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Abstract

The Burrows–Wheeler Transform is a string-to-string transform which, when used as a

preprocessing phase in compression, significantly enhances the compression rate. However,

it often puzzles people how the inverse transform is carried out. In this pearl we to exploit

simple equational reasoning to derive the inverse of the Burrows–Wheeler transform from its

specification. We also outline how to derive the inverse of two more general versions of the

transform, one proposed by Schindler and the other by Chapin and Tate.

1 Introduction

The Burrows–Wheeler Transform (Burrows & Wheeler, 1994) is a method for

permuting a string with the aim of bringing repeated characters together. As

a consequence, the permuted string can be compressed effectively using simple

techniques such as move-to-front or run-length encoding. In Nelson (1996), the

article that brought the BWT to the world’s attention, it was shown that the resulting

compression algorithm could outperform many commercial programs available at

the time. The BWT has now been integrated into the high-performance utility bzip2,

available from Seward (2000).

Clearly, the best way of bringing repeated characters together is just to sort the

string. But this idea has a fatal flaw as a preliminary to compression: there is no way

to recover the original string unless the complete sorting permutation is produced as

part of the output. Instead, the BWT achieves a more modest permutation, one that

aims to bring some but not all repeated characters into adjacent positions. Moreover,

the transform can be inverted using a single additional piece of information, namely

an integer b in the range 0 � b < n , where n is the length of the output (or input)

string.

It often puzzles people, at least on a first encounter, as to why the BWT is

invertible and how the inversion is actually carried out. We identify the fundamental

reason why inversion is possible and use it to derive the inverse transform from

its specification. As a bonus, we can further derive the inverse of two variations of

the BWT transform, one proposed in Schindler (1997), another in Chapin & Tate

(1998).
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2 Defining the BWT

The BWT is specified by two functions: bwp :: String → String , which permutes

the string and bwn :: String → Int , which computes the supplementary integer. The

restriction to strings is not essential to the transform, and we can take bwp to have

the Haskell type Ord a ⇒ [a] → [a], so lists of any type will do provided there is a

total ordering relation on the elements. The function bwp is defined by

bwp = map last · lexsort · rots (1)

The function lexsort :: Ord a ⇒ [[a]] → [[a]] sorts a list of lists into lexicographic

order and is considered in greater detail in the following section. The function rots

returns the rotations of a list and is defined by

rots :: [a] → [[a]]

rots xs = take (length xs) (iterate lrot xs)

lrot :: [a] → [a]

lrot xs = tail xs ++ [head xs]

The function lrot performs a single left rotation. In words, (1) reads: take the

last column in the lexicographically sorted matrix of rotations of the input. The

definition of bwp is constructive, but we won’t go into details – at least, not in this

pearl – as to how the program can be made more efficient.

The function bwn is specified by

lexsort (rots xs) !! bwn xs = xs (2)

where ys !! k returns the element of ys in position k . In words, bwn xs returns some

position at which xs occurs in the sorted list of rotations of xs . If xs is a repeated

string, then rots xs will contain duplicates, so bwn xs is not defined uniquely by (2).

As an illustration, consider the string yokohama. The rotations and the lexico-

graphically sorted rotations are as follows:

y o k o h a m a

o k o h a m a y

k o h a m a y o

o h a m a y o k

h a m a y o k o

a m a y o k o h

m a y o k o h a

a y o k o h a m

0 a m a y o k o h

1 a y o k o h a m

2 h a m a y o k o

3 k o h a m a y o

4 m a y o k o h a

5 o h a m a y o k

6 o k o h a m a y

7 y o k o h a m a

The output of bwp is the string hmooakya, the last column of the second matrix,

and bwn "yokohama" = 7 because row number 7 in the sorted matrix of rotations is

the input string.

The BWT helps compression because it brings together characters with a common

context. To give a brief illustration, an English text may contain many occurrences

of words such as “this”, “the”, “that” and some occurrences of “where”, “when”,

“she”, “he” (with a space), etc. Consequently, many of the rotations beginning with
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“h” will end with a “t”, some with a “w”, an “s” or a space. The chance is smaller

that a rotation beginning with “h” would end in a “x”, a “q”, or an “u”, etc.

Thus the BWT brings together a subset of the letters, say, those “t”s, “w”s and

“s”s. A move-to-front encoding phase is then able to convert the characters into

a series of small-numbered indexes, which improves the effectiveness of entropy-

based compression techniques such as Huffman or arithmetic coding. For a fuller

understanding of the role of the BWT in data compression, consult Burrows &

Wheeler (1994) and Nelson (1996).

The inverse transform unbwt :: Ord a ⇒ Int → [a] → [a] is specified by

unbwt (bwn xs) (bwp xs) = xs (3)

To compute unbwt we have to show how the matrix of lexicographically sorted

rotations, or at least row number t , where t = bwn xs , can be recreated solely from

the knowledge of its last column. To do so we need to examine lexicographic sorting

in more detail.

3 Lexicographic sorting

Let (�) :: a → a → Bool be a linear ordering on a . Define (�k ) :: [a] → [a] → Bool

inductively by

xs �0 ys = True

(x : xs) �k+1 (y : ys) = x < y ∨ (x = y ∧ xs �k ys)

The value xs �k ys is defined whenever the lengths of xs and ys are both no smaller

than k .

Now, let sort (�k ) :: [[a]] → [[a]] be a stable sorting algorithm that sorts an n ×n

matrix, given as a list of lists, according to the ordering �k . Thus sort (�k ), which

we henceforth abbreviate to sort k , sorts a matrix on its first k columns. Stability

means that rows with the same first k elements appear in their original order in the

output matrix. By definition, lexsort = sort n .

Define cols j = map (take j ), so cols j returns the first j columns of a matrix. Our

aim in this section is to establish the following fundamental relationship, which is

the key property for establishing the existence of an algorithm for inverting the

BWT. Provided 1 � j � k , we have

cols j · sort k · rots = sort 1 · cols j · map rrot · sort k · rots (4)

The function rrot denotes a single right rotation, defined by:

rrot xs = last xs : init xs

Equation (4) looks daunting, but take j = n (so cols j is the identity) and k = n

(so sort k is a complete lexicographic sorting). Then (4) states that the following

transformation on the sorted rotations is the identity: move the last column to the

front and re-sort the rows on the new first column. As we will see, this implies that

the permutation that produces the first column from the last column is the same as

that which produces the second from the first, and so on.



606 R. S. Bird and S. C. Mu

To prove (4) we will need some basic properties of rotations and sorting. For

rotations, one identity suffices:

map rrot · rots = rrot · rots (5)

More generally, applying a rotation to the columns of a matrix of rotations has the

same effect as applying the same rotation to the rows.

For sorting we will need

sort k · map rrotk = (sort 1 · map rrot)k (6)

where f k is the composition of f with itself k times. Equivalently, equation (6) can

be read as sort k = (sort 1 · map rrot)k · map lrotk . This identity formalises the fact

that one can sort a matrix on its first k columns by first rotating the matrix to

bring these columns into the last k positions, and then repeating k times the process

of rotating the last column into first position and stably sorting according to the

first column only. Since map rrotn = id , the initial processing is omitted in the case

k = n , and we have the standard definition of radix sort. In this context see Gibbons

(1999) which deals with the derivation of radix sorting in a more general setting.

Substituting k + 1 for k in (6) and expanding the right-hand side, we obtain

sort (k + 1) · map rrotk+1 = sort 1 · map rrot · sort k · map rrotk

Since rrotk · rrotn−k = rrotn = id we can compose both sides with map rrotn−k to

obtain

sort (k + 1) · map rrot = sort 1 · map rrot · sort k (7)

Finally, we shall need the following two properties of columns. First, for arbitrary j

and k :

cols j · sort k = cols j · sort ( j min k ) = sort ( j min k ) · cols j (8)

In particular, cols j · sort k = cols j · sort j whenever j � k . Furthermore, since sort k

sorts the list of strings by the first k characters only, we have:

cols j · sort k · perm = cols j · sort k (9)

whenever j � k and perm is any function that permutes its argument.

Having introduced the fundamental properties (5), (7), (8) and (9), we can now

prove (4). With 1 � j � k we reason:

sort 1 · cols j · map rrot · sort k · rots

= {by (8)}
cols j · sort 1 · map rrot · sort k · rots

= {by (7)}
cols j · sort (k + 1) · map rrot · rots

= {by (8)}
cols j · sort k · map rrot · rots

= {by (5)}
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cols j · sort k · rrot · rots

= {by (9)}
cols j · sort k · rots

Thus, (4) is established.

4 The derivation

Our aim is to develop a program that reconstructs the sorted matrix from its last

column. In other words, we aim to construct sort n · rots · unbwt t . In fact, we will

try to construct a more general expression cols j · sort k · rots · unbwt t (of which the

former expression is the case j = k = n) because the more general expression is

used in the two variants of the BWT described in sections 5 and 6.

First, observe that for 0 � j ,

cols ( j + 1) · map rrot = join · fork (map last , cols j ) (10)

where join (xs , xss) = zipWith (:) xs xss is the matrix xss with xs adjoined as a new

first column, and fork ( f , g) x = ( f x , g x ). Hence

cols ( j + 1) · sort k · rots · unbwt t

= {by (4)}
sort 1 · cols ( j + 1) · map rrot · sort k · rots · unbwt t

= {by (10)}
sort 1 · join · fork (map last , cols j ) · sort k · rots · unbwt t

= {since fork ( f , g) · h = fork ( f · h , g · h)}
sort 1 · join · fork (map last · sort k · rots · unbwt t ,

cols j · sort k · rots · unbwt t)

In particular, consider t = bwn xs for an input xs and k = n , the length of xs . Since

bwp = map last · sort n · rots , and bwp (unbwt t xs) = xs , the equality shown above

reduces to:

(cols ( j + 1) · sort n · rots · unbwt t) xs

= (sort 1 · join · fork (id , cols j · sort n · rots · unbwt t)) xs

Setting recreate j = cols j · sort n · rots · unbwt t , we have just constructed a recursive

definition for recreate:

recreate 0 = map (const [ ])

recreate ( j + 1) = sort 1 · join · fork (id , recreate j )

The Haskell code for recreate is given in Figure 1. The function sortby :: (a →
a → Bool ) → [a] → [a] is a stable sorting algorithm. It is identical to the standard

function sortBy except for a slightly different type.

Now we know that recreate reconstructs the entire matrix, we just need to pick

a particular row. Taking j = n , we have unbwt t = (!! t) · recreate n . The problem is

that this implementation of unbwt involves computing sort 1 a total of n times. To
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recreate :: Ord a => Int -> [a] -> [[a]]

recreate 0 = map (const [])

recreate (j+1) = sortby leq . join . fork (id, recreate j)

where leq us vs = head us <= head vs

join = uncurry (zipWith (:))

fork (f,g) x = (f x, g x)

Fig. 1. Computation of recreate.

avoid repeated sorting, observe that recreate 1 ys = sort ys , where the function sort

now sorts a list rather than a matrix of one column. Furthermore, for some suitable

permutation sp we have

sort ys = permby sp ys

where permby :: (Int → Int) → [a] → [a] applies a permutation to a list:

permby p [x0, . . . , xn−1] = [xp(0), . . . , xp(n−1)]

It follows that

recreate ( j + 1) ys = join (permby sp ys , permby sp (recreate j ys))

Equivalently,

recreate n ys = transpose (take n (iterate1 (permby sp) ys)) (11)

where transpose :: [[a]] → [[a]] is the standard Haskell function for transposing a

matrix and iterate1 = tail · iterate . The tth row of a matrix is the tth column of the

transposed matrix, that is, (!! t) · transpose = map (!! t), so we can use the naturality

of take n to obtain

unbwt t ys = take n (map (!! t) (iterate1 (permby sp) ys))

Suppose we define spl :: Ord a ⇒ [a] → Int → (a , Int) by

spl ys i = sort (zip ys [1..]) !! i

where sort now sorts a list of pairs. Then

spl ys j = (ys !! sp j , sp j )

Hence

map (!! k ) (iterate1 (permby sp) ys) = thread (spl ys k )

where thread (x , j ) = x : thread (spl ys j ).

The final algorithm, written as a Haskell program, is given in Figure 2. In a real

implementation, the sorting in spl would be performed by counting the histogram of

the input, which can be done in linear time using a mutable array. The “threading”

part can be performed in linear time, assuming constant-time array look-up. In

Seward (2001) it was observed that the main inefficiency with the algorithm lies in

the cache misses involved in the threading, arising as a result of accessing a large

array in non-sequential order.
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unbwt :: Ord a => Int -> [a] -> [a]

unbwt t ys = take (length ys) (thread t)

where spl i = sort (zip ys [0..]) !! i

thread i = x : thread j

where (x,j) = spl i

Fig. 2. Computation of unbwt .

5 Schindler’s variation

The main variation of BWT is to exploit the general form of (4) rather than the

special case k = n . Suppose we define

bwpS k = map last · sort k · rots

This version, which sorts only on the first k columns of the rotations of a list, was

considered in Schindler (1997). The derivation of the previous section shows how we

can recreate the first k columns of the sorted rotations from ys = bwp k xs , namely

by computing recreate k ys .

The remaining columns cannot be computed in the same way. However, we can

reconstruct the tth row, where t = bwn k xs and

sort k (rots xs) !! t = xs

The first k elements of xs are given by create k ys !! t , and the last element of xs is

ys !! t . Certainly we know

take k (rrot xs) = [xn , x1, . . . , xk−1]

This list begins with the last row of the unsorted matrix, and consequently, since

sorting is stable, will be the last occurrence of the list in create k ys . If this occurrence

is at position p, then ys!!p = xn−1. Having discovered xn−1, we know take k (rrot2 xs).

This list begins the penultimate row of the unsorted matrix, and will be either the

last occurrence of the list in the sorted matrix, or the penultimate one if it is equal

to the previous list. We can continue this process to discover all of [xk+1, . . . , xn ]

in reverse order. Efficient implementation of this phase of the algorithm requires

building an appropriate data structure for repeatedly looking up elements in reverse

order in the list zip (recreate k ys) ys and removing them when found. A simple

implementation is given in Figure 3.

6 Chapin and Tate’s variation

Primarily for the purpose of showing that the pattern of derivation in this paper can

be adapted to other cases, we shall consider another variation. Define the following

alternative of BWT:

bwpCT k = map last · twistk · lexsort · rots

where the function twist rearranges the rows of the matrix. One possible choice
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unbwt :: Ord a => Int -> Int -> [a] -> [a]

unbwt k p ys = us ++ reverse (take (length ys - k) vs)

where us = yss !! p

yss = recreate k ys

vs = u:search k (reverse (zip yss ys)) (take k (u:us))

u = ys !! p

search :: Eq a => Int -> [([a],a)] -> [a] -> [a]

search k table xs = x:search k table’ (take k (x:xs))

where (x,table’) = dlookup table xs

dlookup :: Eq a => [(a,b)] -> a -> (b,[(a,b)])

dlookup ((a,b):abs) x = if a==x then (b,abs)

else (c,(a,b):cds)

where (c,cds) = dlookup abs x

Fig. 3. Computation of Schindler’s variation.

twist :: Eq a => Int -> [[a]] -> [[a]]

twist k = concat . mapEven (map reverse). groupby (take k)

mapEven, mapOdd :: (a->a) -> [a] -> [a]

mapEven f [] = []

mapEven f (x:xs) = f x : mapOdd f xs

mapOdd f [] = []

mapOdd f (x:xs) = x : mapEven f xs

Fig. 4. One possible choice of twist .

of twist is shown in Figure 4. As an example, consider the rotations of the string

aabab:

aabab ababa abaab

abaab abaab ababa

ababa aabab aabab

baaba baaba babaa

babaa babaa baaba

Shown on the left is the sorted matrix of rotations. The matrix in the middle is

the result of applying twist . The rows are first partitioned into groups by groupby

according to their first characters. The even numbered groups (counting from zero)

are then reversed. In the example, the group starting with a is reversed. Shown on

the right is the result of applying twist2 to the matrix in the middle. The rows are

partitioned into three groups, starting with ab, aa, and ba respectively. The noughth

and the second group are reversed.

The idea of twisting the matrix of sorted rotations was proposed in Chapin & Tate

(1998), where a similar but slightly more complicated version of twist was considered

based on the Gray code. Chapin and Tate’s generalisation can marginally improve

the compression ratio of the transformed text.
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For twistk to be invertible, however, we need only the property that for 0 < j � k ,

cols j · twistk = cols j · twist j−1 (12)

In words, further twisting (twistk where j � k ) does not change the first j columns

after they have been set by twist j−1. In the example above, for instance, the call to

twist2 does not change the first two columns of the matrix in the middle, nor do

successive calls to twistk where k � 2. Any twist satisfying (12) suffices to make

bwtCT invertible. This separation of concerns on compression rate and invertibility

means that one can try many possible choices satisfying (12) and experiment with

the effect on compression.

To derive an algorithm for the reverse transform we need the following analogue

of (4):

cols j · twistk · lexsort · rots

= twistk · sort 1 · untwistk · cols j · map rrot · twistk · lexsort · rots (13)

where untwist is inverse to twist . The proof of (13) follows a similar path to the

derivation in section 3. When k = 0 (so twistk = id ), equation (13) reduces to a

special case of (4). In words, (13) means that the following operation is an identity

on a matrix generated by twistk · lexsort · rots: move the last column to the first,

untwist it, sort it by the first character, and twist it again.

Based on (13) one can now derive an algorithm similar to that of section 4.

Defining

recreateCT j k = cols j · twistk · lexsort · rots · unbwtCT t

we can construct a recursive definition for recreateCT which is similar to (11),

but with the permutation sp simulating twist i · sort 1 · untwist i for appropriate i ,

rather than just sort 1. The details are more complicated than for the corresponding

definition of recreate (which builds one column in each step) because in recreateCT

the permutation sp changes each time a new column is built. So the algorithm has

to construct a new permutation as well as a new column at each step. The resulting

algorithm will thus return a pair whose first component is the reconstructed matrix

and the second component is a permutation representating sp. In the first step we

build the first column and a permutation simulating twist · sort 1 · untwist; in the

second step we build the second column and a permutation for twist2 ·sort 1·untwist2,

and so on. Further details are omitted in this pearl.

7 Conclusions

We have shown how the inverse Burrows–Wheeler transform can be derived by

equational reasoning. The derivation can be re-used to invert the more general

versions proposed by Schindler, and by Chapin and Tate.

Other aspects of the BWT also make interesting topics. In Manber & Myers

(1993) it is shown how to sort the rotations of a given string in O(n log n) time using

suffix arrays, where n is the length of the string. How efficiently it can be done in
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a functional setting remains unanswered, though we conjecture that O(n(log n)2) is

the best possible.
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