1 appraises 1 approximation 1 architectural 1 arguably
1 arisen 1 arising 1 arose 1 arrange
1 arranging 1 art 1 artefact 1 ascending
1 ascribed 1 aspect 1 assemble 1 assembled
1 asserts 1 assigns 1 assumptions 1 attaching
1 attendant 1 authors 1 ax 1 axioms
1 backtrace 1 badly 1 balance 1 balanced
1 banner 1 barriers 1 basically 1 basil
1 battological 1 bear 1 behave 1 belonging
1 bettered 1 biggest 1 bind 1 bitwise
1 bizarre 1 blunt 1 booboo 1 booktabs
1 boost 1 bootless 1 bottlenecks 1 boundary
1 bounds 1 braces 1 brackets 1 branched
1 breakdown 1 breaks 1 brevity 1 briefly
1 bringing 1 broadening 1 broader 1 brother
1 brutally 1 buffering 1 bulky 1 bureaucracy
1 bus 1 butterfly 1 cache 1 caching
1 calculates 1 callable 1 callees 1 camel
1 careful 1 carrying 1 cased 1 categorized
1 ceases 1 centralized 1 centre 1 centred
1 certified 1 chained 1 chaining 1 challenges
1 chance 1 character 1 characteristic 1 characteristics
1 checker 1 cheered 1 chooses 1 chorus
1 circle 1 claimed 1 claiming 1 claims
1 clarity 1 classic 1 clause 1 claws
1 climbing 1 clock 1 closed 1 closely
1 closeness 1 closer 1 closest 1 closure
1 closures 1 clumsy 1 co 1 codes
1 coding 1 collaboration 1 college 1 colophon
1 colouring 1 columns 1 commences 1 commercial
1 commercially 1 commonly 1 communicating 1 communication
1 compactness 1 compensated 1 compete 1 competitive
1 competitor 1 complement 1 complicates 1 compound
1 comprehensible 1 compressed 1 compressibility 1 compressible
1 compressing 1 comprise 1 computers 1 concatenated
1 concentrate 1 concentrates 1 concept 1 conception
1 concepts 1 concerned 1 conclude 1 concludes
1 confident 1 configuration 1 confirm 1 conflicting
1 conjunction 1 connected 1 consecutively 1 consequence
1 consequences 1 conservatively 1 consideration 1 considering
1 considers 1 consist 1 consolidation 1 constrain
1 construct 1 constructed 1 constructor 1 constructors
1 consumed 1 contained 1 contexts 1 contiguous
1 contiguously 1 continues 1 contraction 1 contrary
1 contributions 1 contrive 1 controlled 1 converge
1 converged 1 conversely 1 conversion 1 converted
1 cooperate 1 copier 1 copies 1 correctness
1 correlation 1 correspondingly 1 costly 1 costs
1 counterpart 1 coupling 1 courses 1 covers

152

Count Word Count Word Count Word Count Word

1 crafted 1 craze 1 crest 1 criteria
1 critically 1 cryptographic 1 cunning 1 cuts
1 dangers 1 datatypes 1 daunting 1 deallocate
1 deals 1 deceptively 1 decimal 1 deciphered
1 decisions 1 decompilation 1 decompose 1 decorated
1 decrease 1 dedication 1 defer 1 definite
1 degrees 1 deliberately 1 delicate 1 delicately
1 delimited 1 delivering 1 demanding 1 demonstrate
1 demonstrating 1 demonstration 1 denies 1 dependence
1 dependency 1 depends 1 derive 1 describing
1 descriptions 1 desiderata 1 desired 1 desktop
1 destroy 1 detection 1 determine 1 determines
1 detract 1 develop 1 developer 1 development
1 deviation 1 devices 1 devising 1 diagrams
1 diametrically 1 diary 1 dictates 1 ding
1 dint 1 dip 1 directions 1 disappear
1 disappeared 1 disastrous 1 disastrously 1 disc
1 discarded 1 discovered 1 discriminant 1 discuss
1 discussions 1 dispatch 1 disposed 1 dissimilar
1 distinct 1 distinctions 1 divergent 1 diverse
1 documents 1 dollars 1 domain 1 doomed
1 door 1 doubling 1 doubly 1 doubt
1 downloading 1 dozen 1 dramatically 1 draw
1 draws 1 driven 1 drop 1 duplicated
1 duration 1 duty 1 eagle 1 easiest
1 efficacy 1 elaborates 1 elide 1 elided
1 ellipses 1 elsewhere 1 elucidating 1 em
1 email 1 emergence 1 emphasis 1 emulated
1 en 1 enables 1 enabling 1 encapsulated
1 enclosed 1 encouragement 1 encourages 1 endiannesses
1 enforced 1 enforces 1 enjoyable 1 enlarged
1 ensured 1 ensures 1 ensuring 1 entail
1 entering 1 environments 1 equals 1 equates
1 equation 1 eroded 1 eschewing 1 essentially
1 established 1 evaluate 1 evaluator 1 event
1 evolve 1 evolved 1 exacerbated 1 examination
1 examine 1 exceptionally 1 excess 1 exclude
1 excludes 1 exec 1 exegetic 1 exemplary
1 exemplified 1 exercise 1 exists 1 exits
1 expect 1 expectation 1 experienced 1 experts
1 explain 1 explanation 1 exploited 1 exploits
1 expose 1 exposed 1 exposes 1 expositions
1 expressing 1 expressive 1 extant 1 extend
1 extensive 1 extent 1 external 1 extract
1 eye 1 face 1 factors 1 failing
1 fairly 1 fairness 1 falling 1 familiarity
1 fancy 1 fascination 1 fastest 1 faults
1 favour 1 feature 1 fecie 1 fewest
1 fiddly 1 fifth 1 filters 1 financial
1 findings 1 finer 1 finish 1 finished
1 finite 1 firmly 1 fits 1 flattening
1 flaw 1 fledged 1 floats 1 flushed
1 focus 1 folding 1 forbid 1 forbidden
1 forbidding 1 forbids 1 formalization 1 formalize
1 former 1 fourteen 1 fourth 1 fourthly
1 framework 1 free 1 freed 1 freeing
1 front 1 fulfil 1 fulfilling 1 fuller
1 fundamental 1 gain 1 gathers 1 geared
1 geometric 1 glance 1 globally 1 gloss
1 going 1 gradual 1 gradually 1 grain
1 grained 1 grammar 1 graphics 1 grasping
1 guarantee 1 guaranteed 1 guard 1 guess
1 guide 1 guiding 1 half 1 happened
1 happens 1 harm 1 harmless 1 heavy
1 hello 1 helps 1 her 1 heritage
1 hierarchy 1 highlighted 1 hindrance 1 hint
1 hits 1 homogenization 1 hooked 1 hoped
1 horizontal 1 horrors 1 hours 1 house
1 housekeeping 1 human 1 idealized 1 ideally
1 ideals 1 ideas 1 identifying 1 identity
1 idiom 1 ignore 1 illustrating 1 imaginative
1 imagine 1 imitated 1 imperative 1 implementable
1 implementor 1 implementors 1 implements 1 implications
1 implies 1 imposed 1 imposing 1 improves
1 inability 1 inclusive 1 incompatible 1 incomplete
1 incremental 1 incur 1 incurs 1 indeterminate
1 indexing 1 indicating 1 indices 1 individual
1 inefficiencies 1 inefficiency 1 inefficiently 1 infinity
1 infrastructure 1 initialization 1 initialize 1 initializes
1 initializing 1 innovate 1 innovates 1 innovations
1 insert 1 inserting 1 inserts 1 insight
1 insignificant 1 insofar 1 inspect 1 inspected
1 inspired 1 installed 1 installing 1 instance

153

F Word list

Count Word Count Word Count Word Count Word

1 instances 1 instant 1 instrumenting 1 integers
1 integrate 1 integrating 1 intelligently 1 intent
1 intention 1 interact 1 interactive 1 interactively
1 interacts 1 interests 1 interfaces 1 intermediary
1 intermingled 1 internally 1 interoperable 1 interpretation
1 interpreted 1 interpretive 1 interrelated 1 interrupt
1 intimate 1 intrinsic 1 introducing 1 intuitive
1 invalid 1 invariant 1 invert 1 investigations
1 investment 1 invocation 1 invoked 1 involving
1 irrelevant 1 irrespective 1 isolated 1 isolation
1 john 1 joins 1 judiciously 1 justify
1 keen 1 keeps 1 kernel 1 kernels
1 kerning 1 kilobytes 1 kinds 1 knock
1 lacking 1 lacunae 1 laid 1 lasting
1 latencies 1 laying 1 lazily 1 lazy
1 lead 1 leaks 1 leaving 1 leeway
1 legacy 1 levels 1 license 1 lighter
1 lightweight 1 likes 1 limitation 1 limits
1 linchpin 1 linearly 1 linguistic 1 lining
1 literate 1 located 1 logarithmic 1 logic
1 look 1 loose 1 looser 1 lose
1 lumps 1 magic 1 magnitude 1 mainstream
1 maintaining 1 maligned 1 manage 1 managed
1 managing 1 mandatory 1 manifests 1 manipulates
1 manipulating 1 manipulations 1 manoeuvre 1 marker
1 market 1 marketing 1 marking 1 marshalled
1 marshalling 1 masking 1 matched 1 matches
1 mathematical 1 mathpple 1 matters 1 meant
1 meanwhile 1 measurable 1 measure 1 measurement
1 measures 1 mechanical 1 mechanically 1 mechanics
1 media 1 members 1 mental 1 merciless
1 merit 1 micro 1 microprocessor 1 mid
1 middle 1 militated 1 minimizing 1 minor
1 mirror 1 misses 1 missing 1 misused
1 mix 1 modelled 1 modification 1 modifications
1 modified 1 modify 1 modifying 1 modular
1 monolithic 1 monoliths 1 motivates 1 motivation
1 murk 1 mutually 1 myriad 1 named
1 nasty 1 nature 1 naïvely 1 nearer
1 nearly 1 necessity 1 needlessly 1 negates
1 neglecting 1 negligible 1 nest 1 nesting
1 newly 1 newt 1 nice 1 nodes
1 notable 1 notice 1 noticeable 1 noticeably
1 novelty 1 nth 1 numeric 1 numerical
1 numerous 1 obeys 1 observation 1 obstacle
1 obstacles 1 obtaining 1 occupying 1 occurred
1 occurring 1 odd 1 oddities 1 offering
1 offers 1 old 1 omissions 1 omitting
1 onus 1 op 1 openness 1 opportunity
1 opposite 1 optimally 1 optimisations 1 optimised
1 optimistic 1 optimizes 1 optionally 1 orthogonal
1 orthogonally 1 ought 1 outwards 1 outweighed
1 overlap 1 overlapping 1 overwrite 1 overwrites
1 owe 1 packet 1 packets 1 packing
1 page 1 pair 1 pairs 1 paper
1 parallel 1 parsimonious 1 passes 1 past
1 patch 1 path 1 pathologically 1 paucity
1 peculiarities 1 peepholing 1 people 1 perfectly
1 perforce 1 period 1 periodically 1 peripheral
1 permissible 1 permitted 1 pertinent 1 pervasive
1 pessimally 1 phase 1 phases 1 phone
1 picture 1 piece 1 pike 1 placing
1 plan 1 plausible 1 pleasure 1 plentiful
1 plot 1 plots 1 pointed 1 policies
1 pools 1 poorer 1 popped 1 pops
1 popularity 1 ported 1 pose 1 posed
1 powerful 1 pre 1 precompute 1 predicted
1 preface 1 preferably 1 preference 1 preferred
1 prefixed 1 prepared 1 presentation 1 presents
1 preserving 1 prevented 1 prima 1 principal
1 principally 1 principle 1 printer 1 processes
1 profile 1 programmed 1 progress 1 prohibited
1 prohibition 1 project 1 proliferation 1 prologues
1 promise 1 promising 1 propagate 1 proper
1 property 1 proportional 1 proposals 1 prospect
1 prospects 1 prototype 1 provision 1 prudently
1 psychology 1 public 1 publications 1 publicly
1 publishers 1 pulling 1 purposes 1 pushed
1 putting 1 puzzle 1 qualities 1 queens
1 question 1 questions 1 radical 1 raises
1 random 1 ranged 1 ratio 1 ratios
1 reaches 1 readily 1 rearranging 1 reasoning
1 recipient 1 reclaims 1 recognizes 1 recommendations

154

Count Word Count Word Count Word Count Word

1 recommended 1 recompilation 1 reconfigurable 1 rectified
1 reduces 1 reducing 1 redundantly 1 referred
1 referring 1 refers 1 regard 1 regime
1 rejected 1 relate 1 relationships 1 relatively
1 relax 1 release 1 relied 1 relies
1 remained 1 remedies 1 remedy 1 remembering
1 removal 1 reorganize 1 repay 1 repeat
1 replacing 1 represent 1 representations 1 represents
1 reproduced 1 requirement 1 research 1 reservations
1 resident 1 resist 1 resource 1 restrict
1 rests 1 resulted 1 retargetable 1 reusable
1 reuses 1 revealing 1 reverse 1 reverses
1 rework 1 rewriting 1 rich 1 richer
1 rightly 1 risking 1 robust 1 rose
1 rotating 1 rough 1 roundings 1 rounds
1 route 1 rudimentary 1 rules 1 runnable
1 runtime 1 sake 1 sandboxing 1 satisfactory
1 scale 1 scanning 1 scans 1 schematic
1 scoping 1 script 1 se 1 secure
1 seductive 1 seeing 1 seemed 1 seeming
1 selection 1 selective 1 semi 1 send
1 senses 1 sensibly 1 sensitive 1 separable
1 separate 1 separated 1 sequences 1 served
1 service 1 setting 1 seven 1 sewn
1 shape 1 shares 1 shifting 1 showed
1 signal 1 signature 1 simplest 1 simplification
1 simplified 1 simplifying 1 simultaneously 1 situations
1 sixteen 1 sketched 1 sketching 1 skilful
1 skill 1 slim 1 slowdown 1 smallest
1 smiling 1 smoothed 1 sole 1 solely
1 solid 1 solver 1 solving 1 souls
1 sound 1 sources 1 speaking 1 specially
1 specifier 1 specifies 1 sped 1 spend
1 spirit 1 splits 1 splitting 1 spotted
1 squarely 1 stand 1 started 1 startup
1 starved 1 stated 1 states 1 stay
1 stems 1 steps 1 stern 1 stop
1 story 1 strange 1 strategy 1 stream
1 stretch 1 strict 1 strikes 1 strings
1 strong 1 structurally 1 struggle 1 styles
1 submitted 1 subsidiary 1 subtlety 1 subtly
1 subtract 1 subtracted 1 succeed 1 successful
1 successfully 1 successive 1 suffice 1 sufficiently
1 sugaring 1 summarize 1 summarized 1 super
1 superficial 1 superfluities 1 superior 1 supervised
1 supplied 1 supplies 1 supply 1 supposed
1 sure 1 surprises 1 surprisingly 1 suspended
1 sustained 1 sustaining 1 symbolic 1 symbols
1 synchronized 1 syntactic 1 systematic 1 tabulated
1 tack 1 taking 1 tandem 1 tangentially
1 task 1 tedious 1 television 1 tempted
1 tempting 1 tens 1 terminates 1 terribly
1 testament 1 textually 1 thanks 1 thereafter
1 thereby 1 thinking 1 thirds 1 thirteen
1 thoroughly 1 threaded 1 throughout 1 throws
1 thumb 1 ticks 1 timed 1 timing
1 timings 1 title 1 tony 1 tool
1 traced 1 track 1 tracked 1 transferred
1 transfers 1 transformed 1 transforming 1 translatable
1 transmitted 1 transpires 1 treating 1 trick
1 trickery 1 trickier 1 tried 1 tries
1 trivially 1 truncation 1 tuned 1 twice
1 tying 1 typefaces 1 unacceptable 1 unacceptably
1 unaltered 1 unconditional 1 underflow 1 underlines
1 understand 1 understood 1 underway 1 undesirable
1 unequivocal 1 unfair 1 unguarded 1 unification
1 unified 1 unifies 1 unify 1 unifying
1 uniquely 1 unit 1 unity 1 universal
1 unlikely 1 unmodified 1 unrealistic 1 unrolling
1 unsurprising 1 untrusted 1 unwanted 1 unwinding
1 unwise 1 updating 1 upon 1 urgently
1 usable 1 usages 1 usefully 1 usefulness
1 users 1 vainglory 1 valid 1 validated
1 validity 1 valuable 1 vapourware 1 variant
1 varying 1 vast 1 vastly 1 verifier
1 verifies 1 vertical 1 vindicate 1 vindication
1 violate 1 vital 1 volumes 1 wait
1 waiting 1 wants 1 warning 1 wasteful
1 wastes 1 wasting 1 weak 1 weakly
1 weaknesses 1 weapon 1 weigh 1 went
1 whom 1 widen 1 wider 1 wisdom
1 wise 1 wish 1 witness 1 workable
1 worked 1 working 1 workstations 1 worryingly

155

F Word list

Count Word Count Word Count Word Count Word

1 wrapping 1 writable 1 wrong 1 wrote
1 year 1 yielded

156

Bibliography

All the references amassed during my research are reproduced below in the hope
that they form a useful collection. [24] contains an excellent bibliography of earlier
work.

[1] Mike Acetta, Robert Baron, David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Mach: a new kernel foundation for UNIX development.
Technical report, Carnegie Mellon University, 1986.

[2] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient and language-
independent mobile programs. In Proceedings of the ACM SIGPLAN Symposium
on Programming Language Design and Implementation (PLDI ’96), pages 127–136,
Philadelphia, PA, May 1996. ACM.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[4] M. Alfonseca, D. Selby, and R. Wilks. The APL IL interpreter generator. IBM
Systems Journal, 30(4):490–497, 1991.

[5] J. Alves-Foss, editor. Formal Syntax and Semantics of Java, volume 1523 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[6] American National Standards Institute. ANS X3.159-1989: Programming
Languages—C, December 1989.

[7] American National Standards Institute. ANS X3.215-1994: Programming
Languages—Forth, 1994.

[8] American National Standards Institute. ANS X3.4-1986(R1997): Information
Systems: Coded Character Sets—7-Bit American National Standard Code for Infor-
mation Interchange, 1997.

[9] Arm Limited. The ARM–THUMB Procedure Call Standard, 1998. http://www.
arm.com/.

[10] John Batali, Edmund Goodhue, Chris Hanson, Howie Shrobe, Richard M. Stall-
man, and Gerald Jay Sussman. The Scheme-81 architecture—system and chip.
In Paul Penfield, Jr., editor, Proceedings of the MIT Conference on Advanced Re-
search in VLSI, Dedham, Mass., 1982.

157

Bibliography

[11] W. Gurney Benham, editor. Cassell’s Book of Quotations, Proverbs and Household
Words. Cassell, revised edition, 1914.

[12] Manuel E. Benitez and Jack W. Davidson. The advantages of machine-
dependent global optimization. In International Conference on Programming Lan-
guage and Architectures (PLSA ’94), pages 105–123, 1994.

[13] Lennart Benschop. Sod32, 1995. Posted to comp.sources.misc, Volume 46, Issue
7.

[14] Valer Bocan. Delta forth, 1999. http://members.xoom.com/bocan/dforth/.

[15] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoopera-
tive environment. Software—Practice and Experience, 18(9):807–820, 1988.

[16] Paulo Bonzini. Using and porting GNU lightning, 2000. ftp://alpha.gnu.org/
gnu/.

[17] Barry B. Brey. Programming the 80286, 80386, 80486 and Pentium-based Personal
Computer. Prentice-Hall, 1996.

[18] Leo Brodie. Thinking FORTH. Prentice-Hall, 1984.

[19] Leo Brodie. Starting FORTH. Prentice-Hall, second edition, 1987.

[20] Fred P. Brooks. The Mythical Man-Month. Addison-Wesley, anniversary edition,
1995.

[21] Michael Brown. PASM—portable runtime assembler. http://www.washery.
com/projects/pasm/.

[22] P. J. Brown. Writing Interactive Compilers and Interpreters. Wiley, 1979.

[23] Harold Carr and Robert R. Kessler. An emulator for Utah Common Lisp’s
abstract virtual register machine. In Proceedings of the 1987 Rochester Forth Con-
ference, pages 113–116, Rochester, NY, 1987.

[24] Eddy H. Debaere and Jan M. Van Campenhout. Interpretation and Instruction
Path Coprocessing. MIT Press, 1990.

[25] distributed.net. http://www.distributed.net/.

[26] S. Dorward et al. Inferno. In IEEE Compcon ’97 Proceedings, 1997.

[27] W. Earle. Compress ROM programs with a math-function interpreter. Elec-
tronic Design News, March 31st 1982.

[28] MicroProcessor Engineering. The PRACTICAL virtual machine architecture,
1998.

158

[29] Dawson R. Engler. VCODE a retargetable, extensible, very fast dynamic code
generation system. In Proceedings of the 23rd Annual ACM Conference on Pro-
gramming Language Design and Implementation, 1996. http://www.pdos.lcs.mit.
edu/∼engler/.

[30] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language
for high-level, efficient, and machine-independent dynamic code generation.
In Proceedings of the 23rd Annual ACM Symposium on Principles of Programming
Languages, 1996.

[31] M. Anton Ertl. A portable Forth engine. In EuroFORTH ’93 conference proceed-
ings, Mariánské Láznè (Marienbad), 1993.

[32] M. Anton Ertl. Stack caching for interpreters. In EuroForth ’94 Conference pro-
ceedings, pages 3–12, Winchester, UK, 1994.

[33] Marc Feeley and James S. Miller. A parallel virtual machine for efficient
Scheme compilation. In Proceedings of the 1990 ACM Conference, pages 119–130,
Nice, France, 1990.

[34] P. J. Fleming and J. J. Wallace. How not to lie with statistics—the correct way
to summarise benchmark results. CACM, 29(3):218–221, March 1986.

[35] Free Software Foundation. GCC compiler collection. http://www.gnu.org/
software/gcc/.

[36] Free Software Foundation. GNU C library. http://www.gnu.org/software/
libc/.

[37] Michael Franz and Thomas Kistler. Introducing juice, 1996. http://caesar.ics.
uci.edu/juice/intro.html.

[38] Christopher Fraser and David Hanson. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley, 1995.

[39] Richard M. Fujimoto. The virtual time machine. In F. Leighton, editor, Proceed-
ings of the 1989 ACM Symposium, pages 35–44, Santa Fe, Mexico, 1989.

[40] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,
and Vaidy Sunderam. Parallel Virtual Machine: A Users’ Guide and Tutorial for
Networked Parallel Computing. MIT Press, 1994.

[41] L. George. Mlrisc: Customizable and reusable code generators. Technical re-
port, AT&T Bell Laboratories, Murray Hill, NJ, 1997.

[42] James Gosling and Henry McGilton. The Java language environment: A white
paper, May 1996. http://java.sun.com/.

159

Bibliography

[43] Numerical Algorithms Group. NAG FORTRAN library. http://www.nag.
com/.

[44] David R. Hanson. Fast allocation and deallocation of memory based on object
lifetimes. Software—Practice and Experience, 20(1):5–12, 1990.

[45] Steven Hardy. The POPLOG programming system. Technical Report
CSRP 003, University of Sussex, 1982.

[46] J. Hennessy and P. Nye. Stanford Integer Benchmarks. Stanford University. ftp:
//ftp.complang.tuwien.ac.at/pub/forth/.

[47] C. B. Hill, editor. Apophthegms from Hawkins’s edition of Johnson’s works, vol-
ume ii of Johnsonian Miscellanies. 1897.

[48] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12:576–583, 1969.

[49] Rolf Hoffmann. A classification of interpreter systems. Microprocessing and
Microprogramming, 12:3–8, 1983.

[50] Ian Holyer. Functional Programming with Miranda. Pitman, 1991.

[51] Wei-Chung Hsu, Charles N. Fischer, and James R. Goodman. On the minimiza-
tion of loads/stores in local register allocation. IEEE Transactions on Software
Engineering, 15(10):1252–1260, October 1989.

[52] Institute of Electrical and Electronics Engineers. IEEE 754-1985(R1994): IEEE
Standard for Binary Floating-Point Arithmetic, 1994.

[53] International Organization for Standardization. ISO/IEC 10646-1:1993 Infor-
mation technology—Universal Multiple-Octet Coded Character Set (UCS)—Part 1:
Architecture and Basic Multilingual Plane, 1993.

[54] David Jaggar. ARM Architectural Reference Manual. Prentice Hall Europe, 1996.

[55] Chris Jobson and John Richards. BCPL for the BBC Microcomputer, 1983.

[56] Richard Jones and Rafael Lins. Garbage Collection. John Wiley and Sons Ltd,
1996.

[57] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.

[58] Paul Klint. Interpretation techniques. Software—Practice and Experience, 11:963–
973, 1981.

[59] Andreas Krall. Efficient JavaVM just-in-time compilation. In PACT ’98 proceed-
ings, 1998.

160

[60] Glenn Krasner, editor. Smalltalk-80: Bits of History, Words of Advice. Addison-
Wesley, 1983.

[61] P. J. Landin. The mechanical evaluation of expressions. Computer Journal,
6:308–320, January 1964.

[62] Mark Leone and Peter Lee. Deferred compilation: The automation of run-time
code generation. Technical Report CMU-CS-93-225, School of Computer Sci-
ence, Carnegie Mellon University, December 1993.

[63] Mark Leone and Peter Lee. Lightweight run-time code generation. In Proceed-
ings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pages 97–106, June 1994.

[64] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, second edition, 1999.

[65] R. G. Loeliger. Threaded Interpretive Languages: Their Design and Implementation.
BYTE Books, Peterborough, NH, 1981.

[66] 180 Software Ltd. ORIGIN white paper, 2000. http://www.180sw.com/.

[67] S. Lucco, O. Sharp, and R. Wahbe. Omniware: A universal substrate for
mobile code. In Proceedings of Fourth International World Wide Web Confer-
ence, Massachusetts Institute of Technology, 1995. http://www.w3.org/pub/
Conferences/WWW4/Papers/165/.

[68] Steven Lucco. Split-stream dictionary program compression. In Proceedings of
the ACM SIGPLAN ’00 conference on Programming language design and implemen-
tation, pages 27–34, 2000.

[69] Dis virtual machine specification. In Inferno User’s Guide, chapter 7. Lucent
Technologies, 1997.

[70] Wayne Luk, David Ferguson, and Ian Page. Structured hardware compilation
of parallel programs. In W. Moore and W. Luk, editors, More FPGAs, pages
213–224. Abingdon EE&CS Books, 1994.

[71] Wayne Luk and Ian Page. Parameterising designs for FPGAs. In W. R. Moore
and W. Luk, editors, FPGAs, chapter 5.4. Abingdon EE&CS Books, 1991.

[72] Mark Lutz. Programming Python. O’Reilly & Associates, October 1996.

[73] Massachusetts Institute of Technology, Cambridge, MA. Scheme Reference, 1988.
Release 7.

[74] J. McCarthy. LISP programmers’ manual. MIT Computation Center, Cambridge,
MA, 1960.

161

Bibliography

[75] .net framework sdk technology preview. http://msdn.microsoft.com/
downloads/.

[76] Robin Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203–
246. Springer Verlag, 1993.

[77] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, Cam-
bridge, MA, 1991.

[78] Robin Milner, Mads Tofte, and Robert Harper. The definition of Standard ML.
MIT Press, Cambridge, MA, 1990.

[79] Charles Moore and Jeff Fox. Preliminary specification of the F21, 1995. http:
//pisa.rockefeller.edu:8080/MISC/F21.specs.

[80] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86:
A realistic typed assembly language. In 1999 ACM SIGPLAN Workshop on Com-
piler Support for System Software, pages 25–35, Atlanta, GA, USA, May 1999.

[81] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):527–568, May 1999.

[82] George Necula. Compiling with proofs. Technical Report CMU-CS-98-154,
School of Computer Science, Carnegie Mellon University, September 1998.

[83] K. V. Nori, U. Ammann, H. H. Nabeli, and Ch. Jacobi. Pascal P implementation
notes. In D. W. Barron, editor, Pascal—The Language and its Implementation,
pages 125–170. Wiley, 1981.

[84] Markus F. X. J. Oberhumer. LZO data compression library, 1999. http:
//wildsau.idv.uni-linz.ac.at/mfx/lzo.html.

[85] The Open Group. Architecture Neutral Distribution Format (XANDF) Specifica-
tion, January 1996. Preliminary Specification P527.

[86] Ian Page and Wayne Luk. Compiling occam into FPGAs. In W. R. Moore and
W. Luk, editors, FPGAs, chapter 5.3. Abingdon EE&CS Books, 1991.

[87] Nic Peeling. ANDF—some information, November 18th 1993. comp.
compilers.

[88] S. Pemberton and M. C. Daniels. Pascal implementation: the P4 compiler. John
Wiley & Sons, 1982.

[89] Simon Peyton Jones, Thomas Nordia, and Dino Oliva.
� � �

: A portable assem-
bly language. In Proceedings of the 1997 Workshop on Implementing Functional
Languages, 1997.

162

[90] Simon Peyton Jones and Norman Ramsey. The
� � �

run-time interface for
concurrency, 2000. http://www.cminusminus.org/abstracts/c--concurrency.
html.

[91] Simon Peyton Jones, Norman Ramsey, and Fermin Reig.
�����

: a portable as-
sembly language that supports garbage collection. In Proceedings of PPDP ’99,
1999.

[92] Haskell 98: A non-strict, purely functional language, 1999. http://www.
haskell.org/definition/.

[93] Benjamin C. Pierce. The pict programming language, 1995. http://www.cis.
upenn.edu/∼bcpierce/.

[94] Rob Pike. Private communication, 1997. Lucent Technologies.

[95] Thomas Pittman. Two-level hybrid interpreter/native code execution for com-
bined space-time program efficiency. In Symposium on Interpreters and Interpre-
tive Techniques (SIGPLAN ’87), pages 150–152, 1987.

[96] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek. tcc: A sys-
tem for fast, flexible and high-level dynamic code generation. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation ’97, 1997.

[97] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Transactions on Programming Languages and Systems, 21(5):895–913, September
1999.

[98] Robin Popplestone. Specifying types by grammars: A polymorphic static type
checker operating at a stack machine level. Technical Report FP-94-01, Univer-
sity of Glasgow, 1994.

[99] Robin Popplestone. A typed operational semantics based on grammatical char-
acterisation of an abstract machine. Technical Report FP-94-02, University of
Glasgow, 1994.

[100] Norman Ramsey and Simon Peyton Jones. A single intermediate language that
supports multiple implementations of exceptions. In Proceedings of PLDI ’00,
2000.

[101] Martin Richards. Intcode: an interpretive machine code for BCPL. Technical re-
port, University of Cambridge Computer Laboratory, December 1972. Revised
August 1975.

[102] Martin Richards. Cintcode distribution, 2000. http://www.cl.cam.ac.uk/
∼mr/BCPL.html.

163

Bibliography

[103] Martin Richards and Colin Whitby-Strevens. BCPL—the language and its com-
piler. Cambridge University Press, 1979.

[104] Daniel Ridge, Donald Becker, Phillip Merkey, and Thomas Sterling. Beowulf:
Harnessing the power of parallelism in a pile-of-PCs. In Proceedings of IEEE
Aerospace, 1997.

[105] Theodore H. Romer, Geoffrey M. Voelker, Alec Wolman, Wayne A. Wong, Jean-
Loup Baer, Brian N. Bershad, and Henry M. Levy. The structure and perfor-
mance of interpreters. In Proceedings of ASPLOS VII, pages 150–159, University
of Washington, Seattle.

[106] A. W. Roscoe and C. A. R. Hoare. The laws of occam programming. Technical
monograph PRG-53, University of Oxford Computer Laboratory, 1986.

[107] Mark Roulo. Misty Beach Forth: An implementation in Java. Forth Dimensions,
XIX(4), November–December 1997.

[108] David W. Sandberg. Experience with an object-oriented virtual machine.
Software—Practice and Experience, 18(5):415–425, 1988.

[109] Richard L. Sites. Alpha architecture reference manual. Digital Equipment Corpo-
ration, 1992.

[110] Robert Smith, Aaron Sloman, and John Gibson. Poplog’s two-level virtual ma-
chine support for interactive languages. Technical Report CSRP 153, Univer-
sity of Sussex, 1990.

[111] Robert M. Smith. A high performance version of the POPLOG virtual machine.
Technical Report CSRP 117, University of Sussex, 1988.

[112] Stuart Smith. private communication, 1998. Essex University.

[113] T. B. Steel, Jr. UNCOL. Ann. Rev. Auto. Prog., 2:325–344, 1960.

[114] Tao Systems. Elate, 1999. http://www.tao.co.uk/.

[115] MLj team. The MLj compiler, 1999. http://www.dcs.ed.ac.uk/∼mlj/.

[116] Tendra home page, 1998. http://alph.dra.hmg.gb/TenDRA/.

[117] Reuben Thomas. Beetle and pForth: a Forth virtual machine and compiler. BA
dissertation, University of Cambridge, 1995. http://sc3d.org/rrt/.

[118] Reuben Thomas. The Beetle Forth virtual processor, 1995. http://sc3d.org/
rrt/.

[119] Reuben Thomas. An implementation of the Beetle virtual processor in ANSI
C, 1995. http://sc3d.org/rrt/.

164

[120] Reuben Thomas. The melting machine: from PC to pronit, 1995. http://sc3d.
org/rrt/.

[121] Reuben Thomas. A simple user-interface for the Beetle virtual processor, 1995.
http://sc3d.org/rrt/.

[122] Reuben Thomas. Mite: a fast and flexible virtual machine. In EuroForth ’98
conference proceedings, 1998. http://sc3d.org/rrt/.

[123] Reuben Thomas. Machine Forth for the ARM processor. In EuroForth ’99 con-
ference proceedings, 1999. http://sc3d.org/rrt/.

[124] Reuben Thomas. The TpForth project. In EuroForth ’99 conference proceedings,
1999. http://sc3d.org/rrt/.

[125] Reuben Thomas. Mite: a basis for ubiquitous virtual machines. PhD thesis, Univer-
sity of Cambridge Computer Laboratory, November 2000. http://sc3d.org/
rrt/.

[126] Tools Interface Standards Committee. Executable and Linkable Format (ELF).
http://developer.intel.com/vtune/tis.htm.

[127] Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and speed in
linear-scan register allocation. In Proceedings of the ACM SIGPLAN ’98 confer-
ence on Programming language design and implementation, pages 142–151, 1998.

[128] David A. Turner. A new implementation technique for applicative languages.
Software—Practice and Experience, 9:31–49, 1979.

[129] David A. Turner. Recursion equations as a programming language, pages 1–28.
Cambridge University Press, January 1981.

[130] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly & Associates, second edition, September 1996.

[131] Bruce E. Wampler. The V reference manual, 1999. ftp://objectcentral.com/
vref.pdf.

[132] D. H. D. Warren. An abstract Prolog instruction set. Technical Note 300, SRI
International, 1983.

[133] David L. Weaver and Tom Gamond, editors. The SPARC Architecture Manual.
Prentice-Hall, 1994.

[134] Reinhold P. Weicker. Dhrystone benchmark: Rationale for version 2 and mea-
surement rules. SIGPLAN Notices, 23(8):49–62, August 1988.

[135] Daniel Weinreb and David Moon. LISP Machine Manual. Massachusetts Insti-
tute of Technology, 1979.

165

Bibliography

[136] Steve Williams. 68030 Assembly Language Reference. Addison-Wesley, 1989.

[137] Phil Winterbottom and Rob Pike. The design of the Inferno virtual machine,
1997. Lucent Technologies.

[138] N. Wirth and M. Reiser. Programming in Oberon - Steps Beyond Pascal and Mod-
ula. Addison-Wesley, 1992.

[139] John Zukowski. Java AWT Reference. Java Series. O’Reilly & Associates, 1997.

166

167

Colophon

What is written without effort is in general read without pleasure
Johnson [47]

The thesis was prepared on a Daewoo Chorus laptop running GNU/Linux, an
Acorn RISC PC running RISC OS, and a Psion Revo running EPOC. It was type-
set with LATEX, using BibTEX to prepare the bibliography. The KOMA-SCRIPT re-
port document style was used. The main text was set in Palatino, with Helvetica
used for headings and Computer Modern Typewriter as the typewriter face. Draw
was used to prepare the figures (with the exception of figure 2.1, which was drawn
with pstricks in LATEX), and the graphs were generated from the original data by
PipeDream.

Several LATEX packages were used to improve the design, notably booktabs and
dcolumn to improve the tables, and lips to give better text ellipses. mathpple was used
to provide the typefaces, in a version kindly modified by its author to omit the kern-
ing pair for ones which prevented columns of digits from lining up. Custom pack-
ages were written to typeset the code examples, the semantic and syntactic defini-
tions, and the data structure diagrams.

Proofs were printed on a Brother HL-760 and a Hewlett-Packard LaserJet 5Si laser
printer; the final copy was printed by the Hewlett-Packard on 80gsm Officeteam A4
laser copier paper, and bound by J. S. Wilson of Cambridge.

168

