ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Under consideration for publication in J. Functional Pragnming 1

Combinators for Meta-heuristic Search

RICHARD SENINGTON, DAVID DUKE
University Of Leeds, Leeds LS2 9JT, UK
(e-mail: sc06r2s,d. j.duke@leeds. ac.uk)

Abstract

Metaheuristics are a group of iterative optimisation algorithms for combiimhfoblems that have
been widely studied for the last 25 years and this has resulted in a varidiffesént approaches.
These algorithms and a number of frameworks for experimentation witi@rfield are usually
implemented in imperative languages, however little work has been domgfuactional languages
for this task.

We develop a library of composable stream transformation functions iputeefunctional lan-
guage Haskell, and then show how a selection of well known, but quireliff, metaheuristics can
be built from this small set of combinators. This approach allows for tmeise expression of the
algorithms and provides a high degree of modularity and composability.iTturn allows for the
rapid modification and hybridisation of algorithms to examine alternativéegfies, an important
provision for operational research and applications. We then illustratesthef the library using
the well known Travelling Salesperson Problem and give a brief cdsgaof the performance of
algorithms constructed using the library with versions written in C.

Contents
1 Introduction 2
1.1 Travelling Sales Person Problem 4
1.2 Paper Overview 4
2 Metaheuristics 5
2.1 Hybridisation 6
2.2 Commonalities 6
2.3 Perturbation and Recombination for TSP 7
3 Combinators For Metaheuristics 9
3.1 Stream Transformer Design 10
3.2 Iterative Improvers 11
3.3 TABU 13
3.4 Simulated Annealing 15
3.5 Genetic Algorithms 18
3.6 Application to TSP 21
3.7 Additional Combinatorial Problems 23
4 Design Perspectives 25
4.1 Monolithic State 25
4.2 Co-Monads 26

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

2 R. Senington, D. J. Duke
4.3 Functional Reactive Programming 26
4.4 Arrows 27
5 Implementation issues 27
6 A Performance comparison with C 28
7 Further Work & Conclusion 30
References 31
A Combinators of the library 33
A.1 lterative Improver Combinators 33
A.2 TABU Search Combinators 33
A.3 Simulated Annealing Combinators 34
A.4 Genetic Algorithms Combinators 34
A.5 Eager Combinators 34
A.6 Queue Based Window 35

1 Introduction

How do you best allocate finite resources? For example if youa factory and have
a number of machines, each machine is capable of doing a mushibasks at specific

rates. At any given time the factory has a number of work téslkc®mplete. Which tasks
should be done on which machines and in what order, suchlthlaédasks are completed
as quickly as possible? Alternatively if you run a Universitou will have timetables to

design. There are many finite resources here (time slotmys@md people) and the final
timetable needs to satisfy a range of competing criteria.

There are many ways in which a set of jobs can be scheduled enoh machines and
many orders in which lectures can be assigned to rooms in eetsity. Commonly not
all solutions are the same, with some using less of the fir&eurces (for example time)
than others, or resulting in greater productivity. How camfimd solutions that are better
for these problems?

These are examples of combinatorial optimisation probjenggoup of NP-hard prob-
lems that occur frequently in industry, engineering andrsog. In computer science many
algorithms have been created for finding optimal solutionthiése problems (for example
depth first search and branch&bound) calbenpletealgorithms. However as the size of
the problems increases the size of the search space caasestime of the programs to
increase exponentially.

In many tasks however time is limited, and finding higher guadolutions is more
important than finding a provably optimal solution. In thesses meta-heuristic methods
have been found to be effective in finding comparatively gsolditions within practical
time constraints, though they sacrifice the certainty thataptimal solution will ever be
found (and are therefoiacompletg.

Metaheuristics form a heterogeneous group of algorithmspsch so that they can be
envisaged as being like a toolbox of concepts for the metaiste designer to draw upon
when encountering a new problem. No meta-heuristic is gueea to perform well on all
problems, though most can be modified to improve performanaach new problem they
are paired with, a process knowntaging (Birattari, 2005. This tuning can be a complex

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 3

process, involving the modification of static parametdrs,mhodification of functional pa-
rameters and the integration of new concepts from the taolmwn ashybridisation For
example, in genetic algorithms the process of experimientatn include; modifying the
size of the populations, the rates of mutation and chandiaegrethod by which solutions
are chosen for recombination (or breeding). In secBdhwe will look at modifying a
simple genetic algorithm meta-heuristic through the regraent of the mutation function
and will see how this effects the quality of solutions dise@d by the search process.

These considerations have led to the implementation ofdvearks for creation, hy-
bridisation and experimentation upon metaheuristics. él@wvthese frameworks, which
are built on imperative programming abstractions, havelingited success. Masrom et al
present the following conclusions:

“...they have limited predefined hybridisation. Indeedngoof them focus on either
local search or evolutionary algorithms only. As a resuitbhidisation is restricted within
the limited metaheuristics.”

While many of the frameworks provide GUI support for non-axpentrol, for more
sophisticated work, e.g. creating a new form of hybrid@atthe same authors remark that
“it is imperative that the programmer has a deep understagddf the class libraries”
(Masromet™al,, 2011).

The contribution of this paper is to investigate the use @égunctional programming
to express metaheuristics and hybridisatibhis is similar in intent to the work of Schri-
jvers et al on combinators enabling the construction of eios for the management
of exhaustive tree based search algorith{8shrijverset™al, 201]). Given the weakness
of existing frameworks, can functional languages deliveicher yet simpler framework
for expressing and hybridising metaheuristics? Furthem, @ functional approach over-
come the limits of predefined hybridisation and offer paisenf computation which link
evolutionary and population based methods with local $earsingle solution methods?
While such a ‘combinatorial’ approach to program solvingudt@arguably be bread-and-
butter for functional programmindgHughes, 198p the diversity of local search problems
confounds a simple approach to combinator design through:

e the heterogeneous nature of meta-heuristic algorithmshaidcomponents, which
makes it difficult to capture or even identify common patsern

e the absence of a unifying mathematical abstraction; fomgta the pattern of ‘state
+ remaining input’ model of functional parseiditton & Meijer, 1998; and

e theinterplay of different components of state that are aeiiyg captured by Haskell's
type system and current support for records.

Our solution is to model metaheuristics, at the top levelpasessesvhich produce
streams of solutions from seed data, such as seed solufib@grocesses are constructed
in a data-flow stylehrough the composition and transformation of a number ottions
that we think of asstream transformersThis simplifies the task dfiybridisationby al-
lowing the meta-heuristic designer to concentrate on thaipogation of finer-grained
combinator building blocks. Our approach to metaheussisctherefore solidly within
the stream programming field of functional programming.

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

4 R. Senington, D. J. Duke

1.1 Travelling Sales Person Problem

The travelling salesman problem (TSP) is often used as datdnest and example appli-
cation in combinatorial optimisation, due to it having aywsimple description and direct
real world application, and we will be using the problem iis {haper. Here we will remind

the readers of the specifications of the problem and discunse sf the variations that exist.

The task is to find a shortest Hamiltonian cycle in a connegtegh, a cycle which
goes through every vertex only onddqos & Sfitzle, 200%. The edges of the graph are
weighted and the length of the cycle is the sum of the weightseoedges used. Specific
instances of the problem can be symmetric, where the weigah @dge AB is always
equal to the weight of BA, or asymmetric where this constrizsimot present.

An instance of a TSP is defined by the number of vertices in taphg and the weights
of the edges between them. All the graphs that we have camsideoth symmetric and
asymmetric, have been drawn from the online repository TBRReinelt, 199] and are
fully connected, though this is also an optional properthawider context. For this paper
we will only consider the problent1417.tsp from the TSPLIB as our example. Where
we report results this will be the example that has been used.

1.2 Paper Overview

The paper is structured as follows. Section™2 introduceddr families of metaheuris-
tics that will be examined in the paper, discusses how th&grant with combinatorial
problems, and looks at some existing styles of hybridisafltne examples that have been
chosen are widely used and understood methods, coverihdgduatl search and evolution-
ary algorithms: iterative improvers, TABU, simulated aalireg, and genetic algorithms.
The TSP is then considered in light of the function types #ratneeded to interact with
them, with the specific variants that we will use in our exaesiven.

Section™3 gives the major content of the paper, looking at hnctional languages
can be used to break down processes into stream combinatolrghe application of this
method to metaheuristics. The section ends with a shotselfi example experiments
upon the TSP, where a number of hybrids of the meta-heunstithods discussed are
compared.

In Section™4 we step back, and examine the library desigisides, in particulamwhy
the stream transformation approach is preferable for tp@i@ation than alternatives.
Section™5 shows a difficulty with our approach, related tonthbuild up in lazy evaluation,
and our solution to this problem.

Section™6 provides a comparison between our functionahheetristics and specialised
versions written in C. Section™7 concludes the paper, lapko future work and the de-
ployment of functional methods as effective tools for mie¢aristic designers.

The major contributions of this paper are:

e a concerted attack on a class of related, yet heterogen&mrittams, and demon-
stration as to how to present them in FP;

e the re-formulation of a number of well known metaheuristite a data flow form;

e the creation of a set of combinators to capture the charatitsrof these metaheuris-
tics; and

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 5

e an examination of the performance issues that arise andasgison of how they can
be resolved.

Many of the combinators that are presented involve ordesaigtions in some way. A
convention of this paper while describing the combinatoitshe that when we refer one
candidate solution being better than another we mean teattle of the better candidate
is lower. This convention fits well with both the TSP example problemd ¢he standard
implementation of Haskell functions liksort

2 Metaheuristics

Metaheuristic algorithms work by manipulating candidaikigons to combinatorial op-
timisation problems. These acandidatesolutions in that (i) we cannot be sure they are
optimal, and (ii) in some cases they may not even be validisolsito the original problem.
This second case arises in situations where the model ofrti#em being used cannot
restrict, a-priori, the candidates being considered teahwhich are always valid. Superior
models of problems that better restrict the candidatesideredd are always preferable.
The TSP used in the remainder of the paper does not invohatidhwandidates, and this
issue will not be mentioned further in this paper.

The quality of a candidate solution is determined byoafective functionThis func-
tion will usually provide a numerical value, or measure af tfuality, however in some
metaheuristics all that is needed is that the candidates &orordered set. The underlying
concept of metaheuristics is that, if we have a candidatgisal of a given quality, small
changes to that solution should yield other solutions ofrailar’ quality. A simple illus-
tration can be drawn from the idea of a path through a graph as is found in the TSP.
If the path is changed by removing a relatively small set afesdfrom a cycle and then
adding a set of edges such that the result in a valid Hamétoaycle, the value of the new
solution only differs from the old by the values of the edgemlved in the change. Such
a change is calledgerturbation many metaheuristics routinely apply perturbations to the
candidate solutions as they execute.

Perturbation gives rise to the concept afeighbourhoogda set of candidates that result
from applying perturbation to a given candidate solutionally, perturbation is sometimes
defined as the choice of a new candidate solution from withgivan neighbourhood.
Iterative local search typically involves moving from ai@nt candidate to one within its
neighbourhood.

A second method for creating new solutions from oldesombination where a new
candidate is produced from two or more existing candiddtbis approach is often used
with population based methods such as genetic algorithrA3 (Goldberg, 1989

Many variations of perturbation, neighbourhood and redoatinn exist for each prob-
lem that has been examined by the Operations Research (@R)waity. Of the four fam-
ilies of algorithms chosen for this paper, iterative impm/(also known as hill climbers)
and TABU search tend to use neighbourhoods to provide catetidSimulated annealing
tends to use perturbation, and genetic algorithms use tgioaion. The inspiration for
each of these families is varied. Simulated annealing drawsoncepts from physical
simulations (in particular metallurgy); TABU is a variation iterative improvers with the

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

6 R. Senington, D. J. Duke

addition of a memory; and genetic algorithms draw upon @étwolution and the study
of it in artificial intelligence.

2.1 Hybridisation

In the absence of practical complete search methods theitalgofamilies addressed
in this paper have been applied widely; and effort continioegine algorithms to new
problems. To this end a branch of study has developed whiempts tohybridiselocal
search methods, combining different characteristics ehdg&endreau & Potvin, 2005
Birattariet™al,, 200% Raidl, 2006. The hope is that the hybrid meta-heuristic will have
strongersearch characteristics than its progenttofhere has been substantial research
into how to hybridise heuristics; Tal@iélbi, 2009 for example, proposed two key con-
cepts:relay, where metaheuristics are run in sequence,taathwork where they run in
parallel and communicate findings. Talbi proposed two firgubdivisionshigh andlow
levelhybridisation.

In both low level relay and teamwork hybrids the key concepphat the construction of
the final strategy uses one meta-heuristic algorithm as gooent or function of another.
Talbi gives the following examples to illustrate this:

e low level relay simulated annealing, using an iterative improver to ytbklalterna-
tives that it chooses between, rather than a random petitomba

e low level teamworka genetic algorithm, using an iterative improver to musatiel-
tions, rather than a random perturbation

High level hybridisation keeps the different strategiesrendearly self-contained. For
example, using simulated annealing for a time, then TABUddeavhere the TABU search
begins from the final solution that the simulated annealeaych produced.

While this paper starts with Talbi’s low and high level hylis@tion, one of our con-
tributions is to move towards a uniform approach to hybatign that eliminates this
distinction.

2.2 Commonalities

The approaches described above suggest that local segoetitahs consist of two parts.
The first guides the application of perturbation and cardidalection, for example by
iteration until a solution is deemed acceptable. The sepantis the set of functions for
generating, perturbing, selecting and recombining catd&l These functions tend to be
highly problem-specific.

Our key insight is that a process which yields a sequencesutiens provides a suitable
level of abstraction for meta-heuristic construction.sTieper lays out a set of combinators
for describing these processes, combining aspects of fresesses and manipulating
the resulting sequences of solutions. Before we considecdimbinators we first present
further details of the TSP problem that we use to demondinataleas.

1 Where stronger is understood as; finding better solutions to the combinatablems, in fewer
iterations while continuing to find better solutions for longer.

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 7

2.3 Perturbation and Recombination for TSP

TSP provides a useful illustration for both our overall flmork and the design of specific
combinators. As a running example it demonstrates how a ¢@ambinatorial problem
can be addressed by the composition and construction oflearsparch strategies from
simpler component®ur aim is pedagogical, we do not intend nor claim that this re-
resents fundamentally superior algorithms for solving ingances of the TSPWe shall
therefore not look in detail at all known variations upontpdsation and recombination.
To demonstrate how the example perturbation and reconimaperations modify the
structure of solutions we will provide example implemeiutas.

2.3.1 Perturbation & Neighbourhoods

The basic perturbation operation is the swapping of twegiith the Hamiltonian cycle.
From this swap operation we can define a second, more linfited, of perturbation, the
adjacent exchange, where the two cities to be exchangedijm®eat in the sequence. The
example code for these operations is provided in Figure

type TSPSol a= [g]
type Perturb s= s— s
type Swaps = (Int,Int) — Perturb s

tspSwap: Swap(TSPSol &

tspSwag(i,]) source= if i = j then sourceelsefr +b: md+a: bk
where
(fr,as) = splitAtisource

(a:mdb:bk) = splitAt(j—i) as
adjTspSwap: Int — Int — Perturb(TSPSol &

adjTspSwap lenjii=len = tspSwag0,len)
| otherwise= tspSwagi,i +1)

Fig. 1: A list based implementation of TSP perturbation fiors.

We define two neighbourhood functions, indicated by thextifiin the function names,
in terms of these perturbation operations; a deterministighbourhood derived from
the adjTspSwagunction, and a stochastic neighbourhood derived from tbeengeneral
tspSwapgunction. The deterministic neighbourhood is construtigdpplying the adjacent
swap function to every adjacent pair of cities in the sountetin.

The second neighbourhood function we will use is the sta@hasighbourhood, which
generates a neighbourhood by swapping randomly selectedigiaities. This approach
allows for the size of the neighbourhood to be controlled|eybroviding access to a wider
overall range of candidate solutions. The code for thesghibeiurhood functions is found
in figure2, where the stochastic neighbourhood function takes aflisirlomly generated
integers (s), assumed to be in the range of the problem. The size of tlylhbeurhood is
controlled by the length of the list of randomly generatedgers.

A trade off must be considered when designing a neighbourhatction relating to the
size of the neighbourhood. A larger neighbourhood allowchesiep of a meta-heuristic

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

8 R. Senington, D. J. Duke

adjSwapN: Neighbourg TSPSol &

adjSwapN source- map(flip (adjTspSwap)lsource [0..1]
wherel = length source- 1

stochasticSwapN [Int] — Neighbourg TSPSol &
stochasticSwapN rs souree map(flip tspSwap sourge$ zip (map fst a$ (map fst by
where (as bs) = patrtition ((=0) osnd) $zip rs(cycle[0,1])

Fig. 2: A list based implementation of TSP neighbourhood:fioms.

(a) First parent (b) Second parent (c) Common Subsequences

Fig. 3: Identifying common subsequences in TSPs

to examine more solutions, however this requires more mgrand time. While lazy
evaluation can ameliorate this issue through generat@smgents of a neighbourhood only
when they are required, in general it will only improve megnperformance not the time
issue.

2.3.2 Recombination

To implement recombination for TSP we use the concept tieaiéiv solution must contain
all common subsequences of the parents, with the remairfdéie sequence provided
from a subsequent process. We limit our recombination pte operating only over
two solutions at a time, although combining more than twoassible. Figure3 gives a
graphical example of the identification of common subsegegim a Euclidean TSP.

The recombination process can be divided into two partsfitbeis identification of
the common subsequences, the second putting them backeoget new order. This is
seen in figurel, where theecombfunction is the composition of; (i) finding the common
subsequences and (ii) shuffling them into a new order andatenating them. Shuffling
is provided by an auxiliary function that requires an exéérsource of random values.
The identification of common subsequences is provided byetifan which processes one
solution, comparing each pair of adjacent cities with a lopkable provided by the other
Hamiltonian cycle.

However even for pedagogical value this example is too naneducing too much
chaotic behaviour into the metaheuristics. In the remaiondi¢he paper we use a variant
which is more respectful of edges present in the parents, when not common to both
parents.

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 9
recomb rs as= concato shuffle rsocommonChunks as

shuffle: Ordr = [r] — [a — [
shuffle rs= map sndo sortBy(Aa b— compare(fst a) (fstb)) oziprs

commonChunks Eq a=- [a] — [a] — [[a]]

commonChunks g®: bs) = fbs[[b]]
where

aEdges= letas = cycle asn take(length ag $zip as(tail as)
f[] (cs:csy
| elem(head cshead$ last csg aEdges= (reverse csHlast csg : init css
| otherwise= reverse cscss
f(x:xs) (cs: csg
| elem(head csx) aEdges= fxs((x:cs) : cs9
| otherwise= fxs([X :reverse cscss

Fig. 4: A list based implementation of a TSP recombinatiarction.

2.3.3 Practical Implementation

The implementation presented here only deals with the tstraicchanges to the Hamilto-
nian cycles. A full implementation would require a numbeptsfer features:

e pricing or evaluation, subject to a look up table of the edgégims for the specific
TSP instances; and

e and explicit ordering over candidate solutions, often dfim terms of the value of
the paths

While not a requirement it is also faster to calculate thegpoita new candidate in terms
of thedifferencedrom its source candidate, rather than recalculating tisé @fcthe whole
route each time.

Lists are a poor implementation for this data structure. el@v the need to recall and
reexamine previous solutions causes a problem for any tlaketigre which relies upon
in place updates. We therefore will use dictionaries to mithe operation of an array,
using the standard Haskdllata. IntMap structure, which will also provide the sharing
functionality at minimal cost. Full details of this implemtation using the dictionary, and
providing the properties described above will not be predidt being a rather mundane
programming exercise.

Use of dictionaries is comparatively efficient for the swiapgpoperations that we have
described. Other data structures have been co-opted farsesgting TSP such as splay-
trees Fredmaret™al, 1993 and specialised data structures have been created suoh as t
two-level tree Chrobaket™al,, 1990.

3 Combinators For Metaheuristics

A direct translation of imperative approaches to metalséias results in monolithic state
transformation systems. However we started from a “dat&-flzerspective, structuring
computations as a collection of evolving variables, orestre of data, that are generated,
transformed and combined to yield solutions. This data-#pproach admits straightfor-

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

10 R. Senington, D. J. Duke

S — > s S £ j
a —> —> b

a —> —> b as —> —> bs
(@) A model of a simple (b) A model of a pure (c) A Model of a stream
function stateful function transformation function

with internal state

Fig. 5: Models of pure functions

ward expression as recursive Haskell functions, both protdpecific and generic. It also
facilitates the expression of more complex computatiorsséompositional style.

In this section we will first examine the generic aspects efdtream transformation
approach, and in the later subsections describe the patéreach of the metaheuristics
and show how they can be expressed as stream transformatigoutations. The final
subsections present a number of hybrid metaheuristics legid application to a TSP
instance; and look at how our combinators can operate ovar atell combinatorial
problems.

3.1 Stream Transformer Design

We begin with an example; imagine that you wish to add a rangale to various
different values in a pure functional program. This can beexed bythreadinga random
number generator through the program to the places whereased, such as the following
function;

f:: RandomGen g Float — g — (Float,g)

fxg= let(a,b) = random gn (a+x,b)
An alternative is to gather the values that we wish to incren@o a stream and apply a
transformation over them all, such as this function;

f:: RandomGen ¢ g — [Float] — [Float]

fg= zipWith(+) (randoms ¢

Figure5 shows three models of functions diagrammatically; a sinsié of diagrams is

found in Launchbury & Peyton Jones, 1995

e 5ais the simplest form of a function;
e Sbillustrates the threading of state model;
e 5ccorresponds to our stream transformation approach.

While simple, this forms the basis of how we deal with the séstic perturbation tech-
nique later on. In sectiod we will discuss alternative ways in which metaheuristicd an
streams can be tackled in Haskell, includargowized streamandreactive programming
which have strong connections to this approach.

We have described metaheuristics as processes which ge&eoria sequence of can-
didate solutions, where future solutions may be constduittam previous solutions. The
model of stream transformation so far does not give rise th ®volving processes, but
implement a map-like transformation. To “tie the knot” wevyide;

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 11

loopP:: ([§ — [g]) = s— [

loopP streamT seed let sols= seed streamT sol#n sols
This function creates a stream of values from a seed valuefifigt value is the seed, the
second the transformation of the seed, the third the tramsfiton of the second value and
so on. This is a well understood recursive technique useéffimient generation of the
generating the Fibonacci numbers in functional languages.

A straight forward generalisation replaces the single satdan initial stream segment;

loopS:: ([— [s]) — [s| = [9]

loopS streamT seed let sols= seed+streamT solén sols
These looping operations constrain the types of streanepsocs that are useful at this top
level to;

type StreamT s= [g — [g]

All the metaheuristics that we will examine result in stremamsformations of this type,
however we have identified two other common functional paste

type ExpandT s= [g — [[d]]

type ContraT s= [[g]] — [g
ExpandTcomputations which gather information from a stream, owjol® choices and
the neighbourhood functions previously discussed inge&{ionce lifted, are of this type.
ContraT computations are usually contractions from a number ofesglfior example a
choice from a neighbourhood, lifted top operation overestrs.

Instances of these operations can be written in a numberys, i@ example arrowized
computations. However we have found that in practice a tapproach using functions
from the standard libraries suchmasp zip, zipWith scanland their variations are simpler,
see sectiod.4.

3.2 Iterative Improvers

Iterative Improvers are more commonly known as hill clintband gradient decent. They
operate in a greedy manner, only moving to a new candidatgisolif it improves upon
the previous candidate. Usually they are based upon neighbod functions, where a
number of candidates are generated from a previous caediddtonly one is selected.
This means that the process can be divided into two partsgeheration of the raw

neighbourhood, and the processing of this into a neighlmmdof improving solutions,
where improving meankess than the parengs previously stated in sectidn2 There
are various ways in which the next candidate can be selemedthe neighbourhood of
improving solutions, with the most common being; first foungaximal, minimal and
stochastic. We will first give a data-flow implementation ofleterministic first found
iterative improver.

firstFoundii:: Ord s= (s— [g]) = S— [g

firstFoundii nf seed

= let sols= seed map head improvements
neighbours= map nf sols

improvements= zipWith(Aa b — filter (a >) b) sols neighbours
in sols

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

12 R. Senington, D. J. Duke

This function is defined in terms of three stream of data eaehted from a different
transformation pattern.

e sols(ContraT 9: the stream of solutions consisting of the initial solatiollowed
by the stream of choices from the stream of improving neigihoods;

e neighbourgExpandT ¥ the stream of neighbourhoods, found by applying the neigh
bourhood transformation to each elemensoffs:

e improvement§StreamT[s]); the stream of neighbourhoods such that for each neigh-
bourhood, every element improves upon the solution fronchviiiwas created.

The stream of improving neighbourhoods is describedzs\&ithoperation over a filter
taking both the stream of neighbourhoods and the streamwi@es. However it is really
a modification of the neighbourhood function, to yield omhpiroving neighbourhoods. So
we propose a function callechprovementwhich is a transformation of a stream expander;
improvement: Ord s=- ExpandT s— ExpandT s
improvement nf sols
= zipWith(Aa b — filter (a>) b) sols(nf solg
With this abstraction over the improvement process we canprovide a more gener-
alised iterative improvement function;
iterativelmprover.: Ord s=- ExpandT s— ContraT s— S— [g]
iterativelmprover nf cf seed
= let sols= seed (cfo improvement nfsolsin sols
The final change we must make is abstracting away the speéiifiaa the seed solution
and the loop present in tliterativelmprover Iterative improvement becomes a combinator
of our library; it transforms neighbourhood functions aiath ©e reused as a component of
more complex hybrid metaheuristics.
iterativelmprover.: Ord s= ExpandT s— ContraT s— StreamT s
iterativelmprover nf ct= cf oimprovement nf

First found iterative improvement is implemented using tombinator by parametris-
ing it with a contraction pattern which takes the first elemefhany neighbourhood it
encounters. This is created througtap head Similarly maximal and minimal improve-
ment are described in termswinimumandmaximum

firstFoundii maximalii minimalii :: Ord s= ExpandT s— StreamT s
firstFoundii nf= iterativelmprover n{map head

maximalii nf=iterativelmprover n{map minimum

minimalii nf=iterativelmprover nimap maximum

To use one of these strategies on a problem they would firse tabe looped and
provided with a seed. At thghci prompt, for atsp problem, this could be done using the
following;

> loopP (firstFoundii tsp-_neighbourhood) tsp_seed

3.2.1 Stochastic Iterative Improvers

To build astochastidterative improver in terms of these combinators we needdvige
a suitable contraction transformation. A stream of valpesyided by a random number

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 13

generator, is encapsulated within the choice transfoonatnd thus does not require any
modification of the functions already shown. An example ofnapge stochastic iterative
improver is given below;
stochasticii: Ord s=- ([§) — r — s) — [r] — ExpandT s— StreamT s
stochasticii rcf rs nf= iterativelmprover nfzipWith(flip rcf) rs)

This encapsulation of a stochastic component in a streamsftramer is an important
tool in the construction of more sophisticated metaheagstWe will revisit this approach
in section3.6.

3.3 TABU

TABU search Glover, 1989 Glover, 1990 is an adaptation of the first found iterative
improver algorithm, which makes use of memory to allow thategy to try to make
further progress once the iterative improver would havesdndlike iterative improvers,
TABU search is usually based upon a neighbourhood funcRecently used moves are
stored in a TABU list of fixed size and as the algorithm prosea@lder moves are forgotten.
Like an iterative improver the generated neighbourhoodised, but this pruning also
takes into account the solutions in the TABU list. The follow is the standard set of
rules:

¢ If the solution is an improvement on the current solutioentkhis will be the choice

e If the solution is not an improvement and is on the TABU ligsoard it

e [f the solution is not an improvement but not on the TABU lispve to it if no other
solution is found in the neighbourhood that improves up@nciirrent solution

The implementation of TABU conceptually partitions a néighrhood into three groups;
those candidates that improver upon the current solutimse that do not but are not on
the TABU list, and the ones that are. To implement this dbrisin Haskell we lift the
standardpartition operation, so that it operates upon each neighbourhoodrestect to
the source candidate. As we often need to lift other operatio stream transformations
we provide a general operation for this purpose;

lift:: (t—b—c)— (a—1t)—[a —[b] =[]
liftfg = zipWith(f oQ)
Filters and partitions may each be lifted in this way;
lift filter (<) :: Ord a=-[a] — [[a]] — [[a]]
lift partition (>) :: Ord a=-[a] — [[a]] — [([a] ,[a])]
Theimprovementunction can now be expressed succinctly in termkfigf
improvement nf sols: lift filter (>) sols(nf solg

Using lifted partitions and filters we can now take a streamsaldfitions and a stream
of TABU information, and use this to divide a stream of neighihoods into two new
streams; the stream of improving neighbourhoods and tearstof neighbourhoods which
do not improve upon the source solution, but are not on thelTA®. The output of TABU
is then defined in terms of these streams and the rules psiyigiven;

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

14 R. Senington, D. J. Duke

tabuFilter:: Ord s=- [[s]] — ExpandT s— ExpandT s
tabuFilter tabu nf sols
= let (imp, notimp) = unzip$ lift partition (>) sols(nf solg
notTabu= lift filter (flip notElen) tabu notimp
selecf][]c=c
selecf]b_=b
selecta _=a
in zipWith3 select imp notTabu notimp
So far we have not specified where the TABU information comesf As the list is a
short term history, it can be thought of as a sliding windowtlemstream of candidate so-
lutions that are being generated. Such a window can be pedduca queue data structure
with limited size. An efficient queue functional implemetia is known Qkasaki, 1998
Using this we can create the functimindowwith the following data type;
window:: Int — ExpandT s

Implementing the queue is routine and can be found in therajip®.6.

This window transformation has been limited to using ligedgpes to keep this example
short. A more flexible implementation can be achieved usiagKkdll classes. This would
give opportunities for more sophisticated TABU behaviauch as usingetsrather than
lists for the TABU candidates.

We now define the generic TABU combinator;

tabu:: Ord s= ExpandT s~ --the window creation transformation
ExpandT s~ --the neighbourhood transformation
ContraT s— --the final choice transformation
StreamT s

tabu wf nf cf sols= cf $ tabuFilter (wf solg nf sols

As with iterative improver this combinator takes a neighthamod transformation and a
choice transformation, but also takes a window transfaonab create the TABU lists.
Once agairoopPwould be used to tie the knot.

Unlike iterative improver, TABU search does not guaranitee kater candidate solutions
in the sequence are always better than earlier candidatesi®®e a user of a final system
only really cares about the best solution that has been semtyajiven point. Using the
combinators defined and the following,

bestSoFar~ (x: xs) = scanlmin x xs

We can now create a complete functional version of GloveBJAlgorithm Glover, 1989
Glover, 1990,
gloverTABU:: Ord s= ExpandT s— Int - s— [

gloverTABU nf winSize
= bestSoFar loopP (tabu (window winSizgnf

(map headl)
A number of variations on TABU search exist. We will illugtzhe flexibility of our
combinators by implementing a part of Taillard’s Robust dalsearch Taillard, 199).
In this work Taillard used a TABU list in which the size variemhdomly between fixed

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 15

bounds. This was found to produce better and more stablégd¢kan the basic TABU
algorithm.
We first construct a stream transformation over windows tvidielivers stochastically
varying window sizes;
varyWindow: RandomGen ¢ (Int, Int) — g — StreamT[s|
varyWindow range g- zipWith takegrandomRs range g

Construction of Taillard’s TABU is now straightforward,;
taillardTABU nf winSize range g
= bestSoFar loopP (tabu (varyWindow range @ window winSizg
(map nf
(map headl)

3.4 Simulated Annealing

The simulated annealing (SA) meta-heuristic was propogeKivkpatrick et™al., 1983
and later independently bgerry, 1985. The algorithm draws inspiration from statistical
thermodynamics, specifically the modelling of the annggfirocess. It uses the perturba-
tion functions rather than neighbourhoods and will usuadlg random perturbation rather
than deterministic selection.

At each step in SA a current solution is perturbed to genamatdternative solution. This
alternative solution is then accepted or rejected by a wecjigocess which is controlled
by a real valugemperature which constrains the quality of a solution that is likely to
be accepted. Temperature is determined by a temperatategstiwhich, like memory in
TABU, is defined co-recursively with other parts of the syste

The choice between moving to a new solution, or remainindpatcurrent solution is
usually controlled by the following function;

saChoosér,t,s,5) — { g, if quali.ty(s) < quality(s') or exp(fquality(s) — quality(s)) > r
s, otherwise

wherer is a random number between 0 andt 1s the current value of the temperature

parameters and s’ are solutions andjuality is a function which gives the value of a

solution. This is not the only function which could be used tluis task, however it is

the function suggested by Kirkpatrick and is still the mostemon. In Haskell this is

implemented as follows;

saChoose: (Floating v,Ordv) = (S—V) > V—V—>S—S—S
saChoose quality rts's

|d<0||le>r=¢

| otherwise= s

where
e= exp(—(d/t))
d= (quality 8) — (quality 9
This implementation takes an additional functional part@mehich yields a quality value
for a solution.
Simulated annealing may be implemented by liftsefChooseia zipWith4

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

16 R. Senington, D. J. Duke
sa:: (Ordv,FloatingV) = (s— V) --quality evaluation function
— StreamTs --perturbation transformation
— V] --stream of stochastic values
— V] --temperature strategy stream

. — StreamT s
sa quality perturbF rs coolS sols

= zipWith4(saChoose qualifyrs coolS solgperturbF sol$
satakes the following parameters; a function for evaluating ¢uality of a solution, a
stream transformation that perturbs each solution in astr@ supply of random numbers
and a temperature strategy.
The streams of temperatures, usually called cooling sfiegeare the most common way
to adapt simulated annealing for particular problems. &laee three well known strategies
which we will show and implement:

e Linear cooling
th=th.1+¢C
linCooling:: Floating b= b — b — [b]
linCooling tempChange startTemp iterate (+tempChanggstartTemp
e Geometric
th=1th_1*C
geoCooling: Floating b=-b — b — [b]
geoCooling tempChange startTempiterate («tempChanggstartTemp
e Logarithmic
t = foglnra)
logCooling:: (Enum bFloating b) = b — b — [b]
logCooling c &= map(At— c/(log (t+d))) [1.]

We now have the appropriate combinators to show an examplefuse. As with the
previous strategies we must loop the stream transformepravitle it with a seed solution,
and like TABU search simulated annealing does not alwaysamgosolution quality with
time, so we will want to usbestSoFapnce again.

exampleSA (Ord s Floating v,Ord v) = (s— v) — StreamT s+ v
—V—= [V = s—]9
exampleSA quality perturbF startT propT rs
= bestSoFar loopP (sa quality
perturbF
rs
(geoCooling propT start]l)

3.4.1 Adaptive Simulated Annealing

The most common way to create variations upon the simulateelading concept is through
the cooling strategy. While simple patterns can be easilgteckin Haskell, here we will
consider a more complex option which make use of feedbadtpadfadaptivesimulated
annealing.

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 17

At high temperatures simulated annealing will accept margd@ates and so explore
the solutions space more widely, while at lower temperattine algorithm will tend to
move through solutions which improve the quality of the les\t very low temperatures
the algorithm acts almost exactly like an iterative impiroared so will become stuck in a
local minima and cease to change. In order to encourageefuctiange the temperature
must be raised. Common adaptive strategies include (antesy the temperature strategy
and (ii) reheating the system gradually. These are ofterposed in terms of using one
strategy until a particular trigger event is encountereffgechanging to an alternative
strategy. This is almost identical to the concept of eveitedr changes to behaviours
found in functional reactive programming (FRRjudaket™al, 2003 and so we use a
similar function.

until_:: [a] --stream of values, to place before trigger
— [Bool --stream of triggers for switch over
— [[a] --stream of potential futures
G

until_(a: _) (True:) (_:cs:)= a:cs

until_(a:as) (False:bs) (_:cs) = a:until_asbscs

The output of this function is a new stream consisting ofpnaets of the initial stream until
the conditional stream containedaievalue. At this point the replacement stream seen at
that point is used to provide the remainder of the output.

Using this we can create the following function which takessnaple temperature strat-
egy and a stream of conditionals. Each time a conditionalevad found to be true, the
temperature strategy will be reset.

restart:: [v] — [Bool — [V]

restart basicS cs= until_basicS c$ map(restart basic$ (tails c9
The stream of triggers can be provided in many ways, howewanamon method is to
approximate the rate of improvement in the overall systelnis Will tend to zero as local
minima are approached and the algorithm becomes stuck. pno@mation of the rate of
improvement can be found by comparing values over an intefithe process. The action
of finding these intervals over a stream is thi@dowfunction seen in TABU search, and
so we will reuse it. While this is costly its simplicity makessuitable for this example.
Putting it together,

restartingSA: (Ord s Floating v,Ord v) = Int - v — v — (s— V) — StreamT s
— [V = s—9
restartingSA wSize startT propT getVal perturbF rs1 seed
= let cs= map(Aw — if null wthen Falseelsehead w= last w) $
window wSize sols
ts=restart(geoCooling propT start]lcs
sols= loopP (sa getVal perturbF rs1 jsseed
in bestSoFar sols

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

18 R. Senington, D. J. Duke

3.5 Genetic Algorithms

At first glance genetic algorithms (GA) call for a separatecseombinators due to their
use ofpopulationsof candidate solutions rather than operating over ind&idlutions.
However we will show that stream transformations can be hseglto tease apart the steps
of the process into finer grained combinators.

A standard imperative description of a genetic algorithmsisollows:

e construct an initial population of candidate solutions
e repeat the following steps;

— randomly select pairs of solutions from the populationgpftalledparent so-
lutions), giving preference to the better solutions and recombierentto yield a
new collection of candidate solutions

— randomly select some set of the new solutions and perturb {hethis context
usually known agnutatior)

— replace the previous population with the candidate saistibat have been cre-
ated

Our reformulation of genetic algorithms is based upon theition that the stream of
populations can be seen as a division of a stream of solutidosegular blocks. Con-
versely a stream of solutions can be seen as the concateaostream of populations.
The window operation seen in TABU could be used to createdigislar chunking process,
however we have found it is easier to create a new operatiowileall chunk which
simply divides an input stream into a stream of equally slizs?;

chunk:: Int — ExpandT s
chunk sz= unfoldr (Justo splitAt s2

It is possible to describe a genetic algorithm as a stochastam transformation over
populations, and might have the following data typepTrans:: RandomGen g g —
StreamT[s] This would give rise to the following sketch of a skeleton fmnetic algo-
rithms; concato popTrans g chunk popSize

However this approach places a great deal of emphasis upgotfulation transforma-
tion concept and we have found that breaking down the ojp&iinto a series of transfor-
mations provides greater flexibility of expression. Wetstath a sketch of a recombination
function, which constructs a new solution from a collectairparentsolutions. This has
the type[s] — s. To operate over stream the type of the recombination toamsfr becomes
ContraT s which takes a stream of collections of parents and give& lastream of
solutions. These functions will usually be problem specific

Working backwards, we need a transformation which takeseast of populations
and provides a stream of collections of parents. The seledi a single parent from a
collection is of the formContraT s To use aContraT sto select a group of parents we
provide the functiormanySelect

manySelect Int — ContraT s— StreamT[s|
manySelect szf chunk szof o concatMap(replicate sz

2 \We are not sure why such a function is not present in Haskell’s stfigamanipulation libraries
as it seems to us to be a common enough process.

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 19

The most common approach to selecting parents from callestn genetic algorithms is a
stochastic process favouring the better candidate sakitMany patterns could be used for
the selection of candidates, such as uniform or skewed pilitlgadistributions, of which
the standard approaches are only specialisations. Wereapts generality using;
select:Ordr=[r] =r —[g —s
select dist = snd o heado dropWhile((r >) ofst) ozip dist

This is then lifted to operate over streams;
streamSelect Ord r = [r] — [r] — ContraT s
streamSelect dist zipWith(select dist

We compose these functions to give the functim$electa stream transformation from
populations to sets of parents, based upon a parametedisimigpution.

gaSelect: Ord r = Int — [r] — [r] — StreamT[s]

gaSelect sz dist r's manySelect satreamSelect dist Js

The use of distributions in this way has some echosEnivig & Kollmansberger, 2006
work in probabilistic modelling. It is still open whetherette are opportunities for conver-
gence between their approach and this library.

These selection combinators select from collections baged probability distributions
rather than upon solution quality. To capture the conceptroon in genetic algorithms,
that good solutions should be more likely to be used, we recqan appropriate probabil-
ity distribution, and that the population sorted by quality. We modify the process for
creating the stream of populations, so that population®atered. We will also wish to
generate several solutions from each population, whafelecwill only provide one.
This can be handled by replicate, in a similar way to the dpmraf manySelect

makePop: Ord s=- Int — ExpandT s
makePop s= concatMap(replicate sosort) ochunk s

The final component of genetic algorithms is mutation. Thislse modelled as a stream
transformation which only effects a substream of solutidiosachieve this we divide the
stream of recombined solutions into two parts, apply theatin transformation to one
part and then reintegrate the two streams. We call the apelett applies a transformation
to a substreamest and indicate the substream by a stream of booleans.

nest: [Bool — StreamT s StreamT s
nest bs tr= join bs o zipWith($) [id, tr] o divide bs

divide:: [Bool — ExpandT s
divide bs xs= [[x| (b,x) - zipbsxsb=] |i <+ [False Trug]

join:: [Bool — ContraT s

join bs xss= unfoldr f (bs xs9
where

f (False: ts, [x:xsyg) = Just(x(ts,[Xsyd))

f(True:ts,[xsy:yg) = Just(y,(ts,[xsyd))
Lettspperturbbe a perturbation stream transformation, it can be modifiexhty modify
every other solution in an input stream using the followinge fragment;
nest(cycle[False Trug) tsp.perturb

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

20 R. Senington, D. J. Duke

Alternatively we can modify solutions in a stream with a giverobability p, with
respect to a provided stream of randomly generated flokésst;
nestWithProb: (Ord r,Floating r) = [r] — r — StreamT s— StreamT s
nestWithProb rs p= nest(map(< p) rs)

Our complete reformulation can be seen together in Figufidne application ofoopSto
this structure feedsbaak/olved population oni@to population two

musons (]]I -~ OLECJE - H

population one population two

chunk sz

replicated
populations

| N

HOOoon

- At

stream for
recombination

recombine

choose

mutate

<«N<il<+d <HN

OO0
BN
vYVY

N
e
vy
AN
|+
N
v
|
v

merge

output solns n N . El

evolved population one evolved population two

NeN<+d<d <[l <«]

Fig. 6: Model of stream based implementation of geneticrilgms

Each of these groups of actions are composed to create the@oskeleton of genetic
algorithms;
ga:: ExpandT s— ContraT s— StreamT s— StreamT s
ga mkPopulations recomb mutat mutat o recombo mkPopulations

We use the combinators described to give this implememtatigenetic algorithms which
is less general than the skeleton but provides more recagriparameters;

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 21

gaConfig:: Ord s=- [Float] — Int — [Float] — [Bool
— ContraT s— StreamT s— StreamT s
gaConfig dist popSize rs bs recombine mutate
= ga(makePop popSize
(recombineo gaSelect 2 dist ns
(nest bs mutate

These combinators provide a concise yet flexible way to meldetic algorithms. Vari-
ations upon the logic used for each of the combinator groapseasily be created, for
example:

¢ the creation of populations using variable populationssize

e mutation transformations being provided by iterative ioyars from sectior8.2
and

e the use of temperature strategies from simulated annealiveyy the mutation rate.

3.6 Application to TSP

We demonstrate the application of our combinators by ptesgea short investigation into
one form of hybrid metaheuristic for the TSP problen#173. As metaheuristic we adopt
an approach used bysgh & Van Gucht, 1987which is a genetic algorithm where the
standard mutation operation is replaced with an iteratiyerovement technique.

The ease of hybridisation is illustrated through a seriesl@drithms constructed using
our combinators. The root strategy is a genetic algorithrii whe following common
parameters.

e a selection distribution such that the first solution in theéeved population will be
selected with the highest likelihood, the second solutiith aome lower likelihood
and so on; this has been provided using the geometric nesdtip p, = 0.25x%
1.0599", encoded as an iteration;

e a population size of 100;

e a stream of booleans to indicate positions for mutation,ranthtion will take place
with a 40% likelihood;

e the stochastic recombination function from secti8 rewritten as a stream trans-
former;

These are fixed in order to limit the variations in configuwatof each system, however in
general these provide additional dimensions for tuningrleéaheuristics.

Each of these hybrid algorithms is processed bybgstSoFacombinator to ensure that
the solution being examined was the best seen. The seetbsslused are chosen with a
uniform likelihood over all potential sequences.

The results presented are the quality (length of the Hamétocycle) of the best solu-
tion discovered after a fixed number of iterations, rathanth fixed number of seconds of

3 £1417 is the example problem we have used throughout this paper, a symm@Ridrawn from
the TSPLIBReinelt, 199]

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

22 R. Senington, D. J. Duke

processor time. This is to separate the evaluation of thameetistics from implementa-
tion issues which influence measurements using time.

Results were gathered by sampling the stream of constrgolations at the following
points; 0, 1000, 3000, 5000, 7000 and 10000. Due to the stochastic nature of these
algorithms, each test was r@s times and the mean of the results at each sampling point
is reported*.

Each variation is shown below as a code fragment A completgram would require a
harness for creating the random number generators, lodiaéngroblem file and creating
an initial set of solutions for the algorithm to run over. $heare problem specific and
mundane tasks.

3.6.1 The Algorithms

We initially present a version of genetic algorithms whiallyorecombines (we name
this TS1) and has no form of mutation, illustrating the siesplparametrisation. In the
following code the variablegN where N«— [0..] are random number generators obtained
from the calling context;

(TS1)
loopS$ gaConfig(iterate (x1.0595 0.25) --selection distribution
100 --population size
(randoms gl --random number source
(map(< (0.4)) orandoms$ g2) --mutation likelihood
(stochasticRecombine g3 --recombination
id --mutation

and the standard version of genetic algorithms which uséscaastic mutation process,
which is a random swap of two cities in the Hamiltonian cycle;
(TS2)
loopS$ gaConfig(iterate (x1.0595 0.25) 100

(randoms gl

(map(< (0.4)) orandoms$ g2)

(stochasticRecombine p3

(stochasticMutate g4

These two provide the baselines of the hybridisation erpenis.
Following (Suh & Van Gucht, 198)7we replace the stochastic mutation operation with
a stochastic iterative improvement operation;
(TS3)
loopS$ gaConfig(iterate (x1.0595 0.25) 100
(randoms gl
(map(< (0.4)) orandoms$ g2)
(stochasticRecombine g3
(stochasticii(!!) (randomR<0,416) g4)
(map adjacentExchanggN

4 The standard deviations of the results have been examined but fourdléavkand so are not
shown.

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 23

However this was not found to be more effective than varié@2.T
We hypothesised that the issue lay with the neighbourhondtifon, which was con-
straining the potential of the iterative improver. Two het variations were devised;

e An alternative form of stochastic iterative improvemenhjeh provides the stochas-
tic aspect through a variable neighbourhood rather than &dixed neighbourhood
function. This variable neighbourhood is provided by gatiag a selection of ran-
dom swaps of cities in a given solution. The iterative imgment is then replaced
with a maximal iterative improver so that the mutation pssc@ill move to the best
possible neighbour at each step;

(TS4)
loopS$ gaConfig(iterate (x1.0595 0.25) 100
(randoms gl
(map(< (0.4)) orandoms$ g2)
(stochasticRecombine g3
(maximalii$ stochasticNeighbourhood 417 g4

e An algorithm that uses two mutation operations indepergemhe first chosen
was a maximal iterative improvement meta-heuristic to ®wan improvement
mutation. The second was the original purely stochasti@tiout operation.

In order to hybridise these, we ceased to ga€onfigand instead used the more
generagacombinator. The mutators were given different likelihoadsl then com-
posed together to provide the final mutation operation. Tresituction of the full
meta-heuristic follows the structure seen in sec8dn
(TS5)

patternl= map(< (0.35 orandoms$ gl

pattern2= map(< (0.05)) orandoms$ g2

iiMutator = nest patternImaximalii(map adjacentExchanggN

swapMutator= nest pattern® stochasticMutate g3

loopS$ ga(makePop 10D

(stochasticRecombine g4gaSelect Ziterate (x1.095 0.25

(randoms g5)
(iiMutator o swapMutatoy

These ideas were found to provide stronger results thaig asinore traditional stochastic
iterative improvement method, with the variable neighboad being found to be the
strongest. The results from these experiments are showigime~ and summarised in
Tablel.

3.7 Additional Combinatorial Problems

Application of our meta-heuristic combinators to differenoblems is a matter of design-
ing a data structure for the problem which supportsrtagghbourhoodperturbationand
recombinatiorfunctions that the programmer wishes to work with. We hayeeexented
with two other well known combinatorial problensatisfiability(SAT-3) andtimetabling
The libraries for loading the file formats used, storing arahipulating candidate solutions
can be found in the Hackage librazgmbinatorial-problemsThe approach taken is similar

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

24 R. Senington, D. J. Duke

—+— TS1 (Recombination Only)

—<— TS2 (Standard GA)

—+&— TS3 (Stochastic I1)

—2&A— TS4 (Stochastic Neighbourhood 11)
58 —6— TS5 (Mixed Mutation)

Solution Quality

15 L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Itterations

Fig. 7: A plot comparing the performance of the baselinegetjias

5000 iterations 10000 iterations
TS1 (Mutation Only Baseline) 453566 453566
TS2 (Standard GA) 351359 280998
TS3 (Stochastic || Mutate) 343620 284571
TS4 (Variable Neighbourhood) 245891 167938
TS5 (Mixed Mutate) 325671 255854

Table 1: A summary of the solution qualities discovered hyotes hybrid strategies

to that taken for TSP, using a number of dictionaries to stioeedata, which provides a
balance of speed, memory sharing and stateless maniputdttbe data structures.

3.7.1 SAT-3

Satisfiability is a well known problem and we feel it unne@gggo describe it in detail
here. For our purposes it was reformulated from its usualrg@in as a decision problem
to an optimisation problem by seeking candidate solutiohichvsatisfied greater and
greater numbers aflauses A large number of example problems can be found in the
online repository SATLIB Koos & Sfitzle, 2000.

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 25

3.7.2 Timetabling

The timetabling problems considered are a specific typerithest by the international

timetabling competitionNletaheuristic Network, 2007 Due to the large number of con-
straints and interactions between constraints in this fofrproblem, we found that a

naive approach was not very successful. Many candidatesd=myed were not valid and
the metaheuristics made slow progress towards candid&iel watisfied the constraints.
We feel that a constraint based system, using metahesrtstichoose new constraints to
add at each point, in a similar manner to that used by othdmasitmay be of interest

(Van Hentenryck & Michel, 2006 however this has not been explored at this time.

4 Design Perspectives

The approach that we have used for the expression of thesdewgistics is not the only
approach that can be taken, nor was it our exclusive lineasitigation. Here we will
briefly describe the other methods that we experimented avith look at why we have
settled on the stream transformation style.

4.1 Monalithic State

The traditional description of meta-heuristic algorithimas stateful imperative systems.
The most direct translation of such models into functioaabluages is to model them as
state transformation systems. This can have the advantagprving performance, espe-
cially when used in conjunction with monads that offer geeafpportunities for compiler
optimisations.

However monolithic state fits awkwardly with the desire fengric combinatorial de-
sign. Consider the following;

gloverTABU:: Ord s= (s— [g]) — Int =+ s— [g]

gloverTABU nf sz= unfoldr innerTABUo (Ax— ([],X))
where

innerTABU(tabuList x)
= lettabu = take sz [X] +tabulList
X = maximuns filter (flip notElem tab() (nf x)
in Just(x, (tabu,x))

This implementation has two components tbaitild be considered state, the seed solution
at each step, and the TABU listtabuList Many variations make use of further factors to
assist in decision making, for example as a statistical samraf the recently explored
solutions as seen in Adaptive Simulated Annealing &del). The most common varia-
tions, which use random number generators, include; usestdcastic neighbourhood,
a stochastic choice of neighbour, and Talliafdsbust Taboo searclhich stochastically
shortens the TABU list at each step. Each of these introdaddgional state data which
must be threaded through the process, and this requiresdt#ication of the type sig-
natures of the associated functions. This does not lenidi ticséhe flexible expression and
recombination of modular components

Some of the problems encountered with the naive approachecalteviated by making
use of Haskell's type classes to provide common interfazdgssimilar state components.

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

26 R. Senington, D. J. Duke

However the programmer must still define their own data typethe monolithic state and
provide the code for accessing each component.

These problems could be further alleviated by an extensdderd system for Haskell.
Such ideas have been considered and discussed but haveendirtadised at the time of
writing (has, 2011Jones & Peyton Jones, 1999

We feel the stream transformation approach that we haveechaghile not quite as
fast as using a statically defined state in this way, doesigedvetter composability and
expressiveness.

4.2 Co-Monads

The stream transformation style that has been presenteeivbbg&d from, and encapsu-
lates, an underlying breakdown of the meta-heuristic délyms into a dataflow structure.
(Uustalu & Vene, 200bpropose that co-monads provide a good framework for data flo
programming, supported by category theoretic semantioseder although co-monads
may provide a theoretically neat setting for meta-hewristimbinators, an implementation
of code from Uustalu & Vene, 200bsuffered from performance issues and space leaks.

4.3 Functional Reactive Programming

Functional Reactive Programmingifdak, 2000 Hudaket™al., 2003 models systems as
continuous behaviours and discrete events. We first carsldeRP as a possibility while
looking at simulated annealing, itself based upon contisunodels of physical systems.
While metaheuristics are better thought of as discrete diguritoms rather than be-
haviours over continuous time, we found that FRP was a gogdtvdecompose mono-
lithic algorithms into modular blocks.

For example, consider this mathematical model of simulatetaling;

(i) = randomSeed if i <0
| next(r(i—1)) otherwise

£(i) = tempSeed if i <0
~ | t(i—1)*xgeoDrop otherwise
seedSolution ifi <0
sai)=¢ sai—1) if not accepted

permutésai —1),r(ix2)) otherwise
accepted= acceptpermutésali —1),r(i x2)),t(i),r(i*x241))
This model provides modularity through the clean sepanatiothe various behaviours.
For example, to change the cooling strategy it is only regio modify functiont, the
other functions and the more general pattern of the simiiateealing algorithm remain
unchanged.

A naive implementation of these functions will be ineffidielue to the recomputation
of intermediate values. Memoization can be used to fix tligdshowever this results in
space leaks as all previous values are preserved. Idealyisteto allow sharing of only
required previous results between behaviours, with ingeliate values being cleaned up

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 27

once they are no longer required. Research into these issoagoing as can be seen in
(Elliott, 2009 and theReactivelibrary (Elliott, 2010. However at the present time this
work is not mature enough for us to build upon.

4.4 Arrows

Arrows are a general model of computation proposed by HugHeghes, 2000 We
can implement our stream transformers as arrows operatiegstreams of values; i.e.
Arrow a=- a [b] [c]. There are difficulties in using them in our context; for exdeioopS

is awkward to express in an arrowised form, however this @addne and is presented as
arrowFix;

arrowFix :: ArrowLoop a=- a [b] [b] — a [b] [b]
arrowFix f= loop (uncurryA(+) >> f >> dup)

dup:: Arrow a=-as(s,s)
dup= returnA&&& returnA

uncurryA:: Arrowa= (b—-c—d) —a(b,c)d

uncurryA= arr ouncurry
All the stream transformations previously seen can bedlite an arrowised form, or
rewritten in terms of arrow combinators, for example;

improvementA: (Arrow a, Ord s) = as| [[s]] — a5 [[g]]
improvementA nfa: returnA&&& nfa>>
uncurryA(zipWith(Aa b — filter (< a) b))

iterativelmproverA: (Arrow a, Ord s) = a[g] [[g] — a[[s]] [— a9 [s]
iterativelmproverA nf fChoice- improvementA nfs> fChoice

firstFoundiiA:: (Arrow a,Ord s) = as| [[]] — a[g] [g

firstFoundiiA nf= iterativelmproverA nfarr $ map heagl
However in general we do not see clear benefits in using Arratveer than the stream
transformation functions previously presented, eitheeimmns of algorithm expression or
performance.

5 Implementation issues

Our implementation is purely functional, however use of/lazaluation can cause prob-
lems. Consider the following sketch of a simulated anngairogram;
> bestSoFafloopP sg !! 10000

The runtime environment will attempt to construct the cotagian for the10004" ele-
ment, which requires the computation for the previous etgrand so on until it reaches
the original seed. It therefore creates the entire comiputaefore it begins the evaluation,
leading to a very large (and unacceptable) thunk build up.

Various methods exist that can alleviate this problem. éaldéne problem was not en-
countered in our initial tests because we displayed eactiidate as it was created, thus
pushingthe computation forward and avoiding the thunk build up. Werefore created

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

28 R. Senington, D. J. Duke

the following function, modelled after the implementatioinfoldl’, which acts as the list
index operator but pushes the computation of the list elésnen

(my =@—Int—a

(M) ~(x:)0=x

(M) ~(x:xs)n= x'sed(xssedxd!! (n—1))
Given the dependencies between solutions in such a sequkiscis sufficient to resolve
the problem. The following function has also been found tothese;

indexWithRemainder [a] — Int — (a,[a])

indexWithRemainder (x: xs) 0 = (x,xs)

indexWithRemainder (x: xs) n= x'sed(indexWithRemainder X& — 1))
This pushes the computation as far as tHevalue, before returning the value and the
remaining list. The list returned is not forced, so it is a pamation that can be continued
if desired, such as in an interactive system

6 A Performance comparison with C

Previously when comparing metaheuristics in sec8d results were given in terms of
quality of solution against the number of iterations. Hoerewhen comparing to imple-
mentations built in C we wish to tekbw longit takes to perform a number of steps of the
algorithm for each version. This provides a clear sepandigtween comparing the logic
of algorithms (previously) and the performance of the impatation.

Comparing performance of our Haskell programs with a morénstiigam approach
proved difficult. We struggled to find standard implemeitadi of the metaheuristics that
could be used to generate solutions using precisely the kagiteas ours do, and so give
a fair comparison.

In order to match our Haskell implementations we built oumoversions of the test
metaheuristics in C. The versions that we created were npweiadised and much less
flexible than those provided by the Haskell libraries.

The test problem was the TSP probleitd17 again. We chose to use a version of
simulated annealing and an iterative improver. The siredlannealing version had the
following properties; geometric cooling strategy stagtat the values0000 with a reduc-
tion rate of0. 99, the standard simulated annealing acceptance functioa pedurbation
function which randomly selected and swapped two citiehédequence. The iterative
improver was a maximal improver with an adjacent exchangghbeurhood and random
restart when local minima were encountered. All parametere set to the same values
in both the C and Haskell versions.

The random number generator used for the C version was frerstamdardtdlib li-
brary; but it was found that using tineerzenne-pure@ibrary in Haskell was faster than the
standardsystenRandonlibrary. All generators were initialised from the systernak on
each run. In order to improve the Haskell versions perfoceasome of the floating point

5 Our functions can also be seen as more specialised implementationsagfissaeen in the library
Control.Seq

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 29

computations in simulated annealing were rewritten to hed-oreign.C.Types.CDouble
data type, and conversions were kept to a minimum.

The tests of the programs were monitored using the Unix timetfon. When executed
each program was sampled at the following numbers of imrati1000« 2" wheren in
0..8. Each test was carried out 25 times and the averages ame@po

All four programs showed linear time complexity in the numbé iterations as ex-
pected. Figure8 shows the ratios of the runtimes of the Haskell and C versairtbe
programs. The Haskell version of simulated annealing teéodards a factor of 8 times
slower than the C version, while the Haskell maximal iteatmprover is approximately
20 times slower than its counterpart. We note the odd shafieeajraph for the ratio of
the Iterative Improver implementations, and we suspettitimcaused by a combination
of timing precision at very low numbers of iterations (wh#re C programs are very fast)
and start-up costs. In general however the trend is towamstant ratio between the
implementations.

25

—&— lterative Improver With Restart
—~A— Simulated Annealing

10

Wall Clock Ratio (h/c)

.
0 0.5 1 15 2 2.5 3
Itterations 5

Fig. 8: Performance graph for simulated annealing orfile 7 problem

While the aim of this work has not been raw performance, apietiry analysis of the
execution of the iterative improvement and simulated alimgarograms has been done.
This has indicated one key area for refinement, common todetionstration programs;
the perturbation of solutions.

One performance bottleneck is the data structure used falidtate solutions. Selecting
a model involves a trade off between:

e time complexity of individual perturbation methods;

6 The standard deviations of the results have been examined but fourdiéevtand so are not
shown.

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

30 R. Senington, D. J. Duke

e generality (the number and variety of recombination andipeation functions that
can be implemented with ‘reasonable’ efficiency);
e persistence, i.e. capturing history.

Specialisation of the state representation for specifitugaation functions is an obvious
and important route to improving run-time performance, fordhis reason have been a
significant topic of interest within Operations Researamfiany years.

7 Further Work & Conclusion

There has been little previous concerted study of metastagiin Haskell, though on
Hackage a number of implementations of specific metah@&sgisén be found, e.g. Sim-
ulated annealingWasserman, 20)@nd Genetic AlgorithmsHoste, 201} In this paper
we have selected a range of these algorithms and shown hgwdhebe captured with a
common pattern of computation, the stream transformerhandhis gives rise to a library
of combinators.

We have then shown how each meta-heuristic may be rebuilgusie combinator
library, and how variations upon them may be easily expesgée have shown how the
space leak problem that occurs when using basic Haskellifurscsuch as !! for interacting
with the streams can be avoided by using eager versions dfiticéions. The authors are
not aware of any similar framework or library in a functiosatting.

Other general frameworks for metaheuristics have beeted@aimperative languages,
or as domain specific languageMasromet™al, 2011 compares these other approaches
and highlighted the lack of commonality and easy interopiéita between population
based methods (such as genetic algorithms) and singlesoheased techniques. Our ap-
proach uses standard transformation methods and contrisdt express these different
algorithm families, and hence allow interoperability, alinive feel is a key advantage and
topic worthy of further investigation.

There are trade-offs which must be made when choosing howptore a combinatorial
problem. Our approach suffers from being substantiallwstadhan specialised C code for
the same problem. It is quite possible to write faster codbiwiHaskell itself, using in-
place updates of data structures for example. Howeverereiththese alternatives gives
rise to a system with the same level of flexibility, which welfgives our combinators
a useful niche as a prototyping system for exploring thegitespace for metaheuristics.
This is of great use in the operations research communityeviiesign of metaheuristics
remains a labour intensive experimental process.

In the future we see this flexibility allowing the construxctiof a higher level framework
for automated experimentation with metaheuristics. Femgde the automated evalua-
tion of different combinations of transformers with regatd how they act upon a new
problem. Further automation of the process would have #raduwork search the patterns
of combinations of transformers for metaheuristics whicbvjagle superior performance
upon a new class of problems. This approach to metahegristimown by the name of
hyper-heuristic§Denzingeret™al., 1997, with work usually begin done using custom built
systems, frameworks for other languages and domain spkificages.

The extension of the library to provide general methods fmeeimenting with meta-
heuristics, and testing sets of combinators forms one ofglaaned extensions to this

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 31

work. The second is the development of a new group of metétiesrfor the library,
specifically ant-colony optimisatiobprigo et™al.,, 1997).

It is also of some interest to investigate further improvataén expressiveness through
the use of Template HaskelBleard & Peyton Jones, 2Q02ynagh, 2012 This would
allow for the use of more general versionsgd andzipWithwhich adapt to the number of
input streams they are provided with, knownzgsN andzipWithN We are also interested
in the possibility of more sophisticated lifting operatirfacilitated through Template
Haskell.

Our other interests lie in improving the performance of gistem. This can be achieved
by looking for better rewriting and compilation rules sotthar combinators give better se-
rial performance, or investigation into parallelism, pavh taking advantage of the pipeline
like nature of our combinators to give more natural accessuli-core processors.

References

(2011). Extensible Record: HaskellWiki Accessed 20.02.12.
http://www.haskell.org/haskellwiki/Extensibkecord.

Birattari, Mauro. (2005). Tuning Metaheuristics: A Machine Learning Perspecti#st edn.
Springer.

Birattari, Mauro, Paquete, Luis, 8tle, Thomas, & Varrentrapp, Klaus. (2001¢lassification of
Metaheuristics and Design of Experiments for the Analysis of Compon@&ats. rept. AIDA-
2001-05. Intellektik, Technische Univei&itDarmstadt, Germany.

Cerry, V. (1985). A Thermodynamical approach to the traveling salesmablgm: An efficient
simulation algorithmJournal of optimization theory and applicatiorts(1), 41-51.

Chrobak, M., Szymacha, T., & Krawczyk, A. (1990). A data struetwseful for finding Hamiltonian
cycles.Theoretical Computer Sciencgl, 419-424.

Denzinger, 8rg, Fuchs, Marc, & Fuchs, Matthias. (1997). High performanc® Aystems by
combining several Al methodsPages 102-107 of: Proceedings of the 15th International Joint
Conference on Artifical Intelligenceol. 1. Morgan Kaufmann.

Dorigo, Marco, Maniezzo, V., & Colorni, Alberto. (1991positive Feedback as a Search Strategy
Tech. rept. Politecnico di Milano.

Elliott, Conal M. (2009). Push-pull functional reactive programmiRgges 25-36 of: Proceedings
of the 2nd ACM SIGPLAN symposium on HasKdkskell '09. ACM.

Elliott, Conal M. (2010). Hackage DB: Reactive package Accessed 20.02.12.
http://hackage.haskell.org/package/reactive.

Erwig, Martin, & Kollmansberger, Steve. (2006). Functional pearlobBbilistic functional
programming in haskellJ. funct. program.16, 21-34.

Fredman, M. L., Johnson, D. S., McGeoch, L. A., & Ostheimer, 1993). Data structures for
traveling salesmenPages 145-154 of: Proceedings of the fourth annual ACM-SIAM Ssimpo
on Discrete algorithmsSODA '93. Society for Industrial and Applied Mathematics.

Gendreau, Michel, & Potvin, Jean-Yves. (2005). Metaheuristics in lfhoaorial Optimization.
Annals of Operations Researct4((1), 189-213.

Glover, F. (1989). Tabu Search, PariRSA Journal on Computing(3), 190-206.

Glover, F. (1990). Tabu Search, Part@RSA Journal on Computing(1), 4-32.

Goldberg, David E. (1989).Genetic Algorithms in Search, Optimization and Machine Learning
Addison-Wesley.

Hoos, Holger, & Sttzle, Thomas. (2000). SATLIB: An Online Resource for ResearcBAT. 10S
Press. SATLIB is available online at www.satlib.org.

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

32 R. Senington, D. J. Duke

Hoos, Holger, & Siitzle, Thomas. (2005).Stochastic local search: Foundations & applications
Morgan Kaufmann Publishers Inc.

Hoste, Kenneth. (2011). Hackage DB: GA package Accessed 20.02.12.
http://hackage.haskell.org/package/GA.

Hudak, Paul. (2000)The haskell school of expression - learning functional programmirauth
multimedia New York: Cambridge University Press.

Hudak, Paul, Courtney, Antony, Nilsson, Henrik, & Peterson, JoR@03). Arrows, Robots, and
Functional Reactive Programmindrages 159-187 of: Advanced Functional Programming, 4th
International School, volume 2638 of LNCSpringer-Verlag.

Hughes, John. (1989). Why functional programming matt€h& computer journaB2, 98-107.

Hughes, John. (2000). Generalising monads to arro®sience of Computer Programmingjz,
67-111.

Hutton, Graham, & Meijer, Erik. (1998). Monadic Parsing in Haskellournal of Functional
Programming 8(4), 437-444.

Jones, Mark P., & Peyton Jones, Simon. (1999). Lightweight ExteEnBibcords for Haskell.ln
haskell workshop

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Slated Annealing.
Science220(4598), 671-680.

Launchbury, John, & Peyton Jones, Simon. (1995). State in HadRafles 293—-341 of: LISP and
Symbolic Computatigrvol. 8. Kluwer Academic Publishers.

Lynagh, lan. (2012). Hackage DB: template-haskell package Accessed 20.02.12.
http://hackage.haskell.org/package/template-haskell.

Masrom, S., Abidin, Siti Z.Z., Hashimah, P. N., & Rahman, A. S. AigD11). Towards Rapid
Development of User Defined Metaheuristics Hybridisatidnternational Journal of Software
Engineering and Its Applicatons.

Metaheuristic Network. (2007). International Time Tabling Competition Organised by
eventMAP research Group at Queen’s University with partners froandi@ University,
Napier University, University of Nottingham and the University of Udidecessed 20.02.12.
http://www.cs.qub.ac.uk/itc2007/.

Okasaki, Chris. (1998)urely functional data structuresCambridge University Press.

Raidl, Ginther R. (2006). A Unified View on Hybrid MetaheuristicRages 1-12 ofAlmeida,
Francisco, Aguilera, M&a™J. Blesa, Blum, Christian, Moreno-Vega, J. Marc@eR, Melqiades
Peérez, Roli, Andrea, & Sampels, Michael (eds$)ybrid metaheuristics, third international
workshop, hm 2006, gran canaria, spain, october 13-15, 2006cq®dings Lecture Notes in
Computer Science, vol. 4030. Springer-Verlag.

Reinelt, Gerhard. (1991). TSPLIB - A Traveling Salesman ProblemajpiNFORMS Journal on
Computing 3, 376-384. http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/.

Schrijvers, Tom, Tack, Guido, Wuille, Pieter, Samulowitz, Horst, & Stycketer. (2011). Search
Combinators. Pages 774-788 of: Principles and Practice of Constraint Programmirvgh
International conference, Proceeding3pringer.

Sheard, Tim, & Peyton Jones, Simon. (2002). Template meta-progragnfor Haskell. ACM
SIGPLAN Notices: PLI Workshop37(12), 60—75.

Suh, Jung Y., & Van Gucht, Dirk. (1987). Incorporating heuristic infation into genetic search.
Pages 100-107 of: Genetic Algorithms and Their Applications: Proceedafgthe Second
International Conference on Genetic Algorithnhs Erlbaum Associates Inc.

Taillard, E. (1991). Robust Taboo Search for the Quadratic AssighrReoblem. Parallel
Computing 17, 443—-455.

Talbi, E.G. (2002). A Taxonomy of Hybrid Metaheuristickurnal of Heuristics8, 541-564.

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

Journal of Functional Programming 33

Uustalu, Tarmo, & Vene, Varmo. (2005). The Essence of Dataflagf@mming. Pages 2—18 of:
Lecture Notes in Computer Scien@&pringer-Verlag.

Van Hentenryck, Pascal, & Michel, Laurent. (2006pnstraint-based local searciihe MIT Press.

Wasserman, Louis. (2010). Hackage DB: concurrent-sa package Accessed 20.02.12.
http://hackage.haskell.org/package/concurrent-sa.

A Combinators of the library

type StreamT s [g — [3] pagell
type ExpandT s[5 — [[9]] pagell
type ContraT s=[[s]] — [pagell
loopS:: StreamT s— StreamT s pagell
loopP:: StreamT s+ s— [g pagell
bestSoFar: Ord s= StreamT s pagel4d
chunk:: Int — ExpandT s pagel8
lift:(t—b—c)—(a—t)—[a—[b =] pagel3
until_:: [a] — [Bool] — [[a]] — [&] pagel?
nest:: [Bool] — StreamT s StreamT s pagel9
divide:: [Bool] — ExpandT s pagel9
join :: [Bool] — ContraT s pagel9
manySelect Int — ContraT s— StreamT][s] pagel8

A.1l lterative Improver Combinators

improvement: Ord s= ExpandT s— ExpandT s pagesl2and13
iterativelmprover.: Ord s= ExpandT s— ContraT s— StreamT s pagel2
firstFoundii, maximalii minimalii :: Ord s= ExpandT s— StreamT s pagel2
stochasticii: Ord s= ([s] = r —s) — [r] — ExpandT s— StreamT s pagel3

A.2 TABU Search Combinators

tabu:: Ord s= ExpandT s— ExpandT s— ContraT s— StreamT s pagel4d
window:: Int — ExpandT s pagel4d
varyWindow: RandomGen g (Int,Int) — g — StreamT][g| pagel5

tabuFilter:: Ord s=[[g]] — [s] — [[s]] = [[d]] pagel4

ZU064-05-FPR

CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

34 R. Senington, D. J. Duke

A.3 Simulated Annealing Combinators

linCooling:: Floating b=-b — b — [b] pagel6
geoCooling: Floating b=-b — b — [b] pagel6
logCooling:: Floating b= b — b — [b] pagel6
saChoose: (FloatingyOrdv) = (S—V) »V—+V—S—S—S pagel5
sa:: (Floating vOrd v) = (s— v) — StreamT s [v] — [v] — StreamT s pagel6
restart:: [v] — [Bool] — [v] pagel?
A.4 Genetic Algorithms Combinators
makePop: Ord a= Int— > ExpandT s pagel9
gaSelect: Ord r = Int — [r] — [r] — StreamT][s] pagel9
nestWithProb: (Ord r,Floating r) = [r] — r — StreamT s StreamT s page20
ga:: ExpandT s— ContraT s— StreamT s— StreamT s page20
gaConfig:: Ord s= [Float] — Int — [Float] page21
— [Bool] — ContraT s— StreamT s~ StreamT s
A.5 Eager Combinators
(M:a—Int—a page28
indexWithRemainder [a] — Int — (a,[a]) page28

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049

Journal of Functional Programming

A.6 Queue Based Window

12:46

35

data Queue a= Queuela] [a] Int

initQ :: Queue a
initQ = Queud][]0

sizeQ:: Queue a— Int
sizeQ(Queue. s) = s

append: Queue a— a— Queue a
append Queue fr bk spx= Queue fr(x: bk) (1+s2)

remove: Queue a— Queue a

remove @(Queue(] []) = g

remove(Queud | bk s2 = remove(Queue(reverse bk[] s2)
remove(Queue as bk $z= Queue(tail as) bk (sz— 1)

toList:: Queue a— [a]
toList (Queue fr bk) = fr ++reverse bk

window:: Int — [a] — [[a]]
window sz= (map toLis} o (scanl fappend initQ
where
fappend q V sizeQ g= sz= appendremove ¢ v
| otherwise = append qv

ZU064-05-FPR CombinatorsForMetaheuristicSearchinHaskell 72049 12:46

	Introduction
	Travelling Sales Person Problem
	Paper Overview
	Metaheuristics
	Hybridisation
	Commonalities
	Perturbation and Recombination for TSP

	Combinators For Metaheuristics
	Stream Transformer Design
	Iterative Improvers
	TABU
	Simulated Annealing
	Genetic Algorithms
	Application to TSP
	Additional Combinatorial Problems

	Design Perspectives
	Monolithic State
	Co-Monads
	Functional Reactive Programming
	Arrows

	Implementation issues
	A Performance comparison with C
	Further Work & Conclusion

	References
	Combinators of the library
	Iterative Improver Combinators
	TABU Search Combinators
	Simulated Annealing Combinators
	Genetic Algorithms Combinators
	Eager Combinators
	Queue Based Window

