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1. OPPORTUNITIES 
Software engineering courses offer one of many opportunities for 
providing students with a significant experience in declarative 
programming. Many computer science programs require at least 
one course in software engineering, and some require more. 

For example, the technical portion of the baccalaureate 
curriculum in computer science at the University of Oklahoma 
comprises seventy-three credit-hours of coursework. (One credit-
hour is awarded for one fifty-minute lecture per week for a 
sixteen-week semester.) The seventy-three credits-hours are 
parceled into twenty-three, three-credit courses and one four-
credit course. Half of these are mathematics courses (four of 
which — applied logic, discrete mathematics, theory of 
computation, and algorithm analysis — are taught by the School 
of Computer Science). The other half are engineering courses (all 
of which are taught by the School of Computer Science). Eight of 
the twelve computer science courses (or more, depending on 
electives) involve significant software or hardware development. 

None of the courses with significant software development 
assignments prescribe any particular technology in their official 
descriptions, but by agreement of the faculty, the first three 
courses (introduction to computer programming, programming 
structures and abstractions, and data structures) use Java and C++ 
to describe computations. The other courses leave to the instructor 
and/or the student the choice of programming languages and other 
software development tools. 

Before 2003, no course in the curriculum afforded students a 
significant experience in declarative programming. Sometimes 
students in the programming language course wrote short 
programs in a functional language such as Scheme or in a logic 
language such as Prolog. However, these ten- to twenty-line 
programs could in no way provide students with enough 
background to apply declarative programming to future projects. 
Substantial additional education would be required to meet that 
goal, and the curriculum did not provide an opportunity to get that 
education. 

In 2003, I began using declarative programming in a two-course 
sequence in software engineering: Software Engineering I and 
Software Engineering II. The remainder of this report discusses 
this experiment and some of the results. 
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Section 6. Projects from first semester 
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3. HISTORY 
All baccalaureate students in our computer science program are 
required to take a two-course sequence (six credit-hours in all) in 
software engineering. Almost all of them take this sequence 
during the last year of their studies. 

The official description of the first of these courses, Software 
Engineering I, is “Methods and tools for software specification, 
design, and documentation. Emphasis on architectural modularity, 
encapsulation of software objects, and software development 
processes such as design review, code inspection, and defect 
tracking. Students working in teams apply these ideas to design 
and document software products. Study of professional ethics, 
responsibility, and liability.” The course catalog has the following 
description for Software Engineering II: “Methods and tools for 
software development, testing, and delivery. Emphasis on data 
abstraction and reusable components. Students working in teams 
implement a significant software product, including design 
documents, user's guide, and process reports, using methods and 
processes studied in Software Engineering I. Students will 
practice oral and written communication skills.” 

As taught (by me, as least), the courses have three primary 
elements: design, software development processes, and defect 
control. Students work in teams in both courses. Software 
Engineering I places more weight on individual work than on 
team projects, while Software Engineering II gives teamwork 
more weight. 

There are many ways to put together educational material on 
design, software processes, and defect control. Accordingly, in 
the six academic years in which I have taught the two-course 
sequence in software engineering, I have put the material together 
in several different ways. 

In the beginning I based the course on traditional textbooks, such 
as Pressman [5] or Sommerville [6] and supplemented the 
material with experiences from industry. These textbooks cover a 
great deal of ground, but in a way that I find unsatisfying. There 
is little material of intellectual depth, and the books are entirely 
noncommittal on software engineering methods. One way is as 
good as another. Well … maybe some ways are better suited for 
some applications and other ways for other applications, but the 
authors provide no useful information about how to choose. 
Students are encouraged to learn a litany of terms and techniques, 
but without much motivation to go to the trouble. 

Later, I began to use a textbook by Humphrey [2], which 
emphasizes software processes, and supplemented it with material 
on design and implementation. The book covers less ground than 
the traditional textbooks, and it does a poor job in covering 
software design, but it provides excellent coverage of software 

processes, and in a form that makes it practical for students to 
experience some of the benefits of applying such processes. The 
material is especially attentive to defect control in software 
development. Processes are experienced by students in the form 
of a specific set of estimation and record-keeping activities that 
Humphrey calls the Personal Software Process (PSP). It is 
presented with about as much intellectual depth as is possible for 
software process coverage, and the book takes a specific, useful 
point of view about software development. 

During all of this period (pre-Humphrey and post-Humphrey) 
Software Engineering I was organized around six to ten small 
software development projects carried out by individual students, 
and Software Engineering II was organized around one, medium-
sized project (5,000 to 15,000 lines of code) carried out by teams 
of four to six students. Students implemented software in a variety 
of languages (C++ and Java primarily, sometimes supplemented 
by scripting languages such as Tcl/Tk, Microsoft Word macros, or 
HTML managers). In every case, programming followed a 
conventional (that is, stateful) paradigm. 

Two years ago, I decided to try using a declarative paradigm to 
boost the design and defect-control elements in the course. During 
the 2003-2004 academic year, the students used Scheme 
(specifically, the DrScheme environment [1] with its associated 
user interface tools) to implement their software, but wrote 
computational functions (as distinguished from functions 
performing some sort of input or output) in ACL2 [3], a purely 
functional subset of Common Lisp with a computational logic 
(theorem prover) for verifying properties of defined functions. 
This made it possible for students to verify, by way of 
mathematical proof, certain properties of the software they were 
writing. They used a mechanical translator to convert the 
functions they had defined in ACL2 to Scheme, to integrate them 
with their i/o-performing functions. 

The main problem with this approach was that it failed to give 
most students a really significant exposure to functional 
programming methods. Most students expanded their i/o-
performing functions in every way they could think of. Then, they 
could avoid functional programming in most of their code and use 
conventional methods for the bulk of it. Discouraging this 
tendency to minimize the portion of the program written in 
functional form, whether through grading or through discussions 
with individual students, proved to be impossible (for me) without 
seeming arbitrary or unreasonable. 

Based on this experience, I required the students to write all code 
in ACL2 in the 2004-2005 academic year. This made all of the 
code conform to the purely functional paradigm and gave the 
students a consummate experience in functional programming. 
The primary disadvantage was that the assigned problems had to 
be designed to avoid interactive input/output operations, since 
those would be clumsy, at best, in ACL2. A secondary 
disadvantage, compared with Scheme, was the lack of higher-
order functions in the ACL2 subset of Common Lisp. Neither of 
these disadvantages turned out to cause any significant problems, 
and the advantage to the students of experiencing the benefits of 
functional programming  easily outweighed the disadvantages. 

The remainder of this report focuses on the 2004-2005 offering of 
Software Engineering I and II, with the all-ACL2 requirement. 



4. SE-I 
The 2004 edition of Software Engineering I required each student 
to complete six small software development projects (100 to 500 
lines each) working alone. The course also required students 
working in teams to complete one software development project 
of modest size (about 1,500 lines of code, including some reused 
code from the individual projects) and to cooperate in a 
prescribed way in the development of a smaller piece of software 
earlier in the course. I formed the teams (five or six students per 
team) with a view to balancing the talent and following other 
criteria developed by Larry Michaelson in his work on team-
based learning [4]. 

Each individual software development project in Software 
Engineering I requires the students to deliver four items: design, 
code, PSP report [2], and proven theorems. The design is 
presented as a boxes-and-arrows chart, together with some textual 
descriptions of data structures, interfaces, and algorithmic 
decisions. The code is written entirely in ACL2. The Humphrey-
style, PSP report includes a project plan, a software size estimate 
using a statistical estimation method based on historical data 
(estimates get better as the course progresses), a time log, a defect 
log, and a collection of test designs and reports. 

Theorems (stated in ACL2 logic) express properties of functions 
written for the project. In the individual projects, specific 
theorems are given in the project assignment, to keep the students 
from floundering around with things they are unlikely to be able 
to get ACL2 to prove. In the first couple of problems, these 
theorems, once correctly stated in ACL2 logic, are things that the 
computational logic of ACL2 can prove without special hints. 

As the course progresses, the project assignments specify 
theorems that require students to find additional supporting 
lemmas that ACL2 can prove directly. After ACL2 has the 
supporting lemmas in its database, it can proceed successfully to 
prove the target theorems. 

This approach (stating theorems, finding that ACL2 cannot prove 
them on its own, discovering lemmas that ACL2 can prove and 
that provide a basis for proving other theorems, and finally 
working up to successful proofs of the originally stated theorems) 
is part of what the authors of the ACL2 book [3] call “The 
Method.” It is one of many techniques that users of ACL2 must 
master to succeed in verifying significant software properties. It is 
the primary theorem-proving technique emphasized in the course. 

The team software projects have the same four deliverables, and 
size estimates are based on averages of individual PSP data [2]. 
Altogether there are seven team projects in the course (five of 
which primarily concern software process issues) and seven 
individual projects (six of which are software development). 

Twenty-one of the thirty-one, seventy-five-minute, class periods 
in Software Engineering I are devoted to lectures, and the 
remaining ten class periods are used as meeting-time by the teams 
to work on team projects. Five lectures address primarily design 
issues, eight focus on ACL2 (both as a programming language 
and as a computational logic), and six concern software processes. 

5. LECTURES ON ACL2 
Lectures on ACL2 in the first semester (SE-I) have three themes: 
(1) defining functions in the form of equations expressed in Lisp 

(the first experience with declarative programming for many of 
the students), (2) specifying properties of functions in the logic of 
ACL2, and (3) getting the ACL2 theorem prover to verify the 
properties, sometimes by supplementing with lemmas and 
building gradually to proofs of the desired properties. 
The first lectures on ACL2 discuss non-recursive functions from 
propositional logic and theorems with non-inductive proofs, such 
as de Morgan’s laws. I go through the proofs by hand, and then 
demonstrate that ACL2 succeeds in mechanizing them. 

(defthm take-append-identity 
   (implies (true-listp xs) 
                (equal (take (length xs) (append xs ys))  xs))) 
(defthm drop-append-identity 
   (implies (true-listp xs) 
                (equal (drop (length xs) (append xs ys))  ys))) 

Figure 1. Correctness of concatenation. 

Inductive examples come next, starting with the associativity of 
concatenation, the canonical example of the Boyer-Moore 
theorem prover from which ACL2 evolved. Most theorems 
discussed in the lectures relate directly to correctness, as in the 
relationships between the take, drop, length, and concatenation 
operations (Figure 1) that confirm the correctness of 
concatenation (assuming the correctness of the other operations). 
Another early inductive example has to do with conservation of 
atomic elements in a function that flattens a tree (Figure 2). 

(defun flatten (tr) 
   (if (atom tr) 
       (cons tr nil) 
       (append (flatten (car tr)) (flatten (cdr tr)))))
(defun occurs-in (x tr) 
   (or (and (atom x) (atom tr) (equal x tr)) 
         (and (atom x) 
                 (not (atom tr)) 
                 (or (occurs-in x (car tr)) 
                      (occurs-in x (cdr tr)))))) 
(defthm flatten-conserves-atoms 
   (iff (occurs-in x tr) 
        (and (atom x) (member x (flatten tr))))) 

Figure 2. Flatten conserves atoms. 
ACL2 proves all of these early theorems directly from their 
statements. When numbers are involved, it needs a little help from 
some arithmetic theorems supplied with ACL2, but no special 
steps are required. In these examples, one simply states the 
correctness properties, and the rest is automatic. However, it’s not 
entirely trivial to state the theorems correctly. For example, 
without the true-list predicate (specifying a nil-terminated list) in 
the hypothesis of either theorem on concatenation (Figure 2), the 
equality in the conclusion may fail. 
This is consistent with programming experience. What is true for 
the test-and-debug approach to software development is also true 
for a regimen that includes mechanically verified software 
properties: Initial expectations of a piece of software often turn 
out to be wrong. Knowing the conditions under which a formula 
delivers the intended result makes software more reliable, and that 
is one kind of information provided by software properties 
verified through computational logic. 



One lecture is devoted to defining the drop function, getting 
ACL2 to admit it to its logic (that is, to prove that it terminates), 
and verifying some of its properties. A naïve definition (Figure 3) 
fails to specify that the numeric argument must be integral, and an 
examination of ACL2’s attempt at a termination proof shows that 
it runs off track trying to deal with the possibility that the number 
might be complex. ACL2 is able to complete the proof when the 
argument is constrained to integral values. 
For both inductive and non-inductive theorems, the lectures 
present informal proofs, at the level of normal, mathematical 
argumentation, and point out that these informal proofs gloss over 
thousands of details that are not overlooked by the mechanized 
logic of ACL2. Part of the point is that informal proofs of 
software properties have limited value because they are at least as 
likely to be defective as function definitions. It is only with full 
mechanization that software verification has real value. 
In more advanced examples, it is necessary to derive several 
lemmas from the steps in an informal proof to lead ACL2 to a 
successful proof (“The Method” [3]). One such example is a 
function that parcels a list into packets. Each packet is a 
contiguous sublist of the original, containing the elements lying 
between occurrences of a specified delimiter. A notion of 
correctness in this example involves expressing the function two 
ways (Figure 4), one of which is viewed as a correct specification, 
then verifying that the two definitions are extensionally 
equivalent. 

Two lectures discuss a more extensive design and verification 
example: AVL trees (insertion, deletion, and search) expressed in 
about 130 lines of ACL2, with roughly the same number of 
additional lines devoted to stating lemmas and correctness 
properties. The theme of these lectures is designing correctness 
into software from the beginning by stating the properties each 

function is expected to have. Most of the properties in the AVL 
case have to do with preserving order, preserving or restoring 
balance, and conserving keys in various operations on trees.1

(defun drop (n xs) 
   (if (or (<= n 0) (atom xs)) 
       xs 
       (drop (– n 1) (cdr xs)))) 6. PROJECTS IN SE-I 

Designing the software development projects for Software 
Engineering I involved a lot of care and experimentation. I 
wanted to give the students problems on which they could be 
successful, even though none of them had prior experience with 
ACL2 and few had experience in declarative programming. I 
wanted students not only to design and implement software, but 
also to succeed in using the computational logic of ACL2 to 
verify at least a few properties of their code. 

Figure 3. Incorrect definition of drop. 

Initially, I was not at all confident that I could design projects on 
the fly to meet these goals. Fortunately, I was able to organize a 
summer research program for undergraduate students in 2003 to 
try out some ideas. I designed ten software development projects, 
with theorems expressing software properties that I thought 
students could verify with ACL2, and set the students involved in 
the research program to work on them. 
Not all of the projects were suitable as specified, but the students 
were able to modify requirements so that, in the end, we had a set 
of ten software engineering projects that we knew students could 
successfully complete. These were the projects assigned in the 
fall, 2003 offering of Software Engineering I. 
To prepare for fall, 2004, I scrapped some of the problems, 
rearranged others, developed some new ones, and had a pair of 
undergraduate students work on the problems during the summer 
of 2004. The software development projects used in fall, 2004 
emerged from the efforts and suggestions of these students. 
This represents a great deal more than the usual preparatory work 
for putting together a problem set for a course. But, using a 
computational logic as a principal element of a software 
engineering course was new to me. It seemed wise to find out, 
ahead of time, whether or not students could solve the problems 
with a reasonable amount of effort. 
Having gone through the process twice has convinced me that, in 
addition to the usual guidelines that instructors follow in putting 
together software development projects for students, there are two 
tricks to designing projects when ACL2 is the implementation 
language: 

(defun packets (d xs) 
   (if (atom xs) 
       '(nil) 
       (let* ((split (break-at d xs)) 
               (first-packet (car split)) 
               (rest (cadr split))) 
          (cons first-packet 
                   (if (atom rest) 
                        nil 
                        (packets d (cdr rest))))))) 
(defun packet-n (n d xs) 
   (take-to d (drop-past-n-delimiters n d xs))) 
(defthm packets-thm 
    (implies 
        (and (true-listp xs) (integerp n) (>= n 0)) 
        (equal (packet-n n d xs) 
                   (nth n (packets d xs))))) 

1. Make sure all input/output is file based. 
2. Identify properties to be verified, and find proofs of 

those properties, using ACL2, before assigning them. 
These observations eliminate the need for students to test the 
projects before assigning them in the course. However, it’s still a 
lot of work. I have to write the functions involved in the software 
properties to be verified and work through proofs using ACL2. 
This is part of the burden of using ACL2 in a software 
engineering course. One might hope that the burden could be 
reduced in the future by sharing projects among instructors. 

                                                                 
1 The project is incomplete. All the necessary properties and 

many supporting lemmas are stated, but proofs of order, 
balance, and key-conservation properties are complete only for 
primitive operations, such as rotations. Full verification awaits 
proofs of similar properties for insertion and deletion. Figure 4. Correctness of packets. 



Project 0. The first of the six individual projects gives the 
students a chance to learn basic mechanics of the ACL2 system 
and to gain a little experience in specifying computations in the 
form of equations rather than sequences of commands. It consists 
of four small problems that students are likely to be familiar with 
from other courses. 
The assignment requires students to define ACL2 functions 
specifying the following computations: Newton’s method for 
approximating square roots, reversing a list, set operations 
(eliminating duplicates from a list, set union, set intersection, and 
set difference), and the towers of Hanoi problem. Students are not 
required to state or prove any theorems in this first assignment. 
Almost all students succeeded in all parts of this project. A few 
failed to get ACL2 to admit their function for Newton’s method 
for square roots. ACL2 will not admit a function to its logic 
unless it can prove termination, and termination is a bit tricky for 
Newton’s method. Since ACL2 deals only in full-precision, 
rational numbers, a square root function needs an extra argument 
specifying a desired accuracy. The function computes an iteration 
count from this argument, and terminates based on this count.  
Project 1. The second project requires students to define functions 
that compute the mean and variance of a sequence of numbers and 
the frequency count of each number in the sequence. Students are 
required to prove that the frequency-count function delivers the 
same result for every permutation of the input sequence. An 
example in the ACL2 book [3] proves a similar property for a 
sorting function, and this gives students a leg up in the software-
verification part of the project. Otherwise, the proof would 
probably be too hard at this stage. 
All students succeeded in completing a working program for 
Project 1. About half were able to verify that the frequency-count 
function is invariant with respect to permutations of the input 
sequence. This is a tricky property to state, and not all students 
were able to dig the material on permutations out of the textbook 
on their own. 
Project 2. In the third project, students define three functions to 
compute the nth Fibbonaci number (one using nested recursion, 
one using tail recursion, and one using Kepler’s formula). They 
use the mechanized logic of ACL2 to verify that two of the 
functions (the nested recursion and the tail recursion) are 
equivalent, and they use a stopwatch to compare efficiency. 
Students also define nested and tail recursions for the Lucas 
sequence (Fibbonaci, generalized to arbitrarily specified starting 
values) and use ACL2 to prove that the Lucas sequence is non-
decreasing if the starting values are nonnegative. 
Finally, the students are required to write an analytic essay 
describing why they believe the approximation to the square root 
of five that their function uses in Kepler’s formula is accurate 
enough to deliver the correct answer. They use their Newton’s 
method program from the first project to approximate the square 
root, and they are allowed to assume that kth iterate of Newton’s 
method (starting from 2 as the zeroth iterate) delivers an 
approximation to the square root of five that is correct in the first 
2k – 1 decimal digits. 
Most students got ACL2 to prove the equivalence of nested and 
tail recursions for Fibbonaci. About a quarter of the students 
succeeded in proving that their Lucas functions delivered non-
decreasing sequences. This property is easier for ACL2 to deal 

with in terms of the Lucas implementation based on nested 
recursion. The tail recursive version complicates the proof. So, 
the trick is to choose the “simpler” of two equivalent functions 
when verifying properties, which isn’t necessarily the more 
efficient implementation. 
This approach is a good lesson for a general setting: Sometimes it 
is worth finding two representations of a function, one that 
specifies an efficient computation, and one that is more clearly 
correct. Then, use ACL2 to prove that the two representations are 
equivalent. Finally, verify correctness of the simpler function, and 
use the more efficient one in the running software. 
One student (of nearly fifty) composed an essay with a first-rate 
analysis of the accuracy that Kepler’s formula requires in the 
approximation to the square root of five to deliver the correct 
value for the nth Fibbonaci number. About two-thirds of the essays 
had some engineering value, but danced around the main point 
without finding a real solution, and the remaining third missed the 
point entirely. 
Project 3. The fourth project involves producing a concordance of 
a text. The project gives syntactic rules defining words in the text 
and specifies line formats for the output file (requiring, for 
example, that the principal words appear in a column near the 
middle of the line, with the amount of surrounding context 
varying according to the size of the lines and the size of the 
principal word on the line). 
The project calls for an n log n sorting function and a proof that it 
delivers a permutation of the input sequence in which the 
elements occur in increasing order. All students put together a 
working program for this project, and over three-quarters of them 
succeeded in getting ACL2 to prove the correctness of the sorting 
function (mostly following an example in the ACL2 book [3] of a 
similar theorem for an n2 sorting function). 
Project 4. The fifth project converts a file of text into two word-
frequency tables, one arranged alphabetically and one in 
decreasing order of word frequency. The program must include a 
function that converts a sequence of numbers arranged in 
increasing (or decreasing) order into a sequence of “run 
frequencies” — that is, a sequence of ratios between the length of 
each contiguous block of identical numbers in a given, ordered 
sequence and the total number of elements in the given sequence. 
This function has the property that the sum of the ratios in the 
sequence it delivers is one, and the project requires verification of 
this property using ACL2’s computational logic. 
All but a few of the students completed the program and over half 
succeeded in proving the required software property. This was the 
first proof in which it was necessary for students to explore 
supporting lemmas to get the proof to go through, and a fifty-
percent success rate was better than might be expected. 
Project 5. The last individual software development project calls 
for a function that compares the number of tokens in a given 
ACL2 program with the number of tokens it would have if 
invocations of defined functions were in-lined. 
The project requires students to use a supplied software package 
implementing AVL trees to record function bodies (or token 
counts and argument reference counts) keyed by function names 
for later look-up while going through the program. It also requires 
them to choose two properties of the program to verify with 
ACL2’s mechanized logic. 



Almost all students succeeded both in constructing a working 
program and in carrying out the proofs. However, most of them 
chose rather minimal properties to verify. There was a wide 
variety in the complexity of the submitted programs, varying from 
a few hundred lines to over a thousand. The short programs were 
better. 
Team Project 1. The concordance project (Project 3) is actually 
divided into five parts:  

1. planning and design, 
2. design review, 
3. initial implementation of revised design, 
4. code review, and 
5. final implementation of reviewed code. 

Parts 1, 3, and 5 are individual projects, and parts 2 and 4 are 
team projects. In part 1, students convert the problem description 
into a design, on an individual basis. Then, in part 2, the teams 
meet, choose one of the designs at random, conduct a design 
review in a team session, and then revise the design. In part 3, 
individual students implement the revised design through the unit 
testing phase, but without integration testing. In part 4, the teams 
meet again, select one of the implementations at random, and 
conduct a code review. In part 5, individual students complete the 
implementation of the reviewed code. 
The project provides students with opportunities to experience the 
benefits of design and code review and to practice interpersonal 
skills. Most students seem to enjoy the project, and it serves, too, 
the purpose of providing practice for the second team project, 
which is a more substantial software development effort. 
Team Project 2. The larger of the two team software projects in 
Software Engineering I requires the implementation of stock 
market analysis software. The software processes a file of 
inquiries describing analytic computations of stock market data. 
The syntax of inquiries is rudimentary, and the computations are 
not complicated, but the data file, which contains market data for 
S&P 500 corporations, is massive. 
The software invokes functions in an AVL package to record data 
from the file, on the fly, to improve the response time of inquiries. 
In addition to the AVL package, students are encouraged to 
incorporate code from earlier projects (for statistical calculations, 
for example). 
In addition to the usual reports on planning, estimation, 
development time, testing, and defects, the project requires 
documentation explaining how to use the software. Plus, teams 
choose two important properties of their code suitable for an 
ACL2 proof, write a short analysis of the benefits that proving the 
property might provide, and outline an approach to a proof. 
Finally, they choose one of the properties and prove it in ACL2. 
The project gives students experience in organizing and 
cooperating in a modest software effort. (Implementations run one 
to two thousand lines.) It would be enhanced by explicit 
requirements for testing regimes and a prescribed effort in 
verified properties focused on some important aspect of 
correctness. 

7. SE-II 
Software Engineering II is a project-based course required of all 
seniors (final-year students) in computer science. In the 2005 
offering of this course, I formed seven teams [4] of five or six 
students each to carry out team projects. There were thirteen 
separate items that each team was required to deliver, culminating 
in a full implementation of a software product of moderate size 
(3,000 to 5,000 lines of code implementing an “image calculator” 
that takes a formula specifying a computation that applies image 
operations to a sequence of images and generates a new sequence 
of images transformed by the operations in the formula). 

The thirteen deliverables are due on a more-or-less weekly basis 
throughout the semester and include such items as initial design 
and time estimates, engineering standard, detailed design, design 
and code review reports, product specs and installation guide, unit 
and integration test suites following a testing strategy, final design 
and code, meeting logs, and three presentations. 

There is one individual project consisting of a compilation of 
weekly progress reports, plus PSP documents [2] and ACL2-
proven properties for each component the individual contributed 
to the team’s software product. These individual projects are 
typically about thirty pages long, although some are as short as 
twenty, and some as long as two hundred pages. Usually, but not 
always, the longer ones are better. 

Because Software Engineering II is a senior project course, most 
class periods are devoted to meeting time for the teams to keep 
their projects on track. Four class meetings are devoted to team 
presentations, and two are devoted to formal lectures. Informal 
lectures occur occasionally throughout the course. 

8. PROJECTS IN SE-II 
Teams of students in Software Engineering II, spring 2005, built a 
program to carry out image transformations (filtering for feature 
enhancement, differencing for background removal, addition, 
scaling, etc) in combinations specified by formulas presented in a 
syntax based on lambda expressions. They delivered their projects 
in the form of thirteen separate items with due-dates spread 
throughout the sixteen-week semester. 
After two weeks, teams completed high-level designs together 
with size and time estimates based on PSP data [2] collected 
during the first semester. Shortly afterward, they wrote 
engineering standards (document management procedures, design 
and code style sheets, testing procedures, etc). They worked on 
more detailed designs and estimates for the next three weeks. In 
the midst of this period, they conducted design reviews. They 
delivered completed designs and estimates in the sixth week, 
along with ten-minute, in-class presentations describing their 
plans. Five deliverables, six weeks. 
For the next eight weeks, the teams worked on implementation. 
Along the way, they delivered code review reports, product 
specifications, and unit and integration test suites. Finally they 
delivered the code itself and a thirty-minute presentation covering 
specific points, such as software architecture, implementation 
problems and solutions, planned versus actual schedules, 
remaining implementation problems, and potential enhancements. 
The teams were instructed to address an audience consisting of 
engineering management familiar only with a short description of 
their software product’s goals. Six engineering managers from 



industry attended the presentations, asked questions, and left the 
students (and instructor) with written comments and evaluations. 
Five more deliverables, eight more weeks. 
During the last two weeks, in addition to making their thirty-
minute product presentations in class, the teams worked on a test 
suite for the software product of another team (assigned in round-
robin fashion), based on that team’s product specification, and a 
ten-minute presentation of the results of applying the test suite. 
Testing had to follow a known and documented strategy of the 
team’s choice, such as statistical use-based testing or software 
reliability engineering. 
The final item of the team project is a meeting log. All but a few 
class periods are devoted to meeting time for the teams. Before 
each meeting, each team submits an agenda. During the meeting, 
they annotate their agendas with discussion notes and decisions. 
This collection of annotated agendas comprises the meeting log. 
Altogether, thirteen team deliverables in a period of sixteen 
weeks.  
During development of the team’s software product, individual 
students put together reports on each software element (one 
function or a few related functions) they contribute to the product. 
These reports begin with a description of the software element 
and its role in the team’s software design. They continue with a 
PSP log (plans, estimates, design, time log, defect log, testing 
templates, code, and summaries [2]). Each report also states at 
least one proven property of the contributed software element 
along with a summary of a proof of the property using ACL2. 
The collected reports form one section of the sole individual 
project of Software Engineering II. The other section of the report 
consists of the collection of weekly reports each student makes 
throughout the semester. Each team meets with the instructor once 
a week for twenty minutes to discuss progress and problems, and 
the individual weekly reports serve as one form of input for those 
meetings. 
In spring 2005, individual reports varied from twenty pages to 
two hundred, and quality had a similar range. Only a few students 
failed to take the individual project seriously. Two students 
completely omitted proofs of software properties, and about two-
thirds of the software properties stated and proven in the reports 
had no perceptible theme or significant relevance to overall 
software correctness. 
Nevertheless, most reports were of good quality. Five were 
outstanding, with insights about software processes, good 
explanations of the roles of individual software elements in the 
team’s software product, and significant, proven software 
properties. 

9. RESULTS 
I expected some complaints from students and from the five 
representatives from industry who attended presentations in 
Software Engineering II about the use of an unusual programming 
environment, ACL2, for a project course in software engineering. 
To my surprise, I got none from either quarter, and actually got 
positive support from one industry representative and several 
students. So, the idea of using a functional paradigm in software 
engineering was reasonably well accepted. 
In past years there has been considerable whining from students 
about the record keeping required for PSP reports [2]. There was 

still some of that, but substantially less, possibly because we now 
use a tool to reduce the burden of keeping logs, making estimates, 
and recording data. 
Based on conversations with individual students and on 
evaluations of projects they turned in, I believe that all seventy-
six of the students who completed both Software Engineering I 
and II in the 2003-2004 and 2004-2005 academic years managed 
to learn enough about functional programming to be able to use it 
effectively in subsequent projects. 
Of the thirty-eight students who completed both courses in 2004-
2005, about thirty understand how to formulate theorems about 
software properties, and see some value in stating theorems about 
software properties. Twenty-five can use ACL2’s mechanized 
logic to verify at least a few software properties. Between ten and 
fifteen students can formulate theorems that, together, verify a 
coherent theme of software correctness. About the same number 
would choose ACL2 or another functional language for a software 
project in the future, given the opportunity. Five students acquired 
competence in using the ACL2 mechanized logic well beyond 
expectations and would be able to use it effectively on their own 
in new projects without additional training. 

10. WISHES 
Students would gain a better impression of functional 
programming if they could see it compete in speed of 
performance with programs written in C. This might be possible 
if, once ACL2 has been used to verify correctness, students could 
compile their code with a good Common Lisp compiler and run it 
from the resulting executable module. It seems that this would be 
easy, since ACL2 is a subset of Common Lisp, but so far, I have 
failed to find a way to do get C-like performance from ACL2 
code. This is an improvement that I would like to make in the 
future. 
It would also be nice if ACL2 were higher order. It isn’t, and 
won’t be, which is sometimes burdensome from a programming 
point of view. Many students asked for this feature and were 
somewhat disappointed that it is not available. Ironically, in 
earlier software engineering courses in which students were using 
C++ and passing a function as an argument to another function 
would have been advantageous (as in numerical quadrature, for 
example), most students avoided higher order functions by 
passing in a switch and choosing from a fixed collection of 
functions. 
So, they didn’t use higher order functions when they could, and 
should have. Now that they can’t, they want to. Of course, the 
students involved are different, and not all students fall into either 
category. That accounts for the difference, but it seems ironic, 
anyway. 
It would be even nicer if ACL2 had convenient support for 
interactive, graphical user interfaces. This may be feasible, 
perhaps with some sort of inter-language facility. It is something I 
would like to look into in the future, but probably not for the 
upcoming academic year. If I’m lucky, maybe someone else will 
provide a GUI solution. 
Interestingly, two of the seven teams in the 2005 edition of 
Software Engineering II built a Java framework for automatically 
invoking their ACL2 code inside a GUI framework, thus solving 
the GUI problem themselves, but at a high expense. The Java 



harness was about as large (in terms of lines of code) as the ACL2 
code implementing the main computation. 
Two improvements of the coverage of defect control that I plan to 
introduce in the coming year are expanded usage of specified 
strategies for testing and the use of specific tools for configuration 
management and defect databases. During the first semester, 
students will be involved in planning for these changes, and the 
best of what they discover will go into the processes and tools 
they use in the second semester. Discussing a more 
comprehensive model for software quality would also improve the 
course, but there is some risk that it would make the course so 
broad that students would fail to get the intense experience that is 
one of the course’s strengths. 
A few of the best students from Software Engineering II made 
some recommendations about expanding the coverage of 
techniques for getting ACL2 to prove theorems. They suggested 
discussions of hints, inductive measures, and rule classes for type 
prescriptions and elimination. The students dug these ideas out of 
the ACL2 documentation and made good use of them during the 
year. I expect other students will find the methods useful and plan 
to introduce them in the next offering of Software Engineering I. 
Finally, I wish I had given more guidance about what types of 
software properties student teams should address in their 
implementations. Only two of seven teams found coherent themes 
for applying ACL2’s mechanized logic to correctness issues for 
their software. One of these teams dealt mostly with data-type 
issues and interfaces, and the other went far enough to consider 
their software proven correct for most intents and purposes. I 
think more teams would have this type of success if the project 
write-up were more explicit about productive uses of mechanized 
logic in the project. 

11. GUESSES 
I believe a computational logic like ACL2, integrated into a 
software development environment, would provide practical 
benefits in commercial software projects today. Theorem proving 
is ready for prime time. 
The software development process, in this mode, would include 
using the development environment’s logic to state important 
software properties at the same time that test sequences are 
designed — that is, ahead of or along with coding. The properties 
would be proved, gradually, as a normal software development 
activity, in parallel with testing. 
Unfortunately few software engineers are ready for mechanized 
logic. If educators incorporate products like ACL2 in courses, the 
next generation of graduates could begin to reap the benefits of 
functional programming, especially a benefit that the functional 
paradigm facilitates far more effectively than any other: using 
mechanized logic to engineer reliable software. 

12. MATERIALS 
A package of materials for Software Engineering I and II, as 
described in this report, including syllabuses, schedules, lecture 

notes, assignments, and supplied software is available at 
http://www.cs.ou.edu/~rlpage/SEcollab 

13. ACKNOWLEDGMENTS 
I want to thank the students enrolled in software engineering 
courses at the University of Oklahoma whose experiences 
provided much of the material of this report. Especially, I want 
thank Nic Grounds, Isaac Harley, Jeff Kilpatrick, James Murphy, 
Elizabeth Murray, Stephen Pitts, and Jeff Sapp for their help in 
the design of projects and Butch de Berry and Zach Francks for 
pushing through ACL2 proofs of correctness properties of 
rotations and other operations in an AVL-tree implementation. 
Ryan Shepherd built the PSP automation engine used in the 
course, and the students and I are grateful for that. 
Mike Brown (SAIC), Tony Caruso (MRE), David Franke 
(Trilogy, retired), Shane Merz (MRE), Boyd Nolan (PE), Ken 
Parker (Risk Metrics), Roger Rowe (Solarc), and Sunny Sethi 
(Xyant) attended in-class presentations by student teams. In 
addition to providing students with insight on applying concepts 
learned in an educational setting to commercial software 
development projects and contributing an industrial management 
perspective to the proceedings, they took the lead in developing 
guidelines for presentations. The software engineering courses at 
OU have benefited greatly from their efforts. 
I also want to thank Rich Didday of INDEC Systems for helping 
develop major projects for Software Engineering II, including the 
image calculator project described in Section 8. Finally, I want to 
thank J Moore, Matt Kaufmann, and Jared Davis of the University 
of Texas, Austin, for helping my students and me learn to apply 
ACL2 in software engineering projects. 
This report is based on work supported by the National Science 
Foundation under Grant No. EIA 0082849. Any opinions, 
findings and conclusions or recommendations expressed in this 
material are those of the author and do not necessarily reflect the 
views of the National Science Foundation. 

14. REFERENCES 
[1] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. 

How to Design Programs. MIT Press, 2001. 
[2] Humphrey, W. S. A Discipline for Software Engineering, 

Addison Wesley, 1995. 
[3] Kaufmann, M., Manolios, P., and Moore, J. S. Computer 

Aided Reasoning: An Approach. Kluwer Academic 
Publishers, 2000. 

[4] Michaelsen, L. K., “Getting Started with Team Based 
Learning” in Team-Based Learning: A Transformative Use 
of Small Groups, Praeger, Michaelsen, L.K., Knight, A. B., 
and Fink, L.D. editors, Stylus Publishing, Sterling VA, 2002. 

[5] Pressman, R. Software Engineering: A Practitioner's 
Approach, 6th Edition. McGraw-Hill, 2005. 

[6] Sommerville, I. Software Engineering, 7th Edition. Pearson, 
2004. 

 


	OPPORTUNITIES
	READING GUIDE
	HISTORY
	SE-I
	LECTURES ON ACL2
	PROJECTS IN SE-I
	SE-II
	PROJECTS IN SE-II
	RESULTS
	WISHES
	GUESSES
	MATERIALS
	ACKNOWLEDGMENTS
	REFERENCES

