
It is posted h
The definitive version was publis

En

ABSTRACT
Software engineering courses offer on
providing students with a significan
programming. This report discusses
advantage of this opportunity in a
software engineering courses for stu
baccalaureate studies in computer sci
on functional programming using A
subset of Common Lisp with a bu
developed by J Strother Moore and
three decades. The course sequence ha
in two consecutive academic yea
evolved in the second offering, and
that offering, it also offers reasons for
outlines the topical coverage and
further improvements, and observes e
conversations with students and e
projects. In general, it appears that
approach and learned concepts and p
Seventy-six students have completed
half of them in the first offering and h
students gained enough competence in
apply it in future projects in industry
second offering, about forty percent o
competence with the ACL2 mechaniz
use of it in verifying properties of s
acquired more competence than mig
enough to see new opportunities for
software development efforts in th
software with proven correctness prop

Categories and Subject Descriptors K
Information Science Education]: Co
Curriculum.
D.1.1 [Applicative (Functional) Prog

D.2.4 [Software/Program Verificatio
Formal methods.

General Terms Design, Languages,

Keywords Software engineering educ
programming, Lisp, ACL2, mechanize

Permission to make digital or hard copie
personal or classroom use is granted with
not made or distributed for profit or c
copies bear this notice and the full citat
otherwise, or republish, to post on serv
requires prior specific permission and/or a
FDPE’05, September 25, 2005, Tallinn, E
Copyright 2005 ACM 1-59593-067-1/05/
© ACM, 2005. This is the author's version of the work.
ere by permission of ACM for your personal use. Not for redistribution.
hed in Proceedings of FDPE 05, {Sep 2005} http://doi.acm.org/10.1145/1085114.1085123
gineering Software Correctness
Rex Page

University of Oklahoma
School of Computer Science

Norman OK USA
1 405 325 5048
page@ou.edu

e of many opportunities for
t experience in declarative
 some results from taking
 two-semester sequence of
dents in their final year of
ence. The sequence is based

CL2, a purely functional
ilt-in, computational logic

his colleagues over the past
s been offered twice, so far,
rs. Certain improvements

while this report focuses on
 the changes. The discussion
required projects, suggests
ducational effects based on

valuations of their course
most students enjoyed the
ractices of interest to them.
 the two-course sequence,
alf in the second. All of the
 functional programming to
 or graduate school. In the

f the students gained enough
ed logic to make significant
oftware. About ten percent
ht reasonably be expected,
applications and lead future
e direction of declarative
erties.

.3.2 [Computer and
mputer science education,

ramming]

n]: Correctness proofs,

Verification.

ation, functional
d logic, theorem provers

1. OPPORTUNITIES
Software engineering courses offer one of many opportunities for
providing students with a significant experience in declarative
programming. Many computer science programs require at least
one course in software engineering, and some require more.

For example, the technical portion of the baccalaureate
curriculum in computer science at the University of Oklahoma
comprises seventy-three credit-hours of coursework. (One credit-
hour is awarded for one fifty-minute lecture per week for a
sixteen-week semester.) The seventy-three credits-hours are
parceled into twenty-three, three-credit courses and one four-
credit course. Half of these are mathematics courses (four of
which — applied logic, discrete mathematics, theory of
computation, and algorithm analysis — are taught by the School
of Computer Science). The other half are engineering courses (all
of which are taught by the School of Computer Science). Eight of
the twelve computer science courses (or more, depending on
electives) involve significant software or hardware development.

None of the courses with significant software development
assignments prescribe any particular technology in their official
descriptions, but by agreement of the faculty, the first three
courses (introduction to computer programming, programming
structures and abstractions, and data structures) use Java and C++
to describe computations. The other courses leave to the instructor
and/or the student the choice of programming languages and other
software development tools.

Before 2003, no course in the curriculum afforded students a
significant experience in declarative programming. Sometimes
students in the programming language course wrote short
programs in a functional language such as Scheme or in a logic
language such as Prolog. However, these ten- to twenty-line
programs could in no way provide students with enough
background to apply declarative programming to future projects.
Substantial additional education would be required to meet that
goal, and the curriculum did not provide an opportunity to get that
education.

In 2003, I began using declarative programming in a two-course
sequence in software engineering: Software Engineering I and
Software Engineering II. The remainder of this report discusses
this experiment and some of the results.

2. READING GUIDE s of all or part of this work for
out fee provided that copies are
ommercial advantage and that
ion on the first page. To copy
ers or to redistribute to lists,
 fee.
stonia.
0009…$5.00.

The following summary of topics may serve as a reading guide:
Section 3. Evolution of the courses
Section 4. Overview of first semester (SE-I)
Section 5. Software verification examples from lectures

http://doi.acm.org/10.1145/nnnnnn.nnnnnn

Section 6. Projects from first semester
Section 7. Overview of second semester (SE-II)
Section 8. Projects from second semester
Section 9. Student reactions and accomplishments
Section 10. Changes that might be desirable
Section 11. Conjectures about potential benefits
Section 12. Downloading course materials

3. HISTORY
All baccalaureate students in our computer science program are
required to take a two-course sequence (six credit-hours in all) in
software engineering. Almost all of them take this sequence
during the last year of their studies.

The official description of the first of these courses, Software
Engineering I, is “Methods and tools for software specification,
design, and documentation. Emphasis on architectural modularity,
encapsulation of software objects, and software development
processes such as design review, code inspection, and defect
tracking. Students working in teams apply these ideas to design
and document software products. Study of professional ethics,
responsibility, and liability.” The course catalog has the following
description for Software Engineering II: “Methods and tools for
software development, testing, and delivery. Emphasis on data
abstraction and reusable components. Students working in teams
implement a significant software product, including design
documents, user's guide, and process reports, using methods and
processes studied in Software Engineering I. Students will
practice oral and written communication skills.”

As taught (by me, as least), the courses have three primary
elements: design, software development processes, and defect
control. Students work in teams in both courses. Software
Engineering I places more weight on individual work than on
team projects, while Software Engineering II gives teamwork
more weight.

There are many ways to put together educational material on
design, software processes, and defect control. Accordingly, in
the six academic years in which I have taught the two-course
sequence in software engineering, I have put the material together
in several different ways.

In the beginning I based the course on traditional textbooks, such
as Pressman [5] or Sommerville [6] and supplemented the
material with experiences from industry. These textbooks cover a
great deal of ground, but in a way that I find unsatisfying. There
is little material of intellectual depth, and the books are entirely
noncommittal on software engineering methods. One way is as
good as another. Well … maybe some ways are better suited for
some applications and other ways for other applications, but the
authors provide no useful information about how to choose.
Students are encouraged to learn a litany of terms and techniques,
but without much motivation to go to the trouble.

Later, I began to use a textbook by Humphrey [2], which
emphasizes software processes, and supplemented it with material
on design and implementation. The book covers less ground than
the traditional textbooks, and it does a poor job in covering
software design, but it provides excellent coverage of software

processes, and in a form that makes it practical for students to
experience some of the benefits of applying such processes. The
material is especially attentive to defect control in software
development. Processes are experienced by students in the form
of a specific set of estimation and record-keeping activities that
Humphrey calls the Personal Software Process (PSP). It is
presented with about as much intellectual depth as is possible for
software process coverage, and the book takes a specific, useful
point of view about software development.

During all of this period (pre-Humphrey and post-Humphrey)
Software Engineering I was organized around six to ten small
software development projects carried out by individual students,
and Software Engineering II was organized around one, medium-
sized project (5,000 to 15,000 lines of code) carried out by teams
of four to six students. Students implemented software in a variety
of languages (C++ and Java primarily, sometimes supplemented
by scripting languages such as Tcl/Tk, Microsoft Word macros, or
HTML managers). In every case, programming followed a
conventional (that is, stateful) paradigm.

Two years ago, I decided to try using a declarative paradigm to
boost the design and defect-control elements in the course. During
the 2003-2004 academic year, the students used Scheme
(specifically, the DrScheme environment [1] with its associated
user interface tools) to implement their software, but wrote
computational functions (as distinguished from functions
performing some sort of input or output) in ACL2 [3], a purely
functional subset of Common Lisp with a computational logic
(theorem prover) for verifying properties of defined functions.
This made it possible for students to verify, by way of
mathematical proof, certain properties of the software they were
writing. They used a mechanical translator to convert the
functions they had defined in ACL2 to Scheme, to integrate them
with their i/o-performing functions.

The main problem with this approach was that it failed to give
most students a really significant exposure to functional
programming methods. Most students expanded their i/o-
performing functions in every way they could think of. Then, they
could avoid functional programming in most of their code and use
conventional methods for the bulk of it. Discouraging this
tendency to minimize the portion of the program written in
functional form, whether through grading or through discussions
with individual students, proved to be impossible (for me) without
seeming arbitrary or unreasonable.

Based on this experience, I required the students to write all code
in ACL2 in the 2004-2005 academic year. This made all of the
code conform to the purely functional paradigm and gave the
students a consummate experience in functional programming.
The primary disadvantage was that the assigned problems had to
be designed to avoid interactive input/output operations, since
those would be clumsy, at best, in ACL2. A secondary
disadvantage, compared with Scheme, was the lack of higher-
order functions in the ACL2 subset of Common Lisp. Neither of
these disadvantages turned out to cause any significant problems,
and the advantage to the students of experiencing the benefits of
functional programming easily outweighed the disadvantages.

The remainder of this report focuses on the 2004-2005 offering of
Software Engineering I and II, with the all-ACL2 requirement.

4. SE-I
The 2004 edition of Software Engineering I required each student
to complete six small software development projects (100 to 500
lines each) working alone. The course also required students
working in teams to complete one software development project
of modest size (about 1,500 lines of code, including some reused
code from the individual projects) and to cooperate in a
prescribed way in the development of a smaller piece of software
earlier in the course. I formed the teams (five or six students per
team) with a view to balancing the talent and following other
criteria developed by Larry Michaelson in his work on team-
based learning [4].

Each individual software development project in Software
Engineering I requires the students to deliver four items: design,
code, PSP report [2], and proven theorems. The design is
presented as a boxes-and-arrows chart, together with some textual
descriptions of data structures, interfaces, and algorithmic
decisions. The code is written entirely in ACL2. The Humphrey-
style, PSP report includes a project plan, a software size estimate
using a statistical estimation method based on historical data
(estimates get better as the course progresses), a time log, a defect
log, and a collection of test designs and reports.

Theorems (stated in ACL2 logic) express properties of functions
written for the project. In the individual projects, specific
theorems are given in the project assignment, to keep the students
from floundering around with things they are unlikely to be able
to get ACL2 to prove. In the first couple of problems, these
theorems, once correctly stated in ACL2 logic, are things that the
computational logic of ACL2 can prove without special hints.

As the course progresses, the project assignments specify
theorems that require students to find additional supporting
lemmas that ACL2 can prove directly. After ACL2 has the
supporting lemmas in its database, it can proceed successfully to
prove the target theorems.

This approach (stating theorems, finding that ACL2 cannot prove
them on its own, discovering lemmas that ACL2 can prove and
that provide a basis for proving other theorems, and finally
working up to successful proofs of the originally stated theorems)
is part of what the authors of the ACL2 book [3] call “The
Method.” It is one of many techniques that users of ACL2 must
master to succeed in verifying significant software properties. It is
the primary theorem-proving technique emphasized in the course.

The team software projects have the same four deliverables, and
size estimates are based on averages of individual PSP data [2].
Altogether there are seven team projects in the course (five of
which primarily concern software process issues) and seven
individual projects (six of which are software development).

Twenty-one of the thirty-one, seventy-five-minute, class periods
in Software Engineering I are devoted to lectures, and the
remaining ten class periods are used as meeting-time by the teams
to work on team projects. Five lectures address primarily design
issues, eight focus on ACL2 (both as a programming language
and as a computational logic), and six concern software processes.

5. LECTURES ON ACL2
Lectures on ACL2 in the first semester (SE-I) have three themes:
(1) defining functions in the form of equations expressed in Lisp

(the first experience with declarative programming for many of
the students), (2) specifying properties of functions in the logic of
ACL2, and (3) getting the ACL2 theorem prover to verify the
properties, sometimes by supplementing with lemmas and
building gradually to proofs of the desired properties.
The first lectures on ACL2 discuss non-recursive functions from
propositional logic and theorems with non-inductive proofs, such
as de Morgan’s laws. I go through the proofs by hand, and then
demonstrate that ACL2 succeeds in mechanizing them.

(defthm take-append-identity
 (implies (true-listp xs)
 (equal (take (length xs) (append xs ys)) xs)))
(defthm drop-append-identity
 (implies (true-listp xs)
 (equal (drop (length xs) (append xs ys)) ys)))

Figure 1. Correctness of concatenation.

Inductive examples come next, starting with the associativity of
concatenation, the canonical example of the Boyer-Moore
theorem prover from which ACL2 evolved. Most theorems
discussed in the lectures relate directly to correctness, as in the
relationships between the take, drop, length, and concatenation
operations (Figure 1) that confirm the correctness of
concatenation (assuming the correctness of the other operations).
Another early inductive example has to do with conservation of
atomic elements in a function that flattens a tree (Figure 2).

(defun flatten (tr)
 (if (atom tr)
 (cons tr nil)
 (append (flatten (car tr)) (flatten (cdr tr)))))
(defun occurs-in (x tr)
 (or (and (atom x) (atom tr) (equal x tr))
 (and (atom x)
 (not (atom tr))
 (or (occurs-in x (car tr))
 (occurs-in x (cdr tr))))))
(defthm flatten-conserves-atoms
 (iff (occurs-in x tr)
 (and (atom x) (member x (flatten tr)))))

Figure 2. Flatten conserves atoms.
ACL2 proves all of these early theorems directly from their
statements. When numbers are involved, it needs a little help from
some arithmetic theorems supplied with ACL2, but no special
steps are required. In these examples, one simply states the
correctness properties, and the rest is automatic. However, it’s not
entirely trivial to state the theorems correctly. For example,
without the true-list predicate (specifying a nil-terminated list) in
the hypothesis of either theorem on concatenation (Figure 2), the
equality in the conclusion may fail.
This is consistent with programming experience. What is true for
the test-and-debug approach to software development is also true
for a regimen that includes mechanically verified software
properties: Initial expectations of a piece of software often turn
out to be wrong. Knowing the conditions under which a formula
delivers the intended result makes software more reliable, and that
is one kind of information provided by software properties
verified through computational logic.

One lecture is devoted to defining the drop function, getting
ACL2 to admit it to its logic (that is, to prove that it terminates),
and verifying some of its properties. A naïve definition (Figure 3)
fails to specify that the numeric argument must be integral, and an
examination of ACL2’s attempt at a termination proof shows that
it runs off track trying to deal with the possibility that the number
might be complex. ACL2 is able to complete the proof when the
argument is constrained to integral values.
For both inductive and non-inductive theorems, the lectures
present informal proofs, at the level of normal, mathematical
argumentation, and point out that these informal proofs gloss over
thousands of details that are not overlooked by the mechanized
logic of ACL2. Part of the point is that informal proofs of
software properties have limited value because they are at least as
likely to be defective as function definitions. It is only with full
mechanization that software verification has real value.
In more advanced examples, it is necessary to derive several
lemmas from the steps in an informal proof to lead ACL2 to a
successful proof (“The Method” [3]). One such example is a
function that parcels a list into packets. Each packet is a
contiguous sublist of the original, containing the elements lying
between occurrences of a specified delimiter. A notion of
correctness in this example involves expressing the function two
ways (Figure 4), one of which is viewed as a correct specification,
then verifying that the two definitions are extensionally
equivalent.

Two lectures discuss a more extensive design and verification
example: AVL trees (insertion, deletion, and search) expressed in
about 130 lines of ACL2, with roughly the same number of
additional lines devoted to stating lemmas and correctness
properties. The theme of these lectures is designing correctness
into software from the beginning by stating the properties each

function is expected to have. Most of the properties in the AVL
case have to do with preserving order, preserving or restoring
balance, and conserving keys in various operations on trees.1

(defun drop (n xs)
 (if (or (<= n 0) (atom xs))
 xs
 (drop (– n 1) (cdr xs)))) 6. PROJECTS IN SE-I

Designing the software development projects for Software
Engineering I involved a lot of care and experimentation. I
wanted to give the students problems on which they could be
successful, even though none of them had prior experience with
ACL2 and few had experience in declarative programming. I
wanted students not only to design and implement software, but
also to succeed in using the computational logic of ACL2 to
verify at least a few properties of their code.

Figure 3. Incorrect definition of drop.

Initially, I was not at all confident that I could design projects on
the fly to meet these goals. Fortunately, I was able to organize a
summer research program for undergraduate students in 2003 to
try out some ideas. I designed ten software development projects,
with theorems expressing software properties that I thought
students could verify with ACL2, and set the students involved in
the research program to work on them.
Not all of the projects were suitable as specified, but the students
were able to modify requirements so that, in the end, we had a set
of ten software engineering projects that we knew students could
successfully complete. These were the projects assigned in the
fall, 2003 offering of Software Engineering I.
To prepare for fall, 2004, I scrapped some of the problems,
rearranged others, developed some new ones, and had a pair of
undergraduate students work on the problems during the summer
of 2004. The software development projects used in fall, 2004
emerged from the efforts and suggestions of these students.
This represents a great deal more than the usual preparatory work
for putting together a problem set for a course. But, using a
computational logic as a principal element of a software
engineering course was new to me. It seemed wise to find out,
ahead of time, whether or not students could solve the problems
with a reasonable amount of effort.
Having gone through the process twice has convinced me that, in
addition to the usual guidelines that instructors follow in putting
together software development projects for students, there are two
tricks to designing projects when ACL2 is the implementation
language:

(defun packets (d xs)
 (if (atom xs)
 '(nil)
 (let* ((split (break-at d xs))
 (first-packet (car split))
 (rest (cadr split)))
 (cons first-packet
 (if (atom rest)
 nil
 (packets d (cdr rest)))))))
(defun packet-n (n d xs)
 (take-to d (drop-past-n-delimiters n d xs)))
(defthm packets-thm
 (implies
 (and (true-listp xs) (integerp n) (>= n 0))
 (equal (packet-n n d xs)
 (nth n (packets d xs)))))

1. Make sure all input/output is file based.
2. Identify properties to be verified, and find proofs of

those properties, using ACL2, before assigning them.
These observations eliminate the need for students to test the
projects before assigning them in the course. However, it’s still a
lot of work. I have to write the functions involved in the software
properties to be verified and work through proofs using ACL2.
This is part of the burden of using ACL2 in a software
engineering course. One might hope that the burden could be
reduced in the future by sharing projects among instructors.

1 The project is incomplete. All the necessary properties and

many supporting lemmas are stated, but proofs of order,
balance, and key-conservation properties are complete only for
primitive operations, such as rotations. Full verification awaits
proofs of similar properties for insertion and deletion. Figure 4. Correctness of packets.

Project 0. The first of the six individual projects gives the
students a chance to learn basic mechanics of the ACL2 system
and to gain a little experience in specifying computations in the
form of equations rather than sequences of commands. It consists
of four small problems that students are likely to be familiar with
from other courses.
The assignment requires students to define ACL2 functions
specifying the following computations: Newton’s method for
approximating square roots, reversing a list, set operations
(eliminating duplicates from a list, set union, set intersection, and
set difference), and the towers of Hanoi problem. Students are not
required to state or prove any theorems in this first assignment.
Almost all students succeeded in all parts of this project. A few
failed to get ACL2 to admit their function for Newton’s method
for square roots. ACL2 will not admit a function to its logic
unless it can prove termination, and termination is a bit tricky for
Newton’s method. Since ACL2 deals only in full-precision,
rational numbers, a square root function needs an extra argument
specifying a desired accuracy. The function computes an iteration
count from this argument, and terminates based on this count.
Project 1. The second project requires students to define functions
that compute the mean and variance of a sequence of numbers and
the frequency count of each number in the sequence. Students are
required to prove that the frequency-count function delivers the
same result for every permutation of the input sequence. An
example in the ACL2 book [3] proves a similar property for a
sorting function, and this gives students a leg up in the software-
verification part of the project. Otherwise, the proof would
probably be too hard at this stage.
All students succeeded in completing a working program for
Project 1. About half were able to verify that the frequency-count
function is invariant with respect to permutations of the input
sequence. This is a tricky property to state, and not all students
were able to dig the material on permutations out of the textbook
on their own.
Project 2. In the third project, students define three functions to
compute the nth Fibbonaci number (one using nested recursion,
one using tail recursion, and one using Kepler’s formula). They
use the mechanized logic of ACL2 to verify that two of the
functions (the nested recursion and the tail recursion) are
equivalent, and they use a stopwatch to compare efficiency.
Students also define nested and tail recursions for the Lucas
sequence (Fibbonaci, generalized to arbitrarily specified starting
values) and use ACL2 to prove that the Lucas sequence is non-
decreasing if the starting values are nonnegative.
Finally, the students are required to write an analytic essay
describing why they believe the approximation to the square root
of five that their function uses in Kepler’s formula is accurate
enough to deliver the correct answer. They use their Newton’s
method program from the first project to approximate the square
root, and they are allowed to assume that kth iterate of Newton’s
method (starting from 2 as the zeroth iterate) delivers an
approximation to the square root of five that is correct in the first
2k – 1 decimal digits.
Most students got ACL2 to prove the equivalence of nested and
tail recursions for Fibbonaci. About a quarter of the students
succeeded in proving that their Lucas functions delivered non-
decreasing sequences. This property is easier for ACL2 to deal

with in terms of the Lucas implementation based on nested
recursion. The tail recursive version complicates the proof. So,
the trick is to choose the “simpler” of two equivalent functions
when verifying properties, which isn’t necessarily the more
efficient implementation.
This approach is a good lesson for a general setting: Sometimes it
is worth finding two representations of a function, one that
specifies an efficient computation, and one that is more clearly
correct. Then, use ACL2 to prove that the two representations are
equivalent. Finally, verify correctness of the simpler function, and
use the more efficient one in the running software.
One student (of nearly fifty) composed an essay with a first-rate
analysis of the accuracy that Kepler’s formula requires in the
approximation to the square root of five to deliver the correct
value for the nth Fibbonaci number. About two-thirds of the essays
had some engineering value, but danced around the main point
without finding a real solution, and the remaining third missed the
point entirely.
Project 3. The fourth project involves producing a concordance of
a text. The project gives syntactic rules defining words in the text
and specifies line formats for the output file (requiring, for
example, that the principal words appear in a column near the
middle of the line, with the amount of surrounding context
varying according to the size of the lines and the size of the
principal word on the line).
The project calls for an n log n sorting function and a proof that it
delivers a permutation of the input sequence in which the
elements occur in increasing order. All students put together a
working program for this project, and over three-quarters of them
succeeded in getting ACL2 to prove the correctness of the sorting
function (mostly following an example in the ACL2 book [3] of a
similar theorem for an n2 sorting function).
Project 4. The fifth project converts a file of text into two word-
frequency tables, one arranged alphabetically and one in
decreasing order of word frequency. The program must include a
function that converts a sequence of numbers arranged in
increasing (or decreasing) order into a sequence of “run
frequencies” — that is, a sequence of ratios between the length of
each contiguous block of identical numbers in a given, ordered
sequence and the total number of elements in the given sequence.
This function has the property that the sum of the ratios in the
sequence it delivers is one, and the project requires verification of
this property using ACL2’s computational logic.
All but a few of the students completed the program and over half
succeeded in proving the required software property. This was the
first proof in which it was necessary for students to explore
supporting lemmas to get the proof to go through, and a fifty-
percent success rate was better than might be expected.
Project 5. The last individual software development project calls
for a function that compares the number of tokens in a given
ACL2 program with the number of tokens it would have if
invocations of defined functions were in-lined.
The project requires students to use a supplied software package
implementing AVL trees to record function bodies (or token
counts and argument reference counts) keyed by function names
for later look-up while going through the program. It also requires
them to choose two properties of the program to verify with
ACL2’s mechanized logic.

Almost all students succeeded both in constructing a working
program and in carrying out the proofs. However, most of them
chose rather minimal properties to verify. There was a wide
variety in the complexity of the submitted programs, varying from
a few hundred lines to over a thousand. The short programs were
better.
Team Project 1. The concordance project (Project 3) is actually
divided into five parts:

1. planning and design,
2. design review,
3. initial implementation of revised design,
4. code review, and
5. final implementation of reviewed code.

Parts 1, 3, and 5 are individual projects, and parts 2 and 4 are
team projects. In part 1, students convert the problem description
into a design, on an individual basis. Then, in part 2, the teams
meet, choose one of the designs at random, conduct a design
review in a team session, and then revise the design. In part 3,
individual students implement the revised design through the unit
testing phase, but without integration testing. In part 4, the teams
meet again, select one of the implementations at random, and
conduct a code review. In part 5, individual students complete the
implementation of the reviewed code.
The project provides students with opportunities to experience the
benefits of design and code review and to practice interpersonal
skills. Most students seem to enjoy the project, and it serves, too,
the purpose of providing practice for the second team project,
which is a more substantial software development effort.
Team Project 2. The larger of the two team software projects in
Software Engineering I requires the implementation of stock
market analysis software. The software processes a file of
inquiries describing analytic computations of stock market data.
The syntax of inquiries is rudimentary, and the computations are
not complicated, but the data file, which contains market data for
S&P 500 corporations, is massive.
The software invokes functions in an AVL package to record data
from the file, on the fly, to improve the response time of inquiries.
In addition to the AVL package, students are encouraged to
incorporate code from earlier projects (for statistical calculations,
for example).
In addition to the usual reports on planning, estimation,
development time, testing, and defects, the project requires
documentation explaining how to use the software. Plus, teams
choose two important properties of their code suitable for an
ACL2 proof, write a short analysis of the benefits that proving the
property might provide, and outline an approach to a proof.
Finally, they choose one of the properties and prove it in ACL2.
The project gives students experience in organizing and
cooperating in a modest software effort. (Implementations run one
to two thousand lines.) It would be enhanced by explicit
requirements for testing regimes and a prescribed effort in
verified properties focused on some important aspect of
correctness.

7. SE-II
Software Engineering II is a project-based course required of all
seniors (final-year students) in computer science. In the 2005
offering of this course, I formed seven teams [4] of five or six
students each to carry out team projects. There were thirteen
separate items that each team was required to deliver, culminating
in a full implementation of a software product of moderate size
(3,000 to 5,000 lines of code implementing an “image calculator”
that takes a formula specifying a computation that applies image
operations to a sequence of images and generates a new sequence
of images transformed by the operations in the formula).

The thirteen deliverables are due on a more-or-less weekly basis
throughout the semester and include such items as initial design
and time estimates, engineering standard, detailed design, design
and code review reports, product specs and installation guide, unit
and integration test suites following a testing strategy, final design
and code, meeting logs, and three presentations.

There is one individual project consisting of a compilation of
weekly progress reports, plus PSP documents [2] and ACL2-
proven properties for each component the individual contributed
to the team’s software product. These individual projects are
typically about thirty pages long, although some are as short as
twenty, and some as long as two hundred pages. Usually, but not
always, the longer ones are better.

Because Software Engineering II is a senior project course, most
class periods are devoted to meeting time for the teams to keep
their projects on track. Four class meetings are devoted to team
presentations, and two are devoted to formal lectures. Informal
lectures occur occasionally throughout the course.

8. PROJECTS IN SE-II
Teams of students in Software Engineering II, spring 2005, built a
program to carry out image transformations (filtering for feature
enhancement, differencing for background removal, addition,
scaling, etc) in combinations specified by formulas presented in a
syntax based on lambda expressions. They delivered their projects
in the form of thirteen separate items with due-dates spread
throughout the sixteen-week semester.
After two weeks, teams completed high-level designs together
with size and time estimates based on PSP data [2] collected
during the first semester. Shortly afterward, they wrote
engineering standards (document management procedures, design
and code style sheets, testing procedures, etc). They worked on
more detailed designs and estimates for the next three weeks. In
the midst of this period, they conducted design reviews. They
delivered completed designs and estimates in the sixth week,
along with ten-minute, in-class presentations describing their
plans. Five deliverables, six weeks.
For the next eight weeks, the teams worked on implementation.
Along the way, they delivered code review reports, product
specifications, and unit and integration test suites. Finally they
delivered the code itself and a thirty-minute presentation covering
specific points, such as software architecture, implementation
problems and solutions, planned versus actual schedules,
remaining implementation problems, and potential enhancements.
The teams were instructed to address an audience consisting of
engineering management familiar only with a short description of
their software product’s goals. Six engineering managers from

industry attended the presentations, asked questions, and left the
students (and instructor) with written comments and evaluations.
Five more deliverables, eight more weeks.
During the last two weeks, in addition to making their thirty-
minute product presentations in class, the teams worked on a test
suite for the software product of another team (assigned in round-
robin fashion), based on that team’s product specification, and a
ten-minute presentation of the results of applying the test suite.
Testing had to follow a known and documented strategy of the
team’s choice, such as statistical use-based testing or software
reliability engineering.
The final item of the team project is a meeting log. All but a few
class periods are devoted to meeting time for the teams. Before
each meeting, each team submits an agenda. During the meeting,
they annotate their agendas with discussion notes and decisions.
This collection of annotated agendas comprises the meeting log.
Altogether, thirteen team deliverables in a period of sixteen
weeks.
During development of the team’s software product, individual
students put together reports on each software element (one
function or a few related functions) they contribute to the product.
These reports begin with a description of the software element
and its role in the team’s software design. They continue with a
PSP log (plans, estimates, design, time log, defect log, testing
templates, code, and summaries [2]). Each report also states at
least one proven property of the contributed software element
along with a summary of a proof of the property using ACL2.
The collected reports form one section of the sole individual
project of Software Engineering II. The other section of the report
consists of the collection of weekly reports each student makes
throughout the semester. Each team meets with the instructor once
a week for twenty minutes to discuss progress and problems, and
the individual weekly reports serve as one form of input for those
meetings.
In spring 2005, individual reports varied from twenty pages to
two hundred, and quality had a similar range. Only a few students
failed to take the individual project seriously. Two students
completely omitted proofs of software properties, and about two-
thirds of the software properties stated and proven in the reports
had no perceptible theme or significant relevance to overall
software correctness.
Nevertheless, most reports were of good quality. Five were
outstanding, with insights about software processes, good
explanations of the roles of individual software elements in the
team’s software product, and significant, proven software
properties.

9. RESULTS
I expected some complaints from students and from the five
representatives from industry who attended presentations in
Software Engineering II about the use of an unusual programming
environment, ACL2, for a project course in software engineering.
To my surprise, I got none from either quarter, and actually got
positive support from one industry representative and several
students. So, the idea of using a functional paradigm in software
engineering was reasonably well accepted.
In past years there has been considerable whining from students
about the record keeping required for PSP reports [2]. There was

still some of that, but substantially less, possibly because we now
use a tool to reduce the burden of keeping logs, making estimates,
and recording data.
Based on conversations with individual students and on
evaluations of projects they turned in, I believe that all seventy-
six of the students who completed both Software Engineering I
and II in the 2003-2004 and 2004-2005 academic years managed
to learn enough about functional programming to be able to use it
effectively in subsequent projects.
Of the thirty-eight students who completed both courses in 2004-
2005, about thirty understand how to formulate theorems about
software properties, and see some value in stating theorems about
software properties. Twenty-five can use ACL2’s mechanized
logic to verify at least a few software properties. Between ten and
fifteen students can formulate theorems that, together, verify a
coherent theme of software correctness. About the same number
would choose ACL2 or another functional language for a software
project in the future, given the opportunity. Five students acquired
competence in using the ACL2 mechanized logic well beyond
expectations and would be able to use it effectively on their own
in new projects without additional training.

10. WISHES
Students would gain a better impression of functional
programming if they could see it compete in speed of
performance with programs written in C. This might be possible
if, once ACL2 has been used to verify correctness, students could
compile their code with a good Common Lisp compiler and run it
from the resulting executable module. It seems that this would be
easy, since ACL2 is a subset of Common Lisp, but so far, I have
failed to find a way to do get C-like performance from ACL2
code. This is an improvement that I would like to make in the
future.
It would also be nice if ACL2 were higher order. It isn’t, and
won’t be, which is sometimes burdensome from a programming
point of view. Many students asked for this feature and were
somewhat disappointed that it is not available. Ironically, in
earlier software engineering courses in which students were using
C++ and passing a function as an argument to another function
would have been advantageous (as in numerical quadrature, for
example), most students avoided higher order functions by
passing in a switch and choosing from a fixed collection of
functions.
So, they didn’t use higher order functions when they could, and
should have. Now that they can’t, they want to. Of course, the
students involved are different, and not all students fall into either
category. That accounts for the difference, but it seems ironic,
anyway.
It would be even nicer if ACL2 had convenient support for
interactive, graphical user interfaces. This may be feasible,
perhaps with some sort of inter-language facility. It is something I
would like to look into in the future, but probably not for the
upcoming academic year. If I’m lucky, maybe someone else will
provide a GUI solution.
Interestingly, two of the seven teams in the 2005 edition of
Software Engineering II built a Java framework for automatically
invoking their ACL2 code inside a GUI framework, thus solving
the GUI problem themselves, but at a high expense. The Java

harness was about as large (in terms of lines of code) as the ACL2
code implementing the main computation.
Two improvements of the coverage of defect control that I plan to
introduce in the coming year are expanded usage of specified
strategies for testing and the use of specific tools for configuration
management and defect databases. During the first semester,
students will be involved in planning for these changes, and the
best of what they discover will go into the processes and tools
they use in the second semester. Discussing a more
comprehensive model for software quality would also improve the
course, but there is some risk that it would make the course so
broad that students would fail to get the intense experience that is
one of the course’s strengths.
A few of the best students from Software Engineering II made
some recommendations about expanding the coverage of
techniques for getting ACL2 to prove theorems. They suggested
discussions of hints, inductive measures, and rule classes for type
prescriptions and elimination. The students dug these ideas out of
the ACL2 documentation and made good use of them during the
year. I expect other students will find the methods useful and plan
to introduce them in the next offering of Software Engineering I.
Finally, I wish I had given more guidance about what types of
software properties student teams should address in their
implementations. Only two of seven teams found coherent themes
for applying ACL2’s mechanized logic to correctness issues for
their software. One of these teams dealt mostly with data-type
issues and interfaces, and the other went far enough to consider
their software proven correct for most intents and purposes. I
think more teams would have this type of success if the project
write-up were more explicit about productive uses of mechanized
logic in the project.

11. GUESSES
I believe a computational logic like ACL2, integrated into a
software development environment, would provide practical
benefits in commercial software projects today. Theorem proving
is ready for prime time.
The software development process, in this mode, would include
using the development environment’s logic to state important
software properties at the same time that test sequences are
designed — that is, ahead of or along with coding. The properties
would be proved, gradually, as a normal software development
activity, in parallel with testing.
Unfortunately few software engineers are ready for mechanized
logic. If educators incorporate products like ACL2 in courses, the
next generation of graduates could begin to reap the benefits of
functional programming, especially a benefit that the functional
paradigm facilitates far more effectively than any other: using
mechanized logic to engineer reliable software.

12. MATERIALS
A package of materials for Software Engineering I and II, as
described in this report, including syllabuses, schedules, lecture

notes, assignments, and supplied software is available at
http://www.cs.ou.edu/~rlpage/SEcollab

13. ACKNOWLEDGMENTS
I want to thank the students enrolled in software engineering
courses at the University of Oklahoma whose experiences
provided much of the material of this report. Especially, I want
thank Nic Grounds, Isaac Harley, Jeff Kilpatrick, James Murphy,
Elizabeth Murray, Stephen Pitts, and Jeff Sapp for their help in
the design of projects and Butch de Berry and Zach Francks for
pushing through ACL2 proofs of correctness properties of
rotations and other operations in an AVL-tree implementation.
Ryan Shepherd built the PSP automation engine used in the
course, and the students and I are grateful for that.
Mike Brown (SAIC), Tony Caruso (MRE), David Franke
(Trilogy, retired), Shane Merz (MRE), Boyd Nolan (PE), Ken
Parker (Risk Metrics), Roger Rowe (Solarc), and Sunny Sethi
(Xyant) attended in-class presentations by student teams. In
addition to providing students with insight on applying concepts
learned in an educational setting to commercial software
development projects and contributing an industrial management
perspective to the proceedings, they took the lead in developing
guidelines for presentations. The software engineering courses at
OU have benefited greatly from their efforts.
I also want to thank Rich Didday of INDEC Systems for helping
develop major projects for Software Engineering II, including the
image calculator project described in Section 8. Finally, I want to
thank J Moore, Matt Kaufmann, and Jared Davis of the University
of Texas, Austin, for helping my students and me learn to apply
ACL2 in software engineering projects.
This report is based on work supported by the National Science
Foundation under Grant No. EIA 0082849. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the
views of the National Science Foundation.

14. REFERENCES
[1] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S.

How to Design Programs. MIT Press, 2001.
[2] Humphrey, W. S. A Discipline for Software Engineering,

Addison Wesley, 1995.
[3] Kaufmann, M., Manolios, P., and Moore, J. S. Computer

Aided Reasoning: An Approach. Kluwer Academic
Publishers, 2000.

[4] Michaelsen, L. K., “Getting Started with Team Based
Learning” in Team-Based Learning: A Transformative Use
of Small Groups, Praeger, Michaelsen, L.K., Knight, A. B.,
and Fink, L.D. editors, Stylus Publishing, Sterling VA, 2002.

[5] Pressman, R. Software Engineering: A Practitioner's
Approach, 6th Edition. McGraw-Hill, 2005.

[6] Sommerville, I. Software Engineering, 7th Edition. Pearson,
2004.

	OPPORTUNITIES
	READING GUIDE
	HISTORY
	SE-I
	LECTURES ON ACL2
	PROJECTS IN SE-I
	SE-II
	PROJECTS IN SE-II
	RESULTS
	WISHES
	GUESSES
	MATERIALS
	ACKNOWLEDGMENTS
	REFERENCES

