
ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Under consideration for publication in J. Functional Programming 1

Combinators for Meta-heuristic Search

RICHARD SENINGTON, DAVID DUKE
University Of Leeds, Leeds LS2 9JT, UK

(e-mail:sc06r2s,d.j.duke@leeds.ac.uk)

Abstract

Metaheuristics are a group of iterative optimisation algorithms for combinatorial problems that have
been widely studied for the last 25 years and this has resulted in a variety ofdifferent approaches.
These algorithms and a number of frameworks for experimentation withinthe field are usually
implemented in imperative languages, however little work has been done using functional languages
for this task.

We develop a library of composable stream transformation functions in thepure functional lan-
guage Haskell, and then show how a selection of well known, but quite different, metaheuristics can
be built from this small set of combinators. This approach allows for the concise expression of the
algorithms and provides a high degree of modularity and composability. This in turn allows for the
rapid modification and hybridisation of algorithms to examine alternative strategies, an important
provision for operational research and applications. We then illustrate theuse of the library using
the well known Travelling Salesperson Problem and give a brief comparison of the performance of
algorithms constructed using the library with versions written in C.

Contents

1 Introduction 2
1.1 Travelling Sales Person Problem 4
1.2 Paper Overview 4

2 Metaheuristics 5
2.1 Hybridisation 6
2.2 Commonalities 6
2.3 Perturbation and Recombination for TSP 7

3 Combinators For Metaheuristics 9
3.1 Stream Transformer Design 10
3.2 Iterative Improvers 11
3.3 TABU 13
3.4 Simulated Annealing 15
3.5 Genetic Algorithms 18
3.6 Application to TSP 21
3.7 Additional Combinatorial Problems 23

4 Design Perspectives 25
4.1 Monolithic State 25
4.2 Co-Monads 26

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

2 R. Senington, D. J. Duke

4.3 Functional Reactive Programming 26
4.4 Arrows 27

5 Implementation issues 27
6 A Performance comparison with C 28
7 Further Work & Conclusion 30
References 31
A Combinators of the library 33

A.1 Iterative Improver Combinators 33
A.2 TABU Search Combinators 33
A.3 Simulated Annealing Combinators 34
A.4 Genetic Algorithms Combinators 34
A.5 Eager Combinators 34
A.6 Queue Based Window 35

1 Introduction

How do you best allocate finite resources? For example if you run a factory and have
a number of machines, each machine is capable of doing a number of tasks at specific
rates. At any given time the factory has a number of work tasksto complete. Which tasks
should be done on which machines and in what order, such that all the tasks are completed
as quickly as possible? Alternatively if you run a University, you will have timetables to
design. There are many finite resources here (time slots, rooms and people) and the final
timetable needs to satisfy a range of competing criteria.

There are many ways in which a set of jobs can be scheduled on a set of machines and
many orders in which lectures can be assigned to rooms in a University. Commonly not
all solutions are the same, with some using less of the finite resources (for example time)
than others, or resulting in greater productivity. How can we find solutions that are better
for these problems?

These are examples of combinatorial optimisation problems, a group of NP-hard prob-
lems that occur frequently in industry, engineering and science. In computer science many
algorithms have been created for finding optimal solutions to these problems (for example
depth first search and branch&bound) calledcompletealgorithms. However as the size of
the problems increases the size of the search space causes the runtime of the programs to
increase exponentially.

In many tasks however time is limited, and finding higher quality solutions is more
important than finding a provably optimal solution. In thesecases meta-heuristic methods
have been found to be effective in finding comparatively goodsolutions within practical
time constraints, though they sacrifice the certainty that the optimal solution will ever be
found (and are thereforeincomplete).

Metaheuristics form a heterogeneous group of algorithms, so much so that they can be
envisaged as being like a toolbox of concepts for the meta-heuristic designer to draw upon
when encountering a new problem. No meta-heuristic is guaranteed to perform well on all
problems, though most can be modified to improve performanceon each new problem they
are paired with, a process known astuning(Birattari, 2005). This tuning can be a complex

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 3

process, involving the modification of static parameters, the modification of functional pa-
rameters and the integration of new concepts from the toolbox, known ashybridisation. For
example, in genetic algorithms the process of experimentation can include; modifying the
size of the populations, the rates of mutation and changing the method by which solutions
are chosen for recombination (or breeding). In section3.6 we will look at modifying a
simple genetic algorithm meta-heuristic through the replacement of the mutation function
and will see how this effects the quality of solutions discovered by the search process.

These considerations have led to the implementation of frameworks for creation, hy-
bridisation and experimentation upon metaheuristics. However these frameworks, which
are built on imperative programming abstractions, have hadlimited success. Masrom et al
present the following conclusions:

“...they have limited predefined hybridisation. Indeed, some of them focus on either
local search or evolutionary algorithms only. As a result, hybridisation is restricted within

the limited metaheuristics.”

While many of the frameworks provide GUI support for non-expert control, for more
sophisticated work, e.g. creating a new form of hybridisation, the same authors remark that
“it is imperative that the programmer has a deep understanding of the class libraries”
(Masromet˜al., 2011).

The contribution of this paper is to investigate the use of pure functional programming
to express metaheuristics and hybridisation.This is similar in intent to the work of Schri-
jvers et al on combinators enabling the construction of heuristics for the management
of exhaustive tree based search algorithms(Schrijverset˜al., 2011). Given the weakness
of existing frameworks, can functional languages deliver aricher yet simpler framework
for expressing and hybridising metaheuristics? Further, can a functional approach over-
come the limits of predefined hybridisation and offer patterns of computation which link
evolutionary and population based methods with local search or single solution methods?
While such a ‘combinatorial’ approach to program solving should arguably be bread-and-
butter for functional programming (Hughes, 1989), the diversity of local search problems
confounds a simple approach to combinator design through:

• the heterogeneous nature of meta-heuristic algorithms andtheir components, which
makes it difficult to capture or even identify common patterns;

• the absence of a unifying mathematical abstraction; for example the pattern of ‘state
+ remaining input’ model of functional parsers (Hutton & Meijer, 1998); and

• the interplay of different components of state that are not easily captured by Haskell’s
type system and current support for records.

Our solution is to model metaheuristics, at the top level, asprocesseswhich produce
streams of solutions from seed data, such as seed solutions.The processes are constructed
in a data-flow stylethrough the composition and transformation of a number of functions
that we think of asstream transformers. This simplifies the task ofhybridisationby al-
lowing the meta-heuristic designer to concentrate on the manipulation of finer-grained
combinator building blocks. Our approach to metaheuristics is therefore solidly within
the stream programming field of functional programming.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

4 R. Senington, D. J. Duke

1.1 Travelling Sales Person Problem

The travelling salesman problem (TSP) is often used as a standard test and example appli-
cation in combinatorial optimisation, due to it having a very simple description and direct
real world application, and we will be using the problem in this paper. Here we will remind
the readers of the specifications of the problem and discuss some of the variations that exist.

The task is to find a shortest Hamiltonian cycle in a connectedgraph, a cycle which
goes through every vertex only once (Hoos & Sẗutzle, 2005). The edges of the graph are
weighted and the length of the cycle is the sum of the weights of the edges used. Specific
instances of the problem can be symmetric, where the weight of an edge AB is always
equal to the weight of BA, or asymmetric where this constraint is not present.

An instance of a TSP is defined by the number of vertices in the graph, and the weights
of the edges between them. All the graphs that we have considered, both symmetric and
asymmetric, have been drawn from the online repository TSPLIB (Reinelt, 1991) and are
fully connected, though this is also an optional property inthe wider context. For this paper
we will only consider the problemfl417.tsp from the TSPLIB as our example. Where
we report results this will be the example that has been used.

1.2 Paper Overview

The paper is structured as follows. Section˜2 introduces the four families of metaheuris-
tics that will be examined in the paper, discusses how they interact with combinatorial
problems, and looks at some existing styles of hybridisation. The examples that have been
chosen are widely used and understood methods, covering both local search and evolution-
ary algorithms: iterative improvers, TABU, simulated annealing, and genetic algorithms.
The TSP is then considered in light of the function types thatare needed to interact with
them, with the specific variants that we will use in our examples given.

Section˜3 gives the major content of the paper, looking at how functional languages
can be used to break down processes into stream combinators,and the application of this
method to metaheuristics. The section ends with a short series of example experiments
upon the TSP, where a number of hybrids of the meta-heuristicmethods discussed are
compared.

In Section˜4 we step back, and examine the library design decisions, in particularwhy
the stream transformation approach is preferable for this application than alternatives.
Section˜5 shows a difficulty with our approach, related to thunk build up in lazy evaluation,
and our solution to this problem.

Section˜6 provides a comparison between our functional metaheuristics and specialised
versions written in C. Section˜7 concludes the paper, looking to future work and the de-
ployment of functional methods as effective tools for meta-heuristic designers.

The major contributions of this paper are:

• a concerted attack on a class of related, yet heterogeneous algorithms, and demon-
stration as to how to present them in FP;
• the re-formulation of a number of well known metaheuristicsinto a data flow form;
• the creation of a set of combinators to capture the characteristics of these metaheuris-

tics; and

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 5

• an examination of the performance issues that arise and a discussion of how they can
be resolved.

Many of the combinators that are presented involve orderingsolutions in some way. A
convention of this paper while describing the combinators will be that when we refer one
candidate solution being better than another we mean that the value of the better candidate
is lower. This convention fits well with both the TSP example problem and the standard
implementation of Haskell functions likesort.

2 Metaheuristics

Metaheuristic algorithms work by manipulating candidate solutions to combinatorial op-
timisation problems. These arecandidatesolutions in that (i) we cannot be sure they are
optimal, and (ii) in some cases they may not even be valid solutions to the original problem.
This second case arises in situations where the model of the problem being used cannot
restrict, a-priori, the candidates being considered to those which are always valid. Superior
models of problems that better restrict the candidates considered are always preferable.
The TSP used in the remainder of the paper does not involve invalid candidates, and this
issue will not be mentioned further in this paper.

The quality of a candidate solution is determined by anobjective function. This func-
tion will usually provide a numerical value, or measure of the quality, however in some
metaheuristics all that is needed is that the candidates form an ordered set. The underlying
concept of metaheuristics is that, if we have a candidate solution of a given quality, small
changes to that solution should yield other solutions of a ‘similar’ quality. A simple illus-
tration can be drawn from the idea of a path through a graph, such as is found in the TSP.
If the path is changed by removing a relatively small set of edges from a cycle and then
adding a set of edges such that the result in a valid Hamiltonian cycle, the value of the new
solution only differs from the old by the values of the edges involved in the change. Such
a change is called aperturbation; many metaheuristics routinely apply perturbations to the
candidate solutions as they execute.

Perturbation gives rise to the concept of aneighbourhood, a set of candidates that result
from applying perturbation to a given candidate solution. Dually, perturbation is sometimes
defined as the choice of a new candidate solution from within agiven neighbourhood.
Iterative local search typically involves moving from a current candidate to one within its
neighbourhood.

A second method for creating new solutions from old isrecombination, where a new
candidate is produced from two or more existing candidates.This approach is often used
with population based methods such as genetic algorithms (GA) (Goldberg, 1989).

Many variations of perturbation, neighbourhood and recombination exist for each prob-
lem that has been examined by the Operations Research (OR) community. Of the four fam-
ilies of algorithms chosen for this paper, iterative improvers (also known as hill climbers)
and TABU search tend to use neighbourhoods to provide candidates. Simulated annealing
tends to use perturbation, and genetic algorithms use recombination. The inspiration for
each of these families is varied. Simulated annealing drawson concepts from physical
simulations (in particular metallurgy); TABU is a variation on iterative improvers with the

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

6 R. Senington, D. J. Duke

addition of a memory; and genetic algorithms draw upon natural evolution and the study
of it in artificial intelligence.

2.1 Hybridisation

In the absence of practical complete search methods the algorithm families addressed
in this paper have been applied widely; and effort continuesto tune algorithms to new
problems. To this end a branch of study has developed which attempts tohybridiselocal
search methods, combining different characteristics of each (Gendreau & Potvin, 2005;
Birattariet˜al., 2001; Raidl, 2006). The hope is that the hybrid meta-heuristic will have
strongersearch characteristics than its progenitors1. There has been substantial research
into how to hybridise heuristics; Talbi(Talbi, 2002) for example, proposed two key con-
cepts:relay, where metaheuristics are run in sequence, andteamwork, where they run in
parallel and communicate findings. Talbi proposed two further subdivisions,high andlow
levelhybridisation.

In both low level relay and teamwork hybrids the key concept is that the construction of
the final strategy uses one meta-heuristic algorithm as a component or function of another.
Talbi gives the following examples to illustrate this:

• low level relay; simulated annealing, using an iterative improver to yieldthe alterna-
tives that it chooses between, rather than a random perturbation
• low level teamwork; a genetic algorithm, using an iterative improver to mutatesolu-

tions, rather than a random perturbation

High level hybridisation keeps the different strategies more clearly self-contained. For
example, using simulated annealing for a time, then TABU search, where the TABU search
begins from the final solution that the simulated annealing search produced.

While this paper starts with Talbi’s low and high level hybridisation, one of our con-
tributions is to move towards a uniform approach to hybridisation that eliminates this
distinction.

2.2 Commonalities

The approaches described above suggest that local search algorithms consist of two parts.
The first guides the application of perturbation and candidate selection, for example by
iteration until a solution is deemed acceptable. The secondpart is the set of functions for
generating, perturbing, selecting and recombining candidates. These functions tend to be
highly problem-specific.

Our key insight is that a process which yields a sequences of solutions provides a suitable
level of abstraction for meta-heuristic construction. This paper lays out a set of combinators
for describing these processes, combining aspects of theseprocesses and manipulating
the resulting sequences of solutions. Before we consider the combinators we first present
further details of the TSP problem that we use to demonstratethe ideas.

1 Where stronger is understood as; finding better solutions to the combinatorial problems, in fewer
iterations while continuing to find better solutions for longer.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 7

2.3 Perturbation and Recombination for TSP

TSP provides a useful illustration for both our overall framework and the design of specific
combinators. As a running example it demonstrates how a hardcombinatorial problem
can be addressed by the composition and construction of complex search strategies from
simpler components.Our aim is pedagogical, we do not intend nor claim that this rep-
resents fundamentally superior algorithms for solving instances of the TSP.We shall
therefore not look in detail at all known variations upon perturbation and recombination.
To demonstrate how the example perturbation and recombination operations modify the
structure of solutions we will provide example implementations.

2.3.1 Perturbation & Neighbourhoods

The basic perturbation operation is the swapping of two cities in the Hamiltonian cycle.
From this swap operation we can define a second, more limited,form of perturbation, the
adjacent exchange, where the two cities to be exchanged are adjacent in the sequence. The
example code for these operations is provided in Figure1.

type TSPSol a
type Perturb s
type Swap s

= [a]
= s→ s
= (Int, Int)→ Perturb s

tspSwap:: Swap(TSPSol a)
tspSwap(i, j) source= if i ≡ j then sourceelsefr++b : md++a : bk

where
(fr,as)
(a : md,b : bk)

= splitAt i source
= splitAt(j− i) as

adjTspSwap:: Int→ Int→ Perturb(TSPSol a)
adjTspSwap len i| i ≡ len

| otherwise
= tspSwap(0, len)
= tspSwap(i, i+1)

Fig. 1: A list based implementation of TSP perturbation functions.

We define two neighbourhood functions, indicated by the suffix N in the function names,
in terms of these perturbation operations; a deterministicneighbourhood derived from
theadjTspSwapfunction, and a stochastic neighbourhood derived from the more general
tspSwapfunction. The deterministic neighbourhood is constructedby applying the adjacent
swap function to every adjacent pair of cities in the source solution.

The second neighbourhood function we will use is the stochastic neighbourhood, which
generates a neighbourhood by swapping randomly selected pairs of cities. This approach
allows for the size of the neighbourhood to be controlled, while providing access to a wider
overall range of candidate solutions. The code for these neighbourhood functions is found
in figure2, where the stochastic neighbourhood function takes a list of randomly generated
integers (rs), assumed to be in the range of the problem. The size of the neighbourhood is
controlled by the length of the list of randomly generated integers.

A trade off must be considered when designing a neighbourhood function relating to the
size of the neighbourhood. A larger neighbourhood allows each step of a meta-heuristic

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

8 R. Senington, D. J. Duke

adjSwapN:: Neighbours(TSPSol a)
adjSwapN source= map(flip (adjTspSwap l) source) [0..l]

where l = length source−1

stochasticSwapN:: [Int]→ Neighbours(TSPSol a)
stochasticSwapN rs source= map(flip tspSwap source) $ zip(map fst as) (map fst bs)

where(as,bs) = partition ((≡ 0) ◦snd) $ zip rs(cycle[0,1])

Fig. 2: A list based implementation of TSP neighbourhood functions.

(a) First parent (b) Second parent (c) Common Subsequences

Fig. 3: Identifying common subsequences in TSPs

to examine more solutions, however this requires more memory and time. While lazy
evaluation can ameliorate this issue through generating elements of a neighbourhood only
when they are required, in general it will only improve memory performance not the time
issue.

2.3.2 Recombination

To implement recombination for TSP we use the concept that the new solution must contain
all common subsequences of the parents, with the remainder of the sequence provided
from a subsequent process. We limit our recombination process to operating only over
two solutions at a time, although combining more than two is possible. Figure3 gives a
graphical example of the identification of common subsequences in a Euclidean TSP.

The recombination process can be divided into two parts, thefirst is identification of
the common subsequences, the second putting them back together in a new order. This is
seen in figure4, where therecombfunction is the composition of; (i) finding the common
subsequences and (ii) shuffling them into a new order and concatenating them. Shuffling
is provided by an auxiliary function that requires an external source of random values.
The identification of common subsequences is provided by a function which processes one
solution, comparing each pair of adjacent cities with a lookup table provided by the other
Hamiltonian cycle.

However even for pedagogical value this example is too naive, introducing too much
chaotic behaviour into the metaheuristics. In the remainder of the paper we use a variant
which is more respectful of edges present in the parents, even when not common to both
parents.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 9

recomb rs as= concat◦shuffle rs◦commonChunks as

shuffle:: Ord r⇒ [r]→ [a]→ [a]
shuffle rs= map snd◦sortBy(λa b→ compare(fst a) (fst b)) ◦zip rs

commonChunks:: Eq a⇒ [a]→ [a]→ [[a]]
commonChunks as(b : bs) = f bs[[b]]

where
aEdges= let as′ = cycle asin take(length as) $ zip as′(tail as′)
f [] (cs: css)
| elem(head cs,head$ last css) aEdges= (reverse cs++last css) : init css
| otherwise= reverse cs: css

f (x : xs) (cs: css)
| elem(head cs,x) aEdges= f xs((x : cs) : css)
| otherwise= f xs([x] : reverse cs: css)

Fig. 4: A list based implementation of a TSP recombination function.

2.3.3 Practical Implementation

The implementation presented here only deals with the structural changes to the Hamilto-
nian cycles. A full implementation would require a number ofother features:

• pricing or evaluation, subject to a look up table of the edge weights for the specific
TSP instances; and

• and explicit ordering over candidate solutions, often defined in terms of the value of
the paths

While not a requirement it is also faster to calculate the price of a new candidate in terms
of thedifferencesfrom its source candidate, rather than recalculating the cost of the whole
route each time.

Lists are a poor implementation for this data structure. However the need to recall and
reexamine previous solutions causes a problem for any data structure which relies upon
in place updates. We therefore will use dictionaries to mimic the operation of an array,
using the standard HaskellData.IntMap structure, which will also provide the sharing
functionality at minimal cost. Full details of this implementation using the dictionary, and
providing the properties described above will not be provided, it being a rather mundane
programming exercise.

Use of dictionaries is comparatively efficient for the swapping operations that we have
described. Other data structures have been co-opted for representing TSP such as splay-
trees (Fredmanet˜al., 1993) and specialised data structures have been created such as the
two-level tree (Chrobaket˜al., 1990).

3 Combinators For Metaheuristics

A direct translation of imperative approaches to metaheuristics results in monolithic state
transformation systems. However we started from a “data-flow” perspective, structuring
computations as a collection of evolving variables, or streams of data, that are generated,
transformed and combined to yield solutions. This data-flowapproach admits straightfor-

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

10 R. Senington, D. J. Duke

(a) A model of a simple
function

(b) A model of a pure
stateful function

(c) A Model of a stream
transformation function
with internal state

Fig. 5: Models of pure functions

ward expression as recursive Haskell functions, both problem specific and generic. It also
facilitates the expression of more complex computations ina compositional style.

In this section we will first examine the generic aspects of the stream transformation
approach, and in the later subsections describe the patterns of each of the metaheuristics
and show how they can be expressed as stream transformation computations. The final
subsections present a number of hybrid metaheuristics and their application to a TSP
instance; and look at how our combinators can operate over other well combinatorial
problems.

3.1 Stream Transformer Design

We begin with an example; imagine that you wish to add a randomvalue to various
different values in a pure functional program. This can be achieved bythreadinga random
number generator through the program to the places where it is used, such as the following
function;

f :: RandomGen g⇒ Float→ g→ (Float,g)
f x g= let (a,b) = random gin (a+x,b)

An alternative is to gather the values that we wish to increment into a stream and apply a
transformation over them all, such as this function;

f :: RandomGen g⇒ g→ [Float]→ [Float]
f g= zipWith(+) (randoms g)

Figure5 shows three models of functions diagrammatically; a similar set of diagrams is
found in (Launchbury & Peyton Jones, 1995).

• 5ais the simplest form of a function;
• 5b illustrates the threading of state model;
• 5ccorresponds to our stream transformation approach.

While simple, this forms the basis of how we deal with the stochastic perturbation tech-
nique later on. In section4 we will discuss alternative ways in which metaheuristics and
streams can be tackled in Haskell, includingarrowized streamsandreactive programming
which have strong connections to this approach.

We have described metaheuristics as processes which give rise to a sequence of can-
didate solutions, where future solutions may be constructed from previous solutions. The
model of stream transformation so far does not give rise to such evolving processes, but
implement a map-like transformation. To “tie the knot” we provide;

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 11

loopP:: ([s]→ [s])→ s→ [s]
loopP streamT seed= let sols= seed: streamT solsin sols

This function creates a stream of values from a seed value. The first value is the seed, the
second the transformation of the seed, the third the transformation of the second value and
so on. This is a well understood recursive technique used forefficient generation of the
generating the Fibonacci numbers in functional languages.

A straight forward generalisation replaces the single seedwith an initial stream segment;
loopS:: ([s]→ [s])→ [s]→ [s]
loopS streamT seed= let sols= seed++streamT solsin sols

These looping operations constrain the types of stream processors that are useful at this top
level to;

type StreamT s= [s]→ [s]

All the metaheuristics that we will examine result in streamtransformations of this type,
however we have identified two other common functional patterns;

type ExpandT s= [s]→ [[s]]
type ContraT s= [[s]]→ [s]

ExpandTcomputations which gather information from a stream, or provide choices and
the neighbourhood functions previously discussed in section2, once lifted, are of this type.
ContraTcomputations are usually contractions from a number of values, for example a
choice from a neighbourhood, lifted top operation over streams.

Instances of these operations can be written in a number of ways, for example arrowized
computations. However we have found that in practice a direct approach using functions
from the standard libraries such asmap, zip, zipWith, scanland their variations are simpler,
see section4.4.

3.2 Iterative Improvers

Iterative Improvers are more commonly known as hill climbers and gradient decent. They
operate in a greedy manner, only moving to a new candidate solution if it improves upon
the previous candidate. Usually they are based upon neighbourhood functions, where a
number of candidates are generated from a previous candidate and only one is selected.

This means that the process can be divided into two parts, thegeneration of the raw
neighbourhood, and the processing of this into a neighbourhood of improving solutions,
where improving meansless than the parent, as previously stated in section1.2. There
are various ways in which the next candidate can be selected from the neighbourhood of
improving solutions, with the most common being; first found, maximal, minimal and
stochastic. We will first give a data-flow implementation of adeterministic first found
iterative improver.

firstFoundii:: Ord s⇒ (s→ [s])→ s→ [s]
firstFoundii nf seed

= let sols= seed: map head improvements
neighbours= map nf sols
improvements= zipWith(λa b→ filter (a>) b) sols neighbours

in sols

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

12 R. Senington, D. J. Duke

This function is defined in terms of three stream of data each created from a different
transformation pattern.

• sols(ContraT s): the stream of solutions consisting of the initial solution followed
by the stream of choices from the stream of improving neighbourhoods;
• neighbours(ExpandT s); the stream of neighbourhoods, found by applying the neigh-

bourhood transformation to each element ofsols:
• improvements(StreamT[s]); the stream of neighbourhoods such that for each neigh-

bourhood, every element improves upon the solution from which it was created.

The stream of improving neighbourhoods is described as azipWithoperation over a filter
taking both the stream of neighbourhoods and the stream of solutions. However it is really
a modification of the neighbourhood function, to yield only improving neighbourhoods. So
we propose a function calledimprovement, which is a transformation of a stream expander;

improvement:: Ord s⇒ ExpandT s→ ExpandT s
improvement nf sols

= zipWith(λa b→ filter (a>) b) sols(nf sols)

With this abstraction over the improvement process we can now provide a more gener-
alised iterative improvement function;

iterativeImprover:: Ord s⇒ ExpandT s→ ContraT s→ s→ [s]
iterativeImprover nf cf seed

= let sols= seed: (cf ◦ improvement nf) solsin sols

The final change we must make is abstracting away the specification of the seed solution
and the loop present in theiterativeImprover. Iterative improvement becomes a combinator
of our library; it transforms neighbourhood functions and can be reused as a component of
more complex hybrid metaheuristics.

iterativeImprover:: Ord s⇒ ExpandT s→ ContraT s→ StreamT s
iterativeImprover nf cf= cf ◦ improvement nf

First found iterative improvement is implemented using this combinator by parametris-
ing it with a contraction pattern which takes the first element of any neighbourhood it
encounters. This is created throughmap head. Similarly maximal and minimal improve-
ment are described in terms ofminimumandmaximum;

firstFoundii,maximalii,minimalii :: Ord s⇒ ExpandT s→ StreamT s
firstFoundii nf= iterativeImprover nf(map head)
maximalii nf= iterativeImprover nf(map minimum)
minimalii nf= iterativeImprover nf(map maximum)

To use one of these strategies on a problem they would first have to be looped and
provided with a seed. At theghci prompt, for atspproblem, this could be done using the
following;

> loopP (firstFoundii tsp neighbourhood) tsp seed

3.2.1 Stochastic Iterative Improvers

To build astochasticiterative improver in terms of these combinators we need to provide
a suitable contraction transformation. A stream of values,provided by a random number

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 13

generator, is encapsulated within the choice transformation and thus does not require any
modification of the functions already shown. An example of a simple stochastic iterative
improver is given below;

stochasticii:: Ord s⇒ ([s]→ r→ s)→ [r]→ ExpandT s→ StreamT s
stochasticii rcf rs nf= iterativeImprover nf(zipWith(flip rcf) rs)

This encapsulation of a stochastic component in a stream transformer is an important
tool in the construction of more sophisticated metaheuristics. We will revisit this approach
in section3.6.

3.3 TABU

TABU search (Glover, 1989; Glover, 1990) is an adaptation of the first found iterative
improver algorithm, which makes use of memory to allow the strategy to try to make
further progress once the iterative improver would have ended. Like iterative improvers,
TABU search is usually based upon a neighbourhood function.Recently used moves are
stored in a TABU list of fixed size and as the algorithm proceeds older moves are forgotten.
Like an iterative improver the generated neighbourhood is pruned, but this pruning also
takes into account the solutions in the TABU list. The following is the standard set of
rules:

• If the solution is an improvement on the current solution, then this will be the choice

• If the solution is not an improvement and is on the TABU list, discard it

• If the solution is not an improvement but not on the TABU list,move to it if no other
solution is found in the neighbourhood that improves upon the current solution

The implementation of TABU conceptually partitions a neighbourhood into three groups;
those candidates that improver upon the current solution, those that do not but are not on
the TABU list, and the ones that are. To implement this division in Haskell we lift the
standardpartition operation, so that it operates upon each neighbourhood withrespect to
the source candidate. As we often need to lift other operations to stream transformations
we provide a general operation for this purpose;

lift :: (t→ b→ c)→ (a→ t)→ [a]→ [b]→ [c]
lift f g = zipWith(f ◦g)

Filters and partitions may each be lifted in this way;
lift filter (<) :: Ord a⇒ [a]→ [[a]]→ [[a]]
lift partition (>) :: Ord a⇒ [a]→ [[a]]→ [([a] , [a])]

The improvementfunction can now be expressed succinctly in terms oflift ;
improvement nf sols= lift filter (>) sols(nf sols)

Using lifted partitions and filters we can now take a stream ofsolutions and a stream
of TABU information, and use this to divide a stream of neighbourhoods into two new
streams; the stream of improving neighbourhoods and the stream of neighbourhoods which
do not improve upon the source solution, but are not on the TABU list. The output of TABU
is then defined in terms of these streams and the rules previously given;

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

14 R. Senington, D. J. Duke

tabuFilter :: Ord s⇒ [[s]]→ ExpandT s→ ExpandT s
tabuFilter tabu nf sols
= let

in

(imp,notImp) = unzip$ lift partition (>) sols(nf sols)
notTabu= lift filter (flip notElem) tabu notImp
select[] [] c= c
select[] b = b
select a = a
zipWith3 select imp notTabu notImp

So far we have not specified where the TABU information comes from. As the list is a
short term history, it can be thought of as a sliding window onthe stream of candidate so-
lutions that are being generated. Such a window can be produced by a queue data structure
with limited size. An efficient queue functional implementation is known (Okasaki, 1998).
Using this we can create the functionwindowwith the following data type;

window:: Int→ ExpandT s

Implementing the queue is routine and can be found in the appendix A.6.
This window transformation has been limited to using list data types to keep this example

short. A more flexible implementation can be achieved using Haskell classes. This would
give opportunities for more sophisticated TABU behaviour,such as usingSetsrather than
lists for the TABU candidates.

We now define the generic TABU combinator;
tabu:: Ord s⇒ ExpandT s→

ExpandT s→
ContraT s→
StreamT s

--the window creation transformation

--the neighbourhood transformation

--the final choice transformation

tabu wf nf cf sols= cf $ tabuFilter(wf sols) nf sols

As with iterative improver this combinator takes a neighbourhood transformation and a
choice transformation, but also takes a window transformation to create the TABU lists.
Once againloopPwould be used to tie the knot.

Unlike iterative improver, TABU search does not guarantee that later candidate solutions
in the sequence are always better than earlier candidates because a user of a final system
only really cares about the best solution that has been seen at any given point. Using the
combinators defined and the following,

bestSoFar∼ (x : xs) = scanl min x xs

We can now create a complete functional version of Glovers TABU algorithm (Glover, 1989;
Glover, 1990);

gloverTABU:: Ord s⇒ ExpandT s→ Int→ s→ [s]
gloverTABU nf winSize

= bestSoFar◦ loopP(tabu(window winSize) nf
(map head))

A number of variations on TABU search exist. We will illustrate the flexibility of our
combinators by implementing a part of Taillard’s Robust Taboo search (Taillard, 1991).
In this work Taillard used a TABU list in which the size variedrandomly between fixed

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 15

bounds. This was found to produce better and more stable results than the basic TABU
algorithm.

We first construct a stream transformation over windows which delivers stochastically
varying window sizes;

varyWindow:: RandomGen g⇒ (Int, Int)→ g→ StreamT[s]
varyWindow range g= zipWith take(randomRs range g)

Construction of Taillard’s TABU is now straightforward;
taillardTABU nf winSize range g

= bestSoFar◦ loopP(tabu(varyWindow range g◦window winSize)
(map nf)
(map head))

3.4 Simulated Annealing

The simulated annealing (SA) meta-heuristic was proposed by (Kirkpatrick et˜al., 1983)
and later independently by (Čerńy, 1985). The algorithm draws inspiration from statistical
thermodynamics, specifically the modelling of the annealing process. It uses the perturba-
tion functions rather than neighbourhoods and will usuallyuse random perturbation rather
than deterministic selection.

At each step in SA a current solution is perturbed to generatean alternative solution. This
alternative solution is then accepted or rejected by a decision process which is controlled
by a real valuetemperature, which constrains the quality of a solution that is likely to
be accepted. Temperature is determined by a temperature strategy which, like memory in
TABU, is defined co-recursively with other parts of the system.

The choice between moving to a new solution, or remaining at the current solution is
usually controlled by the following function;

saChoose(r, t,s,s′)=

{

s′, if quality(s)≤ quality(s′) or exp(1
t quality(s)−quality(s′))≥ r

s, otherwise

wherer is a random number between 0 and 1,t is the current value of the temperature
parameter,s and s′ are solutions andquality is a function which gives the value of a
solution. This is not the only function which could be used for this task, however it is
the function suggested by Kirkpatrick and is still the most common. In Haskell this is
implemented as follows;

saChoose:: (Floating v,Ord v)⇒ (s→ v)→ v→ v→ s→ s→ s
saChoose quality r t s s′

| d≤ 0 || e> r = s′

| otherwise= s
where

e= exp(−(d/t))
d= (quality s′) − (quality s)

This implementation takes an additional functional parameter which yields a quality value
for a solution.

Simulated annealing may be implemented by liftingsaChoosevia zipWith4,

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

16 R. Senington, D. J. Duke

sa:: (Ord v,Floating v)⇒ (s→ v)
→ StreamT s
→ [v]
→ [v]

--quality evaluation function

--perturbation transformation

--stream of stochastic values

--temperature strategy stream
→ StreamT s

sa quality perturbF rs coolS sols
= zipWith4(saChoose quality) rs coolS sols(perturbF sols)

sa takes the following parameters; a function for evaluating the quality of a solution, a
stream transformation that perturbs each solution in a stream, a supply of random numbers
and a temperature strategy.

The streams of temperatures, usually called cooling strategies, are the most common way
to adapt simulated annealing for particular problems. There are three well known strategies
which we will show and implement:

• Linear cooling
tn = tn−1+c

linCooling :: Floating b⇒ b→ b→ [b]
linCooling tempChange startTemp= iterate(+tempChange) startTemp

• Geometric
tn = tn−1∗c

geoCooling:: Floating b⇒ b→ b→ [b]
geoCooling tempChange startTemp= iterate(∗tempChange) startTemp

• Logarithmic
tn = c

log(n+d)

logCooling:: (Enum b,Floating b)⇒ b→ b→ [b]
logCooling c d= map(λ t→ c/(log (t+d))) [1..]

We now have the appropriate combinators to show an example oftheir use. As with the
previous strategies we must loop the stream transformer andprovide it with a seed solution,
and like TABU search simulated annealing does not always improve solution quality with
time, so we will want to usebestSoFaronce again.

exampleSA:: (Ord s,Floating v,Ord v)⇒ (s→ v)→ StreamT s→ v
→ v→ [v]→ s→ [s]

exampleSA quality perturbF startT propT rs
= bestSoFar◦ loopP(sa quality

perturbF
rs
(geoCooling propT startT))

3.4.1 Adaptive Simulated Annealing

The most common way to create variations upon the simulated annealing concept is through
the cooling strategy. While simple patterns can be easily created in Haskell, here we will
consider a more complex option which make use of feedback, a form ofadaptivesimulated
annealing.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 17

At high temperatures simulated annealing will accept more candidates and so explore
the solutions space more widely, while at lower temperatures the algorithm will tend to
move through solutions which improve the quality of the result. At very low temperatures
the algorithm acts almost exactly like an iterative improver and so will become stuck in a
local minima and cease to change. In order to encourage further change the temperature
must be raised. Common adaptive strategies include (i) restarting the temperature strategy
and (ii) reheating the system gradually. These are often composed in terms of using one
strategy until a particular trigger event is encountered before changing to an alternative
strategy. This is almost identical to the concept of event driven changes to behaviours
found in functional reactive programming (FRP) (Hudaket˜al., 2003) and so we use a
similar function.

until :: [a]
→ [Bool]
→ [[a]]
→ [a]

--stream of values, to place before trigger

--stream of triggers for switch over

--stream of potential futures

until (a :)

until (a : as)
(True:)

(False: bs)
(: cs:)

(: cs)
= a : cs
= a : until as bs cs

The output of this function is a new stream consisting of, elements of the initial stream until
the conditional stream contained aTruevalue. At this point the replacement stream seen at
that point is used to provide the remainder of the output.

Using this we can create the following function which takes asimple temperature strat-
egy and a stream of conditionals. Each time a conditional value is found to be true, the
temperature strategy will be reset.

restart:: [v]→ [Bool]→ [v]
restart basicS cs= until basicS cs$ map(restart basicS) (tails cs)

The stream of triggers can be provided in many ways, however acommon method is to
approximate the rate of improvement in the overall system. This will tend to zero as local
minima are approached and the algorithm becomes stuck. An approximation of the rate of
improvement can be found by comparing values over an interval of the process. The action
of finding these intervals over a stream is thewindowfunction seen in TABU search, and
so we will reuse it. While this is costly its simplicity makes it suitable for this example.
Putting it together,

restartingSA:: (Ord s,Floating v,Ord v)⇒ Int→ v→ v→ (s→ v)→ StreamT s
→ [v]→ s→ [s]

restartingSA wSize startT propT getVal perturbF rs1 seed
= let

in

cs= map(λw→ if null w then Falseelsehead w≡ last w) $
window wSize sols

ts= restart(geoCooling propT startT) cs
sols= loopP(sa getVal perturbF rs1 ts) seed
bestSoFar sols

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

18 R. Senington, D. J. Duke

3.5 Genetic Algorithms

At first glance genetic algorithms (GA) call for a separate set of combinators due to their
use ofpopulationsof candidate solutions rather than operating over individual solutions.
However we will show that stream transformations can be usedhere to tease apart the steps
of the process into finer grained combinators.

A standard imperative description of a genetic algorithm isas follows:

• construct an initial population of candidate solutions
• repeat the following steps;

— randomly select pairs of solutions from the population (often calledparent so-
lutions), giving preference to the better solutions and recombine them to yield a
new collection of candidate solutions

— randomly select some set of the new solutions and perturb them (in this context
usually known asmutation)

— replace the previous population with the candidate solutions that have been cre-
ated

Our reformulation of genetic algorithms is based upon the intuition that the stream of
populations can be seen as a division of a stream of solutionsinto regular blocks. Con-
versely a stream of solutions can be seen as the concatenation of a stream of populations.
The window operation seen in TABU could be used to create thisregular chunking process,
however we have found it is easier to create a new operation wewill call chunk which
simply divides an input stream into a stream of equally sizedlists 2;

chunk:: Int→ ExpandT s
chunk sz= unfoldr(Just◦splitAt sz)

It is possible to describe a genetic algorithm as a stochastic stream transformation over
populations, and might have the following data type;popTrans:: RandomGen g⇒ g→
StreamT[s] This would give rise to the following sketch of a skeleton forgenetic algo-
rithms;concat◦popTrans g◦chunk popSize

However this approach places a great deal of emphasis upon the population transforma-
tion concept and we have found that breaking down the operations into a series of transfor-
mations provides greater flexibility of expression. We start with a sketch of a recombination
function, which constructs a new solution from a collectionof parentsolutions. This has
the type[s]→ s. To operate over stream the type of the recombination transformer becomes
ContraT s, which takes a stream of collections of parents and gives back a stream of
solutions. These functions will usually be problem specific.

Working backwards, we need a transformation which takes a stream of populations
and provides a stream of collections of parents. The selection of a single parent from a
collection is of the formContraT s. To use aContraT sto select a group of parents we
provide the functionmanySelect;

manySelect:: Int→ ContraT s→ StreamT[s]
manySelect sz f= chunk sz◦ f ◦concatMap(replicate sz)

2 We are not sure why such a function is not present in Haskell’s standard list manipulation libraries
as it seems to us to be a common enough process.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 19

The most common approach to selecting parents from collections in genetic algorithms is a
stochastic process favouring the better candidate solutions. Many patterns could be used for
the selection of candidates, such as uniform or skewed probability distributions, of which
the standard approaches are only specialisations. We capture this generality using;

select:: Ord r⇒ [r]→ r→ [s]→ s
select dist r= snd◦head◦dropWhile((r >) ◦ fst) ◦zip dist

This is then lifted to operate over streams;
streamSelect:: Ord r⇒ [r]→ [r]→ ContraT s
streamSelect dist= zipWith(select dist)

We compose these functions to give the functiongaSelect, a stream transformation from
populations to sets of parents, based upon a parameterisingdistribution.

gaSelect:: Ord r⇒ Int→ [r]→ [r]→ StreamT[s]
gaSelect sz dist rs= manySelect sz(streamSelect dist rs)

The use of distributions in this way has some echos of (Erwig & Kollmansberger, 2006)
work in probabilistic modelling. It is still open whether there are opportunities for conver-
gence between their approach and this library.

These selection combinators select from collections basedupon probability distributions
rather than upon solution quality. To capture the concept common in genetic algorithms,
that good solutions should be more likely to be used, we require an appropriate probabil-
ity distribution, and that the population issorted by quality. We modify the process for
creating the stream of populations, so that populations areordered. We will also wish to
generate several solutions from each population, wheregaSelectwill only provide one.
This can be handled by replicate, in a similar way to the operation of manySelect.

makePop:: Ord s⇒ Int→ ExpandT s
makePop s= concatMap(replicate s◦sort) ◦chunk s

The final component of genetic algorithms is mutation. This can be modelled as a stream
transformation which only effects a substream of solutions. To achieve this we divide the
stream of recombined solutions into two parts, apply the mutation transformation to one
part and then reintegrate the two streams. We call the operator that applies a transformation
to a substreamnest, and indicate the substream by a stream of booleans.

nest:: [Bool]→ StreamT s→ StreamT s
nest bs tr= join bs ◦zipWith($) [id, tr] ◦divide bs

divide:: [Bool]→ ExpandT s
divide bs xs= [[x | (b,x) ← zip bs xs,b≡ i] | i← [False,True]]

join :: [Bool]→ ContraT s
join bs xss= unfoldr f(bs,xss)

where
f (False: ts, [x : xs,ys]) = Just(x,(ts, [xs,ys]))
f (True: ts, [xs,y : ys]) = Just(y,(ts, [xs,ys]))

Let tsp perturbbe a perturbation stream transformation, it can be modified to only modify
every other solution in an input stream using the following code fragment;
nest(cycle[False,True]) tsp perturb

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

20 R. Senington, D. J. Duke

Alternatively we can modify solutions in a stream with a given probability p, with
respect to a provided stream of randomly generated floats, like so;

nestWithProb:: (Ord r,Floating r)⇒ [r]→ r→ StreamT s→ StreamT s
nestWithProb rs p= nest(map(< p) rs)

Our complete reformulation can be seen together in Figure6. The application ofloopSto
this structure feedsbackevolved population oneinto population two.

Fig. 6: Model of stream based implementation of genetic algorithms

Each of these groups of actions are composed to create the common skeleton of genetic
algorithms;

ga :: ExpandT s→ ContraT s→ StreamT s→ StreamT s
ga mkPopulations recomb mutat= mutat◦ recomb◦mkPopulations

We use the combinators described to give this implementation of genetic algorithms which
is less general than the skeleton but provides more recognisable parameters;

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 21

gaConfig:: Ord s⇒ [Float]→ Int→ [Float]→ [Bool]
→ ContraT s→ StreamT s→ StreamT s

gaConfig dist popSize rs bs recombine mutate
= ga(makePop popSize)

(recombine◦gaSelect 2 dist rs)
(nest bs mutate)

These combinators provide a concise yet flexible way to buildgenetic algorithms. Vari-
ations upon the logic used for each of the combinator groups can easily be created, for
example:

• the creation of populations using variable population sizes;
• mutation transformations being provided by iterative improvers from section3.2;

and
• the use of temperature strategies from simulated annealingto vary the mutation rate.

3.6 Application to TSP

We demonstrate the application of our combinators by presenting a short investigation into
one form of hybrid metaheuristic for the TSP problemfl4173. As metaheuristic we adopt
an approach used by (Suh & Van Gucht, 1987) which is a genetic algorithm where the
standard mutation operation is replaced with an iterative improvement technique.

The ease of hybridisation is illustrated through a series ofalgorithms constructed using
our combinators. The root strategy is a genetic algorithm with the following common
parameters.

• a selection distribution such that the first solution in the ordered population will be
selected with the highest likelihood, the second solution with some lower likelihood
and so on; this has been provided using the geometric relationship pn = 0.25∗
1.0595n, encoded as an iteration;

• a population size of 100;
• a stream of booleans to indicate positions for mutation, andmutation will take place

with a 40% likelihood;
• the stochastic recombination function from section2.3, rewritten as a stream trans-

former;

These are fixed in order to limit the variations in configuration of each system, however in
general these provide additional dimensions for tuning themetaheuristics.

Each of these hybrid algorithms is processed by thebestSoFarcombinator to ensure that
the solution being examined was the best seen. The seed solutions used are chosen with a
uniform likelihood over all potential sequences.

The results presented are the quality (length of the Hamiltonian cycle) of the best solu-
tion discovered after a fixed number of iterations, rather than a fixed number of seconds of

3
fl417 is the example problem we have used throughout this paper, a symmetric TSP drawn from
the TSPLIB(Reinelt, 1991)

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

22 R. Senington, D. J. Duke

processor time. This is to separate the evaluation of the metaheuristics from implementa-
tion issues which influence measurements using time.

Results were gathered by sampling the stream of constructedsolutions at the following
points; 0, 1000, 3000, 5000, 7000 and 10000. Due to the stochastic nature of these
algorithms, each test was run25 times and the mean of the results at each sampling point
is reported4.

Each variation is shown below as a code fragment A complete program would require a
harness for creating the random number generators, loadingthe problem file and creating
an initial set of solutions for the algorithm to run over. These are problem specific and
mundane tasks.

3.6.1 The Algorithms

We initially present a version of genetic algorithms which only recombines (we name
this TS1) and has no form of mutation, illustrating the simplest parametrisation. In the
following code the variablesgN where N← [0..] are random number generators obtained
from the calling context;
(TS1)

loopS$ gaConfig(iterate(∗1.0595) 0.25)
100
(randoms g1)
(map(< (0.4)) ◦ randoms$ g2)
(stochasticRecombine g3)
id

--selection distribution

--population size

--random number source

--mutation likelihood

--recombination

--mutation

and the standard version of genetic algorithms which uses a stochastic mutation process,
which is a random swap of two cities in the Hamiltonian cycle;
(TS2)

loopS$ gaConfig(iterate(∗1.0595) 0.25) 100
(randoms g1)
(map(< (0.4)) ◦ randoms$ g2)
(stochasticRecombine g3)
(stochasticMutate g4)

These two provide the baselines of the hybridisation experiments.
Following (Suh & Van Gucht, 1987) we replace the stochastic mutation operation with

a stochastic iterative improvement operation;
(TS3)

loopS$ gaConfig(iterate(∗1.0595) 0.25) 100
(randoms g1)
(map(< (0.4)) ◦ randoms$ g2)
(stochasticRecombine g3)
(stochasticii(!!) (randomRs(0,416) g4)

(map adjacentExchangeN))

4 The standard deviations of the results have been examined but found to be low and so are not
shown.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 23

However this was not found to be more effective than variant TS2.
We hypothesised that the issue lay with the neighbourhood function, which was con-

straining the potential of the iterative improver. Two further variations were devised;

• An alternative form of stochastic iterative improvement, which provides the stochas-
tic aspect through a variable neighbourhood rather than from a fixed neighbourhood
function. This variable neighbourhood is provided by generating a selection of ran-
dom swaps of cities in a given solution. The iterative improvement is then replaced
with a maximal iterative improver so that the mutation process will move to the best
possible neighbour at each step;
(TS4)

loopS$ gaConfig(iterate(∗1.0595) 0.25) 100
(randoms g1)
(map(< (0.4)) ◦ randoms$ g2)
(stochasticRecombine g3)
(maximalii$ stochasticNeighbourhood 417 g4)

• An algorithm that uses two mutation operations independently. The first chosen
was a maximal iterative improvement meta-heuristic to provide an improvement
mutation. The second was the original purely stochastic mutation operation.
In order to hybridise these, we ceased to usegaConfigand instead used the more
generalgacombinator. The mutators were given different likelihoodsand then com-
posed together to provide the final mutation operation. The construction of the full
meta-heuristic follows the structure seen in section3.5
(TS5)

pattern1= map(< (0.35) ◦ randoms$ g1
pattern2= map(< (0.05)) ◦ randoms$ g2
iiMutator = nest pattern1(maximalii(map adjacentExchangeN))
swapMutator= nest pattern2$ stochasticMutate g3
loopS$ ga(makePop 100)

(stochasticRecombine g4◦ gaSelect 2(iterate(∗1.095) 0.25)
(randoms g5))

(iiMutator◦swapMutator)

These ideas were found to provide stronger results than using a more traditional stochastic
iterative improvement method, with the variable neighbourhood being found to be the
strongest. The results from these experiments are shown in Figure 7 and summarised in
Table1.

3.7 Additional Combinatorial Problems

Application of our meta-heuristic combinators to different problems is a matter of design-
ing a data structure for the problem which supports theneighbourhood, perturbationand
recombinationfunctions that the programmer wishes to work with. We have experimented
with two other well known combinatorial problems,satisfiability(SAT-3) andtimetabling.
The libraries for loading the file formats used, storing and manipulating candidate solutions
can be found in the Hackage librarycombinatorial-problems. The approach taken is similar

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

24 R. Senington, D. J. Duke

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

Itterations

S
ol

ut
io

n
Q

ua
lit

y

TS1 (Recombination Only)
TS2 (Standard GA)
TS3 (Stochastic II)
TS4 (Stochastic Neighbourhood II)
TS5 (Mixed Mutation)

Fig. 7: A plot comparing the performance of the baseline strategies

5000 iterations 10000 iterations

TS1 (Mutation Only Baseline) 453566 453566
TS2 (Standard GA) 351359 280998
TS3 (Stochastic II Mutate) 343620 284571
TS4 (Variable Neighbourhood) 245891 167938
TS5 (Mixed Mutate) 325671 255854

Table 1: A summary of the solution qualities discovered by various hybrid strategies

to that taken for TSP, using a number of dictionaries to storethe data, which provides a
balance of speed, memory sharing and stateless manipulation of the data structures.

3.7.1 SAT-3

Satisfiability is a well known problem and we feel it unnecessary to describe it in detail
here. For our purposes it was reformulated from its usual description as a decision problem
to an optimisation problem by seeking candidate solutions which satisfied greater and
greater numbers ofclauses. A large number of example problems can be found in the
online repository SATLIB (Hoos & Sẗutzle, 2000).

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 25

3.7.2 Timetabling

The timetabling problems considered are a specific type described by the international
timetabling competition (Metaheuristic Network, 2007). Due to the large number of con-
straints and interactions between constraints in this formof problem, we found that a
naive approach was not very successful. Many candidates considered were not valid and
the metaheuristics made slow progress towards candidates which satisfied the constraints.
We feel that a constraint based system, using metaheuristics to choose new constraints to
add at each point, in a similar manner to that used by other authors may be of interest
(Van Hentenryck & Michel, 2005), however this has not been explored at this time.

4 Design Perspectives

The approach that we have used for the expression of these metaheuristics is not the only
approach that can be taken, nor was it our exclusive line of investigation. Here we will
briefly describe the other methods that we experimented withand look at why we have
settled on the stream transformation style.

4.1 Monolithic State

The traditional description of meta-heuristic algorithmsis as stateful imperative systems.
The most direct translation of such models into functional languages is to model them as
state transformation systems. This can have the advantage of improving performance, espe-
cially when used in conjunction with monads that offer greater opportunities for compiler
optimisations.

However monolithic state fits awkwardly with the desire for generic combinatorial de-
sign. Consider the following;

gloverTABU:: Ord s⇒ (s→ [s])→ Int→ s→ [s]
gloverTABU nf sz= unfoldr innerTABU◦ (λx→ ([] ,x))

where
innerTABU(tabuList,x)

= let tabu′ = take sz$ [x] ++tabuList
x′ = maximum$ filter (flip notElem tabu′) (nf x)

in Just(x,(tabu′,x′))

This implementation has two components thatcouldbe considered state, the seed solution
at each stepx, and the TABU listtabuList. Many variations make use of further factors to
assist in decision making, for example as a statistical summary of the recently explored
solutions as seen in Adaptive Simulated Annealing (see3.4.1). The most common varia-
tions, which use random number generators, include; use of astochastic neighbourhood,
a stochastic choice of neighbour, and Talliard’sRobust Taboo searchwhich stochastically
shortens the TABU list at each step. Each of these introducesadditional state data which
must be threaded through the process, and this requires the modification of the type sig-
natures of the associated functions. This does not lend itself to the flexible expression and
recombination of modular components

Some of the problems encountered with the naive approach canbe alleviated by making
use of Haskell’s type classes to provide common interfaces to dissimilar state components.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

26 R. Senington, D. J. Duke

However the programmer must still define their own data typesfor the monolithic state and
provide the code for accessing each component.

These problems could be further alleviated by an extensiblerecord system for Haskell.
Such ideas have been considered and discussed but have not been finalised at the time of
writing (has, 2011; Jones & Peyton Jones, 1999).

We feel the stream transformation approach that we have chosen, while not quite as
fast as using a statically defined state in this way, does provide better composability and
expressiveness.

4.2 Co-Monads

The stream transformation style that has been presented hasevolved from, and encapsu-
lates, an underlying breakdown of the meta-heuristic algorithms into a dataflow structure.
(Uustalu & Vene, 2005) propose that co-monads provide a good framework for data flow
programming, supported by category theoretic semantics. However although co-monads
may provide a theoretically neat setting for meta-heuristic combinators, an implementation
of code from (Uustalu & Vene, 2005) suffered from performance issues and space leaks.

4.3 Functional Reactive Programming

Functional Reactive Programming (Hudak, 2000; Hudaket˜al., 2003) models systems as
continuous behaviours and discrete events. We first considered FRP as a possibility while
looking at simulated annealing, itself based upon continuous models of physical systems.
While metaheuristics are better thought of as discrete step algorithms rather than be-
haviours over continuous time, we found that FRP was a good way to decompose mono-
lithic algorithms into modular blocks.

For example, consider this mathematical model of simulatedannealing;

r(i) =

{

randomSeed if i ≤ 0
next(r(i−1)) otherwise

t(i) =

{

tempSeed if i ≤ 0
t(i−1)∗geoDrop otherwise

sa(i) =







seedSolution if i ≤ 0
sa(i−1) if not accepted
permute(sa(i−1), r(i ∗2)) otherwise

accepted= accept(permute(sa(i−1), r(i ∗2)), t(i), r(i ∗2+1))

This model provides modularity through the clean separation of the various behaviours.
For example, to change the cooling strategy it is only required to modify functiont, the
other functions and the more general pattern of the simulated annealing algorithm remain
unchanged.

A naive implementation of these functions will be inefficient due to the recomputation
of intermediate values. Memoization can be used to fix this issue however this results in
space leaks as all previous values are preserved. Ideally wewish to allow sharing of only
required previous results between behaviours, with intermediate values being cleaned up

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 27

once they are no longer required. Research into these issuesis ongoing as can be seen in
(Elliott, 2009) and theReactivelibrary (Elliott, 2010). However at the present time this
work is not mature enough for us to build upon.

4.4 Arrows

Arrows are a general model of computation proposed by Hughes(Hughes, 2000). We
can implement our stream transformers as arrows operating over streams of values; i.e.
Arrow a⇒ a [b] [c]. There are difficulties in using them in our context; for example loopS
is awkward to express in an arrowised form, however this can be done and is presented as
arrowFix;

arrowFix :: ArrowLoop a⇒ a [b] [b]→ a [b] [b]
arrowFix f= loop(uncurryA(++) ≫ f ≫ dup)

dup:: Arrow a⇒ a s(s,s)
dup= returnA&&& returnA

uncurryA:: Arrow a⇒ (b→ c→ d)→ a (b,c) d
uncurryA= arr ◦uncurry

All the stream transformations previously seen can be lifted to an arrowised form, or
rewritten in terms of arrow combinators, for example;

improvementA:: (Arrow a,Ord s)⇒ a [s] [[s]]→ a [s] [[s]]
improvementA nfa= returnA&&& nfa≫

uncurryA(zipWith(λa b→ filter (< a) b))

iterativeImproverA:: (Arrow a,Ord s)⇒ a [s] [[s]]→ a [[s]] [s]→ a [s] [s]
iterativeImproverA nf fChoice= improvementA nf≫ fChoice

firstFoundiiA:: (Arrow a,Ord s)⇒ a [s] [[s]]→ a [s] [s]
firstFoundiiA nf= iterativeImproverA nf(arr $ map head)

However in general we do not see clear benefits in using Arrowsrather than the stream
transformation functions previously presented, either interms of algorithm expression or
performance.

5 Implementation issues

Our implementation is purely functional, however use of lazy evaluation can cause prob-
lems. Consider the following sketch of a simulated annealing program;

> bestSoFar(loopP sa) !! 10000

The runtime environment will attempt to construct the computation for the10000th ele-
ment, which requires the computation for the previous element, and so on until it reaches
the original seed. It therefore creates the entire computation before it begins the evaluation,
leading to a very large (and unacceptable) thunk build up.

Various methods exist that can alleviate this problem. Indeed the problem was not en-
countered in our initial tests because we displayed each candidate as it was created, thus
pushingthe computation forward and avoiding the thunk build up. We therefore created

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

28 R. Senington, D. J. Duke

the following function, modelled after the implementationof foldl′, which acts as the list
index operator but pushes the computation of the list elements.

(!!!) :: [a]→ Int→ a
(!!!) ∼ (x :) 0= x
(!!!) ∼ (x : xs) n= x‘seq‘(xs‘seq‘xs!!! (n−1))

Given the dependencies between solutions in such a sequence, this is sufficient to resolve
the problem. The following function has also been found to beof use;

indexWithRemainder:: [a]→ Int→ (a, [a])
indexWithRemainder∼ (x : xs) 0= (x,xs)
indexWithRemainder∼ (x : xs) n= x‘seq‘(indexWithRemainder xs(n−1))

This pushes the computation as far as thenth value, before returning the value and the
remaining list. The list returned is not forced, so it is a computation that can be continued
if desired, such as in an interactive system5.

6 A Performance comparison with C

Previously when comparing metaheuristics in section3.6, results were given in terms of
quality of solution against the number of iterations. However when comparing to imple-
mentations built in C we wish to testhow longit takes to perform a number of steps of the
algorithm for each version. This provides a clear separation between comparing the logic
of algorithms (previously) and the performance of the implementation.

Comparing performance of our Haskell programs with a more mainstream approach
proved difficult. We struggled to find standard implementations of the metaheuristics that
could be used to generate solutions using precisely the samelogic as ours do, and so give
a fair comparison.

In order to match our Haskell implementations we built our own versions of the test
metaheuristics in C. The versions that we created were more specialised and much less
flexible than those provided by the Haskell libraries.

The test problem was the TSP problemfl417 again. We chose to use a version of
simulated annealing and an iterative improver. The simulated annealing version had the
following properties; geometric cooling strategy starting at the value80000 with a reduc-
tion rate of0.99, the standard simulated annealing acceptance function anda perturbation
function which randomly selected and swapped two cities in the sequence. The iterative
improver was a maximal improver with an adjacent exchange neighbourhood and random
restart when local minima were encountered. All parameterswere set to the same values
in both the C and Haskell versions.

The random number generator used for the C version was from the standardstdlib li-
brary; but it was found that using themerzenne-pure64library in Haskell was faster than the
standardSystem.Randomlibrary. All generators were initialised from the system clock on
each run. In order to improve the Haskell versions performance, some of the floating point

5 Our functions can also be seen as more specialised implementations of strategies seen in the library
Control.Seq.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 29

computations in simulated annealing were rewritten to use the Foreign.C.Types.CDouble
data type, and conversions were kept to a minimum.

The tests of the programs were monitored using the Unix time function. When executed
each program was sampled at the following numbers of iterations: 1000∗ 2n wheren in
0..8. Each test was carried out 25 times and the averages are reported6.

All four programs showed linear time complexity in the number of iterations as ex-
pected. Figure8 shows the ratios of the runtimes of the Haskell and C versionsof the
programs. The Haskell version of simulated annealing tendstowards a factor of 8 times
slower than the C version, while the Haskell maximal iterative improver is approximately
20 times slower than its counterpart. We note the odd shape ofthe graph for the ratio of
the Iterative Improver implementations, and we suspect that it is caused by a combination
of timing precision at very low numbers of iterations (wherethe C programs are very fast)
and start-up costs. In general however the trend is towards aconstant ratio between the
implementations.

0 0.5 1 1.5 2 2.5 3

x 10
5

0

5

10

15

20

25

Itterations

W
al

l C
lo

ck
 R

at
io

 (
h/

c)

Iterative Improver With Restart
Simulated Annealing

Fig. 8: Performance graph for simulated annealing on thefl417 problem

While the aim of this work has not been raw performance, a preliminary analysis of the
execution of the iterative improvement and simulated annealing programs has been done.
This has indicated one key area for refinement, common to bothdemonstration programs;
the perturbation of solutions.

One performance bottleneck is the data structure used for candidate solutions. Selecting
a model involves a trade off between:

• time complexity of individual perturbation methods;

6 The standard deviations of the results have been examined but found to be low and so are not
shown.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

30 R. Senington, D. J. Duke

• generality (the number and variety of recombination and perturbation functions that
can be implemented with ‘reasonable’ efficiency);
• persistence, i.e. capturing history.

Specialisation of the state representation for specific perturbation functions is an obvious
and important route to improving run-time performance, andfor this reason have been a
significant topic of interest within Operations Research for many years.

7 Further Work & Conclusion

There has been little previous concerted study of metaheuristics in Haskell, though on
Hackage a number of implementations of specific metaheuristics can be found, e.g. Sim-
ulated annealing (Wasserman, 2010) and Genetic Algorithms (Hoste, 2011). In this paper
we have selected a range of these algorithms and shown how they can be captured with a
common pattern of computation, the stream transformer, andhow this gives rise to a library
of combinators.

We have then shown how each meta-heuristic may be rebuilt using the combinator
library, and how variations upon them may be easily expressed. We have shown how the
space leak problem that occurs when using basic Haskell functions such as !! for interacting
with the streams can be avoided by using eager versions of thefunctions. The authors are
not aware of any similar framework or library in a functionalsetting.

Other general frameworks for metaheuristics have been created in imperative languages,
or as domain specific languages. (Masromet˜al., 2011) compares these other approaches
and highlighted the lack of commonality and easy interoperability between population
based methods (such as genetic algorithms) and single solution based techniques. Our ap-
proach uses standard transformation methods and combinations to express these different
algorithm families, and hence allow interoperability, which we feel is a key advantage and
topic worthy of further investigation.

There are trade-offs which must be made when choosing how to explore a combinatorial
problem. Our approach suffers from being substantially slower than specialised C code for
the same problem. It is quite possible to write faster code within Haskell itself, using in-
place updates of data structures for example. However neither of these alternatives gives
rise to a system with the same level of flexibility, which we feel gives our combinators
a useful niche as a prototyping system for exploring the design space for metaheuristics.
This is of great use in the operations research community where design of metaheuristics
remains a labour intensive experimental process.

In the future we see this flexibility allowing the construction of a higher level framework
for automated experimentation with metaheuristics. For example the automated evalua-
tion of different combinations of transformers with regards to how they act upon a new
problem. Further automation of the process would have the framework search the patterns
of combinations of transformers for metaheuristics which provide superior performance
upon a new class of problems. This approach to metaheuristics is known by the name of
hyper-heuristics(Denzingeret˜al., 1997), with work usually begin done using custom built
systems, frameworks for other languages and domain specificlanguages.

The extension of the library to provide general methods for experimenting with meta-
heuristics, and testing sets of combinators forms one of twoplanned extensions to this

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 31

work. The second is the development of a new group of metaheuristics for the library,
specifically ant-colony optimisation (Dorigoet˜al., 1991).

It is also of some interest to investigate further improvements in expressiveness through
the use of Template Haskell (Sheard & Peyton Jones, 2002; Lynagh, 2012). This would
allow for the use of more general versions ofzipandzipWithwhich adapt to the number of
input streams they are provided with, known aszipNandzipWithN. We are also interested
in the possibility of more sophisticated lifting operations, facilitated through Template
Haskell.

Our other interests lie in improving the performance of our system. This can be achieved
by looking for better rewriting and compilation rules so that our combinators give better se-
rial performance, or investigation into parallelism, perhaps taking advantage of the pipeline
like nature of our combinators to give more natural access tomulti-core processors.

References

(2011). Extensible Record: HaskellWiki. Accessed 20.02.12.
http://www.haskell.org/haskellwiki/Extensiblerecord.

Birattari, Mauro. (2005). Tuning Metaheuristics: A Machine Learning Perspective. First edn.
Springer.

Birattari, Mauro, Paquete, Luis, Stützle, Thomas, & Varrentrapp, Klaus. (2001).Classification of
Metaheuristics and Design of Experiments for the Analysis of Components. Tech. rept. AIDA-
2001-05. Intellektik, Technische Universität Darmstadt, Germany.

Čerńy, V. (1985). A Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm.Journal of optimization theory and applications, 45(1), 41–51.

Chrobak, M., Szymacha, T., & Krawczyk, A. (1990). A data structure useful for finding Hamiltonian
cycles.Theoretical Computer Science, 71, 419–424.

Denzinger, J̈org, Fuchs, Marc, & Fuchs, Matthias. (1997). High performance ATP systems by
combining several AI methods.Pages 102–107 of: Proceedings of the 15th International Joint
Conference on Artifical Intelligence, vol. 1. Morgan Kaufmann.

Dorigo, Marco, Maniezzo, V., & Colorni, Alberto. (1991).Positive Feedback as a Search Strategy.
Tech. rept. Politecnico di Milano.

Elliott, Conal M. (2009). Push-pull functional reactive programming.Pages 25–36 of: Proceedings
of the 2nd ACM SIGPLAN symposium on Haskell. Haskell ’09. ACM.

Elliott, Conal M. (2010). Hackage DB: Reactive package. Accessed 20.02.12.
http://hackage.haskell.org/package/reactive.

Erwig, Martin, & Kollmansberger, Steve. (2006). Functional pearls: Probabilistic functional
programming in haskell.J. funct. program., 16, 21–34.

Fredman, M. L., Johnson, D. S., McGeoch, L. A., & Ostheimer, G. (1993). Data structures for
traveling salesmen.Pages 145–154 of: Proceedings of the fourth annual ACM-SIAM Symposium
on Discrete algorithms. SODA ’93. Society for Industrial and Applied Mathematics.

Gendreau, Michel, & Potvin, Jean-Yves. (2005). Metaheuristics in Combinatorial Optimization.
Annals of Operations Research, 140(1), 189–213.

Glover, F. (1989). Tabu Search, Part I.ORSA Journal on Computing, 1(3), 190–206.

Glover, F. (1990). Tabu Search, Part II.ORSA Journal on Computing, 2(1), 4–32.

Goldberg, David E. (1989).Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley.

Hoos, Holger, & Sẗutzle, Thomas. (2000). SATLIB: An Online Resource for Research on SAT. IOS
Press. SATLIB is available online at www.satlib.org.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

32 R. Senington, D. J. Duke

Hoos, Holger, & Sẗutzle, Thomas. (2005).Stochastic local search: Foundations & applications.
Morgan Kaufmann Publishers Inc.

Hoste, Kenneth. (2011). Hackage DB: GA package. Accessed 20.02.12.
http://hackage.haskell.org/package/GA.

Hudak, Paul. (2000).The haskell school of expression - learning functional programming through
multimedia. New York: Cambridge University Press.

Hudak, Paul, Courtney, Antony, Nilsson, Henrik, & Peterson, John. (2003). Arrows, Robots, and
Functional Reactive Programming.Pages 159–187 of: Advanced Functional Programming, 4th
International School, volume 2638 of LNCS. Springer-Verlag.

Hughes, John. (1989). Why functional programming matters.The computer journal, 32, 98–107.

Hughes, John. (2000). Generalising monads to arrows.Science of Computer Programming, 37,
67–111.

Hutton, Graham, & Meijer, Erik. (1998). Monadic Parsing in Haskell.Journal of Functional
Programming, 8(4), 437–444.

Jones, Mark P., & Peyton Jones, Simon. (1999). Lightweight Extensible Records for Haskell.In
haskell workshop.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science, 220(4598), 671–680.

Launchbury, John, & Peyton Jones, Simon. (1995). State in Haskell.Pages 293–341 of: LISP and
Symbolic Computation, vol. 8. Kluwer Academic Publishers.

Lynagh, Ian. (2012). Hackage DB: template-haskell package. Accessed 20.02.12.
http://hackage.haskell.org/package/template-haskell.

Masrom, S., Abidin, Siti Z.Z., Hashimah, P. N., & Rahman, A. S. Abd.(2011). Towards Rapid
Development of User Defined Metaheuristics Hybridisation.International Journal of Software
Engineering and Its Applicatons, 5.

Metaheuristic Network. (2007). International Time Tabling Competition. Organised by
eventMAP research Group at Queen’s University with partners from Cardiff University,
Napier University, University of Nottingham and the University of Udine,Accessed 20.02.12.
http://www.cs.qub.ac.uk/itc2007/.

Okasaki, Chris. (1998).Purely functional data structures. Cambridge University Press.

Raidl, Günther R. (2006). A Unified View on Hybrid Metaheuristics.Pages 1–12 of:Almeida,
Francisco, Aguilera, Marı́a˜J. Blesa, Blum, Christian, Moreno-Vega, J. Marcos, Pérez, Melqúıades
Pérez, Roli, Andrea, & Sampels, Michael (eds),Hybrid metaheuristics, third international
workshop, hm 2006, gran canaria, spain, october 13-15, 2006, proceedings. Lecture Notes in
Computer Science, vol. 4030. Springer-Verlag.

Reinelt, Gerhard. (1991). TSPLIB - A Traveling Salesman Problem Library. INFORMS Journal on
Computing, 3, 376–384. http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/.

Schrijvers, Tom, Tack, Guido, Wuille, Pieter, Samulowitz, Horst, & Stuckey, Peter. (2011). Search
Combinators. Pages 774–788 of: Principles and Practice of Constraint Programming,17th
International conference, Proceedings. Springer.

Sheard, Tim, & Peyton Jones, Simon. (2002). Template meta-programming for Haskell. ACM
SIGPLAN Notices: PLI Workshops, 37(12), 60–75.

Suh, Jung Y., & Van Gucht, Dirk. (1987). Incorporating heuristic information into genetic search.
Pages 100–107 of: Genetic Algorithms and Their Applications: Proceedings of the Second
International Conference on Genetic Algorithms. L. Erlbaum Associates Inc.

Taillard, E. (1991). Robust Taboo Search for the Quadratic Assignment Problem. Parallel
Computing, 17, 443–455.

Talbi, E.G. (2002). A Taxonomy of Hybrid Metaheuristics.Journal of Heuristics, 8, 541–564.

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 33

Uustalu, Tarmo, & Vene, Varmo. (2005). The Essence of Dataflow Programming.Pages 2–18 of:
Lecture Notes in Computer Science. Springer-Verlag.

Van Hentenryck, Pascal, & Michel, Laurent. (2005).Constraint-based local search. The MIT Press.

Wasserman, Louis. (2010). Hackage DB: concurrent-sa package. Accessed 20.02.12.
http://hackage.haskell.org/package/concurrent-sa.

A Combinators of the library

type StreamT s= [s]→ [s] page11
type ExpandT s= [s]→ [[s]] page11
type ContraT s= [[s]]→ [s] page11
loopS:: StreamT s→ StreamT s page11
loopP:: StreamT s→ s→ [s] page11
bestSoFar:: Ord s⇒ StreamT s page14
chunk:: Int→ ExpandT s page18
li f t :: (t→ b→ c)→ (a→ t)→ [a]→ [b]→ [c] page13
until :: [a]→ [Bool]→ [[a]]→ [a] page17
nest:: [Bool]→ StreamT s→ StreamT s page19
divide:: [Bool]→ ExpandT s page19
join :: [Bool]→ContraT s page19
manySelect:: Int→ContraT s→ StreamT[s] page18

A.1 Iterative Improver Combinators

improvement:: Ord s⇒ ExpandT s→ ExpandT s pages12and13
iterativeImprover:: Ord s⇒ ExpandT s→ContraT s→ StreamT s page12
f irstFoundii,maximalii,minimalii :: Ord s⇒ ExpandT s→ StreamT s page12
stochasticii:: Ord s⇒ ([s]→ r → s)→ [r]→ ExpandT s→ StreamT s page13

A.2 TABU Search Combinators

tabu:: Ord s⇒ ExpandT s→ ExpandT s→ContraT s→ StreamT s page14
window:: Int→ ExpandT s page14
varyWindow:: RandomGen g⇒ (Int, Int)→ g→ StreamT[s] page15
tabuFilter :: Ord s⇒ [[s]]→ [s]→ [[s]]→ [[s]] page14

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

34 R. Senington, D. J. Duke

A.3 Simulated Annealing Combinators

linCooling :: Floating b⇒ b→ b→ [b] page16
geoCooling:: Floating b⇒ b→ b→ [b] page16
logCooling:: Floating b⇒ b→ b→ [b] page16
saChoose:: (Floating v,Ord v)⇒ (s→ v)→ v→ v→ s→ s→ s page15
sa:: (Floating v,Ord v)⇒ (s→ v)→ StreamT s→ [v]→ [v]→ StreamT s page16
restart :: [v]→ [Bool]→ [v] page17

A.4 Genetic Algorithms Combinators

makePop:: Ord a⇒ Int−> ExpandT s page19
gaSelect:: Ord r⇒ Int→ [r]→ [r]→ StreamT[s] page19
nestWithProb:: (Ord r,Floating r)⇒ [r]→ r → StreamT s→ StreamT s page20
ga :: ExpandT s→ContraT s→ StreamT s→ StreamT s page20
gaCon f ig:: Ord s⇒ [Float]→ Int→ [Float] page21
→ [Bool]→ContraT s→ StreamT s→ StreamT s

A.5 Eager Combinators

(!!!) :: [a]→ Int→ a page28
indexWithRemainder:: [a]→ Int→ (a, [a]) page28

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

Journal of Functional Programming 35

A.6 Queue Based Window

data Queue a= Queue[a] [a] Int

initQ :: Queue a
initQ = Queue[] [] 0

sizeQ:: Queue a→ Int
sizeQ(Queue s) = s

append:: Queue a→ a→Queue a
append(Queue fr bk sz) x= Queue fr(x : bk) (1+sz)

remove:: Queue a→Queue a
remove q@(Queue[] []) = q
remove(Queue[] bk sz) = remove(Queue(reverse bk) [] sz)
remove(Queue as bk sz) = Queue(tail as) bk(sz−1)

toList :: Queue a→ [a]
toList(Queue fr bk) = fr ++reverse bk

window:: Int→ [a]→ [[a]]
window sz= (map toList) ◦ (scanl fappend initQ)

where
fappend q v| sizeQ q≡ sz

| otherwise
= append(remove q) v
= append q v

ZU064-05-FPR CombinatorsForMetaheuristicSearchInHaskell 7 May2012 12:46

	Introduction
	Travelling Sales Person Problem
	Paper Overview
	Metaheuristics
	Hybridisation
	Commonalities
	Perturbation and Recombination for TSP

	Combinators For Metaheuristics
	Stream Transformer Design
	Iterative Improvers
	TABU
	Simulated Annealing
	Genetic Algorithms
	Application to TSP
	Additional Combinatorial Problems

	Design Perspectives
	Monolithic State
	Co-Monads
	Functional Reactive Programming
	Arrows

	Implementation issues
	A Performance comparison with C
	Further Work & Conclusion

	References
	Combinators of the library
	Iterative Improver Combinators
	TABU Search Combinators
	Simulated Annealing Combinators
	Genetic Algorithms Combinators
	Eager Combinators
	Queue Based Window

