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Abstract

Problems requiring combinatorial optimisation are routinely encountered in

research and applied computing. Though polynomial-time algorithms are known

for certain problems, for many practical problems, from mundane tasks in schedul-

ing through to exotic tasks such as sequence alignment in bioinformatics, the only

effective approach is to use heuristic methods. In contrast to complete strategies

that locate globally optimal solutions through (in the worst case) the enumera-

tion of all solutions to a problem, heuristics are based upon rules of thumb about

specific problems, which guide the search down promising avenues.

Work in the field of Operations Research has gone further, developing generic

metaheuristics, abstract templates which may be adapted to tackle many different

problems. Metaheuristic researchers have created a variety of algorithms, each

with their own strengths and weaknesses, and development of metaheuristics now

often tries to combine concepts from a number of existing strategies to balance

the advantages of the originals, known as hybridisation.

This interest in hybridisation has led to the creation of a number of frame-

works in imperative languages to assist programmers in the rapid creation and

experimentation upon the algorithms. However these existing frameworks have

struggled to enable hybridisation of the two major classes of metaheuristic, point

based and population based, while being large and complicated to use.

This Thesis investigates a functional approach to hybridisation. Despite su-

perficial analogies between hybridisation and function composition, there are sub-

stantial challenges: unlike global search methods that can be explained elegantly

in terms of graph traversal, prior work on local search has struggled to articulate

a common model, let alone one that can accommodate more esoteric optimisation

techniques such as ant colony optimisation. At the same time, these implemen-

tations cannot ignore the fact that the development of these techniques is driven

by large-scale problems, and computational efficiency cannot be ignored. Given

this background, this Thesis makes three substantial contributions. It decomposes

metaheuristic search methods into a set of finer-grained concepts and tools that can

be reassembled to describe both standard search strategies and more specialised

approaches. It resolves problems found in implementing these abstractions in the

widely used language Haskell, developing a novel approach based on dataflow

networks. The value of functional abstraction in the practice of metaheuristic

development and tuning is demonstrated through case studies, including a sub-

stantial problem in bioinformatics.
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Chapter 1

Introduction

This thesis re-examines how the design and implementation of metaheuristics and

hybrid-metaheuristics for combinatorial optimisation problems is approached in

the pure functional language Haskell. Tackling a problem using metaheuristics

often involves a process of experimentation upon existing algorithms, or combin-

ing characteristics of existing algorithms, to provide a strategy shaped to the task.

The process of rapid experimentation and hybridisation is ideally supported by

a system which is very flexible and this thesis argues that a functional approach

can deliver flexibility in implementation, hybridisation and adaptation while not

sacrificing performance. This is achieved through expressing the component char-

acteristics of a range of well known metaheuristics in terms of fine grained, higher

order combinators.

1.1 Motivation

Combinatorial problems, such as factory scheduling problems, are discrete assign-

ment problems which are ubiquitous in areas including the sciences, engineering,

economics, business and logistics [37]. These problems are known to be NP-Hard,

with the number of solutions to any given problem rising exponentially against the

number of assignments to be made. The textbook examples of these problems are

Boolean Satisfiability (SAT) and the Travelling Salesperson Problem (TSP), how-

1
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ever other well known examples are Timetabling and Machine Shop Scheduling.

Combinatorial problems can be solved, i.e. the subset of best solutions sharing

an equally high quality may be found, by various complete algorithms known to

Operations Research, including Depth First and Breadth First Search, Branch &

Bound, Dynamic Programming and Integer Linear Programming solvers. These

complete algorithms examine every possible solution to a problem, either explic-

itly or implicitly. Algorithms such as Depth First Search explicitly examine every

possible solution, where algorithms such as Branch & Bound or Branch & Cut

(for Integer Linear Problems) avoid explicitly examining solutions through prun-

ing the search process.

In general however the NP-Hard nature of the problems means that these com-

plete algorithms are unable to finish in practical computational time once problem

sizes have become too large. While finding provably optimal solutions to these

problems is impractical, finding solutions which are superior in quality to the best

solutions previously known is still of great value. Hence algorithms which can be

shown to provide sufficiently good solutions, in practical computation times, can

be seen as “solving the problem”.

Heuristics are general “rules of thumb” for specific problems which may be

used to guide search processes. The computational cost of the heuristic function

must be low, and the solutions that it produces must be of good quality by com-

parison to results that can be found by brute force search such as a simple Depth

First Search. For example, in the well known Travelling Salesperson Problem, a

simple but effective heuristic is to add legal edges to a solution in a shortest first

order. Using heuristics to guide search gives rise to algorithms such as best first

and A* search methods, which can be seen in most standard AI textbooks [68].

Heuristics are problem specific1 and can require significant work to design

methods for new problems, or to create better heuristics for known problems.

By comparison metaheurstics are template methods that operate in a heuristic

like way, and can be fitted to many different problems through the provision of

standard low level interaction functions. They are iterative methods which gen-

erate new solutions through the transformation of previously found solutions, of-

ten through stochastic, or semi-stochastic methods. Their iterative nature allows

metaheuristics to be run as long as is practical for the problem, exploring increas-

ing numbers of potential solutions.

1For example, the heuristic for the Travelling Salesperson Problem, of adding the shortest edge

first, cannot be directly applied to other problems, which may not use graphs as the problem model.
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While heuristics and metaheuristics cannot guarantee the quality of solutions

that are generated, an analysis of the qualities of solutions that are found can

give a level of confidence regarding how likely it is that a better solution exists.

Metaheuristics have been found to be effective in finding high quality solutions to

combinatorial problems in practical time limits2.

All metaheuristics have many parameters which must be set before the algo-

rithm will perform effectively. Some of these ‘settings’ are simple types, such as

a population size in a Genetic Algorithm, however more often these settings are

functional in nature, such as the functions which make changes to the solutions

of a problem. Through the settings of parameters, both simple and functional,

metaheuristic algorithms are tuned to improve performance on specific problems,

by taking advantage of the characteristics of the problem. Further attempts to

improve performance make use of hybridisation, where different metaheuristics,

or aspects of them, are combined to overcome the weaknesses of the individual

components.

However the No Free Lunch Theorem [86] says that there is no single meta-

heuristic which will perform best on all problems. For each algorithm, with a

particular set of parameters, there will be problems that it works well upon, and

problems where it is the worst possible strategy.

Evidence for the no free lunch theorem is seen frequently, for example it is

rare for initial implementations of metaheuristic search for a problem, with an ini-

tial choice of parameters to be effective at generating high quality solutions. The

process of exploring a problem, testing different metaheuristics, different combi-

nations of parameter settings and different hybridisations is a time consuming task

in terms of both human and computational time.

Researchers have worked to overcome these issues in the application of meta-

heuristics. One approach is to make use of machine learning techniques, and

metaheristic methods themselves [3, 12], in the setting of the parameters to an

algorithm for a problem, with the termination criterion being either the rate of

convergence, or the quality of solutions found after a specific period. A second

approach which has gained popularity over the last decade has been the field of

hyper-heuristics [7], an approach where the concept of using machine learning and

evolutionary computation is applied to the design of metaheuristic algorithms.

2Metaheuristics are primarily used to tackle large instances of discrete combinatorial problems.

They may also be used when dealing with continuous optimisation problems, however the char-

acteristics of these problems lend themselves to solution through linear programming or scientific

computation algorithms. Hence this thesis restricts itself to examples of discrete problems.
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The most common approach however has been the design of libraries, toolkits

and Domain Specific Languages (DSLs) for the implementation and hybridisation

of metaheuristic algorithms. A number of such libraries have been previously

created for standard imperative and object oriented languages, such as HotFrame

[21] for C++ and OPT4J [55] for Java. However it has been noted that these

existing libraries have limitations [56]:

• often requiring expertise in the libraries not just the programming languages;

• being specialised to either population or individual solution based methods

but;

• not supporting hybridisation between population and point based metaheuris-

tics well.

1.2 Research goals and Hypotheses

The focus of this thesis is the design and implementation of toolkits and libraries

for the construction of hybrid metaheuristics. The goal is to lay the foundations

for future research into metaheuristics in Haskell, and provide a tool for other

functional programmers to easily leverage metaheuristic methods for their own

work. Functional languages have a number of powerful features that may be well

suited for this task:

• Higher order functions, that can both take functions as parameters and re-

turn functions as results, giving rise to combinator libraries, libraries of or-

thogonal higher order functions that can be combined to express complex

concepts concisely, enabling a greater degree of abstraction than is possible

in traditional languages.

• Related to higher order functions is the compositional style of expression,

to break down more complex expressions into the combination of smaller

blocks, which encourages modularity in the design of libraries.

• Lazy evaluation, which aids declarative expression, such as infinite data

structures, for example streams, which provides the glue for combining the

higher order functions [42].
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• Advanced compilers, that are more capable of bridging the gap between

natural expression of concepts at the level of source code while maintaining

computational traction in the underlying execution model.

There is evidence from other domains that these features can be exploited to pro-

vide new methods and insights into a range of problems [45, 75, 85].

It is the hypothesis of this thesis that the use of pure functional languages

will provide a more expressive foundation for a toolkit for hybrid metaheuristics

than traditional imperative languages. This constitutes the creation of a shallowly

embedded Domain Specific Language for metaheuristics in Haskell3. The shallow

embedding facilitates extension and rapid adaptation of the library through the

use of higher order functions and parachuting new functionality into chains of

composition.

1.3 Main Contributions

The main contributions of this thesis are:

• A revision of the approach to implementing metaheuristics in a functional

context through...

• ...an adaptation of a data flow model of computation to the implementation

of metaheuristics, through stream processing functions. These provide a

basis for a high level transformative and compositional style for hybridisa-

tion of the algorithms. The stream model also successfully aligns the pure

functional model of computation with the awkward issues in metaheuris-

tics including stochastic functions and a modular method for encapsulating

state.

• A combinator library for the expression and implementation of metaheurstics.

• Logical transformations, some of them encoded as compiler rules, to im-

prove the marriage of the high level stream transformation functions with

low level performance.

3Shallow embedding refers to a situation where the DSL for a problem is created using a

subset of the existing language (in this case Haskell) and operating directly upon values. A deep

embedding is where the DSL gives rise to a data structure representing a computation that can be

evaluated to run the program being created, and often involves parsers. Deep embedding has the

advantage of allowing reflection in languages which do not naturally support it [26].
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• A demonstration of the application of the library to facilitate rapid experi-

mentation on non-trivial problems, and the provision of effective specialised

metaheuristics that practically solve the problems.

1.4 Overview of the Thesis

The Thesis is divided as follows:

• Chapters 2 & 3 provide background on the two major subjects of the Thesis.

Chapter 2 provides the background of metaheuristics, their implementation,

tuning, hybridisation and usage, while chapter 3 provides background on

functional programming, the key concepts and its previous usage for opti-

misation in general and metaheuristics in particular.

• Chapter 4 discusses a variety of approaches that can be used to implement

and hybridise metaheuristics in pure functional languages, showing how the

direct approaches are limited and introducing the stream based model that

this Thesis proposes.

• Chapters 5, 6 & 7 detail the stream based approach that has been taken.

Chapter 5 describes the combinators and shows how they may be used to

implement the major metaheuristic algorithms. Chapter 6 shows how the

combinators can be used to structure and manipulate functions that interact

with problem specific data at lower levels. Chapter 7 shows how the com-

binators provide the major forms of hybridisation that have been identified

by the wider research community.

• Chapter 8 examines alternative approaches to constructing and manipulat-

ing the stream processors that form the core of the framework.

• Chapters 9 & 10 engage in evaluations of the framework that has been pro-

posed. Chapter 9 provides a comparison with two frameworks implemented

in traditional object oriented languages, focusing upon the clarity of the im-

plementations of example metaheuristics and a comparison of performance

data. Chapter 10 presents the successful usage of the combinators to ex-

plore the design space of possible metaheuristics used in an algorithm for

detection of homology in proteins.
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• Chapter 11 concludes the Thesis, summarising what has been presented

in the previous chapters and proposing a number of possible directions for

future work and research.



Chapter 2

Combinatorial Problems and

Metaheuristics

This chapter will describe combinatorial problems in greater detail. It sets out

the issues involved in finding high quality solutions to them, how these difficul-

ties manifest themselves when using exhaustive search algorithms and how meta-

heuristics can avoid similar pitfalls. Five major families of metaheuristics are then

described, with details of their traditional imperative expression.

2.1 Discrete Combinatorial Optimisation Problems

A discrete combinatorial problem consists of a set of variables and a set of con-

straints. Each variable has a finite domain, and a solution to a problem is a set of

assignments of values to the variables. A constraint is a logical predicate which

provides additional relationships between the variables of a problem and the val-

ues that these variables can take.

For example, consider assigning jobs to a machine in a factory. The machine

has four timeslots, and four named jobs. The domain of each timeslot variable is

the set of jobs. In any given solution each of these jobs is assigned to a timeslot,

where each job can be used only once, and each timeslot can be used only once.

This uniqueness characteristic is captured as the constraints of the problem. This

8
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can be expressed more formally as:

vars = {timeSlot0, timeSlot1, timeSlot2, timeSlot3}

jobs = {a,b,c,d}

S = {{(var, job)} | var ∈ vars, job ∈ jobs}

subject to

{ j | ( , j) ∈ s,s ∈ S} ≡ jobs

{v | (v, ) ∈ s,s ∈ S} ≡ vars

A possible solution to this problem is:

{(timeSlot0,a),(timeSlot1,b),(timeSlot2,c),(timeSlot3,d)}

In the problem above the constraints described the unique usage of timeslots and

jobs, which would be considered common sense in real life. The example will

now be extended with a set of time constraints, drawn from the user requirements,

where time is represented as the index of the time slot to which the job is assigned.

timeO f (a) < timeO f (b), timeO f (d) < timeO f (a), timeO f (c) > timeO f (d)

The presence of these new constraints to the example previously shown reduces

the set of possible real, or valid, solutions to three;

{(timeSlot0,d),(timeSlot1,a),(timeSlot2,b),(timeSlot3,c)}

{(timeSlot0,d),(timeSlot1,a),(timeSlot2,c),(timeSlot3,b)}

{(timeSlot0,d),(timeSlot1,c),(timeSlot2,a),(timeSlot3,b)}

Where the problem consists of only variables and constraints, the problem

is called a decision problem and the task is to find a legal assignment. Other

problems introduce the concept of an objective function, a way to price or or-

der assignments that obey all the constraints. In these combinatorial optimisation

problems the task is to find the best possible assignment, with respect to the objec-

tive function. The previous example can be extended with an objective function

of the following form;

ob jective = minimise(lateness)

where

lateness = Σ max(0,n− targettimeSlotn)

target = [(a,2),(b,3),(c,1),(d,4)]

This objective function can be used to calculate the values of the three possible

solutions to the problem:
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{(timeSlot0,d),(timeSlot1,a),(timeSlot2,b),(timeSlot3,c)}

lateness = max(0,0−4)+max(0,1−2)+max(0,2−3)+max(0,3−1)

= 0+0+0+2

= 2

{(timeSlot0,d),(timeSlot1,a),(timeSlot2,c),(timeSlot3,b)}

lateness = max(0,0−4)+max(0,1−2)+max(0,2−1)+max(0,3−3)

= 1

{(timeSlot0,d),(timeSlot1,c),(timeSlot2,a),(timeSlot3,b)}

lateness = max(0,0−4)+max(0,1−1)+max(0,2−2)+max(0,3−3)

= 0

Hence for this toy optimisation problem the optimal solution is

{(timeSlot0,d),(timeSlot1,c),(timeSlot2,a),(timeSlot3,b)}

2.1.1 Complexity

Problems exist which fall within the field of discrete combinatorial optimisation

but can be solved with efficient polynomial time algorithms, by exploiting regu-

larities in the problems. A well known example of this is the calculation of the

minimum spanning tree of a weighted graph, which may be constructed in poly-

nomial time in the number of vertices and edges of the graph.

The types of combinatorial optimisation problems that metaheuristics are called

upon to deal with are NP-Hard problems. For these problems there are no efficient

polynomial time algorithms which will find provably optimal solutions, and the

number of solutions that must be considered to (provably) solve them rises ex-

ponentially with the sizes1 of the problems. This rising number of solutions to

consider causes the computational time required to increase exponentially with

the size of the problems.

For example in the previous toy problem there were 4 time slots and 4 values.

The number of basic solutions is the number of ways to arrange 4 values in a

sequence, which is 4! (24). However if the number of slots and elements to arrange

increases to 6, then the number of basic solutions becomes 6! (720), where as if

only the values increases then the number of possible arrangements becomes
(

6
4

)

!

(1012).

1The size of a problem will be measured in terms of the number of assignments that are required

to produce a solution. For example a TSP with 10 cities is size 10, since there are 10 positions in

the sequence that must be assigned values.
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2.1.2 Exhaustive Search Methods

Exhaustive, or complete, search algorithms guarantee to find an optimal solu-

tion to a combinatorial problem, given enough time. The most naive approach to

search is to use a generate and test methodology. In this algorithm every solution

to the problem is constructed, and each in turn is tested for the constraints of the

problem, evaluated for the objective function and finally the best selected.

Many well known algorithms such as depth first and breadth first search on

trees are in the category of naive algorithms. However these tree based algorithms

do allow for an optimisation of the construction process, the embedding of the

constraint testing within the tree. Using this approach partial solutions (and every

solution that might have been created from them) may be pruned from the tree

when they fail to satisfy any constraint in the problem. These pruned trees are the

basis for the constraint programming methodology.

Branch and bound algorithms operate in a similar way to the constraint-pruned

trees. These algorithms make use of a bounding heuristic, which gives a limit on

the quality of solutions which may be derived from a partial solution. This allows

the tree to be pruned with respect to the best solution found at that point, without

removing branches that may contain the optimal solution, and thus reducing the

number of solutions that must be evaluated.

While the pruning of search trees is a powerful tool, they will usually only

be able to remove a proportion of the possible solutions that must be considered.

Given that the number of solutions rises exponentially as problems grow in size

and complexity, these algorithms eventually all reach a point where they cannot

complete within practical time limits. Most real world optimisation problems are

significantly larger than the sizes of problem which can reasonably be dealt with

by complete algorithms.

2.1.3 Example Problems

While optimisation tasks are highly varied in practice, the textbook example prob-

lems are Satisfiability (SAT) and the Travelling Salesperson Problem (TSP). In

this section these two problems will be described in more detail, and the TSP will

subsequently be used for the example problems in this Thesis.
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2.1.3.1 Satisfiability

SAT is a the most abstract form of a decision problem, the task of finding an

assignment of variables such that all constraints (known as clauses) are satisfied.

Formally a SAT is defined as;

vars = {x0,x1,x2 . . .}

x ∈ {True,False}∀x ∈ vars

terms =
⋃

x∈vars

{x, 6 x}

clauses = {{a,b,c . . .} | a,b,c . . . ∈ terms}

subject to
∧

c∈clauses

(
∨

t∈c

t)

While it is possible to tackle this problem without an objective function, as a

pure decision problem, it is often approached as a minimisation of the number of

currently unsatisfied clauses. This removes the constraints in the previous model,

and introduces the following objective function;

ob jective = minimize( ∑
c∈clauses

if (
∨

t∈c

t) then 1 else 0)

Libraries of these problems can be found online for the purpose of experimen-

tation, for example SATLIB [36].

2.1.3.2 TSP

The Travelling salesperson problem can be seen as the task of finding an optimal

route within a transport network. However more abstractly it is the task of finding

a shortest Hamiltonian cycle in any connected weighted graph, that is a cycle

passing through every vertex exactly once, where the sum of the edge weights is

minimised. Formally;
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G is a graph (V,E) of vertices and edges subject to

G is a complete graph s is a hamiltonian cycle of G ∀s ∈ S

p is a pricing function from E→ R ob jective = minimize(cycle cost ∈ S)

S = {{e} | e ∈ E} where

cycle cost(s) = ∑
e∈s

p(e)

Figure 2.1 illustrates a simple Euclidean TSP, with some potential solutions to

the problem. This example was generated stochastically, however TSP problems

can be drawn from the locations of real cities, or found in other fields of science

and technology such as X-Ray crystallography [5]. These problems can be sym-

metric (the length of every edge in the graph from A to B is the same as that from

B to A) or asymmetric.

(a) Points in a plane, the basis of a

Euclidean TSP.

(b) An set of edges that is not a legal

solution.

(c) A non-optimal solution.

Figure 2.1: An example Euclidean TSP.

Some groups of travelling salesperson problem have been proved to have prop-

erties that give rise to bounding functions for branch & bound, for example a lower
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bound in a Euclidean TSP is the minimum spanning tree of a set of points. Effec-

tive bounding functions for special classes of the TSP has allowed for the solution

to very large instances in practical computational time. However not all problems

admit such functions, for example asymmetric problems often do not have good

functions for the lower bound of a tour. In all cases as the size of the instances

grows (measured in terms of the number of vertices in the problem), the travelling

salesperson becomes impractical to solve, whilst easy to describe.

Many examples of the TSP can be found online, for example the TSPLIB [66]

provides a library of known problems of various forms and drawn from a variety

sources.

2.1.3.3 Real world problems

In practice real world problems, while having the same underlying issues as SAT

and TSP, will often exhibit many additional properties and characteristics which

must be dealt with. For example when timetabling for a school or university there

may be multiple, possibly contradictory, objectives to try to optimise against, such

as the preferences of the teachers, the students and the administration.

While it is often possible to transform these problems into instances of the

TSP or SAT, in practice it is often more practical to design specialised algorithms,

exploiting specific properties of the problems, to more efficiently resolve conflicts

in the constraints.

2.2 Metaheuristic Concepts

While large problem sizes preclude finding provably optimal solutions, this does

not preclude making an attempt to solve a problem. One approach is to use an

exhaustive method2 while limiting the time allowed for search and taking the best

solution found at the point of termination [64, 68]. However to make exhaustive

methods effective requires discovering good bounding functions for each specific

problem, and this can be a time consuming task. In practical terms heuristic and

metaheuristic methods tend to outperform exhaustive search on new or rapidly

changing problems.

2It is presumed that the choice of exhaustive algorithm would be the best possible which is

known for the particular problem, using appropriate bounding functions and exploring the tree in

a best first order.
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Heuristic methods use problem specific rules of thumb to find solutions to

problems, usually in a constructive manner. For example, a solution to a TSP may

be constructed through iteratively adding edges to a solution, where the next edge

to be added is both the minimum available and legal in the context of the previous

edges.

Heuristic methods suffer from the drawback of requiring problem-specific de-

cision algorithms to be created. To overcome these weaknesses researchers devel-

oped a group of iterative algorithms known as metaheuristics3. These are heuristic

in that they make use of rules of thumb for investigating problems, but are more

abstract and may be applied to many different problems. They can be described

as generically definable rules of thumb for optimisation algorithm construction.

Metaheuristics tackle optimisation problems by moving between complete so-

lutions to problems i.e. assignments which do not break any of the constraints

of the problem, but which may not be of optimal quality. The moves that the al-

gorithm makes are between solutions that are defined as similar to one another.

The definition of similarity is problem specific, and a problem may admit more

than one definition of similarity. For example, in the TSP one form of similarity is

the concept of adjacent city exchange, where two solutions are similar if their se-

quences are the same, except two of the cities, which are adjacent in the sequence.

The use of this form of similarity can be seen in Figure 2.2.

(a) CDAE⇒ CADE (b) BCAD⇒ BACD (c) Final State

Figure 2.2: A sequence of TSP solutions, where pairs of nodes are exchanged in

each solution.

3This Thesis will restrict its definition of a metaheuristic to iterative algorithms, however, if

the definition were taken as a generally applicable rule for writing algorithms which generate

solutions then greedy constructive algorithms could also be seen as metaheuristics. Greedy con-

structive algorithms make use of a problem specific heuristic to define the quality of decisions in a

constructive process and always take the best decision, and hence are based upon a more generally

applicable approach.
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Figure 2.3: An example Euclidean TSP demonstrating similarity of solutions un-

der limited edge modification.

2.2.1 Why should metaheuristics be effective?

The effectiveness of metaheuristics is based upon the assumption that solutions

with a similar structure will also have similar values. For example, consider the

TSP in Figure 2.3. This example gives two possible hamiltonian cycles through

the problem, which differ in terms of edges (A,F),(B,G)/(A,B),(G,F). The

difference in value will only be affected by the differences in cost of these edges;

the remaining edges and their contribution to cost remaining unchanged.

This intuition suggests that there are regions of higher quality solutions, con-

nected by their similarity, and regions of low quality solutions. Metaheuristics

seek to explore the set of solutions, following the patterns of the solution qualities

towards groups of higher quality solutions.

This assumption of similarities of value in the same locality is not always

well founded. For any strategy it is possible to design trap problems, where the

landscape of the problem will lead the search process away from the optimal

solution rather than towards it. However many problems, including most real

world problems, do have the high locality property, and so metaheuristics may be

used successfully in practice.

2.2.2 Similarity and Neighbourhood

The concept of similarity of solutions gives rise to the concept of the neighbour-

hood of a solution, the set of all solutions which are similar to a given seed so-

lution4. A function that maps every solution in a problem to its complete neigh-

4A neighbourhood is usually defined constructively as those solutions which may be generated

from a seed, through a function which generates similar solutions. The use of constructive methods

gives rise to the alternative definition of similarity, solutions that are one edit step apart.
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bourhood is called a neighbourhood function.

Perturbation functions are a related approach to neighbourhood functions,

which generate only one arbitrary solution from a particular seed, typically through

a stochastic decision making process. The complete set of solutions which a per-

turbation function can generate from any particular seed is equivalent to a neigh-

bourhood relationship. In practice they may be implemented in terms of a choice

from a neighbourhood function, but are more often a separate type of operation.

In imperative languages the stochastic component is usually hidden as the implicit

use of a random number generator or other internal state.

abcd

acbd

abdc

bacd

dbca

dcba

cabd

acdb

cbad

cadb

bdca

cbda

cdba

bcda

adbc

badc

bcad

adcb

dabc

bdac

dacb

cdab

dbac

dcab

Figure 2.4: The graph of a solution space with adjacent city exchange neighbour-

hood relations for a small TSP.

Each definition of neighbourhood for a particular problem imposes a structure

on the set of solutions to that problem, a graph structure where each solution is a

vertex and edges are the neighbourhood relationships. The search algorithms can

be thought of as navigating these graphs, exploring the landscape. An example of

such a graph structure for a small TSP problem can be seen in Figure 2.4.

Different metaheuristics typically make use of either neighbourhood or pertur-

bation functions to interact with the problem representation. For example Simu-

lated Annealing tends to use perturbation functions while Iterative Improvers tend

to use neighbourhood functions.

2.2.3 Recombination

Neighbourhood and mutation operations are the basis of so called point based al-

gorithms, which operate upon one solution a time. Population based algorithms
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operate differently, maintaining a collection of solutions at each stage, and pro-

ceeding through the recombination of either the whole, or subsets of the collec-

tion. For example Genetic Algorithms, from which the name population comes,

operate upon a collection, selecting small numbers (typically two) and breeding

solutions from these selections to generate a new population.

The primary method for this is the recombination function, which maps a col-

lection of solutions onto a single new solution. Recombination functions are typ-

ically designed to preserve characteristics such that as the number of parent solu-

tions possessing a trait rises, so does the likelihood of the new solution possessing

this trait. Choices must often be made between mutually exclusive components

of different parents and in these cases stochastic processes are often employed.

Hence recombination functions will usually generate a single arbitrary solution

from an input collection, where several are possible.

This Thesis further describes recombination functions as an analysis operation

that yields information about characteristics and commonalities of these elements

in the parent solutions. The choice of characteristics is then carried out by a sepa-

rate constructive function, taking into account the constraints of the optimisation

problem being considered. A final repair function is then used, as the selection of

characteristics can often leave holes in the final solution, such as is seen in com-

mon edge detection and selection for the TSP [58]. This description is adopted

because it gives stronger guidelines for how to create recombination operations

for many problems which have the desired characteristic preservation properties.

2.2.4 Generically definable search processes

All metaheuristics seek to define a generically applicable process of decision mak-

ing which can be used to tackle search problems. At an implementation level there

is a tension between the need to produce executable code and the desire to abstract

the general patterns of search that the metaheuristics seek to use. This tension is

resolved through the definition of a set of operations that provide a structure for

the generically defined metaheuristic to operate upon. For example

Iterative Improvement requires that solutions to the problem are orderable and

that a neighbourhood function is provided. Generically defined selection

methods for orderable collections are then employed to drive the search

process.

Genetic Algorithms require that solutions are orderable and that a recombination
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operation is provided. Generically defined stochastic selection processes are

then employed to manage selection from populations for the recombination

process, and hence drive the search process.

It is interesting to consider if this is the right level of abstraction for meta-

heuristics to be defined over, and this question will be returned to in later chapters.

2.3 Metaheuristic Algorithms

Metaheuristics can be grouped into a number of different families, where each

family is based upon an underlying idea for how to conduct the search process.

This section lists the families which will be the focus of the remainder of the the-

sis, with a description and some of their most common variations. These families

have been chosen as the focus of this thesis because they are the most common

examples in the literature and encompass a range of major features of the algo-

rithms such as (1) population and point based methods (2) memory and learning

(3) stochastic and deterministic operations.

2.3.1 Random Generation & Random Walk

Random generation of new solutions and strategies that move from solution to so-

lution within a search space making all decisions randomly are degenerate search

processes, in that there is no strategy. These algorithms typically operate through

iterated perturbation operations, or stochastic selection from neighbourhood func-

tions if it is desirable to preserve the concept of neighbourhood, otherwise random

assignment can be used to create entirely new solutions.

Both Random Generation and Random Walk are often used as a component

of other hybrid strategies, as methods to escape from local minima. This is the

situation where another strategy has explored and found solutions, but has now

ceased to find further improving solutions. At this point it is desirable to move the

search on to a new part of the search space where better solutions may be found,

either by restarting at a new solution or allows the process to wander for a while.

These degenerate approaches are also used to provide an initial baseline for

assessing the performance of other metaheuristic methods.
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2.3.2 Iterative Improvers

Iterative Improvers, also known as hill climbers, are the simplest form of guided

metaheuristic whose defining feature is that the algorithm should not move away

from a solution unless the new solution improves upon the previous solution.

These algorithms have the useful property that they often rapidly improve upon

initial solutions; their disadvantage is that they also rapidly become stuck in solu-

tions with no local improving move.

These are usually implemented using a neighbourhood function5. In this for-

mulation, a number of solutions to a problem are generated from the current so-

lution, and one is chosen which improves upon the current solution. A number of

variations can be created through the method used to choose from among these

improving solutions;

First Found: accept the first improving solution seen in a neighbourhood.

Maximal: select the best solution from those which improve within a neighbour-

hood.

Minimal: select the weakest6 solution from those which improve within a neigh-

bourhood.

Stochastic: select a solution at random from those which improve within a neigh-

bourhood. While a uniform distribution is the most obvious, it is also pos-

sible to use other distributions, and when combined with an ordering of the

neighbourhood (e.g. best to worst) can give rise to many more variations

within this family of algorithms.

This family of subtly different techniques suggests a description of Iterative Im-

provers as the pairing of a piece of selection logic with the generic concept of an

improving neighbourhood.

The imperative template for this metaheuristic is given in Figure 2.5.

5It is also possible to implement Iterative Improvers using a perturbation method only. So-

lutions are generated by perturbation and only when an improving solution is found does the

algorithm move to it. This can be seen as a variation upon first found iterative improvement.
6The success or failure of a slow ascent strategy (relative to the other options) is dependent

upon the landscape of the problem. In practice this is more likely to be a useful variation in hybrid

strategies where a range of tactics is employed.
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1. currentSol← a random solution

2. repeat

(a) n← neighbourhood of currentSol

(b) n←{ s | s ∈ n,s better than currentSol }

(c) terminate program if n ≡ {}

(d) currentSol← perform select logic upon n

Figure 2.5: An imperative implementation of the template for Iterative Improvers

2.3.3 TABU search

TABU search [27, 28] is usually introduced as an adaptation of the first found

Iterative Improver algorithm, which makes use of memory to allow the strategy to

attempt to make further progress once the Iterative Improver would have ended.

Recently seen solutions are stored in a TABU (FIFO) list (the memory) of fixed

size and as the algorithm proceeds older solutions are forgotten. At each stage

newly generated solutions are only considered if they are not present on the current

TABU list and in this way the algorithm limits how likely it is to revisit solutions.

Like Iterative Improvers, TABU search is usually based upon a neighbourhood

function. These neighbourhoods are then filtered to remove solutions that can be

matched by elements present in the TABU list. The simplest version of TABU

search, based upon pseudo code from [27] is presented in Figure 2.6. This version

will always take the best solution in the TABU pruned neighbourhood, and so at

first will act like a maximal iterative improver. Once a local minimum is reached,

the TABU extension begins to have more impact, allowing the process to leave

the local minimum, moving to the best solution in the local neighbourhood that

is not in the TABU list. This precludes the process retracing the path that led to

the minimum, instead forcing it to follow a new search path. In this way TABU

search can be thought of as an escape strategy for an iterative improver.

In practice the comparison of solutions to detect membership of the TABU

list is a very slow operation, and so it is more usual to store TABU operations.

Under this system, the modification used to create a new solution is stored, and

the reversal of the modification is TABU, thus still disallowing undoing recent

actions. For example, in the TSP a pair of cities may be exchanged to create a

new solution, the swapping of these cities subsequently would be TABU.

The use of TABU operations introduces a new issue to TABU search, that an
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1. currentSol← a random solution

2. tabuList← {}

3. repeat

(a) tabuList← tabuList ∪ { currentSol }

(b) n← neighbourhood of currentSol

(c) possibleCandidates← /0

(d) for each s ∈ n

if s /∈ tabuList then

possibleCandidates← possibleCandidates ∪ {s}

(e) currentSol← best solution ∈ possibleCandidates

(f) if tabuList too large then

tabuList← tabuList − {oldest element of tabuList}

Figure 2.6: An imperative implementation of the template for TABU Search,

based upon a description in Glover [27].

operation may be on the TABU list, but its application might produce an unseen

and improved solution to the problem. To combat this the concept of aspirational

acceptance [27] was introduced, where the first instance of an improving solution

is always accepted, and solutions that do not improve and are on the TABU list are

removed from the neighbourhood. The imperative template for this aspirational

TABU search can be found in Figure 2.7.

In a similar manner to Iterative Improvers, the formulation of TABU search

allows for a number of variations based upon the selection methods in use. The

standard method, as seen in the imperative template, is to use a first found selec-

tion with the improvement element until that fails, at which point it is normal to

take the best of the elements not found on the TABU list, a maximal selection

operation. Both of these selection operations can be varied, making use of the

options that have already been described in the previous section 2.3.2.

The model of TABU search described in Figure 2.7 is also known as short term

memory [27] TABU. More complex variations have been created with medium and

long term memory, each of which is prioritised in a different way.

Introduction of stochastic elements into TABU search has also been used.

These may take the form of stochastic selection routines, stochastic deletion from

the neighbourhood set or stochastic modification of the TABU list, at any given
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1. currentSol← a random solution

2. tabuList← {}

3. repeat

(a) n← neighbourhood of currentSol

(b) nextCandidate← /0

(c) nextCandidate← for each s ∈ n

i. if s better than currentSol then

return s and exit loop

ii. if s ∈ tabuList then

n← n − {s}

(d) if nextCandidate ≡ /0 then

nextCandidate← perform select logic on n

(e) tabuList← tabuList ∪ { information about nextCandidate }

(f) if tabuList too large then

tabuList← tabuList − {oldest element of tabuList}

(g) currentSol← nextCandidate

Figure 2.7: An imperative implementation of the template for aspirational TABU

Search, based upon a description in Glover [27].

step of the process. The use of stochastic modification of the strategy can improve

speed of search, by reducing the number of computations required at each step and

often improves robustness of the search strategy through improved variation in the

solutions explored. Stochastic modification of the TABU list is a key component

of Robust Taboo Search [78].

2.3.4 Simulated Annealing

The Simulated Annealing (SA) metaheuristic was proposed by [50] and later inde-

pendently by [9]. The algorithm draws inspiration from statistical thermodynam-

ics, specifically the modelling of the annealing process. It uses the perturbation

functions rather than neighbourhoods and will usually use stochastic perturbation

rather than deterministic selection.

At each step in SA a current solution is perturbed to generate an alternative

solution. The perturbation may be defined in terms of the random selection of a

value from a small neighbourhood, as might be found in Iterative Improvement
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1. currentSol← a random solution

2. t← initial temperature

3. repeat

(a) p← perturb currentSol

(b) acceptProbability← movementProbability (currentSol,p,t)

(c) r← generate random value

(d) if acceptProbability > r then

currentSol← p

(e) t← update temperature t

Figure 2.8: An imperative implementation of the template for Simulated Anneal-

ing

or TABU search, however SA is usually more effective where the range of solu-

tions that are possible is larger. This is computationally feasible because only one

solution is considered at each step.

Once an alternative solution has been created it is then accepted or rejected

by a decision process which is controlled by a real valued temperature, which

constrains the quality of a solution that is likely to be accepted. Temperature is

determined by a temperature strategy, which may be defined mutually recursively

with other parts of the system. A template for the standard imperative implemen-

tation of Simulated Annealing can be found in Figure 2.8.

The standard computation to calculate the probability of acceptance or rejec-

tion of a solution at a given temperature is the same as that proposed in the original

papers on Simulated Annealing and derived from statistical thermodynamics. The

function is defined as

saAccept(c, p, t) = e
energy(c)−energy(p)

t

where c is the current solution, p is the perturbed solution, t is the current temper-

ature of the system, and the energy function gives the quality of the solutions. The

output of this acceptance function is treated as a probability, and movement occurs

where a uniformly generated value between 0 and 1 is higher than the result of this

function. The saAccept equation will always give a value greater than 1 for situa-

tions where the new solution p is better than (where the objective is minimisation)
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the previous solution, and hence be certain of being accepted. Hence Simulated

Annealing will act like an Iterative Improver where the opportunity presents itself.

The most common component of Simulated Annealing which is varied from

problem to problem is the temperature strategy (also known as a cooling schedule,

where the temperature can only reduce). Commonly only the constants of the

cooling schedule equation are varied when tuning SA. The three major groups of

cooling equation are used:

linear, a linear relationship exists between the temperatures, usually a subtraction

of some constant, however this strategy is not usually effective, with the

temperature dropping too quickly.

logarithmic, a logarithmic relationship between the temperatures, c
log(t+d) , where

c is start temperature, t is the time that has elapsed (or the number of itera-

tions) since the start of the process and d is a further parametrising constant.

geometric, a geometric relationship between the previous and the current tem-

perature, usually multiplication by a constant between 0 and 1.

More complex temperature strategies are possible, involving reheating the system

once a point of stability or convergence of the solution quality over a specified

period has been reached, or staying at a specific heat level until convergence has

been reached. An alternative approach that has been tried is to apply a heating

strategy rather than cooling [54]. Where the temperature strategy depends upon

the relative qualities of the solutions being found by the search it is known as an

adaptive temperature strategy.

Geometric cooling strategies are the most commonly used, providing a good

balance between the linear schedules which are too fast, and the logarithmic strate-

gies which are too slow. It has however been proved that a logarithmic strategy,

with a starting temperature which is high enough relative to the energy values of

the solution space, and with a small enough value for d will converge to the op-

timal solution of the optimisation problem [31]. This result is not usually used

in practice because the cooling rates and corresponding time requirements for the

algorithm tend to be impractically long.

Simulated Annealing can be thought of as a hybrid of Iterative Improvement

and Random Walk, where the balance between the two strategies is controlled by

the current temperature of the system. At high temperatures the algorithm will

tend to act more like a Random Walk, but as temperatures drop it acts more and

more like an Iterative Improver.
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2.3.5 Genetic Algorithms

Genetic Algorithms are an approach to optimisation inspired by the process of

evolution found in nature, first formalised in their current form in 1975 [35]. In

each iteration these algorithms operate over a population of solutions rather than

from an individual point in the solution space. The algorithm mimics natural

evolution through selecting and breeding solutions from the population such that

better solutions are more likely to contribute to solutions in the future population.

In order to encourage movement through the solution space away from known

high quality solutions, genetic algorithms also make use of perturbation in the

role of mutation in natural systems, making stochastic changes to some members

of the population at each iteration.

The process of recombination usually operates upon only two solutions at a

time, in a similar manner to the most common pairwise reproduction processes

found in nature. Mutation rates can vary a great deal, but are usually set quite low,

as high mutation rates lead to far too chaotic a search process. The template for

imperative genetic algorithms can be seen in Figure 2.9.

1. population← generate popSize solutions

2. repeat

(a) nextPopulation← {}

(b) loop from 1 to popsize

i. r← {}

ii. loop from 1 to how many to recombine

r← r ∪ { select 1 from population }

iii. nextPopulation← nextPopulation ∪ { recombine r }

(c) mutateSet← select for mutation from nextPopulation

(d) mutateSet’← { mutate m | m ∈ mutateSet }

(e) population← (nextPopulation − mutateSet) ∪ mutateSet’

Figure 2.9: An imperative implementation of the template for Genetic Algorithms

Selection processes in biological systems are based upon the concept of fitness

of the individual, with the concept that fitter individuals will breed with greater

success. This is mimicked in genetic algorithms through basing selection likeli-

hood on the value of the objective function of the optimisation problem.

Most variation and tuning of genetic algorithms is achieved through the size of
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populations and the rates of mutation. More complex refinements are based upon

how selection for recombination and mutation is performed. For example selec-

tion for recombination may be allowed to select each solution many times, only

once, or several times with some limit. The advantage of allowing each solution

to be selected many times is that good solutions are more likely to be selected for

recombination, however this can also limit the portion of the population which is

actively selected from, as it tends to pick from the best, ignoring the rest. Simi-

larly, mutation can be limited to the worst, or be applied with equal likelihood to

all solutions, or be based upon a fixed repeating pattern.

Other common patterns of effect in biological evolution can be used as inspi-

ration for further variations upon the basic genetic algorithm pattern. For example

the island evolution pattern [29], where a number of genetic algorithms are run in

parallel and occasionally exchange solutions, known as migration.

The standard methods of recombination are based upon taking two solutions

and creating a third, with elements of each. For example the crossover method [68],

applicable where the solution to a problem can be represented as a string or list of

numbers, creates a new solution by cutting these two strings and taking the first

half of one and the second half of the other. Crossover is effective for SAT prob-

lems but quickly runs into problems where the optimisation problem has more

constraints, such as TSP, because simple string slicing and concatenation often

produces illegal solutions [6]. Due to this problem the more general term, re-

combination, for functions which produce solutions in some way based upon the

parents is preferred in this Thesis.

2.3.6 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is also usually described as a population based

method, although it can be implemented with a population size of one, making it

a point based algorithm. The algorithms draw inspiration from the study of insect

colony construction and food foraging methods, first developed as algorithms for

optimisation in the 90s [16, 17].

ACO can be thought of as a reinforcement learning algorithm, which seeks to

learn how to construct good solutions. This is managed through the weighting of

possible decisions at each stage of the construction process, using the pheromone

metaphor, where the pheromones are computed from the solution or solutions of

the previous iteration.



28

(a) Random solutions to the TSP as

Pheromone Trails

(b) Pheromone trails for the TSP af-

ter a number of iterations

(c) The pheromone trail for the TSP

in the final state

Figure 2.10: An example of the iteration of pheromone trails for an ACO solution

to a TSP.
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Once a set of solutions is created and the value of their objective functions is

found, the objective values are converted into pheromone weightings, and summed

together to create an overall map of the problem. The future ants run over this

map making stochastic decisions, but weighting each one by the thickness of

the pheromones on the options ahead of them. Each group of ants add new

pheromones over the old trails, while the older trails decay with time, usually

managed by simply multiplying every value by some constant between 0 and 1.

This concept is particularly well suited to the TSP, since both are related to naviga-

tion of a graph structure. The TSP is used to illustrate the concept in Figure 2.10.

A template imperative implementation of the ACO can be found in Figure 2.11.

The original ACO methods operated over single solutions at a time, manag-

ing the pheromone build up using the fading concept. The alternative method

which has been explored is to use the ACO as a population based method, with

many solutions being generated at each iteration, and their pheromones collec-

tively making the new map [30]. Under the population based model fading of

previous trails can be eliminated, or not, as the programmer chooses. The ACO

method of pheromone based construction for solutions has also been proposed as

a more general way to perform recombination in genetic algorithms [6].

1. pheromones← {initialise pheromonesa}

2. repeat

(a) solutions← {}

(b) for i in {1 . . . number of ants }

solutions← solutions ∪ { create solution from pheromones}

(c) pheromones← degrade pheromones

(d) for s in solutions

pheromones← pheromones + pheromone trail of s

aThe initialisation can be done in a variety of ways, including a random setting of values

for each decision, but more usually all weights are initialised to 0.

Figure 2.11: An imperative implementation of the template for Ant Colony Opti-

misation
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2.4 Models of metaheuristic operation

The description of metaheuristic algorithms as a series of instructions or steps

shows some similarities between the algorithms, such as TABU and Iterative Im-

prover sharing a first found improvement concept. A number of alternative models

are presented here for the purposes of (i) showing how metaheuristics are taught

and thought about, (ii) illustrating how they operate in a more conceptual way and

(iii) finding a model that can form a basis for a practical functional library for

metaheuristics.

2.4.1 Navigation of a Graph

A common metaphor for the operation of metaheuristics is that of graph navi-

gation7, and one such description can be seen in [37]. The graph that is to be

navigated is formed of the candidate solutions, which give the vertices, and the

neighbourhoods of solutions which give the edges, such that if one solution is a

neighbour of another, then an edge will exist between them in the graph. At each

point in the process a metaheuristic will be at one of these vertices or solutions,

and will be able to examine the local neighbourhood, before making a decision to

move to one of these. In this way the action of decision-making is placed at the

heart of the description.

This metaphor provides a way to decompose the description of meta-heuristics

into two activities; (i) the construction of the graph and (ii) the navigation of the

graph. Given that a graph represents the solution space of a problem that is to be

solved, the size of a graph will grow at the same rate (exponentially) as the number

of solutions to a problem8. This exponential growth is relative to the number of

assignments in the model of the problem, which is the measure of the size of the

problem, as described in Section 2.1.1.

The use of a lazy language, such as Haskell, aids this division of the model

description from the search logic, as has previously been observed [42]. It is a

harder task in a traditional imperative language to achieve this, not least because a

naive implementation will attempt to allocate and compute the entire search space

7Another metaphor for metaheuristics, similar to that of exploring graphs, which is often used

is that of exploring a labyrinth.
8The graphs will also grow exponentially in terms of the edges as problem sizes increase,

however the size of the neighbourhoods is usually constrained, to keep the search process at each

iteration manageable. This leads to the vertex growth being the key issue, with the increase in

edges being a function of the increase in vertices.
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abcd_1

bacd_1 acbd_1 abdc_1

abcd_2 bcad_1 badc_1

Figure 2.12: An illustration of part of a repeating tree, representing a search pro-

cess.

for a problem, before beginning the search of the data structure. By comparison a

lazy language provides a memoized, on demand data structure, that either returns

values that are known, or augments the structure as it is explored.

2.4.1.1 Tree representation

The process of navigating a graph of decisions can be implemented directly in

declarative languages through the creation of a repeating tree of decisions, where

every vertex of the tree carries a solution of the problem, and where the levels of

the tree represents time, or number of iterations of the search process. The tree

can then be navigated in an equivalent way to the process of exploring the graph

of the solution space. Where two vertices share the same solution this approach

will cause the recomputation of the solution (Figure 2.12), however this is also

true of imperative implementations 9.

The use of an infinitely generating tree to represent the search space can be

used to allow the expression of some aspects of metaheuristics in terms of trans-

formations of the tree. For example a recursive modification of the tree to remove

all branches where the local relationship between the parent and child is not im-

proving, converts a tree into an improving tree, the basis for Iterative Improvement

algorithms as seen in Figure 2.13.

The repeating structure of the tree is more usefully employed when dealing

the the concept of a TABU filter. This would be a transformation which prunes

9In Haskell it is possible to memoize the function that computes each node of the tree [33].

If this is done then the resulting data structure is just a lazy representation of the graph of the

problem, however the longer the program runs for the larger the memory footprint that will be

built up. Ultimately this would result in exponential memory use and so may not be practical in

all circumstances.
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(a) An unfiltered tree

(b) The same tree after a filter-

ing transformation

Figure 2.13: An illustration of how a Rose tree structure, capturing neighbourhood

relationships may be filtered.

branches of the infinitely repeating tree based upon the recent series of solutions

used to get to that point. Since one solution may be reached several times, at each

point the pruning process can be different, giving a subtly different structure to

the tree.

Each level of the tree can also have the order of the child elements rearranged,

capturing other aspects of metaheuristics. For example, shuffling every level im-

plements stochastic aspects seen in algorithms such as random walk and stochas-

tic Iterative Improvement, whereas sorting the trees prepares them for algorithms

such as maximal improvement.

The trees can then be explored, or flattened, to yield the solutions of the al-

gorithm as a sequence. This approach of generation, transformation and flatten is

also seen in other work on search strategies in pure functional languages [47, 59].

Using this approach it is now possible to use the tree model of search to express a

number of point-based metaheursitics (such as Iterative Improvers, Random Walk

and TABU) in a compositional style. A sketch can be seen in Figure 2.14.

1. make tree

2. improvement prune

3. sort tree

4. left edge flatten

Figure 2.14: An abstraction of the process of Iterative Improvement through the

composition of a series of tree transformations.

2.4.1.2 Limitation

This metaphor for the representation of search spaces as a labyrinth of choices

to be navigated by the algorithm is most effective when dealing with the point
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based algorithms such as TABU, Iterative Improvement and Simulated Anneal-

ing. However the population based methods do not fit the model, operating over

multiple solutions and jumping to new solutions through recombination, rather

than navigating the labyrinth directly.

It is possible to adapt the tree model of search by replacing the solutions at

each vertex of the tree by populations, and the search moves between the pop-

ulations of the system, rather than through individual solutions. However find-

ing a satisfactory equivalent to the successor relationship for population based

method has been difficult. For the point based methods the successors of a node

represented a finite and relatively small neighbourhood of the solution. For a

population based method, the successors should represent the possible successor

populations, which is a neighbourhood of every possible population that could be

created through the recombination of the original population. This is at odds with

the basis of a genetic algorithm which already incorporates a clever marriage of

stochastic elements (the selection of each parent could be any in the population)

with the improving component (the selection is biased towards better parents).

This raises many questions such as (i) in what order are the populations generated

by the construction process, and (ii) what do transformations of the tree, such as

sorting, now mean? The size of this neighbourhood of populations also presents

practical difficulties for many of the transformations previously considered such

as sorting and selecting, which must now consider combinatorially large neigh-

bourhood sizes.

2.4.2 Expansion and Contraction of Decisions

The graph model of metaheuristic operation is not practical for population based

methods, but a model of the algorithms as a series of instructions does not clearly

identify the underlying patterns of computation being used. The ”expansion and

contraction” model is proposed in this Thesis as a more abstract model, one based

around the decision-making processes of the algorithms.

Figure 2.15 shows an example of this model when applied to a first found

iterative improver. The neighbourhood function increases or expands the options

that are available within the metaheuristic. The later transformations then reduce

or contract the number of options that are available until a final decision is made.

The process of the algorithm becomes a cycle of enumerating options, reducing

these options and finally making specific selections from these options.
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Figure 2.15: Model of first found iterative improvement as the expansion and

contraction of decisions.

This model of metaheuristics can be applied to population based algorithms

such as genetic algorithms, where the population provides the initial supply of

options, and selections reduce this down until there are two parents. The recom-

bination action is then applied to reduce these two into one new solution. The

repeated application of this action to a collection gives rise to a new population of

options.

This model can also be applied at a finer grain to the process of perturbation,

where the perturbation of a solution is modelled as the creation of options and

the filtering and selection between these options until a new complete solution is

created. This concept will be revisited to in Chapter 6.

2.5 Tuning, Fitting, and Hybridisation

While used to tackle large instances of combinatorial problems, metaheuristic al-

gorithms are not silver bullets. The No Free Lunch Theorem [86] says that there

is no one metaheuristic, nor one set of settings for any given metaheuristic, which

is ideal for all problems. Another way to describe this concept is that maximising

for performance on one class of problem will be offset by worse performance on

another class of problem.

Alleviating these issues is a major topic in metaheuristics and has led to a

number of different approaches. One method of avoiding the danger of a single

method for a problem is work on hybridisation of algorithms, combining two or

more algorithms to diversify the search and enable each individual technique to

build upon the results of the others [65]. One approach to hybridisation is to ex-

amine the actions and patterns of computation in existing metaheuristics and pro-
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vide a general template structure for the metaheuristic designer [24,81]. The other

method is to use computers to automate the processes of tuning settings [4] and the

automation of the design of metaheuristics, a field known as hyper-heuristics [7].

A further time consuming task is the creation of the low level operators, such

as neighbourhood and recombination, for an optimisation problem. These oper-

ators must be created for each problem, to bridge the gap between the high level

metaheuristic logic and the problem specific data structures.

2.5.1 Design of Low Level Operators

The three key forms of low level operator have already been discussed and are;

neighbourhood, perturbation and recombination. Each problem will usually admit

more than one of each form of operator. Each operator imposes a different struc-

ture on the search landscape, which the metaheuristic will be required to navigate.

How effective a final metaheuristic will be is dependent upon how well the search

process is able to explore the landscape created by the operator. Changing the

operator can improve the alignment between the search process and the solutions

of the problem, enabling it to find better solutions more easily.

For example, in the TSP perturbation and neighbourhood operations can be

based upon the swapping of cities in the sequence. However this tends to be less

effective than operations based upon the concept of a set of edges forming a path

in the graph, where change occurs through deleting and inserting edges [58]. This

pattern extends to recombination, with the most effective recombination method

being based upon constructing solutions where as many edges as possible are

found in one or both of the parents [58].

A simple solution to this difficulty of operator design is to reduce the dimen-

sionality of the problem. In the case of neighbourhood functions, this can be

interpreted as increasing the size of the neighbourhoods, to allow the search pro-

cess to explore more of the search space more quickly. This quickly leads to the

theoretical best situation of every solution being in the neighbourhood of every

other solution, and the search process simply picks the best. However in practical

terms this best situation is clearly impractical, and illustrates the need for opera-

tors to balance a trade off between the structure of the landscape that they impose

upon the problem and the computational cost of generating new solutions.

The choice and design of low level operators is as important as the tuning of

basic parameters to metaheurstic success.
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2.5.2 Hybridisation

The hybridisation of metaheuristic techniques is, perhaps, an artificial concept,

which has arisen for historical reasons. Raidl puts it this way;

At the beginning, however, such hybrids were not so popular since

several relatively strongly separated and even competing communi-

ties of researchers existed who considered their favourite class of

metaheuristics generally best and followed the specific philosophies

in very dogmatic ways. [65, p. 2]

Hybridisation is the exploration of algorithms with the aim of finding more

successful methods for optimisation, through the combination of various concepts

from the available toolbox. The topic of hybridisation will be covered in more

detail in Chapter 7.

2.5.3 Tuning

When first implementing a metaheuristic for a combinatorial problem the initial

setting of parameters for the algorithms is often done with very little information

about the problem. It is subsequently found that the initial metaheuristic created

this way is fairly ineffective, and experimentation must be carried out in order to

achieve reasonable and consistent solution quality. The setting of parameters to

maximise performance for particular problems or classes of problem is known as

tuning.

The tuning of the parameters of metaheuristics for particular problems is known

to be a difficult task, where “trial and error” [82] is often used to discover the cor-

rect values. The problem of discovering how to set the parameters in a more

scientific way has been investigated (for an example see [13]) however the range

of possible values for the parameters can make this into a combinatorial problem

itself. For this reason the approaches of machine learning [3] and Hyperheuristics

have also been turned towards the task of automating the tuning of parameters for

metaheuristic algorithms.

It has previously been pointed out that some parameters to metaheuristics,

such as problem specific operators, are functional parameters, rather than static

values. This Thesis will restrict itself to considering these functional parameters,

and not consider the tuning of static values further.
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2.5.4 Hyperheuristics

Hyperheuristics [7] refers to a form of metaheuristic research that focuses upon

automatic development of metaheuristic search strategies. This can either be car-

ried out as offline10 development of a metaheuristic before using the algorithm in

a practical context, or online development and execution on problems.

2.6 Summary

This chapter has dealt with the background material on metaheuristics, generically

definable rules of thumb for decision making in iterative search processes, and the

problems that they are typically called upon to deal with. The major algorithms

that will be the focus of this Thesis have been introduced and several models of

how they operate, both for metaphorical description and practical implementation,

have been described.

The final model that was described, using a concept of expanding and con-

tracting sets of decisions, provides additional insight into the description of meta-

heuristics as generic patterns of decision making. The model causes the design

of metaheuristics to become the task of understanding where choices are coming

from, before applying a number of standard computations (such as selection or

filtering) to decide how to choose between them.

While metaheuristics have limitations, these have been described and the ap-

proaches that are taken by metaheuristic researchers and practitioners to overcome

them (tuning and hybridising) have been described. In general the various parame-

ters, operators, tuning and hybridisation are all treated as different issues and tasks

in the literature. However in a functional programming context, where functions

can be parameters and return types, all of these different components in meta-

heuristics can be treated as first class components of the language. For example

operators are just parameters to metaheuristic algorithms and hybridisation is the

combining of metaheuristic functions.

10The terms offline and online here are used in the same sense as in machine learning, where

offline learning means development against training data and evaluation against test data, as sepa-

rated from the execution of the result in a practical context. Online learning is the development of

the metaheuristic simultaneous to its usage.
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Functional Programming

Functional languages are based upon the lambda calculus of Alonzo Church [10],

and working implementations have been in existence since the 1950s. The first

functional language was LISP and since it was created a number of other lan-

guages have been created including ML, Scheme, Single Assignment C (SAC)

and Haskell.

All of these languages share the concept that functions should be considered

“without special treatment” [2] in the language, being able to be passed as param-

eters, and can be returned as results of the evaluation of functions1. Functional

languages then employ higher order functions to abstract common patterns of

computation, to achieve separation of functionality, code reuse and modularity.

Examples of this are map and function composition (◦), where map abstracts the

pattern of performing an operation on every element of a list and ◦ allows for cre-

ating a new function from the sequencing of the actions of two others. The types

of these functions in Haskell are shown below.

map :: (a→ b)→ [a ]→ [b ]

(◦) :: (b→ c)→ (a→ b)→ a→ c

foldl :: (a→ b→ a)→ a→ [b ]→ a

These examples also include the two key functions that form the basis of map-

1A function which either takes other functions as parameters and/or returns a function as its

result is called a higher order function.

38
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reduce, here named map and foldl. This illustrates how functional programming

is finding major uses in traditional branches of programming and industrial appli-

cations.

This Thesis exclusively uses the Haskell programming language for all pro-

gram and function examples. A summary and introduction to the notation of

Haskell is provided in Appendix C, and a more detailed guide and description

of the background is readily available in various textbooks and papers [39,41,60].

3.1 Haskell

Haskell [32, 62] is a pure lazy functional language, characteristics which signifi-

cantly impact on the issues and results presented in this Thesis.

Purity requires that there are no hidden input or outputs (usually called side

effects) from any function. This requirement enables many useful features of

functional languages such as;

• the clarity of the programs, because the meaning of a function should be

apparent from its local definition; and

• powerful compilation techniques, e.g. stream fusion [11].

Lazy evaluation is the combination of normal order evaluation with memoiza-

tion of shared expressions, and provides demand driven computation while avoid-

ing unnecessary recomputation of values. Normal order evaluation enables the

declaration and use of recursive and potentially infinite data structures, such as

the simple list [0 . .] which refers to the list of integers, with no limit (save the

computers memory). This is possible because a lazy language can create a list

defined as a value, followed by the computation which will yield the rest of the

list, when forced to do so. Previously computed values in an infinite data structure

are preserved and can be shared between multiple other computations, including

the computation that yields the remainder of the data structure.

3.2 Haskell and Operational Research

There has has been previous work combining functional programming and oper-

ational research, however far less concerted effort has been applied to the partic-

ular subfield of metaheuristics in functional languages. In this section the major
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branches that have been explored using the Haskell programming language will

be considered.

3.2.1 Accessing External Solvers

Many software systems for optimisation have been written and refined to a signif-

icant extent in standard imperative languages. The most direct way to access this

existing capability is to make use of the Haskell Foreign Function Interface (FFI).

This has been done for several existing systems such as the GNU Linear Pro-

gramming Toolkit, which is accessed using glpk-hs2 and a package for non-linear

optimisation based upon the CG DESCENT library 3.

This approach has not been applied to the field of hybrid metaheuristics. The

possible reasons for this inaction can only be speculated upon, however the very

large number of possible libraries, the lack of interface standards, and the lack of

complete agreement within the field itself are likely causes.

3.2.2 Systematic Search

Systematic search is a mainstay of combinatorial optimisation in OR and also of

decision and game playing systems in the field of Artificial Intelligence. System-

atic search is based upon the metaphor of the search tree, where each branch leads

to decisions and the leaves represent possible solutions. The most basic method

of systematic search is to exhaustively generate every leaf of a tree, and compare

them all to find the best.

This tree based search can be represented in a very natural way in functional

languages, taking advantage of the recursive nature of the functions to call search

upon nodes of the tree until leaves are discovered. This is an example of an imple-

mentation of depth first search in Haskell, for computing the set of permutations

of a list, using recursive calls:

dfs1 :: Eq a⇒ [a ]→ [ [a ] ]

dfs1 [ ] = [[ ]]

dfs1 xs = concat [map (x:) $ dfs1 (filter (6≡ x) xs) | x← xs ]

2Haskell library available on Hackage, LouisWasserman, 2012,

http://hackage.haskell.org/package/glpk-hs.
3Haskell library available on Hackage, Felipe Lessa, 2012,

http://hackage.haskell.org/package/nonlinear-optimization.
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Similar functions can be programmed for other tree search algorithms such as

Branch&Bound. This method of creating a new function for each strategy is

monolithic in nature and lacks reuse of code.

One approach to providing improved code reuse and generality is to separate

the broad structure of the tree, in terms of the set of descendents from any given

node, from the ordering of these nodes and the exploration of the tree [47,59]. The

data type of the tree itself is the standard Rose Tree implementation for Haskell4,

making use of a recursive data structure (see Appendix C). An initial tree is created

through unfolding the structure. This tree may then be transformed to give the

structure particular desired characteristics, such as ordering of the nodes of the

tree at each level. Finally the tree is flattened or explored in a particular way,

resulting the a sequence of solutions to the problem.

The creation, structuring and exploration of a search tree for a problem may be

achieved in a compositional manner. In the following example depth first search

is reimplemented and shown alongside breadth first search. In these examples

unfoldTree, levels and flatten are found in the Haskell tree library, and succF is a

successor function.

dfs2 succF = flatten◦unfoldTree succF

bfs succF = concat ◦ levels◦unfoldTree succF

To create more sophisticated strategies, such as best first or branch&bound re-

quires the insertion of the tree transformations. What follows are the types of the

functions which may be composed to achieve these effects 5.

stochasticRearrange :: RandomGen g⇒ g→ Tree a→ Tree a

prune :: (a→ a→ Bool)→ Tree a→ Tree a

sortTree :: (a→ a→ Ordering)→ Tree a→ Tree a

These methods all take advantage of lazy evaluation of the data structure to only

construct as much of the output as is needed to provide the next solution that is

requested by the calling process. As solutions are examined and discarded the

Haskell environment will free up the resources for reuse, thus making it practical

to try to examine a large problem, for which the entire search tree could not be

practically computed.

4The Rose Tree implementation may be found in the Haskell Data.Tree library
5In the example the type Ordering is a Haskell type with three possible forms, less than (LT),

greater than (GT) and equal to (EQ).
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A monadic approach has also been proposed [76,77] to structuring the pattern

of systematic search. This approach takes advantage of the monadic interface

to lists to allow the structuring and pruning of the search process through the

provision of alternative data structures, however ultimately it cannot overcome

the underlying difficulty of exhaustive search in combinatorial problems.

3.2.3 Constraint Programming

Constraints are an integral part of optimisation problems and real world prob-

lems often have more complex sets of constraints on the solutions than do their

academic counterparts. Constraint programming techniques focus upon the con-

straints of the problem, exploiting them to prune the search trees as far as possible,

before resorting to investigating the remaining branches.

Constraint solvers are based around three key components;

Problem Modelling, the description of the constraints upon the problem, which

have been explored in Haskell by Schrijvers et al [70].

Constraint Propagation, is the simplification of the model and pruning of the

search space through the application of algebraic laws to constraint equa-

tions, allowing the inference of variable values and elimination of unneeded

terms. The state of the art at the time of writing in the implementation of

constraint propagation is Constraint Handling Rules (CHR), which were

first explored in Prolog [23]. An implementation of CHR, taking advantage

of Haskell’s concurrency has been investigated [52], however the libraries

are not being maintained at the time of writing.

Search Once constraint propagation has proceeded as far as is possible, progress

is made through standard search methods, assigning values to variables and

then proceeding with constraint propagation from these assumptions. Com-

binators for these search methods have been described previously and have

been explored further in the particular context of constraint programming

by Schrijvers et al [71].

Constraint programming is subject to wide interest in computer science, with

two particular systems deserving mention here. The first is Mozart/Oz [67], a

multi-paradigm language with an emphasis on declarative programming. Oz has

been used for constraint programming (for example [72]), where the problem

modelling, constraint propagation and search process can be implemented in a
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unified way. Although Oz does have functional properties, metaheuristic search

has not been emphasised in research using it.

The second constraint system is COMET [83], a domain specific language

created for solving constraint problems with a Java like interface and parallelism

implemented through explicit language features. COMET has successfully made

use of metaheuristics as the search component for constraint solvers, preferring

this approach to more traditional exhaustive search methods.

3.2.4 Metaheuristics

Metaheuristics have not received as much attention within the field of functional

programming as the systematic methods that have been seen so far. Some algo-

rithms have been implemented in Haskell such as Genetic Algorithms6 and Simu-

lated Annealing7, however in both these cases the implementations are monolithic

in design and limit the customisation of the search processes to predefined param-

eters such as the initial temperature of a simulated annealing system.

There are also implementations of solvers for well known combinatorial prob-

lems, such as SAT and TSP8. These solvers are problem-specific and not easily

adaptable to other problems, and do not necessarily provide library functionality

for Haskell, but only standalone programs for tackling these problems. Other li-

braries have been written for the optimisation of continuously valued numerical

functions, but these are not in the purview of this Thesis.

None of these implementations address metaheuristic algorithms in general

but only the specific method of interest to the programmer at the time. Customisa-

tion of the processes is typically limited to the setting of some of the parameters,

such as population sizes and mutation rates within a genetic algorithm. Hybridi-

sation of metaheuristics is not directly addressed, however some hybridisation is

possible through the setting of functional parameters, such as mutation or breed-

ing methods in genetic algorithms.

Metaheuristic methods are being used in other projects written in Haskell.

6Haskell library available on Hackage, Kenneth Hoste, 2011,

http://hackage.haskell.org/package/GA.
7Haskell library available on Hackage, Louis Wasserman, 2010,

http://hackage.haskell.org/package/concurrent-sa.
8SAT Haskell library available on Hackage, Andrii Zvorygin, 2007,

http://hackage.haskell.org/package/sat.

Interface to Concorde solver for TSP, Haskell library available on Hackage, Keegan McAllister,

2011,

http://hackage.haskell.org/package/concorde.
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Of particular interest to this Thesis will be the program MRFy [14], a project

in computational biology which makes use of metaheuristic methods to identify

homology between proteins. The approach taken in this project involved creating

a more general framework for metaheuristics and then implementing a variety of

general purpose algorithms to tackle their particular problem. MRFy is used as

a case study in Chapter 10, where a comparison is made of their framework and

equivalent metaheuristics written in the framework of this Thesis.

3.3 Summary

This chapter has presented a very brief introduction to functional programming

and the features of Haskell that will be relied upon throughout the rest of the The-

sis, with further background provided in Appendix C. The chapter has also shown

where techniques from optimisation have already been implemented in Haskell

or other functional languages including exhaustive search, constraint program-

ming, external solvers and monolithic implementations of some metaheuristic al-

gorithms.

This Thesis will go beyond the existing work on metaheuristics in Haskell,

to consider how a generalised library of generic combinators may be created in

a functional setting. It will be shown how the general operators of this library

can also be used to abstract patterns of computation in low level operators such

as problem specific perturbation and recombination methods. The flexibility of

the compositional approach that is utilised will be shown to be highly effective

for hybridising metaheuristics both at a high and low level. Finally the use of the

library will be demonstrated upon a discrete combinatorial problem of practical

importance drawn from computational biological research.



Chapter 4

Metaheuristics in a functional

setting

The purpose of this Thesis is to identify a framework for the hybridisation of meta-

heuristics, both in terms of whole algorithms and the interaction or exchange of

smaller components. For this to be successful the framework that is used must al-

low for separation of common elements of the algorithms, such as the termination

conditions from the search strategy itself.

This chapter sets out 3 approaches, beginning with implementing metaheuris-

tics as straight forward recursive functions threading state data through function

parameters. Implementation issues will be highlighted and attempts at solving

these problems will spur the subsequent approaches that are developed in this

chapter.

4.1 Generalising Comparison of Solutions

Combinatorial problems vary in terms of their conceptual models (e.g. the use

of graphs for TSP and set of boolean assignments for SAT), their data structures

their objectives and their pricing functions. In addition to this, in operational

research some problems are maximisations, such as maximising the profit from a

business, while others are minimisations, such as minimising the travel distance

45
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class Optimisable a where

(=:=) :: a→ a→ Bool -- equal value

(>:) :: a→ a→ Bool -- better than

(<:) :: a→ a→ Bool -- worse than

best,worst :: Optimisable s⇒ [s ]→ s

best (x : xs) = foldl (λa b→ if a>: b then a else b) x xs

worst (x : xs) = foldl (λa b→ if a<: b then a else b) x xs

bestOf :: Optimisable s⇒ s→ s→ s

bestOf a b = if a>: b then a else b

sortO :: Optimisable a⇒ [a ]→ [a ]
sortO = sortBy (λa b→ if a>: b then LT else GT)

Figure 4.1: The optimisable class, to provide generic access to solution content.

in the TSP. A more general characterisation of each of these is the search for

better solutions, where the definition of better is problem dependent. Libraries for

the creation of search strategies must provide a mechanism which allows for the

generic interaction with the underlying problems.

While it is possible to mathematically transform a maximisation into a min-

imisation and vice versa, this still requires specifying the type of optimisation that

is required. Since the form of a problem does not usually change once it is defined,

this Thesis will restrict itself to an explicit interface for defining the ordering of

solutions.

The concept of solution comparison could be captured using the standard

Haskell type classes Eq and Ord, however this would suggest that the problems

should always be in the form of either a minimisation or maximisation, depending

upon how the functions of the library are written. For this reason Ord will not

be used, instead a new type class is provided Optimisable, which shares strong

similarities with Ord but specifies that its comparisons are the problem specific

optimisation concepts of better than and worse than.

A further distinction must be made between a solution’s quality and a solu-

tion’s structure. The type class Eq provides equality testing but in optimisation

problems it is possible for two solutions to share the same quality but not repre-

sent the same solution to the problem. For this reason the type class Optimsiable

will provide a new equality operator that is specifically for comparing the values

of solutions, and Eq will be reserved for total equality of solutions. The type class



47

Optimisable and related functions can be seen in Figure 4.1.

4.2 Naive Implementations

A naive implementation of a metaheuristic is as a monolithic function that maps

seed solutions (or seed populations) onto an output solution. Additional param-

eters that are static for a particular method, such as the cooling rate in simulated

annealing or the maximum size of a TABU list can be passed as additional param-

eters to such a monolithic function. Where the metaheuristic makes use of internal

state, such as TABU list or more commonly random number generators, then the

data to support these must also be threaded through the recursion as a parameter

to the functions.

4.2.1 Random walk

randomWalk :: Optimisable solution

⇒ (rng→ solution→ (solution,rng))
→ solution→ rng

→ Int→ solution

randomWalk perturbF seed = go seed seed

where go currentBest currentSol rng 0

= currentBest

go currentBest currentSol rng n

= let (s,rng′) = perturbF rng currentSol

cb′ = bestOf s currentBest

in go cb′ s rng′ (n−1)

Figure 4.2: An example implementation of the Random Walk metaheuristic, as a

recursive function, threading the state of the system as parameters.

Random Walk, conceptually the simplest metaheuristic method, is used as an

example in Figure 4.2. The simplest way to implement the iterative process is

through the threading of data through parameters to recursive functions;

• the current best solution seen,

• the current solution of the system,

• a random number generator, and
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• a counter to indicate when to terminate the process.

While the implementation is correct it fails to separate out the process of random

walk, the process of termination, and the process of selecting the best solution

seen within the run of the algorithm. Nor does it provide a convenient framework

to parametrise over.

Hybridisation of Random Walk with other metaheuristics introduces new prob-

lems. The overall termination and selection of the best solution should apply to the

overall hybrid, rather than to the individual components. The state of the system,

in terms of random number generator and solutions must be correctly managed in

the new hybrid. Using the implementation seen here this would involve seeding

with a new random number generator each time this component was called.

This simple example highlights the key problems: a lack of abstraction of the

metaheuristic search logic, and a lack of encapsulation of the states of individual

components.

4.2.2 Termination Functionality & Output

The random walk implementation in Figure 4.2 also has the following properties,

that it is terminated after a number of iterations, and the final output is the best

solution that was found. Hughes notes that a significant advantage of functional

programming when dealing with indefinite processes is related to the modularisa-

tion that can be achieved through separating operational concerns such as these:

“[Program] f can even be a non-terminating program, producing an

infinite amount of output, since it will be terminated forcibly as soon

as g is finished. This allows termination conditions to be separated

from loop bodies - a powerful modularization.” [42, p. 9]

A number of methods for terminating a search strategy can be proposed. While

these cover the majority of foreseen circumstances, the list cannot be guaranteed

to be exhaustive.

• Iteration Limit, is the approach taken in the example seen in Figure 4.2. It

is to take the best solution seen over a preset number of steps.

• Time limited, in practice it is often of more use to know the best solution

found after a predefined period of real time has passed. While there is a

direct correlation between the number of iterations possible and the time
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taken, this can be difficult to precompute, and so operating in terms of time

limits can be preferable.

• Quality Limited when a solution is found that is better than a predefined

quality. This is the weakest, as it requires prior knowledge of the qualities

that are likely to be discovered.

• Convergence of the search process, can also be thought of as the stagnation

of the search process. Metaheursitics generate improving solutions which

follow the same pattern as a learning curve in machine learning, and the rate

of improvement slows the longer the process is performed for. Information

about a series of recent solutions may be used to estimate the current rate of

improvement, and the process may be terminated when the estimate of the

rate has dropped below a specific value, or reached 0.

The final output of a metaheuristic search is the best solution that is seen dur-

ing that run. However, while developing a new search algorithm a metaheuristic

designer can expect to require a range of other outputs, based upon the solutions

that are encountered. For this reason a number of other output transformations

should be available, and the following list proposes some, however it is not ex-

haustive.

• Preserve the best solution seen over the metaheuristics execution;

• Calculate the average quality of solutions over the course of the metaheuris-

tics execution;

• Calculate the rate of improvement in solution quality; and

• Calculate an approximation of the changing rate of improvement over the

course of process.

In any given run of a metaheuristic any number of these different outputs might be

desired, so it is important that the approach taken enables the clean separation and

recombination of functionality. There is also an overlap between the functionality

required to provide an approximation of the first differential of the rate of change,

and the convergence criteria in the list of termination criteria, encouraging further

code reuse.

Every option proposed here requires its own stateful information to be threaded

through the program. However the naive implementation of random walk did not
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permit this. A simple way to provide an increased element of flexibility to the

implementation of termination conditions would be through providing a function

of the following form:

type Termination sol = sol→ Bool

This would allow filtering-like functionality to be parachuted into a metaheuristic,

however this does not provide for more complex termination criteria, such as the

runtime of the process, nor does it help in the implementation of the various output

options. A more flexible option is to have a metaheuristic take both a termination,

and output function as parameters, each threading their own state. These would

have the following types:

type Output state sol output = state→ sol→ (output,state)

type Termination state sol = Output state sol Bool

While this approach successfully separates the implementation of termination

conditions from the rest of the system, it does not address the problem of thread-

ing the state data types seen here. Each implementation of each metaheuristic

algorithm is required to take the various initial state types as parameters, and cor-

rectly thread the state through the search process. The approach also offers no

clear insight into how to manage other forms of state data in a search process

(RNGs, memory, cooling strategies), besides threading each separately through

the recursion, or combining them into a single state.

4.2.3 Functional properties of metaheurstics

One approach to defining a library for the implementation of hybrid metaheuris-

tics is to enumerate a complete set of functional characteristics that are employed

by various metaheuristics, how they are used, and the state information that is

required to support them. This would then allow for a single state data type, rep-

resenting the state of search for any given metaheuristic, or hybrid metaheuristic

of unlimited complexity. Table 4.1 shows a reasonable selection of metaheuris-

tics, their variants and the forms of state that they make use of. It is assumed that

all of these examples maintain a best so far memory.

Table 4.1 indicates that many of the state types are used in only a few of the

metaheuristic algorithms that are the focus of this Thesis. Given that there are few

truly common elements it does not seem appropriate to use a single data type for
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metaheuristic name a b c d e

Random Walk X × X × ×
Iterative Improver X × × × ×

Iterative Improver (S) X × X × ×
TABU X × × X ×

Stochastic TABU X × X X ×
Simulated Annealing X × X × X

Simulated Annealing (A) X × X X X

Genetic Algorithms × X X × ×

a: A single solution to a problem being worked upon, such as is used in point

based metaheuristics.

b: A population of solutions to a problem being worked upon.

c: The use of random numbers in a strategy requires the threading of the current

state of the RNG.

d: A memory of solutions or characteristics of them, may be short term or for the

length of the program.

e: Temperature of the system, used in Simulated Annealing and derivatives.

Table 4.1: A table of some common types of state information and the meta-

heurstics they appear in.

all forms of metaheuristic. It does not seem sensible that every form of memory

should be present in every form of metaheuristic, or even how many forms of

memory should be provided for. A single monolithic data type for metaheuristics

is not the answer, because when new metaheuristics are proposed (for example

Ant Colony Optimisation), or new hybrids developed they require either new state

information or a different mix of the existing options that may not be provided for.

Such changes to the nature of the search algorithms would require rewriting

of the data type for search each time new discoveries were made, and subsequent

modification of existing code to support the updated data type. Further more, all

updates would be required within the library for metaheuristics itself, they would

not be able to be applied as lightweight extensions of functionality by users, a par-

ticular problem when the user is proposing a new hybrid of existing components,

which should not be a radical shake up of the underlying combinators.

Haskell provides a variety of tools which may be used to enable access to

elements of a monolithic state, the construction of state, the composition of state

data types and the abstraction of the threading of such information in an automated
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way. These will be considered in the next section.

4.2.4 Extensible State

The precise mixture of data that will be required by a given metaheuristic is de-

termined by the functionality that is required of it. Hence the state that will even-

tually be used should be able to be derived from the functions that are used in the

construction of the algorithm.

The issue of managing stateful computations in pure functional languages is

not new, and a variety of approaches have been developed to aid programmers.

This section will examine four approaches in Haskell that can be used to manage

state directly; Records, HList, Accessor Classes and Monad Transformers.

4.2.4.1 Records & HList

Haskell provides the concept of a record with named fields (seen in Appendix C),

allowing both accessor methods and syntactic sugar for update of individual fields

in a complex data structure. However records and accessors are not easily exten-

sible, and cannot be derived from function definitions. A proposal has been put

forward [48] for an alternative form of record, where accessors are tightly associ-

ated with their data types. This would allow a function to be defined over any data

type that supported certain forms of named access, for example (from [48]):

average :: (Fractional a,r / x,r / y)⇒{r | y :: a,x :: a}→ a

average r = (r.x+ r.y)/2

This would have provided a mechanism for creating a library of generically de-

fined functions for the characteristics of metaheuristics, and the subsequent deriva-

tion of the type of the monolithic state required. However this proposal does not

seem to have been widely accepted at the present time, and an implementation

does not appear to be available.

An extensible record system does exist in Haskell, based upon the Heteroge-

neous List library [51]. Two weaknesses exist in this approach, the first is that

the Heterogeneous List must provide an explicit wrapper for each data type that

it can carry, limiting what can be carried within the records. The second is that

access is potentially quite slow, having to search a linked list for each record, as

it is requested. Given that during a particular run, the structure of the monolithic

state will not change this use of extensible records is inefficient and unnecessary

for this application.
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4.2.4.2 Accessor Classes

Type Classes provide another alternative way to access elements of a monolithic

state, and allows the derivation of how the state type should appear for the pro-

grammer to implement. The approach is to define a class for each form of state,

and then create functions in terms of these generic accessors, rather than in terms

of specific data types. For example, this interface to a TABU list:

class Tabu sol s where

addToTabu :: Int→ sol→ s→ s

inTabu :: s→ sol→ Bool

tabuPrune :: Tabu sol s⇒ s→ [sol ]→ [sol ]

tabuPrune st = filter (inTabu st)

This approach has the disadvantage of requiring the programmer to provide

appropriate interfaces to all forms of state for the data type, once the strategy is

constructed from the component functions. This task is called boilerplate [53]

code and while work has been done on automated construction and other generic

definition techniques, these have been in terms of writing generic functions that

operate over generic data types. The task in metaheuristics is closer to compos-

ing a number of existing state types, with associated interface information into

a larger more complex data type, while deriving the previous accessor informa-

tion and doing so automatically to provide a more declarative way to program

metaheuristics.

4.2.4.3 Monads and Monad Transformers

Monads have been used successfully to simplify the structure of computations

in functional programming and hide the plumbing of the data structures that are

present. The State Monad generically defines this concept, for some given state we

have computations that can yield values, and these computations can be chained

together.

newtype State s a = State {runState :: s→ (a,s)}

instance Monad (State s) where

return x = State (λ s→ (x,s))

(State f )>>=g = State (λ s→ let (a,s′) = f s in runState (g a) s′)
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The State Monad would appear to be a good choice for modeling the stateful

operations that have been discussed here. However while it models state transi-

tions it provides no guidance on the structure of the state data type itself, and the

variation in requirements of the state between metaheuristics is an issue that must

be overcome.

Monad Transformers [60] provide one way to overcome this issue, by provid-

ing a method for composing monads, so as to allow the merging of desired func-

tionality. A monad transformer is defined in Haskell as a new data type which is

both a Monad, and part of the MonadT type class, which provides the function lift.

The lift function provides a way to access deeper parts of the Transformer Stack,

by transforming functions that operate on that monad in isolation. In the following

toy example a State Monad transformer lies between a Maybe and a MaybeT . An

operation on state (withStateT) may be accessed by lifting the function over the

standard return operation.

f :: Num s⇒ a→ (MaybeT (StateT s Maybe) a)

f x = lift (withStateT (+1) (return x))

Monad transformers allow a more compositional approach to the construction

of state, however the state is still a stack of components, which will be represented

in the type of functions. The programmer using such a system is still required to

implement versions of all functions they require for each component they will

use, and must know the depth in the stack of each component’s state data, so

that they can lift functions the correct number of times. Where the stack is being

changed, as the programmer experiments with a metaheuristic, bringing in new

functionality and removing old, changing and modifying the accessor functions is

expected to become a burden. Lenses [22] provide an alternative way to define

the accessors more easily. However where the data structure is likely to change as

the programmer experiments, they must still manage the code for the lenses.

It has been shown that this basic approach to monad transformers can be sig-

nificantly improved upon [69], with the ideas of this paper being integrated into

the Monatron library1). The approach taken is to define masks and views for lay-

ers of the monad stack, which may then be used to define operations that operate

over components of those masks, and those only. For example, the following two

could be masks for a simple implementation of TABU search, where i refers to

1Haskell library available on Hackage, Mauro Jaskelioff & Tom Schrijvers, 2010,

http://hackage.haskell.org/package/Monatron.
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an identity element, and a component that is not part of the current mask, and o

refers to a layer that is of interest to the current mask.

currentSeedMask = o

tabuMask = (vlift i) ‘hcomp‘ (vlift o)

These two masks may be used to define operations for TABU search such as

these;

inTabu x = do (xs, i :: Int)← getv tabuMask

return $ notElem x xs

updateTabu x = do (xs, l :: Int)← getv tabuMask

putv tabuMask (take l $ x : xs, l)

getCurrentSeed = getv currentSeedMask

setNewSeed x = putv currentSeedMask x

Finally these operations are used to define the following function for a single

iteration of TABU search.

tabuSearch nF = do x← getCurrentSeed

xs← nF x>>=filterM inTabu

updateTabu x

setNewSeed (maximum xs)

While this example only offers a simpler way to define the lifting, in the form

of named masks, the paper [69] extends the approach with the concept of named

layers within the monad stack. The monad zipper then allows implicit definitions

of the masks and the lifting. A library built in this way would first define a number

of layer names, for example;

data TabuLayer = TabuLayer

An operation defined in terms of this name makes use of the functions use and

expose, defined in [69], to move operations to the correct layer.

updateTabu x = do (xs, l :: Int)← getv ‘use‘ TabuLayer

putv (take l $ x : xs, l) ‘expose‘ TabuLayer

This creates an operation that can be run on any stack that provides enough lay-

ers with the correct names. A limitation in this example is that only one Tabu
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layer may exist for any metaheuristic, however this can be overcome by providing

functions that take layer names as parameters, with generic implementations.

While this work using masks and the monad zipper makes it much easier to

create generic components it still fails to address the relationships between point

based and population based algorithms, requiring layers to represent one, or both

depending upon the form of hybridisation.

4.3 Functional Reactive Programming (FRP)

Functional Reactive Programming [39,40] was created to enable the implementa-

tion of programs whose behaviour varied with respect to time and unique events.

It has been used to express computations in the fields of functional user inter-

faces, animation and simulation. FRP models systems as collections of continu-

ous behaviours2, which are implemented as functions from time to values, with

the following type (Time is a constant type defined elsewhere in the program);

type Beh a = Time→ a

For example, the following is the behaviour of a point in two dimensions ro-

tating about the origin. In this example “time” is used directly as the angle in

radians, and the point is defined in terms of its distance from the origin.

rotatingPoint :: Double→ Beh (Double,Double)

rotatingPoint dist t = (dist ∗ cos t,dist ∗ sin t)

It is then possible to create a range of higher order functions to create new

behaviours in terms of existing code. For example mapB operates like map, trans-

forming every output of a behaviour by some basic function, and changeTime

allows a behaviour to be sped up or slowed down by some transformation of time.

A more detailed treatment of this subject can be found in Chapters 13 and 15

of [39].

changeTime :: (Time→ Time)→ Beh a→ Beh a

changeTime p b = b◦p

mapB :: (a→ b)→ Beh a→ Beh b

mapB f b = f ◦b

2This Thesis will ignore events, which while important in FRP do not aid in the implementation

of metaheuristics.
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4.3.1 FRP for Metaheuristics

FRP is relevant because metaheuristics often make use of self-contained func-

tional properties that vary over the lifetime of the program. A strong analogy

can also be seen between simulations and metaheuristics, most obvious in Sim-

ulated Annealing which was developed from models of physical systems. For

example, Simulated Annealing makes use of a temperature strategy, which can

be implemented as a function which varies the temperature of the system with

respect to the step of the process. This function is usually defined as a geometric

progression, or transformation from one state to another, but can be redefined as a

behaviour, shown here mathematically with two externally defined constants.

t(i) = tempSeed ∗geoDropi

Inductive behaviours are also possible, where each new value is based upon

the preceding value, back to an initial seed. The use of an inductive behaviour is

illustrated in the following reimplementation of the temperature function (where

i is time or iteration). In general, most behaviours used for implementing meta-

heuristics can only be implemented in this inductive style, with seed data and

chained data dependencies.

t(i) =

{

tempSeed if i 6 0

t(i−1)∗geoDrop otherwise

FRP is designed for a continuous model of time, whereas in general meta-

heuristics will operate largely in an inductive form over discrete steps and so a

simpler model of time (such as integers) can be used for this specific purpose.

The choice of the type for time does not impact upon the rest of the implementa-

tion.

Behaviours can provide modularity through the clean separation of the various

constituent parts which result from the decomposition of the monolithic meta-

heuristic. For example, consider this mathematical model of simulated anneal-

ing3.

3In this example the condition accepted is a place holder for the functionality of the standard

simulated annealing acceptance function, ignored here to reduce complexity. In general this would

provide further scope for modularity and tuning.
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r(i) =

{

randomSeed if i 6 0

next(r(i−1)) otherwise

r′(i) =

{

randomSeed if i 6 0

next(r′(i−1)) otherwise

p(i) = permute(sa(i),r(i))

sa(i) =











seedSolution if i 6 0

sa(i−1) if not accepted(i)

p(i−1) otherwise

accepted(i) = e
energy(sa(i−1))−energy(p(i−1))

t(i) > r′(i)

To change the cooling strategy it is only necessary to modify function t; the

other functions and the more general pattern of the simulated annealing algorithm

remain unchanged. Similarly the perturbation behaviour p, which is a simple

function defined over two behaviours, could be more complex, taking into ac-

count other details such as history of the process, and implementing this would

not change the code for the sa function.

A naive implementation of these functions results in a recursive explosion of

computation for higher values of time, an inefficiency due to the recomputation

of intermediate values [19]. Memoization of these intermediate values can be

used to fix this, however this results in space leaks as all previous values are pre-

served. Ideally we wish to allow sharing of only required previous results between

behaviours, with intermediate values being cleaned up once they are no longer re-

quired. Research into these issues is ongoing [20] (see also the Reactive library4).

4.3.2 Threading Behaviour

The traditional approach to FRP provides a mechanism that allows for an efficient

execution of iterative behaviour [19] under some circumstances, presented here in

a simplified form. The approach taken is to change the definition of a behaviour

to a function from a time to both a value and a new behaviour. This technique is

possible if it is known that the new behaviour will only be sampled at times later

than the previous sampling point, a promise that is satisfied in the case of iterative

algorithms. The simplified type is presented below.

newtype Beh2 a = Beh2 (Time→ (a, Beh2 a))

4Haskell library available on Hackage, Conal Elliott, 2010,

http://hackage.haskell.org/package/reactive.
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The use of this form of continuation generation can allow the efficient sam-

pling or unfolding of a behaviour into a list of values, using a function like the

following.

unfoldB :: Beh2 a→ Time→ [a ]

unfoldB (Beh2 f ) startTime = let (v,b) = f startTime

in v : unfoldB b (startTime+1)

4.3.3 The problem of shared iterative behaviour

The use of continuations for behaviours resolves many issues of efficiency in in-

ductive functions, where they are sampled sequentially. However where mutually

evolving relationships exist between two or more behaviours then a new issue

arises of how to share the results of continuations as each behaviour is sampled5.

For example, where SA is adaptive the temperature behaviour is dependent

upon older solutions which have been found, while the solutions are themselves

dependent upon older temperatures. Implementing this in terms of evolving be-

haviours as seen in section 4.3.2 will still cause the space and time leaks that the

evolving behaviours were introduced to avoid. This may be resolved by explicitly

defining behaviours that operate over the related components, however this loses

the clean modularity that made FRP attractive, for example:

adaptiveSA :: Beh2 (Solution,Temperature)

4.3.4 Impure short term memoization

An alternative, that would provide a cleaner interface, would be a form of function

memoization, where the memoizing function is impure, maintaining only a limited

number of steps using internal state. While impure this memoization function

would still provide a pure function as its result. This would have a form like this:

impureMemo :: Int→ (a→ b)→ a→ b

This could then be used to memoize an iterative temperature function in the fol-

lowing way:

5The issue being described can be avoided where two behaviours depend exclusively upon

one another’s previous values, or when a single behaviour depends only on its own previous val-

ues. The issue appealatex rs when behaviours depend both upon their own histories and other

behaviours histories, however this is a rather common condition in metaheuristic algorithms.
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temp :: Time→ Temperature

temp = impureMemo 3 t -- the parameter 3 is used here as an example

-- of a limited number of steps to memoize over

This short-term memoization of the values of behaviours would require that the

programmer obeys the conventions that behaviours are always sampled sequen-

tially, and only be sampled within the specified time window. It would however

allow efficient access to and sharing of values within the window.

This concept for short-term memoization would result in only a small code

overhead, but is not currently supported. It is possible it would only be of use for

this project at the present time, explaining the lack of support. This Thesis did

not attempt to resolve this issue, because a more natural approach was conceived

while examining FRP.

4.4 Dataflow & Stream Programming

FRP is a form of dataflow programming, specialised to operate over continuous

time. The discrete and step-wise nature of metaheuristic algorithms makes the ex-

plicit use of time, either discrete or continuous, an unnecessary overhead. Instead,

dataflow techniques may be used in pure functional languages, with automatic

sharing of results, using lazy lists.

Dataflow programming dates back at least to the mid 1970’s [1,49] and can be

done in a variety of ways within the Haskell language, such as FRP. In a Dataflow

program, data “flows between instructions” [46] of the program, forming a di-

rected graph, with instructions being executed when the parameters become avail-

able. In functional languages the instructions can be represented as computations

that construct streams of data, and these computations proceed by acting upon the

elements of 0 or more other streams as data appears upon them.

This Thesis models a stream as a lazy list, and expresses the flow of data in

terms of the interactions of these lists. A summary of the relationship between

pure functional and data flow languages, along with a description of how to create

a shallow embedding of the Lucid data flow language can be found in Appendix D.

4.4.1 Sharing and memoization

Lazy lists can be defined in a mutually recursive way, as with FRP behaviours,

however lists defined this way do not suffer from the same runtime issues as were
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seen in FRP. A simple example of a system of recursively defined streams can be

seen in Figure 4.3. In this example, both as and bs are streams, each with their

own initial seed value, followed by a stream which is dependent upon the previous

value of the stream and the corresponding value of the other stream. As values are

produced in each stream, they are implicitly shared with the computation generat-

ing the other stream.

demo seedA seedB = let as = seedA : zipWith (+) as bs

bs = seedB : zipWith (∗) bs as

in as

Figure 4.3: A toy example of a function which implements a pair of mutually

recursive streams.

Limited memoization is provided automatically in this system, with all values

being preserved until they are no longer needed, and subsequently being subject

to garbage collection. This inductive computation can cause memory leaks un-

der certain circumstances, such as trying to directly compute a high value, which

would result in a build up of computations on the stack until the base case was

reached and all could be resolved. The solution to this is to push the computation,

the default effect when printing a stream to the screen. When computations are

pushed then automatic memoization will prevent time leaks, and garbage collec-

tion will prevent space leaks.

4.4.2 Simulated Annealing

Section 4.3 introduced a construction of simulated annealing based upon mutually

recursive behaviours. Figure 4.4 shows how streams can be used to express a

similar system of equations, with a very close correspondence to the FRP model.

The use of streams however allows this system to be executed efficiently, through

examining the stream of values bound to s.

4.4.3 Supporting streams using Haskell Prelude

For a shallow embedding of data flow functionality and style within a pure func-

tional language, it is necessary to provide for the construction and manipulation
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initTemp = ...
prop = ...
t = iterate (∗prop) initTemp

r,r′ :: [Float ]
r = unsafePerformIO (newStdGen>>= return◦ randoms)
r′ = unsafePerformIO (newStdGen>>= return◦ randoms)

perturb :: Float→ s→ s

perturb = ...
p = zipWith perturb r s

seed = ...
saChoice :: Float→ Float→ s→ s→ s

saChoice = ...
s = seed : zipWith4 saChoice r′ t s p

Figure 4.4: An implementation of simulated annealing, using a collection of mutu-

ally recursive streams to model the intermeshed behaviours. This implementation

uses unsafePerformIO to bypass the usual restrictions on interaction between pure

and impure code. This is an acceptable break with the pure functional system, be-

cause it will be resolved once, on the initial examination of the related stream

variable, and will subsequently be an unfolding list of values.

of groups of streams. The manipulation of streams is performed by applying func-

tions over elements of the underlying streams, which can be seen as equivalent to

lifting a function from acting upon elements to acting over streams. The Haskell

prelude library provides a variety of useful tools, which can be seen as a mini-DSL

for streams.

• repeat, takes a single value and creates a constant stream.

• cycle, takes a finite list and creates a stream which infinitely loops/generates

the values of the list.

• zip, combine two streams into a single stream of tuples.

• unfoldr, a function that lifts a deterministic operation and a seed into a

stream of values, threading internal state.

• map, a function that lifts a deterministic transformation of a data type to

produce a function which transforms one stream into another.
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• zipWith, describes the relationship between three streams, two inputs and

one output. This may be used to create stream transformations like map,

but hiding an internal state. For example, a stochastic perturbation opera-

tion hides the internal state of a random number generator, as seen in the

simulated annealing example in Figure 4.4.

• (◦), function composition may be used to combine stream transformations,

as it is usually used to compose functions. When composing stream trans-

formations the result is often referred to as a pipeline6.

4.4.4 Separation of termination conditions

The advantages of separating the termination conditions of a process from the

process itself were previously considered, along with the various potential outputs

that a metaheuristic can give other than a solution itself. The use of streams en-

ables this separation by applying functions over the stream of solutions produced

by a search process, predominantly using standard functions of Haskell.

• list index (!!), terminates a process and returns a single solution from a par-

ticular point. For example, this could be applied to the stream of solutions

in the simulated annealing example as simply s !!n to access the nth solution

produced in the process.

• take will terminate a process, returning the first n values of the stream.

• drop removes the first n values of a stream (though they are still computed)

and may be used in conjunction with take to provide a segment of a stream.

• takeWhile provides a way to terminate the search when some condition is

met. These conditions are tests of the values in the underlying stream, mak-

ing this effective for taking until a certain quality is met, but not suitable for

convergence testing.

Extracting solutions until a convergence criterion is met requires a new func-

tion. This must take, not a test of the values of a stream, but a transformation of a

6It should be noted that using composition does not preserve the intermediate streams. If these

values are of interest, for the purposes of debugging, or as part of a final output, then more complex

functions are needed that can preserve and return multiple streams. Such transformations may be

constructed by the programmer as an extension to the library, but have not tended to be required

for implementing the standard metaheuristics. This issue is not considered further in this Thesis.



64

stream into a stream of test results. Results from the first stream are then produced

while the convergence criterion is not met. An implementation of this adaptation

of takeWhile is presented below as takeS

takeS :: ([s ]→ [Bool ])→ [s ]→ [s ]

takeS t xs = map snd ◦ takeWhile (¬◦ fst)◦ zip (t xs)$ xs

The different forms of analysis of the results may be constructed through the

parameterisation of takeS. For example, the following function to extract solutions

from a stream until convergence is attained, where convergence is defined as two

solutions of equal value separated by w steps.

converge w = takeS (λxs→ zipWith (=:=) xs (drop w xs))

Many metaheuristics, for example random walk, do not produce a stream of solu-

tions that guarantees to improve in value. In these cases the convergence function

presented may not operate as desired. Because of this most metaheuristics will

require processing by the following transformation:

bestSoFar :: Optimisable s⇒ [s ]→ [s ]

bestSoFar (a : as) = scanl bestOf a as

4.4.5 Abstracting Recursive Construction

In Simulated Annealing, seen in Figure 4.4, the iterative nature of the algorithm

is captured through inductive definition of the functions. This inductive process is

common to all metaheuristics and is the way that the search processes are evalu-

ated at the top level of the program. The control structure can be abstracted in the

following looping functions.

loopS :: ([s ]→ [s ])→ [s ]→ [s ]

loopS f seed = let as = seed++ f as in as

loopP :: ([s ]→ [s ])→ s→ [s ]

loopP f seed = loopS f [seed ]

Each of these loop functions takes a stream transformation and seed information,

to produce a single stream which is now inductively defined so that the future

values of the stream depend upon the previous values.
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This allows the construction of inductively defined streams in terms of the

composition of a number of stream transformation operators. This can be seen in

this example of the Fibonacci sequence.

fib = loopS (map sum◦map (take 2)◦ tails) [0,1 ]

4.4.6 The use of top level terms

The examples in this chapter have used Haskell to define a number of streams of

data and the relationships between these streams. While this approach works, it is

defining top-level processes for the computation of data, rather than functions that

may be reused. In this Thesis let-in expressions are used in preference to defining

streams of data at the top level of programs.

4.4.7 Managing stochastic components & unsafePerformIO

Many metaheuristics make use of stochastic components, either for perturbation,

as seen in Simulated Annealing, or to introduce variation in decision making pro-

cesses, such as is seen in Genetic Algorithms. However the use of random num-

bers, functions that give different outputs each time they are called on the same

parameters, conflicts with the concept of pure functions. Streams present one

solution to this issue, by creating stream transformations, pure functions which

transform one stream into another. For example, the following function f incre-

ments every input value by a random value between 0 and 1;

f :: System.Random.RandomGen g⇒ g→ [Double]→ [Double]

f g = zipWith (+) (randoms g)

The use of stream transformations can also be seen in Figure 4.4. In this example

r is a stream of random values, and is used to define a stochastic perturbation

transformation p, which will perturb each solution on its input stream, giving a

stream of perturbed solutions. The stream p is created through a pure computation

(subject to the source of the random values), which provides stochastic effects on

the values in the input stream, but does not require the user to explicitly manage

the threading of the RNG itself.

Pseudo RNGs in computer programs require IO to be created, using properties

of the system such as the clock for an initial seed. In Haskell this can be done in
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the following manner, where the function f is applied to two different RNGs,

creating two different operations, and then composed together.

main = do g1← newStdGen

g2← newStdGen

print $ f g1◦ f g2 $ repeat 0

The general pattern for the construction of a metaheuristic in this manner is ex-

pected to follow the following form;

main = do g← newStdGen

let vs = loopS (...◦ stochasticComponent g◦ ...

) seedSolution

print vs

Typically each metaheuristic strategy will only contain a few stochastic com-

ponents, so this approach is acceptable and does not incur a significant over-

head. However ideally the library should be as simple as possible to use, and

this approach introduces a small degree of book keeping. The overhead can be

reduced through the introduction of impure computations through the function

unsafePerformIO. There are two key issues that must be considered in using

unsafePerformIO, the order of the evaluations and the number of evaluations of

each expression.

Haskell does not give any guarantees of the order in which functions are eval-

uated, so care must be taken that the logic of the program is not undone by compu-

tations occurring in different orders, such as could happen to an algorithm which

depends on the particular order of memory access and update. However in this

case unsafePerformIO is being used for the construction of RNGs only, with the

all other operations being pure functions. So there is generally no concern for the

order in which RNGs are created, as long as they are suitably unpredictable.

The number of evaluations of each expression is more of a problem, for exam-

ple;

g = zipWith (+) (unsafePerformIO $ newStdGen>>= return◦ randoms)

k = g◦g

Should each usage of g be the same transformation, with the same threaded RNG,

or two different transformations? In this Thesis we typically want them to be

different. This can be achieved by forcing inlining using the following Pragma.
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{-# INLINE g #-}

This instructs Haskell to replace every instance of g with the body of g, causing k

to be rewritten as;

k = zipWith (+) (unsafePerformIO $ newStdGen>>= return◦ randoms)

◦ zipWith (+) (unsafePerformIO $ newStdGen>>= return◦ randoms)

There is still a danger that the Haskell compiler could search for and share

common sub expressions, such as the repeated expression in k above. This issue

should continue to be a consideration in future uses of this technique, however

at the time of writing this approach has been tested on the current version of the

Haskell compiler and it has been seen to work correctly.

4.5 Summary

This chapter has looked at several methods for implementing metaheuristics in

Haskell, moving from a direct implementation of imperative concepts, towards

the construction of the search strategies in terms of mutually recursive streams.

The following chapters approach metaheuristics, not explicitly defining mutually

recursive streams, but using the composition of stream transformations, and will

be broken down as follows:

Chapter 5 details the basic library of combinators and how the combinators may

be used to implement each of the major metaheuristic algorithms.

Chapter 6 extends the use of the stream combinators into the expression of low

level operators commonly used to manipulate combinatorial problems.

Chapter 7 discusses some perspectives on hybridisation of metaheuristics and

shows how the stream combinators can be used to enable implementation

of hybrid algorithms.
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Metaheuristic Combinators

Chapter 4 proposed streams and data flow programming as a suitable approach for

implementing metaheuristics, which provided flexibility to the programmer while

fitting well with the functional foundations of Haskell. This chapter elaborates

upon the stream based approach providing a library of combinators for manipu-

lating the structure and imposing computations upon streams. It then shows how

these combinators may be used to implement the five metaheuristic families that

were named in the introduction and how the low level operators such as perturba-

tion and recombination also include functionality provided by the library.

5.1 Types for stream transformations

Two type synonyms for the standard Haskell list are introduced to improve read-

ability, while enabling code reuse of functions over streams from the standard

libraries.

• type Stream a = [a ], where there is an unenforced promise for the list to not

end; and

• type List a = [a ], where there is an unenforced promise for the list to be

finite.

The List type will be used to capture components of metaheuristics such as pop-

ulation and neighbourhood and in this way it abstracts a commonality between

68
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these two, which is not generally shown in metaheuristics. A more generic ap-

proach, such as an abstracted group type could also be used, but to enable reuse

of existing Haskell functions it is easiest to use the standard list.

While implementing search strategies the composite types Stream (List a) and

List (Stream a) are frequently encountered. It is much rarer to find operations

resulting in the type Stream (Stream a). Transformations between between basic

streams and streams of lists are particularly common, corresponding to the expan-

sion and contraction of choices suggested in Chapter 2. These common patterns

are captured as the following types to simplify later function definitions.

• type ExpandT a b = Stream a→ Stream (List b)

• type ContraT a b = Stream (List a)→ Stream b

5.2 Common operations on Streams

Frequently operations require a stream of a particular form, or change the struc-

ture of a stream themselves. To facilitate this a group of combinators are needed

to manipulate the type or structure of streams. These come in six variations, rep-

resenting the transformations between the different structures, see Figure 5.1.

Stream v

Stream (List v) List (Stream v)
e.g. transpose

e.
g.
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Figure 5.1: Transitions between common internal structures of streams.

Any number of functions can be created for these six transformation types,

however what follows are those that have been found to be useful in the creation

of a wide variety of other transformations. Implementations of these functions

have been omitted for clarity, but may be found in Appendix B.
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5.2.1 Stream⇐⇒stream of lists

There are two main forms of transformation from a stream to a stream of lists

window and chunk. Window is used to provide a stream of recent histories of a

stream, by creating a sliding window on the values of the stream that it transforms.

Chunk divides a stream of values into regularly sized blocks, however this relies

upon there being enough values in the underlying stream at each point to construct

a complete block before it blocks. Variations on both window and chunk exist

which vary the sizes of the list produced at each step.

The inverse of window and chunk can be achieved using the standard concat

function for streams of lists, however more commonly streams of lists are con-

verted into lists through selection strategies. Some common selection strategies

remain unnamed such as map best because their operation is clear from the ver-

bose implementation. The more complex operation is called simply select and

this takes a function that creates a probability distribution from the length of a

list. The stream of lists is used to derive a stream of distributions from which

can be sampled to select a single element of the original lists1. Simple selection

operations can be seen in the variations of iterative improvement, while genetic

algorithms make extensive use of distributive selection mechanisms.

5.2.2 Stream⇐⇒list of streams

Two processes exist for converting a stream into a list of streams, the first is the

standard functions replicate, which duplicates the stream multiple times to create

a list of identical streams. This is of value when applying different transformations

to the same source stream. The second action is divide, which takes a finite set

of indices and a stream of instances of these indices. It then divides the input

stream, based upon a pairing of each value with an index from the stream of

indices, and creates one stream for each member of the index set. For example, in

a genetic algorithm it is often useful to apply a mutation to a subset of elements

in a population. Divide, using a boolean index type can be used to enable this, as

will be seen in subsequent sections of this chapter.

join is the reversal of divide, taking the names and stream of name values.

When selecting from the result of replicate to return to a single stream it will

1Due to the stochastic nature of the selection process unsafePerformIO is used to allow se-

lection processes to be created self seeded with RNGs. This is the implementation found in the

appendices and will be used subsequently in this Thesis.
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usually make more sense to convert the list of streams into a stream of lists and

consider the operations in the previous section.

5.2.3 List of streams⇐⇒ stream of lists

Conversion between streams of lists and lists of streams can be achieved using

the standard transpose function. When applied to a list of streams transpose will

create a single stream, where the first element is a list containing the first element

of each input stream. When applied to a stream of lists transpose will create a

list of streams, where each stream represents one row of the lists in the original

stream. It is usually assumed that the lists in the stream will be of regular size.

5.2.4 Composite Operations

Many of the basic operations of the library introduce timing issues into the streams

that they transform. For example, the use of chunk alone will typically suffer from

starvation where the operation is looped over a finite source of data. To avoid

issues like this the operations are used in pairs, with particular pairs appearing so

often that they form their own operations. The code for these operations is also

found in Appendix B.

The first function stretch is composed of the operation map (replicate n) and

concatenation. The map/replicate pair takes a stream as input and creates a stream

of lists, where each list consists of multiple references to the underlying value of

the original stream. It is rarely used alone, but is usually found as a component of

doMany.

stretch :: Int→ Stream v→ Stream v

The doMany operation takes a stream transformation, but applies the operation

to each value in the underlying stream multiple times and collects the results as a

list. It is composed of chunk and stretch and is most useful when the stream trans-

formation being applied uses stateful information internally threaded through the

computation, such as a perturbation operation using a random number generator.

This allows several perturbations to be seen from each solution in the underlying

stream, before being selected between.

doMany :: Int→ (Stream a→ Stream b)→ Stream a→ Stream (List b)
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The functions divide and join can be paired to divide a stream into multiple

substreams, apply a different stream transformation to each substream and then

recombine them. For the result to be stable it is important that divide and join share

the set of indices and stream of index values, the sharing of which is provided by

the function nest. This is then reformulated so that the type of the function is a

list of index values and stream transformations paired together, a stream of index

values and results in a stream transformation.

nest :: Eq n⇒ List (n,Stream a→ Stream b)→ Stream n→

Stream a→ Stream b

5.2.5 Restart Combinators

Metaheuristic search strategies converge with time, reaching a point where they

cease to make significant improvements in the best known solution to the problem.

At this point alternative strategies are used to diversify the search, allowing the

strategy to continue. The simplest form of diversification is the random restart,

where solutions are generated by a search strategy from one solution and when

that strategy begins to struggle it continues from a newly generated solution.

The restart combinators were originally created to support this task, but were

subsequently found to be of use more widely in hybridisation, perturbation and

neighbourhood implementation and adaptive simulated annealing. Two versions

are implemented restart and restartExtract, both sharing the same type:

restart,restartExtract :: (Stream a→ Stream a) -- internal strategy

→ (Stream a→ Stream Bool) -- restart on

→ Stream a -- seed solutions

→ Stream a

restart provides as output every solution encountered by the internal strategy until

the restart condition is found. restartExtract acts as a stream transformer, giving

only the last solution encountered by the internal strategy from each seed.

5.2.6 Combinators for eagerness

The use of streams to express metaheuristics can run the risk of memory leaks

caused through the build up of unevaluated Thunks. This problem can be con-

trolled by requiring that the solutions in the final stream are evaluated in the order
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that they appear in the stream. This can be implemented using a function called

push , which makes a stream head strict, that is the first value must be evaluated

before any other values are2.

push :: Stream a→ Stream a

push (x : xs) = x ‘seq‘ x : push xs

This function is applied to the output of a metaheuristic before applying further

operations such as selecting the best of the solutions seen.

5.3 Hill Climbers

Iterative Improvers are more commonly known as hill climbers and gradient de-

scent. They operate in a greedy manner, only moving to a new candidate solution

if it improves upon the previous candidate. Usually they are based upon neigh-

bourhood functions, where a number of candidates are generated from a previous

candidate and only one is selected.

This means that the process can be divided into three parts; (i) the genera-

tion of the raw neighbourhood, (ii) the processing of this into a neighbourhood

of improving solutions, where improving means better than the parent solution,

and (iii) selecting from the improving neighbourhood. There are various ways

in which the next candidate can be selected from the neighbourhood of improv-

ing solutions, with the most common being; first found, maximal, minimal and

stochastic.

The creation of the stream of neighbourhoods from a stream of solutions is

a problem specific operator, of the type ExpandT s s. The stream of improving

neighbourhoods is a modification of the neighbourhood operator such that neigh-

bourhoods produced are always improving. The function to perform this has been

called improvement, a higher order function that transforms expansion operators.

improvement :: Optimisable s⇒ ExpandT s s→ ExpandT s s

improvement nf sols

= safe (map (:[ ]) sols)

$ zipWith (λa b→ filter (>:a) b) sols (nf sols)

safe :: Stream (List v)→ Stream (List v)→ Stream (List v)

safe = zipWith (λa b→ if null b then a else b)

2The push function is equivalent to the evalList rseq strategy found in the Haskell parallel

libraries at http://hackage.haskell.org/package/parallel-3.2.0.3.

http://hackage.haskell.org/package/parallel-3.2.0.3
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The improvement function works by internally creating the stream of neighbour-

hoods and then combining each neighbourhood with its seed in a filtering opera-

tion. When the hill climber reaches a local minimum, the filtered neighbourhood

would be empty and this would cause problems for subsequent selection opera-

tors.

Iterative Improvers are often used as components of hybrid search strategies.

To simplify composition of an Iterative Improver with other streams it is important

that it will provide some output, regardless of the solution that is processed. To

avoid the problem of local minima not being able to improve the helper function

safe is introduced so that either the improving neighbourhood or the singleton

seed is returned from an improving neighbourhood.

Iterative improvement becomes a combinator of the library, combining the

concepts of the improvement transformation of a neighbourhood operation and

the application of a selection operation to the result.

iterativeImprover :: Optimisable s⇒ ExpandT s s→ ContraT s s→

Stream s→ Stream s

iterativeImprover nf cf = cf ◦ improvement nf

First found Iterative Improvement is implemented using this combinator by

parametrising it with a contraction pattern which takes the first element of any

neighbourhood it encounters. This is created through map head. Similarly maxi-

mal and minimal improvement are described in terms of best and worst;

firstFoundii,maximalii,minimalii

:: Optimisable s⇒ ExpandT s s→ Stream s→ Stream s

firstFoundii nf = iterativeImprover nf (map head)

maximalii nf = iterativeImprover nf (map best)

minimalii nf = iterativeImprover nf (map worst)

Stochastic Iterative Improvers are usually implemented as the selection of

a random element, implicitly using a uniform distribution, from an improving

neighbourhood. The library provides finer grained control of the degree of ran-

domness in a search strategy through the use of alternative distributions and im-

posing additional structure on the neighbourhoods. In the following example three

alternatives are shown, including a biased selection method sorting the neighbour-

hoods so that better solutions occur earlier, and then using a Poisson distribution

to tend to select from the front of the list.
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λnf → iterativeImprover nf (select uniform)

λnf → iterativeImprover nf (select (poisson 1))

λnf → iterativeImprover nf (select (poisson 1)◦map sortO)

5.4 TABU

At its core TABU search is an exploration of neighbourhoods similar to an itera-

tive improver, but the filtering process of the neighbourhoods involves the recent

history of solutions to avoid returning to those previously seen. This concept can

be implemented in a variety of ways, the most direct being the combination of two

streams, one of neighbourhoods and one of TABU lists, filtering one against the

other:

zipWith (λw n→ filter (elem w) n) tabuLists neighbourhoods

This approach separates the source of TABU lists from the source of neigh-

bourhoods, however commonly both of these are dependent upon the previous

solutions. Due to this shared characteristic each of these computations will be

passed not directly as streams, but as computations that transform streams. The

following code also makes use of the safe function previously seen in Iterative

Improvers, to ensure that the result of filtering the neighbourhoods is never com-

pletely empty.

tabuFilter :: Eq s⇒ (Stream s→ Stream (List s))→ -- window

(ExpandT s s)→ -- neighbourhood

(ExpandT s s)

tabuFilter wF nF xs

= safe (map (:[ ]) xs)

$ zipWith (λws→ filter (flip notElem ws)) (wF xs) (nF xs)

This allows the implementation of TABU search as the following function,

which composes a choice function with a filtering transformation of a neighbour-

hood, following the pattern seen in iterative improvers.

tabu cF wF nF = cF ◦ tabuFilter wF nF
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However this approach does not follow the rules of TABU search laid out in Chap-

ter 2. In the standard model of TABU search, the TABU filtered neighbourhood is

used as an escape strategy in conjunction with an iterative improver. While neigh-

bourhoods contain solutions which improve the result of the search strategy this is

always taken, only being replaced with a choice from the TABU search when no

further improvement is possible. In order to implement this safe is reused again,

but taking the result of a TABU filter as the alternate result.

tabu :: (Eq s,Optimisable s)⇒

(ContraT s s)→ -- choice

(Stream s→ Stream (List s))→ -- window

(ExpandT s s)→ -- neighbourhood

Stream s→

Stream s

tabu cF wF nF xs = cF ◦ safe (tabuFilter wF nF xs)◦ improvement nF $ xs

A TABU list may be computed in a variety of ways however the standard

method, and that provided by the current functional library is to provide a snapshot

of the recent history, through the window function. In this example a window size

of 5 is used, for illustrative purposes.

> loopP (tabu (map head) (window 5) tsp neighbourhood) seed solution

As with iterative improvers any selection function may be used in place of map head,

which is used here both for illustration and because operating in this mode is part

of the standard implementation of TABU search.

5.4.1 Variable TABU List Size

The flexibility of these combinators to construct a range of variants can be demon-

strated through implementing part of Taillard’s Robust Taboo search [78]. In this

work Taillard used a TABU list in which the size varied randomly between fixed

bounds. This was found to produce better and more stable results than the basic

TABU algorithm.

A function is provided to stochastically modify the elements of a stream of

TABU lists. To simplify later usage this is automatically seeded with a random

number generator.

varyWindow :: (Int, Int)→ Stream (List s)→ Stream (List s)

varyWindow range = unsafePerformIO k
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where k = do g← newStdGen

return $ zipWith take (randomRs range g)

Construction of Taillard’s TABU is now straightforward;

taillardTABU nf winSize range

= loopP (tabu (map head)

(varyWindow range◦window winSize)

(map nf ))

5.4.2 Performance Considerations

The implementation of TABU shown so far provides a clean expression for where

the functionality of the different elements interact, however it also will frequently

duplicate the neighbourhood construction process. In order to avoid the cost of

unnecessary function evaluation the result of the neighbourhood must be shared,

which can be performed manually in the following way.

tabu cF wF nF xs

= let nF′ = const (nF xs)

in cF ◦ safe (tabuFilter wF nF′ xs)◦ improvement nF′ $ xs

This modification can be performed automatically, however the task of iden-

tifying all the cases where the common transformation could be extracted has

not yet been performed. In general this does begin to highlight where functional

programming can aid in the expression of metaheuristics at a high level while en-

abling efficient performance through rewriting of expressions during compilation.

5.5 Simulated Annealing

Simulated Annealing can be thought of as an adaptive filtering process similar to

a basic TABU filter, where the elements that will be filtered change at each step

of the iteration. The filtering process in Simulated Annealing is dependent upon

the previous or seed solution, a temperature and a supply of random numbers.

Unlike iterative improvers and TABU search Simulated Annealing is not usu-

ally implemented as a neighbourhood based algorithm, but as a perturbation based

algorithm where a seed solution is perturbed and a choice is made between the old
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and the new. This is the approach, as a choice between values, rather than focus-

ing upon the filtering characteristic, which has been taken by the library. The

standard choice function3 used by simulated annealing can be implemented in the

following way, operating over values rather than streams.

saChoose :: (Floating v,Ord v)⇒

(s→ v)→ -- solution to value

v→ v→ -- temperature and random numbers

s→ s→ s -- solutions

saChoose quality r t s s′

| d 6 0 ∨ e> r = s′

| otherwise = s

where

e = exp (−(d / t))

d = (quality s′)− (quality s)

The saChoice function can be lifted to operate over streams using the standard

zipWith4 function. It is due to this direct implementation using a standard Haskell

combinator that further work on abstracting the filtering characteristic was not

pursued.

sa :: (Ord v,Floating v)⇒

(s→ v) -- quality evaluation function

→ (Stream s→ Stream s) -- perturbation transformation

→ Stream v -- stream of stochastic values

→ Stream v -- temperature strategy stream

→ Stream s→ Stream s

sa quality perturbF rs coolS sols

= zipWith4 (saChoose quality) rs coolS sols (perturbF sols)

5.5.1 Standard Cooling Strategies

The streams of temperatures, usually called cooling strategies, are the most com-

mon way to adapt simulated annealing for particular problems. There are three

well known strategies which are implemented below:

3It should be noted that unlike the other metaheuristics Simulated Annealing does not make

use of the Optimisable type class. This is because the saChoice function selects between solutions

based upon a comparison of the numerical representation of their qualities, rather than using a

more generic ordering of solutions.
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• Linear cooling

tn = tn−1 + c

linCooling :: Floating b⇒ b→ b→ [b ]

linCooling c t0 = iterate (+c) t0

• Geometric

tn = tn−1 ∗ c

geoCooling :: Floating b⇒ b→ b→ [b ]

geoCooling c t0 = iterate (∗c) t0

• Logarithmic

tn =
c

log(n+d)

logCooling :: (Enum b,Floating b)⇒ b→ b→ [b ]

logCooling c d = map (λ t→ c/ (log (t+d))) [1 . .]

As with the previous strategies, the stream transformer must be looped and

provided with a seed solution, and like TABU search, simulated annealing does

not always improve solution quality with time, so bestSoFar will be required on

the final output.

exampleSA :: (Optimisable s,Floating v,Ord v)

⇒ (s→ v)→ StreamT s→ v

→ v→ [v ]→ s→ Stream s

exampleSA quality perturbF startT propT rs

= bestSoFar ◦ loopP (sa quality

perturbF

rs

(geoCooling propT startT))

5.5.2 Adaptive Simulated Annealing

At high temperatures simulated annealing will accept more candidates and so ex-

plore the solutions space more widely, while at lower temperatures the algorithm
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will tend to move through solutions which improve the quality of the result. At

very low temperatures the algorithm acts almost exactly like an Iterative Improver

and so will become stuck in a local minimum and cease to change.

Adaptive simulated annealing attempts to select or manage the temperature

of the system so as to improve the progress of the search system. This can take

a variety of forms including (i) restarting the temperature strategy, (ii) reheating

the system gradually and (iii) reducing the temperature in an irregular pattern.

Typically each of these effects will be triggered by the detection of convergence

in the stream of solutions being discovered. The following code sketches illus-

trate the use of restart for implementing types (i) and (iii), with the presumption

of a function called converge which gives a stream of boolean values indicating

convergence of the recent history at each step of the process.

restart coolingStrategy (const (converge sols)) (repeat initialTemp)

restart id (const (converge sols)) (coolingStrategy initialTemp)

The following more complete example shows the use of window to implement a

simple convergence function, and the use of this to create an adaptive simulated

annealing system with cooling schedule restarting.

restartingSA :: (Eq s,Floating v,Ord v,Optimisable s)

⇒ Int→ v→ v

→ (s→ v)→ (Stream s→ Stream s)

→ Stream v→ s→ Stream s

restartingSA wSize startT propT getVal perturbF rs1 seed

= let cs = map (λw→ if null w then False else head w≡ last w)$

window wSize sols

ts = restart (map (∗propT)) (const cs) (repeat startT)

sols = loopP (sa getVal perturbF rs1 ts) seed

in bestSoFar sols

Alternating between heating and cooling of the system presents a different dif-

ficulty as it requires the switching between different temperature strategies (heat-

ing and cooling), in accordance to the stream of triggers. This is almost identical

to the concept of event driven changes to behaviours found in functional reactive

programming (FRP) [40] and so a similar function is constructed. The implemen-

tation can be found in Appendix B.
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5.6 Genetic Algorithms

At first glance genetic algorithms (GA) call for a separate set of combinators due

to their use of populations of candidate solutions rather than operating over indi-

vidual solutions. However a stream of solutions can be converted into a stream of

lists, which is isomorphic to a stream of populations, through the use of the chunk

function, and a stream of populations may be converted into a stream of solutions

through concatenation.

It is possible to describe a genetic algorithm as a stream transformation over

populations, and has the following type;

popTrans :: Stream (List s)→ Stream (List s)

This gives rise to the following sketch of a skeleton for genetic algorithms;

concat ◦popTrans◦ chunk popSize

The core process of the population transformation is selection of parents and

recombination of these parents to give rise to a new population. The future pop-

ulation needs to be the same size as the previous solution, so this task must oc-

cur popSize times and each solution is produced through the recombination of

rSize solutions. Each of these tasks is of the pattern doMany and can be imple-

mented through composite application of this function. In the following example

recombine is presumed to be an externally defined recombination function, and a

Poisson distribution has been used to give preference to the better solutions.

doMany popSize

(recombine◦doMany rSize

(select (poisson 0)◦map sortO))

Genetic algorithms also make use of mutation. Rather than implementing this

within the population structure it can be applied separately using the nest function,

to apply a perturbation to a substream of solutions. For example, in the following

code fragment, a TSP perturbation function is applied to every other solution in

the system.

nest [(False, tsp perturb),(True, id)] (cycle [False,True])

These components can be composed together to give the standard skeleton of

a genetic algorithm. How this implementation operates on streams can also be

seen graphically in Figure 5.2.
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ga :: Int→ -- population size

Float→ -- mutation likelihood

(ContraT s s)→ -- recombine, contraction

-- of parents into child

(Stream (List s)→ Stream (List s))→ -- selection

(Stream s→ Stream s)→ -- mutation

Stream s→ Stream s

ga popSize perturbProb recombine selection perturb

= nest [(True,perturb),(False, id)] mutGo◦

concat ◦

doMany popSize (recombine◦ selection)◦

chunk popSize

where

mutGo = unsafePerformIO k

where

k = newStdGen>>= return◦map (<perturbProb)◦ randoms

In this implementation, the size of the selection, making use of doMany is left

to the programmer, rather than passing an additional superfluous parameter to the

function.

5.6.1 Performance Considerations

As with TABU search this approach to GAs is a high level description of the

functionality, but gives rise to runtime performance problems. In the case of GAs

the problem arises from the typical desire to select from the population so that

better solutions are more likely to be picked.

In the implementations seen here the sorting operation is applied every time

that the selection operation is used. This was chosen to provide clarity regarding

what it does and why it is there, but also flexibility in varying how the list is

sorted. However this will cause the population to be sorted many times, when it

only needs to be sorted once.

Unlike TABU this can be handled by a Haskell rewrite rule.

"stretch/map"

forall f n. map f . stretch n =

stretch n . map f
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Figure 5.2: An illustration of how a genetic algorithm works, when implemented

using stream transformations.
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This rule takes advantage of the defintion of doMany;

doMany n f = chunk n◦ f ◦ stretch n

Where f is actually map f , then the rule given can be used to rearrange the code

automatically to improve performance. This rule can be proved in the following

way. First the definition of stretch itself;

stretch n = concat . map (replicate n)

The proof, beginning from the left hand side of the rule.

map f . stretch n The LHS

map f . concat . map (replicate n) Definition of stretch

concat . map (map f) . map (replicate n) standard property of map [39]

concat . map (map f . replicate n) map composition

concat . map (replicate n . f) can be proved by induction

over finite lists

concat . map (replicate n) . map f reverse map composition

stretch n . map f reverse stretch definition

The result of those transformations is the right hand side of the rewrite rule, as

desired.

The multiple selections that are performed in GAs also cause problems, com-

puting the probability distribution, attaching it to solutions in the population and

looping over the list many times more than is needed. This can be solved by de-

tecting the use of selection in conjunction with stretch and computing an efficient

data structure4 once, and selecting from that many times. This can be imple-

mented using the following compiler rule.

"multiselect" forall n g.

select g . stretch n =

zipWith (\r->snd . fromJust .

Data.Map.lookupGT r)

(unsafePerformIO $

newStdGen >>= return.randoms) .

stretch n . map Data.Map.fromAscList

. map (\x->zip (g.length $ x) x )

The argument for the practical validity of this transformation is to break down

the selection function into its two constituent parts. The first takes an input list,

4The data structures and related accessor methods are all drawn from the standard Data.Map

library.
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and produces a data structure of pairs, [(Probability,Value)], and this transfor-

mation is applied to every list in the input stream of lists, using map. This data

structure is then processed by a stream transformation, which threads an internal

random number generator, which will select one element from each list in the

stream, based upon the probability distribution used. The selection mechanism is

seeded using unsafePerformIO, and this is the same for both the standard selection

mechanism, and the product of this rule.

Since map is used to apply the construction of the intermediate data structures

within select, and the rule makes use of stretch, the previous proof can be used to

prove that it is acceptable to move this across, giving (this is a code sketch only);

selectionProcess◦ stretch n◦map dataStructureConstruction

The rule then improves performance by replacing the data structure, changing

it from a flat linked list to a tree. The selection mechanism is similarly updated

to match this change. Where stretch is used this will tend to give better access,

by building the tree once, and querying it quickly, rather than searching the linked

list (where it may not is if n is low enough that the size of the computation for

creating the data structure is actually larger than just querying the linked list a few

times).

There are situations where it may give different answers and these depend

upon the cumulative distribution function given by the programmer.

• Where the distributions are not monotonically increasing this approach will

not work, however it would be incorrect in both the original and the new

version of the code after the rule’s application.

• Where the distribution has multiple identical probabilities. The left hand

side of the rule will select the first, where as the right hand side will select

the last. In practice this situation would not be desirable, unless it was the

intention to make a large number of solutions inaccessible for this selection

method, in which case a more explicit function would be preferred.

Apart from these considerations the selection process and data structure do

match between the left and right hand sides of this transformation.
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5.7 Demonstrations of flexibility

This section will demonstrate the flexibility of the library in three ways. The

first will be to create new patterns for the combination of transformation building

blocks, without having to modify the underlying library. The second will reuse

existing components, built for the Simulated Annealing metaheuristic in the con-

text of a genetic algorithm, to modify how breeding pairs are chosen. Finally it

will be demonstrated how different search strategies can be combined using the

library to create more complex strategies.

5.7.1 Creating a new operators

Consider a situation where the programmer wishes to apply several operators in

sequence many times over, such as a number of different perturbation operations5.

The operations of the library do not currently support this particular operation. To

clarify how a sequence of operations can interact, the following is a toy example

on numbers, starting from the number 1 and using the operations; +1, ∗2, cos and

/3.

Seed +1 ∗2 cos /3

1 2.0 4.0 −0.654 −0.218

0.782 1.564 6.559e−3 2.186e−3

1.002 2.004 −0.420 −0.140

0.860 1.720 −0.149 −4.952e−2 ...

One approach to combining these operations is simply composition of the

functions, which can be done as follows, making use of the library operation

loopP.

loopP (map ((/3)◦ cost ◦ (∗2)◦ (+1))) 1

However the output of this looped composition would be the following sequence.

1.0,−0.218,2.186e−3,−0.140...

Composing the operators only outputs the result of the whole composition at each

step, and many potentially useful values are hidden from the user. If the objective

were to minimise the value seen in the sequence (as is often the case in an opti-

misation algorithm) then the value 0.654 can be seen to have been hidden by the

composition.

5This can be the pattern of operation used by the product of simple hyperheuristics.
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The desire is to have an operator that will apply the transformations in se-

quence, but will make visible all the values that are seen. There are at least two

ways to implement this, presented here as two versions of composeWithOutput.

composeWithOutput :: List (Stream a→ Stream a)

→ Stream a→ Stream a

composeWithOutput fs = concat ◦ transpose◦ zipWith ($) fs

◦ transpose◦ chunk (length fs)

composeWithOutput′ fs = nest (zip nms fs) (cycle nms)

where nms = [1 . . length fs ]

These may be used to implement the desired pattern of computation in the

following way.

loopP (composeWithOutput $ map map [(+1),(∗2),cos,(/3)]) 1

The result of using composeWithOutput is a stream transformation itself, and can

hence be passed as a parameter to other components, for example using it as a

perturbation operation, or composed into other more complex operations. For

example;

loopP (composeWithOutput fs

◦nest (zip [False,True] [ id,map (+10)]

(cycle nms)

)1

where nms = [False,True,False,False]

fs = map map [(+1),(∗2),cos,(/3)]

A similar operation is to combine two strategies, but in an unequal way, for

example the first strategy for 10 steps, the second for 20, while outputting every in-

termediate solution seen. Like the second implementation of composeWithOutput

this is a specialisation of the existing nest function.

combineWithTimeLengths :: Int→ (Stream a→ Stream a)

→ Int→ (Stream a→ Stream a)

→ Stream a→ Stream a

combineWithTimeLengths l1 t1 l2 t2

= nest [(True, t1),(False, t2)] nms

where nms = cycle (replicate l1 True++ replicate l2 False)
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Each of these new operators can interact with the existing library components,

and be built with a minimum of understanding of how the existing functions act

internally. This demonstrates the flexibility of the approach in enabling light-

weight user augmentation of the existing system.

5.7.2 Reuse of existing components for new purpose

The genetic algorithm pattern previously presented selected parents making use

of a probability distribution to guide the stochastic selection process. This basic

concept can be varied, and indeed is experimented with by researchers in the field.

For example, in the real world it is sometimes easy for almost any parent to repro-

duce, where as at other times only the best can breed, due to poor environmental

conditions such as lack of food. Ideally implementing this concept should involve

changing the selection mechanic alone, and should not involve modification of the

basic pattern of the genetic algorithm.

One way to approach this is to vary the population that can be selected from

by the existing selection operation. Given that the populations are already sorted

this becomes the task of taking some group, from the best to some limit, which

can be implemented using the following.

zipWith take ts :: Stream (List a)→ Stream (List a)

The symbol ts can be implemented in the above through an elaboration of one of

the cooling strategies seen in Simulated Annealing. In the following example it is

a form of geometric cooling that is chosen. The constants are arbitrarily chosen

for this example, but the basic concept is to construct a segment of a cooling

schedule, and then use that to construct a cycling pattern to limit the population

selection pool.

cyclicalTemp popSize = map floor (cycle $ g++(reverse g))

where g = take 40 $ geoCooling 0.97 popSize

The previous mechanism for selection in a genetic algorithm might have been;

doMany 2 (select uniform)

Which would select two parents using a uniform distribution. Typically a non-

uniform distribution was expected, however, with the new mechanism for limiting

the pool of choices, uniform selection becomes more useful, because any of the
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pool should be equally eligible at the point of decision, or else the limiting of the

selection pool is happening twice. This gives rise to the following example selec-

tion mechanic, making use of the pool limiting function, and uniform selection.

doMany 2 (select uniform)◦

zipWith take (stretch popSize $ cyclicalTemp popSize)

This composition may now be passed as the selection mechanic to a genetic

algorithm, and provides a quite different breeding pattern to those previously seen.

This is achieved without changing the underlying code, and making use of com-

ponents originally not intended for use in a genetic algorithm.

5.7.3 Combining search components

A common approach to trying to improve the performance of a metaheuristic is

to combine it with other search strategies, as seen in Hybridisation, returned to

in Chapter 7. For example, Simulated Annealing has been described as operating

using a stochastic perturbation of solutions, however this is not the only option.

If p is a stochastic perturbation operation, with the type Stream sol→ Stream sol,

then it can be varied and made more complex. For instance, the following could

be used as a perturbation for simulated annealing, where a number of possibilities

are created at once, and then a Poisson selection method will tend to present the

best to the outer Annealing choice.

select (poisson 0)◦map sortO◦doMany nSize p

Another simple alternative is to always select the best from a generated group,

making the Annealing choices operate over a series of fairly good choices (though

they may still be worse than the seed at any given step), rather than just over

stochastically generated options.

map best ◦doMany nSize p

An alternative is to make use of iterative improver as the perturbation me-

chanic, which has been previously investigated by other researchers. This makes

the Annealing process a choice mechanism over a series of local minima rather

than over a series of random solutions. It can be implemented as follows, making

use of a new convergeTest function and the restartExtract function. It still uses

a stochastic perturbation operation p to move away from the current solution, but

then applies the iterative improver over the neighbourhood function nF.
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convergeTest = (False:)◦map (λ [a,b ]→ a≡ b)◦ tail◦window 2

newPerturb p nF = restartExtract (iterativeImprover nF) convergeTest ◦p

Another approach to combining strategies is to combine them in succession.

This may be achieved with function composition, however it can be more useful

to use the recently defined combineWithTimeLengths function. A common ap-

proach in metaheuristics is to combine an Iterative Improver with a random walk,

to allow the algorithm to escape from the local minimum that the Iterative Im-

prover became trapped in. This can be done as follows, where the value 10 for the

number of steps of the random walk is arbitrary and only intended for example;

combineWithTimeLengths

1 (restartExtract (iterativeImprover nF) convergeTest)

10 randomWalk

5.8 Ant Colony Optimisation

Ant Colony Optimisation can be seen as a learning algorithm which attempts to

learn how to guide the construction process for new solutions. This is achieved

through converting solutions into sets of pheromone trails, which for choices in

the construction process, indicate the likely quality of solution that will be derived

from making that particular choice. ACOs can be implemented in one of two

ways, either as a point or population based metaheuristic. However it is now

commonly treated as a population based method, and this will be the primary

approach taken in this Thesis.

A population based approach has strong similarities to the structure of a GA,

reusing the chunk and concat pattern to manage the population structure. A pop-

ulation is used to derive a single pheromone map of the problem and this is then

used several times to create a new population of solutions. This separation of

functionality is used to give rise to the following template.

aco :: Int→ -- population size

(Stream (List s)→ Stream a)→ -- Pheromone analysis

(Stream a→ Stream s)→ -- solution generation

Stream s→ Stream s

aco popSize aP gN = concat ◦doMany popSize gN ◦aP◦ chunk popSize
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The process of pheromone analysis can be further decomposed into the conver-

sion of individual solutions into pheromone information and the merging of this

information into a single pheromone map. For example, pheromones based upon

numbers can be implemented using a combination of map and foldl (left reduc-

tion) and makes use of an empty pheromone list (p0).

map (foldl (zipWith (+)) p0 ◦ map convert)

Typically ACOs make use of a longer term memory about the evolution of the

pheromone map, implemented by adding a proportion of the previous weights to

the current map before generating new solutions. A stream transformation provid-

ing this functionality can be composed with the creation of the pheromone map

previously seen and parachuted into the algorithm as desired by the programmer.

Many implementations are possible but only one will be presented here, using

window to emphasise the use of memory in this operation. A simple version can

be implemented using a helper function to apply degrade correctly over the pairs

of values in the histories produced by window, including the initial special case

where there is only one value in the history.

acoMem :: Num a⇒ (a→ a)→ Stream a→ Stream a

acoMem degrade = map g◦window 2

where g [x ] = x

g [x,y ] = degrade x+ y

In the above examples the linking and degrading processes have been imple-

mented using simple functions and addition. It is more flexible to provide these

more general stream transformers, passed as parameters to the function. This

gives rise to the following implementation.

acoMem :: (Stream n→ Stream p→ Stream p)→ -- link

(Stream p→ Stream n)→ -- degrade

Stream p→ Stream p

acoMem link degrade = g◦window 2

where g ([x ] : xs) = x : link (degrade (map head xs)) (map last xs)

A point based implementation of ACO can also be implemented either by

using a population size of one, or by building a new version using only the com-

position of pheromone analysis, solution construction and degrade.
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5.8.1 Mutation

ACOs are known to suffer from a similar issue to GAs, which are effective at

exploring the space of solutions widely, but unable to make the final push towards

local minima. To improve upon ACO a common hybridisation is to use an iterative

improver to modify the solutions and hence allow the ACO to learn from a series

of local minima, rather than a series of non-optimal solutions.

Other metaheuristics may be composed with ACO directly to provide addi-

tional functionality over all solutions considered. Alternatively only some solu-

tions of the ACO can be modified in a similar way to mutation in a GA, making

use of the nest function (see Section 5.6).

5.8.2 ACO for recombination

It is noted in [6], that recombination operators are particularly difficult to design

and implement, and that since ACO seems effective on combinatorial problems

it may be particularly suited in this role. Their work supported this hypothesis,

finding that ACO was indeed a quite general and effective recombination operator.

This can be facilitated through importing the operators for pheromone map

construction and ant colony solution rebuilt into the GA structure.

ga popSize mutateLikelihood

(acoRebuild ◦map (foldl link p0◦map convert))

(doMany (popSize∗9 ‘div‘ 10) (select (poisson 2)))

mutation

5.9 Summary

This chapter has described the major functions of the library and shown how each

of the metaheuristic families can be implemented using them. For each meta-

heuristic one or more major variations upon them has also been implemented

through small variations of the combinators used to express their key functional

parameters. This completes one of the primary goals of the Thesis, a framework

and library of combinators that can express the major metaheuristics using a uni-

fied functional approach.



Chapter 6

Low level operators

The low level operators of recombination, perturbation and neighbourhood have,

so far, been treated as the operations that the programmer must create in order to

enable metaheursitics to operate over a problem. For any particular problem the

metaheuristic designer has a range of choices related to how to implement the low

level operators that will be used. How the low level operators are implemented can

have a significant impact upon the overall performance of the search. While any

operation can be constructed monolithically, and it may sometimes be necessary

to do so, this chapter considers strategies for implementing low level operators

and proposes how they may be decomposed to illuminate the design space.

6.1 Using lifted functions

A monolithically defined perturbation operation has the type Stream s→ Stream s.

These are most easily defined in terms of the lifting of a basic function. For

example, the TSP can be perturbed through exchanging cities in a sequence. This

can be given using a function of the following type, where TSP is a problem

specific data type for the TSP problem.

tsp city swap :: Int→ Int→ TSP→ TSP

This can then be lifted to operate over streams in a variety of ways, for example:

93
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• map can be used, where the problem operator is partially specialised to yield

a deterministic function, for example

map (tsp city swap 0 1)

While this example would be of limited value, in general the lifting of such

a function through map may be of use, such as in the case of neighbourhood

functions.

• zipWith, and its variants, can be used to embed an external state into the

stream, for example

getRandomInts r = unsafePerformIO (newStdGen

>>= return◦ randomRs r)

stochasticCityExchange -- purely stochastic city exchange

= zipWith3 tsp city swap (getRandomInts range)

(getRandomInts range)

hybridStoCyc -- a demonstration of a deterministic cycle

= zipWith3 tsp city swap (cycle [0 . .numCities ])

(getRandomInts range)

Neighbourhood functions and recombination functions can be similarly de-

fined and lifted to operate over streams, in combination with parameterising streams

of values.

6.2 Perturbation and Neighbourhood

Perturbation functions and neighbourhood functions can be transformed into one

another, using standard functions of the library. A neighbourhood function lifted

to act upon streams is a transformation from a stream of solutions into a stream

of collections of solutions. A perturbation function may be derived from a neigh-

bourhood function by defining a way to select solutions from each collection in a

stream, for example, using a uniform stochastic selection process.

select uniform◦neighbourhood

A neighbourhood function, which operates over streams, can be created from

a perturbation function via a process of applying the perturbation function to each
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value in the input stream several times, and gathering these results as a collection.

This can be achieved by reusing the doMany function, for example;

doMany n stochastic perturb

When the perturbation function is not stochastic, but makes use of a known pattern

of values, the doMany operation can be used to allow the construction of deter-

ministic neighbourhoods, rather than requiring a separate monolithic definition.

For example, the construction of an adjacent city swap neighbourhood;

doMany nCities (tsp city swap (cycle [0 . .nCities−1 ] [1 . .nCities ]))

The result of such a wrapping can then be combined with further selection

functions, giving back more elaborate perturbation functions. For example, using

a stochastic perturbation function, but applying it several times, and only keeping

the best.

map best ◦doMany n perturb

6.3 Decomposing Perturbation

The construction of perturbation functions can often be broken down into two or

more phases. The simplest is the damage-repair pattern. In this formulation the

first operation breaks the input solution in some way, and the second operation

then repairs it. These two phases can be directly composed as; repair ◦damage.

Both damage and repair can be constructed in a number of ways with the

following being some common options;

• Uniformly random choice of modification

• Greedy choice of modification, e.g. always take the choice that will yield

the best short term results, most obviously in repair, but can also be in dam-

age with an effective measure of how much change will occur from each

operation

• Probabilistic distribution that favours greedy choices

• An exhaustive search operation, only applicable to repair1.

1The use of exhaustive repair with some form of damage closely mirrors the approach known

as Large Neighbourhood Search in constraint programming which works through an iteration of

relaxations and re-optimisations of subsets of constraints [73].
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For example, when performing perturbation upon a TSP problem using edge mod-

ification a number of edges must be selected to be removed. Typically this is done

randomly, i.e. with uniform likelihood of any particular edge being chosen, how-

ever selecting to favour longer edges tends to improve the performance of a meta-

heuristic. How greedy the selection process is, and the probability distribution

that is used, are parameters to the process. Similarly when inserting new edges

into a damaged solution the same range of approaches are available.

These formulations have a strong connection to the selection operators that

have already been created for the library. The abstraction of this functionality is

best implemented through the provision of a new type class of functions that allow

this new form of generic interaction with a problem.

class DR s dopt ropt | s→ dopt,s→ ropt where

damageOptions :: s→ [dopt ] -- how a solution may be damaged

applyDamage :: dopt→ s→ s -- apply damage

repairOptions :: s→ [ropt ] -- how a solution may be repaired

applyRepair :: ropt→ s→ s -- apply repair

complete :: s→ Bool -- can a solution be repaired?

For example, a TSP usage of DR is often found when dealing not in cities, but

in particular edges. In this conception the solution to a TSP is a set of selected

edges and a solution is complete when the set of edges forms a hamiltonian cycle.

The options for damage at any point are the set of edges currently selected for

the solution, implementing damage is the removal of an edge from this set. The

options for repair at a given point are the set of edges that could be added to the

set legally, and implementing a repair is adding an edge to the set.

6.3.1 Higher level damage repair operations

The DR type class can be used to give rise to more complex tools for damaging

and repairing a solution to a problem. Multiple rounds of damage can be applied

before repair is begun. Repair may be partial (performing some number of steps

that may not result in a new complete solution) or complete (continues with one

repair strategy until completion is achieved). Partial repair functions can be com-

posed together to give rise to hybrid repair methods using multiple strategies.

A full enumeration of all possibilities is neither possible nor useful, however

what follows are some examples to show how some of these possibilities can be

implemented.
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uniformDamage :: DR s dopt ropt⇒ Int→ Stream s→ Stream s

uniformDamage n

= restartExtract

(λ sols→ let ds = map damageOptions sols

in zipWith applyDamage (select uniform ds) sols)

(const $ cycle (replicate n False++[True]))

fullRepair :: DR s b c⇒ (Stream s→ Stream s)→ Stream s→ Stream s

fullRepair f = restartExtract f (map complete)

greedyRepair :: (Optimisable c,DR s b c)⇒ Stream s→ Stream s

greedyRepair = fullRepair

(λ sols→ let rs = map best ◦map repairOptions $ sols

in zipWith applyRepair rs sols)

The usage of this approach reduces the reliance of metaheuristics on mono-

lithically defined problem specific operators. Where it is known that the low level

operators can be varied to tune performance, this functional decomposition ex-

plicitly extends the design space for metaheuristics into the construction of these

operators.

6.3.2 Neighbourhoods from damage-repair

Damage-repair allows for two variations upon a neighbourhood to be proposed.

The first has previously been given, where a perturbation method is applied several

times to a specific solution and the results gathered together. This could now be

written as;

doMany n (repair ◦damage)

The alternative is to move the damage operation outside of the doMany;

doMany n repair ◦damage

In this formulation the solution will be damaged once and then rebuilt several

times. For this to be of interest the repair method is required to be stochastic, or

otherwise have some varying internal state.
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6.4 Recombination

A monolithic implementation of a recombination method forms a contraction

transformation, taking a stream of parents and yielding a stream of new solu-

tions. Recombination methods admit one obvious decomposition, before being

entirely problem specific. This decomposition is a process which identifies com-

mon blocks within the parent solutions. These blocks can then be recombined

using a repair strategy, similar to those seen for the decomposition of the pertur-

bation methods.

It is harder to cleanly capture this as new operations, however a proposal can

be made for extending the original DR class to DRA. In this extension a new

function analysis is added, which takes a list of solutions and gives rise to an

analysis, stored as Either solution analysis. The analysis is then implemented

as part of the class, giving rise to further damage and repair options. Damage

and repair are themselves changes to make use of either the solution or analysis

system, with damage creating analyses, and repair removing them. The previous

generic functions would have to be changed to incorporate these modifications.

class DRA s s′ dOpt rOpt where

analysis :: [s′ ]→ Either s s′

damageOptions :: Either s s′→ [dOpt ]

applyDamage :: dOpt→ Either s s′→ Either s s′

repairOptions :: Either s s′→ [rOpt ]

applyRepair :: rOpt→ Either s s′→ Either s s′

This complex system is proposed to allow the unification of recombination

with the action of ACO. In this system an analysis could be a set of common

components in the parents, which subsequently give rise to the need to finish the

solution with repair. Alternatively a set of solutions could give rise to a data

structure, stored as an analysis, which represents a pheromone map. As this is

queried for repair options, it will impose an ordering upon the options, dependent

upon their analysis, and hence allow the creation of new solutions.

6.5 Summary

This chapter has shown that while low level operators can be defined monolithi-

cally they can often be seen as being constructed through the composition of the
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damage, repair and analysis building blocks. It has been shown how to use stan-

dard functions of the library, such as doMany, restart and select to combine the

lower level building blocks into a wide variety of operators. While there is still

a separation between problem specific operators and the logic of metaheuristics,

the use of these simpler building blocks changes the focus of the discussion and

provides clear guidance for the design of perturbation, recombination and neigh-

bourhood functions, how they may be varied and customised.



Chapter 7

Hybrid Metaheuristics

Research into methods for hybridsiation have taken two complementary direc-

tions;

• a theoretical study, classification and analysis of the hybrids that have been

appearing; and

• the implementation of APIs and toolkits to enable the programming and

hybridisation of metaheuristics (returned to in Chapter 9).

Various authors have created taxonomies and classification schemes for hybrid

metaheuristics, such as Talbi [79] and Raidl [65]. These have classified hybrid

algorithms by a number of characteristics which may be present. However the

hybridisations do not form a simple hierarchy due to the way the characteristics

may overlap in any given algorithm.

This chapter examines the theoretical breakdown of hybrid metaheuristics

based upon these two authors. It shows how each form of hybridisation is sup-

ported by the functional combinators that have been proposed, and that this often

provides a very clear description of the interactions of the algorithms being hy-

bridised.

100
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7.1 High and low level hybridisation

This is the most general distinction between hybrids, relating to the “level of

coupling” between the components being hybridised. Talbi’s description of the

distinction between high and low level hybridisation is to specify that low level

hybridisation is where

a given function of a metaheuristic is replaced by another meta-

heuristic. [79, p. 543]

By comparison, Talbi describes high level hybridisation as the situation where

each metaheuristic retains the complete individuality of both components. For

example; simulated annealing using an iterative improvement method (beginning

from a more stochastic jump) as its perturbation method would be a low level

hybridisation and; running an iterative improvement algorithm on the best solution

that an ACO finds would be a high level hybridisation.

sa qualityExtraction

(iterativeImprover ◦ stochasticPerturbation)
streamOfRandomDoubles

coolingStrategy

Figure 7.1: A sketch of a hybrid metaheuristic using a stochastic iterative im-

prover as the perturbation function of a simulated annealing system. In this exam-

ple a number of placeholder functions and parameters (qualityExtraction, stochas-

ticPerturbation, iterativeImprover, streamOfRandomDoubles,coolingStrategy) are

used and expected to be provided by problem specific code or more complex ex-

pressions for practical usage.

Low level hybridisation is provided by the library in the form of functional

parameters, which allow for the parachuting of functionality to lower levels of

the program. An example of this can be seen in Figure 7.1, which demonstrates

how the perturbation function in simulated annealing may be easily varied. High

level hybridisation can be provided through the use of function composition. For

example the high level hybridisation of ACO and iterative improvement is simply

the composition of these two strategies.

High level hybridisation can also be implemented by combining fully evalu-

ated strategies. For example, an alternative hybridisation of ACO and iterative
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improvement is to run ACO to convergence and termination, and use the best so-

lution found as the seed for an iterative improver. This may be seen in Figure 7.2.

last ◦ convergeCheck′ ◦ loopP iterativeImprover ◦
last ◦ convergeCheck ◦bestSoFar ◦ loopS aco $ initialSols

Figure 7.2: An example of very high level hybridisation of algorithms, where

both aco and iterative improver are run separately, with appropriate convergence

checking and selection of best solutions found. Both aco and iterativeImprover

are placeholders for more complex expressions, as are convergeCheck and con-

vergeCheck’, where the names serve to illustrate their purpose.

Raidl’s conception of high level hybridisation is broadly the same as Talbi’s

however he uses a different description of low level hybridisation. For Raidl a low

level hybridisation is the use of a characteristic or function from one metaheuristic

within another. This makes the distinction between high and low level hybridisa-

tion clearer, where in Talbi’s work each algorithm remains self contained, and the

hybridisation is achieved by how they communicate.

Raidl extends the concept of low level hybridisation to include the situation

where characteristics from the respective algorithms are combined, rather than

using one complete metaheuristic as a component of another. This form of hy-

bridisation is also supported through the same basic operations such as function

composition and especially use of function parametrisation. Figure 7.3 gives an

example of the hybridisation of the concept of avoiding revisiting previous so-

lutions, drawn from TABU search, used in support of Simulated Annealing. It

is created by the parametrisation of simulated annealing with a perturbation op-

eration that shares streams of information with the outer strategy. Changes to

simulated annealing at the top level are limited. Hybridisation of low level char-

acteristics is more akin to the design of a new algorithm, which can be aided by

the use of functional parameters, parachuting and function composition, but defies

the implementation in terms of a single combinator.

7.2 Execution order

Talbi uses the distinction of relay and teamwork as a way to describe hybrids. In

a relay the output of one strategy is fed into, or used by another. The simulated

annealing / iterative improver example (seen in Figure 7.1) is an example of a
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λxs→ sa quality

(p (window winSize xs))
streamOfRandomDoubles

temperatureStrategy

xs

where

p ws = restartExtract

perturb

(λvs→ let f bs (w : wss) = w : f (tail bs) wss′

where wss′ = if head bs then wss

else (w : wss)
zs = zipWith (flip elem) (f zs ws) vs

in zs)

Figure 7.3: An example of low level hybridisation through characteristic ex-

change, restricting the results of a perturbation for Simulated Annealing to values

not recently seen, as used in TABU. Shows the reuse of self contained functions

such as window for the memory and lack of changes to the Simulated Annealing

strategy. Implementation of the new perturbation operation requires a restart com-

binator and an alignment of the windows with the variable rate of acceptance in

the restart process. Contains placeholders for; window size, perturbation, quality

extraction, temperature strategy and supply of random doubles for the simulated

annealing choice operation.

relay hybrid. A simpler example is the direct composition of different strategies,

using the standard composition operator. This can also be achieved using the nest

combinator, as seen in Figure 7.4.

In a teamwork hybrid several processes produce solutions, aiming to find the

best possible solution between them. A genetic algorithm can be thought of as a

form of teamwork hybrid where a number of identical recombination processes

act upon the population to generate new solutions to the problem. Algorithms

where several strategies proceed independently, but periodically exchange infor-

mation, are also teamwork strategies. Figure 7.5 shows how nest may be used to

provide periodic communication of information between independent streams of

computation. This example suggests the use of a recombination function as might

be found in a genetic algorithm, but there is no requirement for this particular

operation to be selected for the role, nor for there to be only one communication

process.

Raidl describes two forms of serial operation, in addition to a more detailed
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loopP (nest [(True,strategyA),(False,strategyB)]
(cycle [True,False])

) initialSolution

Figure 7.4: A sketch of a relay hybrid metaheuristic, using two strategies, A and B

in relay over a series of solutions. This approach allows the output of each strategy

to appear on the final stream of solutions, where function composition would feed

the output of A directly into B, and only provide the stream of solutions outputed

by B.

solExch :: (Stream (List v)→ Stream v)→ Stream v→ Stream v

solExch recombine

= concat

◦ nest [(False, id),
(True,map (λ r→ [r,r ])◦ recombine)]
(cycle [False,False,False,True])

◦ chunk 2

loopS (solExch◦nest (zip names solvers) (cycle names)
) (take (length solvers) sols)

Figure 7.5: This sketched example of usage shows how a set of solvers can pro-

ceed independently, and have all their solutions visible as a single output of the

solver. Their independence is interrupted periodically by the function solExch,

which uses an arbitrary cycling pattern to select solutions and recombine them

using a problem specific recombination method. The new solution is reintroduced

to each of the strategies that provided one of the seeds. This sketch involves a

number of placeholder terms; names, solvers and recombine.

breakdown of parallel hybrids. The two serial forms are;

• batch, where each metaheuristic is run once in series (see the last section

and Figure 7.2); and

• interleaved, where the metaheuristics run one after another, which can be

seen as similar to the relay system of Talbi1.

1Using the functional combinators, particularly nest, as seen in Figure 7.4, it is possible for

the library to implement interleaved algorithms over any number of metaheuristics, using very

complex, or even stochastic patterns of interleaving. Such modifications retain the separation of

the search logic from the definition of the patterns and are quickly devised and implemented in

this framework.
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Raidl’s break down of parallel algorithms describes a large number of physical

characateristics of the machines such algorithms would run on, such as shared and

distributed memory. This is counter to the conception of very high level declara-

tive programming, where the programs can be run as easily on a parallel machine

as on a serial machine. This Thesis chooses to focus upon the declarative pro-

gramming aspects of hybridisation, and does not concern itself with these low

level issues.

7.3 Heterogeneity

Both Talbi and Raidl describe hybrids in terms of the heterogeneity or homo-

geneity of their components. A homogeneous algorithm uses several instances

of the same search strategy, and hence makes most sense in terms of population

and parallel algorithms. For example, an island based genetic algorithm is sev-

eral instances of the same algorithm, each on its own population. For this to be

a hybrid strategy the islands must exchange solutions periodically, thus making

this more than just parallel search. Heterogeneous algorithms are those where

different search strategies are used, either in parallel or serial.

Heterogeneous algorithms require no further examples than those seen in the

previous sections. Hybridisation of different algorithm types is simply the compo-

sition, or use of nesting, with heterogeneous strategies. Homogeneous algorithms

require a combination of nesting of the different strategies, effectively dividing the

underlying stream of solutions into several parallel tracks of computation, com-

bined with a periodic communication strategy seen in the previous section.

Talbi proposes a further division, hybrids of general algorithms and hybrids

of specialist algorithms. A general hybrid combines a number of algorithms that

are optimising the same problem, for example an iterative improver and a genetic

algorithm, both acting upon an instance of the TSP. In the functional context this

classification does not change the composition of operators.

Specialist hybrids combine algorithms that solve different problems, though

the combination is beneficial in some way. In the context of functional languages

this may be seen as the combination of algorithms that operate over different data

types. For example, an algorithm may be created for the TSP, where one part

works on the TSP directly while another works on a transformation of the TSP

into SAT. For this to work conversion algorithms will be needed, but the imple-

mentation in terms of the library will rely upon the composition operator alone.
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Raidl also proposes another form of hybridisation based upon solution space

decomposition. The classification here is whether the algorithms are all consid-

ering every solution to the problem, or if each one is considering a subset of the

solutions. This is a form of divide and conquer. Implementation of solution space

decomposition has not been attempted in this Thesis, however it can be hypothe-

sised to require problem specific decomposition and reconstitution operators, and

result in a pattern of computation not dissimilar to nest. An example of how this

could be achieved can be seen in Figure 7.6.

decomposeProblem :: Stream s→ List (Stream decompS)
reconstitue :: List (Stream decompS)→ Stream s

reconstitute◦ zipWith ($) [solverA,solverB]◦decomposeProblem

Figure 7.6: A sketch of the operation of a heterogeneous hybrid, where the het-

erogeneous search strategies operate upon sub-subproblems, created through the

decomposition of the solution space.

7.4 Source of algorithms

Raidl proposes that a final description of the form of hybridisation is a question

of what is being hybridised, pointing out that the algorithms being hybridised are

not limited to metaheuristics themselves. He proposes the use of problem specific

solution methods, fuzzy AI and complete methods such as branch and bound.

The use of exhaustive methods, for example as one option when repairing a

solution during a perturbation, has been seen in Chapter 6. These methods can

be made available by designing stream transformations that encapsulate them, or

lifting them using map and zipWith if this is an option. Hybridisation involving

these alternative algorithms then proceeds using the combinators that have been

discussed.

7.5 Conclusion

This chapter has addressed one of the key hypotheses of this Thesis, that func-

tional languages and combinators can enable the hybridisation of metaheuristic

algorithms. It has shown the ways in which other researchers have classified the
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methods of hybridisation for metaheuristics, and how these methods can be sup-

ported concisely using the framework of this Thesis. The majority of hybridisation

techniques seen here revolve around the operators (◦) and nest, requiring little or

no modification of individual metaheuristic strategies being hybridised. While

more sophisticated low level hybridisation of characteristics still poses problems,

these can often be assisted by the approach taken, exploiting the parametrisation

of strategies to combine characteristics deeply within the algorithms with minimal

changes at the top level.



Chapter 8

Monads and Arrows

The previous chapters have presented a library for metaheuristic implementation

based upon combinators for Streams and Dataflow processing of information.

Monads have been avoided since Chapter 4, where it was shown that the direct

usage of monads for sequencing operations of metaheuristics lacked the flexibil-

ity desired in the system. None the less monads and arrows represent powerful

tools for structuring computations, and so this chapter examines using them in

this fashion, to manage the construction of the streams previously seen.

8.1 Monads

Throughout this Thesis streams have been presented as lazy infinite lists, in this

section this must change, as conflicting definitions exist for the Monad of Lists

and the Monad of Streams.

8.1.1 The List Monad

The definition and proof of the List Monad was provided in the earliest papers

on monads for functional programming [84], and can be described in Haskell as

follows;

instance Monad [a ] where

return x = [x ]

(>>=) = concatMap

(>>) a = concat ◦ replicate (length a)

108
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It is unclear how these functions will aid the expression of data flow programming,

and especially the implementation of metaheuristic algorithms. The concatMap

function is rarely used in the combinators that have been seen, although it does

present one possibility for an alternative definition of stretch as;

stretch i x = x>>= replicate i

However this is an exception rather than a common case and in general the List

Monad does not seem to aid the task of implementing metaheuristics.

8.1.2 The Stream Monad

A definition of Streams as a monad, using lists as the underlying data type, is

provided by Wu and Gibbons1 in an exchange on their blogs. This approach can

be implemented in a number of ways, for example;

type Stream a = [a ]

instance Monad Stream where

return = repeat

(>>=) as f = [s !! i | (s, i)← zip (map f as) [0 . .] ]

In this example bind (>>=) applies the bound computation to each value resulting

from the original computation for a stream. This yields a stream of streams. This

matrix of values, is then reduced into a single stream, by selecting one value from

each stream. In order to obey the Monad laws the values selected for the leading

edge of the matrix of streams.

However this interpretation of streams has similar computational issues to the

naive approaches to FRP previously seen. This can be seen more clearly if the

bijection of streams to functions from an index to a value is used.

type Stream a = Int→ a

instance Monad Stream where

return x = λ → x

(>>=) f g = λ time→ g (f time) time

In this context the bind function can be seen to operate somewhat like a compo-

sition operation, and be efficient where the functions f and g are not inductively

defined. Where these functions are inductive this has equivalent execution prob-

lems to those seen in FRP.

1The final version that this code is drawn from can be found at http://patternsinfp.

wordpress.com/2010/12/31/stream-monad/.

http://patternsinfp.wordpress.com/2010/12/31/stream-monad/
http://patternsinfp.wordpress.com/2010/12/31/stream-monad/
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8.2 Co-Monads for Streams

Co-monads have been shown to provide a strong theoretic foundation for describ-

ing the semantics of data flow languages. This had previously not been done; and

as Uustalu and Vene remark,

meaningfulness or right meaning of higher-order dataflow has been

seen as controversial. [80, p. 136]

Comonads are the dual of monads, defined in Haskell by the type class;

class Comonad w where

extract :: w a→ a

cobind :: (w a→ b)→ w a→ w b

Where monads represent a computation yielding a value, a comonad represents a

computation for a value in a context. For example, the following is one possible

implementation of the comonad for streams;

instance CoMonad [a ] where

extract = head

cobind f = map f ◦ tails

In this example the cobind function applies its parameter f to every possible con-

text (in this case current and future values) of a stream, giving rise to a new stream.

However this approach fails to adequately describe the function of zipWith, which

is used regularly in this Thesis for computations that rely upon more than one

stream. It is possible to build functions with the type w a→ w b→ w c, however

this does not directly make use of the comonadic machinery. Functions such as

window cause greater issues, with the need for limited history of the stream. One

way to overcome these issues is to use the bijection of streams to functions from

an index to a value, so window could access previous values of a stream:

type StreamF = Int→ a

However this is a behaviour, as seen in FRP, over a discrete time parameter, and

while it would provide the desired flexibility would suffer from similar time and

space leak problems to FRP.

The approach taken in [80] is to represent streams as data structures which

both know their current position, the history of all values that the stream has pro-

duced, and the computation for the future values of the stream. There are still



111

issues with this approach, relating to time and space leaks in running computa-

tions.

While comonads present a possible future avenue for data-flow techniques in

functional languages they do not seem to be mature enough at the current time to

aid in the implementation of metaheuristics, nor do they provide a simplification

of the expression of metaheuristic algorithms.

8.3 Arrows

A Monad captures a pattern of computation. The computation can, but is not

required to, be run on an initial set of parameters, such as the String in a parser, or

a representation of the initial state of a system. Arrows are a more general model

of computation proposed by Hughes [43, 61]. An Arrow is more flexible because

it does not represent the computation of a value, but the transformation of a value,

which is more suited for the representation of streams and data flow computations.

Hughes describes it in the following way;

whereas monadic computations are parameterised over the type of

their output, but not their input, arrow computations are parame-

terised over both. The way monadic programs take input cannot be

varied by varying the monad, but arrow programs, in contrast, can

take their input in many different ways depending on the particular

arrow used. The stream function example above illustrates an arrow

which takes its input in a different way, as a stream of values rather

than a single value, so this is an example of a kind of computation

which cannot be represented as a monad. [44, p. 77]

The definition of Arrows for Streams that will be used here will not be the

same as the model used by Hughes for Stream Processors, but will instead remain

closer to the model of data flow and stream transformation seen in Chapter 5.

Technically, all the stream transformations that have been seen are simply func-

tions, and as such are already Arrows, however this can be made more explicit,

by encapsulating them in a new data type StreamT and making this data type an

instance of the Category2 and Arrow classes.

newtype StreamT a b = StreamT {runStream :: Stream a→ Stream b}

2In Haskell all Arrows must also be part of the type class Category and Category provides the

definition of composition, and hence the ≫ operator.
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instance Category StreamT where

id = StreamT Prelude.id

(◦) (StreamT a) (StreamT b) = StreamT (a◦b)

instance Arrow StreamT where

arr = StreamT ◦map

first (StreamT f )

= StreamT (λxs→ let (as,bs) = unzip xs in zip (f as) bs)

This definition permits the reimplementation of the basic functions of the li-

brary, but does not provide a significant improvement in expressiveness, though

the arrow composition function captures the notion of a pipeline more clearly than

standard function composition.

chunk :: Int→ StreamT a [a ]

chunk s = StreamT (iterate (drop s))≫ arr (take s)

stretch :: Int→ StreamT a a

stretch s = arr (replicate s)≫ StreamT concat

doMany :: Int→ (StreamT a b)→ StreamT a [b ]

doMany s f = stretch s ≫ f ≫ chunk s

However some of the more specialised functions such as improvement can be

given quite different implementations using arrow notation [61] in Haskell. These

alternative implementations can hide some elements of lifting to operations over

streams, in this case filter, thus giving a potentially more intuitive description of

how the system is operating.

improvement :: Ord a⇒ StreamT a [a ]→ StreamT a [a ]

improvement nF = proc xs→ do ns← nF ≺ xs

returnA≺ filter (<xs) ns

-- represented using functions directly

improvementBasic :: Ord a⇒ StreamT a [a ]→ StreamT a [a ]

improvementBasic nF = arr (<)&&& nF ≫ arr (uncurry filter)

This can be used to give an implementation of first found iterative improve-

ment which is almost equivalent to the version that has been presented in the

preceding chapters.

firstFound :: StreamT [a ] a

firstFound = arr head
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ffii :: Ord a⇒ StreamT a [a ]→ StreamT a a

ffii nF = improvement nF ≫ firstFound

It can be seen from these examples that stream transformation operations can

be implemented easily using arrows, and that in doing so the programmer can

gain access to features such as the specialised arrow notation. However, these

examples do not exploit features or generalisations that are specialised to Arrows,

with most of the data types being in terms of the StreamT type, and not the more

general arrow type.

These examples have made use of arrow operators such as &&& and ≫, and

access to these functions for structuring streams of computations is very valuable.

However since stream transformations are functions, and functions are arrows,

these useful arrow operators are available already to any programmer that wishes

to use them. In general is does not seem that the explicit use of arrows are inher-

ently more powerful or expressive than not doing so.

8.4 Summary

Monads, CoMonads and Arrows can be used to represent stream computations.

Arrows provide the most directly useful combinators for implementing stream

based computations, and it has been seen how they can be used to implement

elements of the library. However none of these systems significantly improve

upon the expressiveness of the standard combinators for lists found in Haskell

itself.



Chapter 9

Comparison with object oriented

frameworks

There are many existing toolkits and frameworks to aid in the implementation of

and hybridisation of metaheuristics. Some are based upon procedural languages,

most are object oriented and all are imperative. For a more complete examination

of these frameworks please see [56].

This chapter will provide examples of code written in two of the frameworks

that are compared in [56], and contrast it with code written for the same task using

the Haskell framework. The examples will illustrate the improved clarity of the

algorithms when written using the Haskell framework, where all of the logic of

the search algorithm is present at the top level of the program, rather than in a

complex object hierarchy. To illustrate the performance of the Haskell library,

timing data will be presented for each implementation, using a TSP instance as

the example problem.

The choice of the frameworks for this comparison have been made based upon

the following requirements:

• an example of a solver for the TSP should be available, and it is preferable

if the code is provided by an expert in the framework being compared to,

rather than an inexpert implementation.

• the frameworks being compared should be active projects, rather than old

114
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projects that have been discarded by both users and the original creators.

• the two frameworks chosen should be written in different programming lan-

guages, so as to allow potential differences to be seen.

The first framework that will be used is ParadiseEO, a generic framework

for optimisation that is implemented in C++. ParadiseEO provides tools for both

population based and point based algorithms, but here will be used to provide an

implementation of Simulated Annealing, to contrast with the second framework.

The second framework is OPT4J, implemented in Java and only providing tools

for population based metaheuristics.

It is preferable not to compare the loading routines and data models used for

TSP, however in the implementations of both Opt4J and ParadiseEO, the inher-

itance mechanism used means that these components cannot be easily separated

from the search logic. Similarly it is not the aim to compare the memory man-

agement models of the different languages, Java, C++ and Haskell, however it is

not possible to separate these concerns from the implementations. The approach

taken will be to focus upon the high level implementation of the algorithms, that

the frameworks should assist with, highlighting these issues only when they be-

come problematic.

9.1 ParadiseEO

ParadiseEO [8] is a “white-box” suite of systems in one framework for optimi-

sation problems. The architecture focuses upon evolutionary algorithms and sup-

port for parallelism, but also has modules for point based algorithms and multi-

objective optimisation problems.

9.1.1 Architecture of ParadiseEO

ParadiseEO employs a class based architecture with three key components;

Runners encapsulate a solver and perform one ”run” of it, from seed solution to

result solution, according to internal logic. An example of this is a Simu-

lated Annealing runner.

Solvers provide both generic top level control of runners (such as restart function-

ality and preservation of the current best solution) and provide hybridisation

through providing a particular order to execute runners in.
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Helpers are utilities which are used by other parts of the system. The helpers in

the system include; evaluation of solutions, crossover of solutions, neigh-

bourhood exploration, cooling schedules for simulated annealing and stop-

ping criteria for the algorithms.

Default implementations of TABU search, Simulated Annealing and a variety of

hill climbers are provided, with the various helper classes needed to provide their

functionality.

Extension of the functionality is provided through the object system, replacing

components that share certain superclasses or interfaces. Hybridisation can be

implemented in a top level harness, by running one algorithm and feeding the

output of that search into later phases, or through the exchange of parameterising

components. This leads to the complex class hierarchy that is seen.

It is interesting to note that ParadiseEO makes sporadic use of generators1

to provide on demand computation, for example in the generation of neighbour-

hoods, where the neighbourhood is a generator for new solutions. However the

use of generators is sporadic within ParadiseEO, without an abstraction of the gen-

eral pattern. Instead each component that intends to act as a generator implements

the pattern individually.

9.1.2 A Simulated Annealing Implementation

Figure 9.1 shows an implementation of Simulated Annealing for the TSP written

using ParadiseEO. The associated classes for modelling and loading the TSP can

be found in Appendix E.1.1.

This top level harness does provide an indication of the search logic being

used, based upon the classes and parameters to constructors used. For example,

the cooling strategy is clearly defined, with a recognisable starting temperature

and cooling rate, though only examining the documentation or the library source

code will indicate that it is a geometric cooling schedule. More unusual parame-

ters are the final temperature and the delay of the cooling strategy for a number of

steps at each temperature.

The perturbation operation is less clear, being provided by a neighbourhood

generator. The name of the generator suggests that it will randomly swap cities in

1Generators provide a method for creating streams and on demand computation in imperative

languages.
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// Neighbours defined as swaped elements of a list.

typedef moIndexedSwapNeighbor<Route> Neighbor;

int main (int __argc, char * __argv []) {

eo::rng.reseed(time(NULL));

Graph :: load (__argv [1]) ; // Problem instance

Route solution; // solution data structure

RouteInit init; // solution creator

RouteEval fullEval; // solution evaluator

init(solution);

fullEval(solution);

// defines a random neighbourhood

moRndWithoutReplNeighborhood<Neighbor>

neighborhood(416);

// evaluate through modification not copy

moFullEvalByModif<Neighbor>

neighborEval(fullEval);

moSimpleCoolingSchedule<Route> // geometric cooling

coolingSchedule(1000, // start temperature

0.99, // cooling rate

5, // stay at each temp. for

0.01);// terminate at this temp.

moSA<Neighbor> hc(neighborhood, fullEval,

neighborEval, coolingSchedule);

std::cout << "initial solution: "

<< solution << std::endl ;

hc(solution);

std::cout << "final solution: "

<< solution << std::endl ;

return 0 ;

}

Figure 9.1: The main file for a Simulated Annealing based solver, implemented

using the ParadiseEO-MO library in C++. This is modified from source code

originally downloaded from the ParadiseEO website, written by Sébastien Cahon

and Thomas Legrand.

the sequence, however an examination of the code in the class moRndWithoutRe-

plNeighborhood indicates the following logic:

• When first initialised set a maximum index counter to the size of the neigh-

bourhood.

• When generating neighbours, pick a random index up to the current maxi-
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mum, and swap with the current maximum.

• Reduce the current maximum by one.

The functions used for this code are reproduced in Appendix E.1.2. Due to the

way that neighbours are generated, through selecting a random number up to an

index counter, the ParadiseEO code must specify the size of the neighbourhood to

be the number of cities in the TSP, despite Simulated Annealing only generating a

single solution from each neighbourhood. This is hard coded for convenience on

line 13 of Figure 9.1.

It is not clear whether the search process will remain in a specific instance of a

neighbourhood until a new solution is accepted, or create new neighbourhoods at

each step of the process. An examination of the files moSAExplorer, for exploring

a neighbourhood, and moLocalSearch the super class of moSA reveals the full

process. At each step the algorithm will create a new neighbourhood, and draw

the first randomly generated solution from it and then decide to move to it, or not.

The full code from the original classes can be found in Appendix E.1.2.

The search logic can be described as follows:

• The perturbation of a solution is to swap a random city in the sequence with

a specific index, nominally the last.

• The cooling strategy is geometric, starting at 1000, reducing by ∗0.99 each

time it is cooled, and remaining at each temperature for n (in this example

5) steps.

• The process terminates once n ∗ 1146 steps have been taken. The constant

1146 can be computed based upon the number of steps for the geometric

progression to reach 0.01 with no delay.

• The movement choice is the standard function, as seen in the SA neighbour-

hood explorer class.

The Haskell code is shown in Figure 9.2. While the Haskell implementation

is almost as long as the C++ version, it provides a more detailed description of

the search logic at the top level; including the separation of the termination logic,

the selection of the best solution encountered, the basic geometric cooling strat-

egy, the characteristic of holding at each temperature for a number of steps and

the perturbation routine being used. The functions saChoose and geoCooling are
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main :: IO ()
main = do

-- loading the problem

problem← do g← newStdGen

p← loadTSPFile TriangularMatrix "fl417.tsp"

-- and creating an initial solution

return $ randomiseRoute g p

-- creating the perturbation operation

perturbOp← do g← donewStdGen

let n = numCities problem−1

let rs = randomRs (0,n) g

return $ zipWith (swapCitiesOnIndex n) rs

-- creating the strategy

g← newStdGen

let strat xs

= zipWith4 (saChoose solutionValue)
(stretch 5 $ geoCooling (0.99 :: Double) 1000)
(randoms g)
xs

(perturbOp xs)
-- running and terminating the strategy, getting the best

-- solution, and printing it to screen

print $ (solutionValue :: TSPProblem→ Double)◦
best ◦
take (5∗1146)◦
loopP strat $ problem

Figure 9.2: The main file for a Haskell implementation of the Simulated An-

nealing TSP solver, following the same logic as the ParadiseEO version. In this

implementation the cooling function has the same parameters as the ParadiseEO

version, and to achieve the characteristic of holding at each temperature for 5 steps

the basic pattern is stretched.

drawn in from the metaheuristic library, while the data model of the TSP, the load-

ing routines and file parsers for TSPLIB and basic interactions are provided by the

combinatorial problems library2.
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Average Score Average Time

Cooling Delay 10 20 40 10 20 40

ParadiseEO 458000 445000 448000 1.12s 2.10s 4.05s

Haskell 296000 257000 250000 0.96s 1.86s 3.68s

Table 9.1: A runtime comparison of Simulated Annealing for TSP fl417, in Par-

adiseEO and Haskell. Each has been computed with varying cooling delays, caus-

ing a linear increase in the number of required computations. Each test was run 10

times, and the average, to 3sf is presented here. Times are presented to the nearest

100th of a second.

9.1.3 Performance Comparison

Table 9.1 provides results from testing both the Haskell and ParadiseEO versions

of the Simulated Annealing algorithm. The results are surprising, in that it is

apparent from the poor correlation between the quality of the solutions found that

the search logic being used is not the same, though at the time of writing it is not

understood why.

The timing results are similarly interesting. Each shows the same linear in-

crease as the cooling strategy is modified, and the termination process updated to

run the search processes for longer. However it appears that the Haskell imple-

mentation is faster than the C++ version. This difference may be caused by tasks

such as memory management, being performed by the programmer in C++, but

using specialised garbage collection in Haskell, however it would be premature to

draw detailed conclusions, given the difficulties in matching the search logic.

9.2 Opt4J

Opt4J [55] is a framework for using genetic algorithms for optimisation written in

Java. It consists of 326 classes for describing variations upon genetic algorithms

(version 2.7), and also possesses a sophisticated graphical interface to allow for

lay usage of the algorithms and not just programmer usage. It has built in support

for a number of standard ways to perform mutation and perturbation upon solu-

tions and standard setting for population size, mutation rates and length of time to

run the program for.

2The combinatorial problems library can be found on hackage and is called combinatorial-

problems-0.0.4.
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9.2.1 Architecture of Opt4J

Opt4J implements the single method of evolutionary algorithms, with a focus

upon the concept of multi-objective optimisation and models for problems com-

posed of a number of submodels.

The library defines individuals, comprised of a number of genotypes, where

each genotype is a way to model a part of the problem. Where an individual has

only one genotype, this represents a problem which has not, or cannot, be decom-

posed into subproblems. Opt4J provides a number of built in ways to represent

genotypes, including lists, bits and numbers. The provision of built in represen-

tations allows for the provision of a selection of built in mutation, recombination

and crossover methods, to allow a programmer to quickly model a problem and

get an evolutionary mechanism set up.

The library encourages the programmer to break the problem down into two

representations, the genotype and phenotype. The genotype can be thought of

as a generic problem independent structure with generic modification operators,

provided by Opt4J. The phenotype is the problem specific model of a solution,

constructed from the genotype. This philosophical division is derived from nature,

with the division of genetic material from the final life form.

At the top level, when implementing a new problem, the programmer is re-

quired to provide Opt4J with three classes;

Creator provides initial solutions to the evolution process.

Completer is required to ensure the validity of potentially complex problem

models. Even the TSP can easily result in invalid solutions when perform-

ing stochastic recombination of two or more solutions.

Decoder encapsulates the genotype to phenotype conversion, and the subsequent

pricing of solutions to allow Opt4J to perform natural selection and preserve

the best seen solutions.

While designed around the use of a population and recombination, it is pos-

sible to create point based algorithms using Opt4J by setting the population to

one, disabling recombination and providing an appropriate mutation operation,

encapsulating a local search method.

The extension of functionality is provided through the creation of new classes,

or inheritance of existing functionality. This can be seen in the library as it exists

at the time of writing, for example in the creation of generic cross-over operators



122

for genetic algorithms, where the most specialised class CrossOverIntegerDefault

extends the more generic CrossOverIntegerRate and finally this extends the con-

cept of list cross over, defined in CrossoverListRate.

public class Harness{

public static void main(String[] args)

{

EvolutionaryAlgorithmModule ea;

ea = new EvolutionaryAlgorithmModule();

ea.setGenerations(1000); // generation limit

ea.setAlpha(100); // population size

ea.setMu(25); // children per generation

SalesmanModule tspModule = new SalesmanModule();

Collection<Module> modules = new ArrayList<Module>();

modules.add(tspModule);

modules.add(ea);

Opt4JTask task = new Opt4JTask(false);

task.init(modules);

try {

task.execute();

Archive archive = task.getInstance(Archive.class);

for (Individual i : archive) {

System.out.println(i.getObjectives());

}

} catch (Exception e) {

e.printStackTrace();

} finally {

task.close();

}

}

}

Figure 9.3: The main file for a Genetic Algorithm based solver, implemented

using the Opt4J library in Java.

9.2.2 A Genetic Algorithm Implementation

The TSP implementation for Opt4J is drawn from the standard documentation and

tutorials which can be found at:

opt4j.sourceforge.net/documentation/2.7/book.xhtml

The top level harness for the solver can be seen in Figure 9.3, while the classes

used to model, load and evaluate the TSP itself can be found in Appendix E.2.1.

The implementation shows a GA where the population size is 100, and it will

run for 1000 generations. A third setting is called mu, and is set to 26; this is

opt4j.sourceforge.net/documentation/2.7/book.xhtml
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the number of children per generation. There is no indication of how parents are

selected from the population, if mutation is happening, what the recombination

method is, nor how new solutions are used to create the new population.

The search for the settings of these important characteristics proved unsuc-

cessful and so likely looking classes have been presumed to be the defaults.

• Crossover for lists has been selected from CrossoverListXPoint. It operates

by splitting each parent at a randomly selected index. Each child is made

of the first part of one parent, with the second part having cities in the order

that they appear within the second parent. The crossover operation returns

two solutions.

A specialised function called crossover was created for the Haskell version

to implement this and can be found in the Appendix E.2.3. While it in-

cludes random numbers, the function itself achieves this through the use of

unsafePerformIO, thus reducing the code overhead in the top level imple-

mentation. The function has the following type;

crossover :: Stream (List TSPProblem)→ Stream (List TSPProblem))

• The effectiveness of a genetic algorithm is significantly influenced by the

selection method for the parents of additional offspring. However at the

time of writing it has not been possible to find, in the source code or docu-

mentation, details about how the selection process is implemented or what

the default settings are. Nor does the library offer runtime interfaces to

query the current settings of the selection process.

• As with the selection operators, the source code and documentation do not

provide information regarding the default setting for mutation operators.

The mutate operation for lists was assumed to be MutatePermutationSwap,

however there were a number of other choices. This mutation strategy op-

erates by swapping cities in specific solutions. The likelihood of any par-

ticular city being swapped with a randomly selected city is defined by the

mutation rate variable. In this way it indicates a mutation rate for the genetic

material of the entire population, rather than the likelihood of any individual

being mutated.

This mutation operation is assumed to be applied to every new solution

generated, due to the code found in the file MatingCrossoverMutate, in the

EA optimiser folder.
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The implementation of this operation required a specialised Haskell func-

tion which has been called mutate, see Appendix E.2.2. It provides random

numbers through the use of unsafePerformIO, and hard codes a number of

parameters to the specific test problem that is being examined. This code

has the following type;

mutate :: Double→ Stream TSPProblem→ Stream TSPProblem

• No mutation rate has been found at the time of writing, nor has any way to

query the Opt4J implementation for the setting of this value been found.

• Population management appears to operate by adding all new solutions to

the old population and then removing the worst solutions so that the pop-

ulation returns to the population size limit. This is based upon code that

appears in the EvolutionaryAlgorithm class.

In order to implement this alternative form of population management a

new operator was created and this can be seen in Figure 9.4. This takes 2

streams of populations, assumed to be the stream of old populations and a

stream of new solutions. These populations are merged, sorted and then the

best solutions are preserved.

populationMerge :: Optimisable s

⇒ Int

→ Stream (List s)
→ Stream (List s)
→ Stream s

populationMerge psize xs

= concat ◦ -- merge populatons into stream

map (take psize)◦ -- keep the best

map sortO◦ -- reorder, best to worst

zipWith (++) (chunk psize xs) -- merge populations

Figure 9.4: A new population management strategy, to more closely mimic the

operation of the Opt4J counterpart.

The implementation of the proposed genetic algorithm in Haskell can be seen

in Figure 9.5. In order to ensure performance, the transformations of the GA

selection method from populations, proposed as a compiler rule in Section 5.6.1,
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have been implemented manually and are contained in the functions makeDistPop

and selectFromMap. Full implementations of these functions can be found in the

appendices.

randomStarts :: RandomGen g⇒ TSPProblem→ g→ [TSPProblem]
randomStarts x g = let gs = unfoldr (Just ◦ split) g

in map (flip randomiseRoute x) gs

main = do x← loadTSPFile TriangularMatrix "fl417.tsp"

starts← newStdGen>>= return◦ take 100◦ randomStarts x

print ◦minimum◦ take (100000)◦push◦
loopS (λxs→ populationMerge 100 xs

(chunk 26◦ -- mu

mutate◦ concat ◦
doMany 13 -- half mu, because crossover

-- yields 2 new solutions

(crossover ◦doMany 2 select)◦
map (makeDistPop dist)◦
chunk popSize $ xs)

)$ starts

dist = take 99 (iterate (∗1.0165) 0.2)++[1 ]

Figure 9.5: An implementation of the Genetic Algorithm search strategy in

Haskell, following as closely as possible the search logic used by the Opt4J im-

plementation.

The Haskell version is complicated, requiring the usage of concat, chunk and

the use of specific numeric parameters, linked to the parameter mu in the Opt4J

version, to manage the streams correctly. The number of solutions generated is

high, and this results in space leaks unless the push combinator is in use. However

it does specify the selection methods that are being used, where they are being

used, the probability distributions that are controlling the selection operations,

and the location of crossover and mutation at the top level of the program, which

is not the case in the Opt4J version. It should also be noted that much of the

complexity introduced has been done to mimic the assumptions made about the

Opt4J algorithm being used, and does not obviously aid in the solving of the TSP

problem itself.
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9.2.3 Performance Comparison

Each of these implementations was built, with varying values for population size,

and number of children, these two parameters being the most easily set in Opt4J.

Each implementation was timed using the standard Linux time program and the

results can be seen in Table 9.2.

Average Score Average Time

Parameters a b c a b c

Opt4J 210000 261000 262000 21s 43s 43s

Haskell 255000 254000 223000 188s 190s 379s

• a : p = 100 and µ = 26

• b : p = 200 and µ = 26

• c : p = 200 and µ = 52

Table 9.2: A runtime comparison of a Genetic Algorithm for TSP fl417, in Opt4J

and Haskell. Each has been computed with varying population sizes (p) and num-

ber of parents per generation (µ). Each test was run 10 times, and the average, to

3sf is presented here. Times are presented to the nearest second.

As seen in the results for ParadiseEO, the quality of the solutions produced

by the Haskell and the Opt4J versions are not the same, indicating that these are

not obeying the same search logic. The number of solutions being examined is

presumed to be the same in each version, however the precise number in Opt4J is

hidden at the top level.

The results are not fully understood, in that the increase in population size and

number of children does not improve the quality of the solutions being found in

the Opt4J version. The Haskell version offers more understandable results, with

a significant increase in quality with the number of children, population size and

hence number of solutions examined during the run of the program.

The timing data suggests that the Haskell version is 10x slower than the Java

version. This is believed to be caused by the approach to mutation that is being

used, which requires the threading of three Streams of data in an asynchronous

pattern, and will hence be difficult for the Haskell compiler to optimise.

It should be noted that if, rather than trying to mimic the operations of Opt4J,

the standard template for genetic algorithms in Chapter 5 is used for the TSP then

the quality of results found is superior to those in Table 9.2. The runtime for this
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program is not 10x slower than Java, but only 1.5x slower.

9.3 The meaning of the results

While the logic of the search strategies used in this implementation of Simulated

Annealing and Genetic Algorithms has obviously not been replicated (as seen in

the poor correlation of the results), some conclusions can be drawn. The times of

the algorithms in each case study can be compared because it is believed that the

same number of solutions are being evaluated, and that correcting the logic would

not change this number of evaluations. In the case of the Simulated Annealing

implementation, one solution was generated each iteration, and the number of it-

erations was controlled by the cooling strategy, as previously stated. The number

of solutions that were expected to be evaluated was calculated and used in the

Haskell implementation. In the case of the Genetic algorithm the number of so-

lutions was expected to be two children per pair of parents, with µ giving the

number of parents in a test case. Hence the number of solutions to be evaluated

was µ ∗generations+initial population, In both cases the number

of solutions that are evaluated by ParadiseEO and Opt4J are not explicitly avail-

able and must be inferred from examination of the source code of each library

system.

Two weeks was spent trying to understand the algorithms being used, in order

to replicate their search logic. However it is not apparent from the implementa-

tions of TSP, nor the top level harnesses what the algorithms are doing. To under-

stand this an investigation of the libraries, their documentation and their source

code was carried out, to try to understand the search logic within the class hier-

archies. The results from the tests indicate that this was not successful, and this

supports the criticisms of the current approaches made in [56].

The results for ParadiseEO suggest that this library is outperforming C++.

This is not thought to be correct, in that if the specific algorithm being used was

implemented in C/C++, with no thought to code reuse or generic components,

then the C version would make use of inplace modification of data structures and

thus provide quicker iteration times. However such an approach would lose the

advantages of the general library, which allows for more rapid experimentation

with other algorithms, from a generic TSP model. So these results are comparing

the general libraries in the two systems, and seem to support the use of Haskell

for experimentation and investigation of possible algorithms for solving these hard
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combinatorial problems.

9.4 Summary

This chapter has discussed two existing frameworks for metaheuristic algorithms,

written in Java and C++ respectively. The top level implementation of a solver for

TSP has been shown in each, with an equivalent written using the Haskell frame-

work. In each case the Haskell framework is seen to be approximately equivalent

in length, but providing a clearer description and greater access to the details of

the search logic.

Each version has been tested with three sets of parameters, to demonstrate

both runtimes and the quality of solutions found. In each case it has shown that

the search logic of the C++ and Java versions are not fully understood. This throws

the timing data into doubt, while lending support to the use of the Haskell library,

which makes the logic more available at the top level of the program.



Chapter 10

Case Study : Homology analysis in

computational biology

Biologists studying proteins are interested in knowing what these chemicals do

within cells. However to fully characterise the functions of a particular protein is

a complex task in the lab, and hence biologists are eager to know where to focus

their efforts.

Computational biologists seek to provide such guidance through a process

known as homology detection [18], the analysis of characteristics in organic sys-

tems that share a common ancestor. When applied to proteins if it can be shown

that one protein shares common characteristics, with one or a family of well un-

derstood proteins, then this suggests that its function should be related to the func-

tions of that group.

Homology detection can be done through matching of sequence patterns within

DNA, or sequences of amino acids. When dealing with a family of proteins, they

can be used to train a Hidden Markov Model (HMM). This may then be used to

give a probability that, given the next amino acid in a particular query sequence,

with respect to the ones that have been given before, it is likely to be in the same

family as those used to construct the model.

MRFy [14], a homology detection program written in Haskell, augments this

model to take into account beta-strands. Beta-strands are interactions in a folded

protein, based upon hydrogen interactions between specific amino acids. These

129
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interactions are stronger than relationships between unbonded amino-acids, and

can aid in the detection of homology.

MRFy implements a new algorithm, which breaks up the HMM for a particular

family around the known beta-strands and provides a number of different smaller

HMMs. A new protein is represented as a query string of the sequence of amino-

acids that make it up. This query string is then broken up around the beta-strands,

with each sub-sequence fed to a respective HMM, which gives the likelihood of

a match. However the exact position of the beta-strands is not known and, within

some bounds, they can lie anywhere within the query string. Once they are posi-

tioned, the likelihood of their positioning can be computed, and coupled with the

output of the HMMs to give a final score (representing the likely homology) for

the protein being tested.

Because the position of the beta-strands is not known and they can be moved,

completing the detection of homology requires a search of their possible posi-

tions. The model is described as beads on a wire, where each bead is one beta-

strand, which can be shifted left and right. Bead positions are all integer values,

as these represent interactions with discrete amino-acids. The bead positions must

be within a range from 0 to some upper limit provided by the problem data. In

addition each bead must be a specific distance from the beads to its left and right

on the wire, with this information provided by the problem data.

The pricing of a particular assignment, through the evaluation of the different

HMM’s, can only be performed once every bead has been positioned, because

the position of the last bead can impact how the query sequence is broken up.

This precludes the evaluation of partial solutions and hence precludes the use of

exhaustive methods such as branch & bound or dynamic programming for this

task.

Instead metaheuristics were chosen to provide the search component. A num-

ber of methods were tried including Iterative Improvers and Simulated Annealing,

however genetic algorithms were found to be particularly effective [15].

This case study will:

1. examine MRFy’s in-house approach to constructing the metaheuristics;

2. describe their conversion to the stream based library;

3. demonstrate that the converted code admits a greater number of metaheuris-

tic methods while improving readability and shortening the code length;
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4. and design a metaheuristic which will produce better results than the exist-

ing system in less computational time.

10.1 Problem instances and test environment

The MRFy development team provided three problem instances for experimen-

tation and testing of the various metaheuristics in this case study. These were

selected to be reasonably representative of the range and scale of the problems

that MRFy would encounter.

barwin the smallest problem in terms of the number of beads, and correspond-

ingly a rapid evaluation time for each solution. However each bead can be

positioned in a wider range of locations increasing the number of potential

solutions to the problem. This problem has 7 beads to position over a range

of between 0 and 345.

sandwich was the intermediate problem instance. This problem has 17 beads to

position over a range of between 0 and 235.

“8” the largest of the problems, characterised by a large number of quite small

HMMs during the evaluation phase. This problem has 40 beads to position

over a range of between 0 and 592.

Unless otherwise stated, all results in this Chapter and associated timing data

have been computed on an HP netbook with 1GB of RAM and an Intel Atom N550

dual core processor with 4 logical processors each clocked at 1.5GHz, however

only a single core is used for the tests.

10.2 Implementation of Metaheuristics in MRFy

The original approach taken to implementing metaheuristics in MRFy was to fo-

cus upon the stochastic nature that most metaheuristics exhibit. This was then

formalised using a monadic approach, where the random number generator was a

piece of state data threaded through the computation.

10.2.1 Elements of a search strategy

Using the original MRFy code the design of a new metaheuristic involves provid-

ing the following functions.
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• A monadic computation for generating stochastic solutions to the problem,

to be used as the initial solutions for the metaheuristic search.

• A step function which is parameterised over either populations or single

solutions. This function is of the form

s→ Rand s

and can hence be chained together using the binding function of the monadic

instance of random number threading.

• A utility function. This can either be identical to the solution’s score, or

transform the result to incorporate other information such as time. In this

way it allows the use of time dependent pricing functions. It is of the form:

Move s→ Rand (Utility s).

• The stopping criterion for the strategy, which is encoded as a transformation

from a list of solutions to a list of solutions.

• The final output function which allows for the transition from populations

to single solutions. It is presumed that this will yield the best solution in

any given population.

Each search strategy is implemented through a function that creates an in-

stance of the data structure described, from information about the problem and

a set of search parameters. The search parameters are provided in a data struc-

ture of named fields including every parameter used by every metaheuristic that

has been implemented, for example population size for GAs and cooling rates for

Simulated Annealing.

Final execution of the search strategy is provided through the conversion of

the step function into a monadic computation from the random seed into a stream

of solutions. This computation is then composed with termination criteria and

extraction of the final result from the computation.

10.2.2 Low level operators

Two operators were used for all the metaheuristic algorithms that were provided

with MRFy, one for perturbation and one for crossover. In each case the operators

acted over a Placement data type, that is a type synonym for [Int ], and as such

must be priced separately.
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The stochastic perturbation operation works by iteratively moving each bead

in the solution to a new value within its legal range, given the placement of the

other beads in the solution. The following is the data type of the operation to ease

understanding of how the function is used, but the body of the code will not be

presented.

randomizePlacement

:: RandomGen r

⇒ [BetaStrand ]

→ Placement

→ Int

→ Rand r Placement

randomizePlacement betas oldp maxRight ...

Usage requires the problem specific information relating to the beta-strands and

the maximum right hand value that could be taken by the last bead.

Recombination of solution in the original implementation of GAs was pro-

vided by a function called crossover with the following type. Again the body of

this function has been omitted.

crossover :: Placement→ Placement→ Placement

The logical process used was to pair the values from each solution and then in

each cycle compare the first and last pair currently available. Of the first pair the

lowest would be kept, of the final pair the highest. The process was then recursed

over the remainder of the pairs. Once this pairing and selection was complete the

resulting list was sorted to yield a new and valid placement of the beads.

10.2.3 Implemented Metaheuristics

Using this monadic framework, 3 metaheuristic algorithms were implemented,

and are described here. Each algorithm has been tested with settings suggested by

Tufts, and the results shown in Table 10.1.

Stochastic Hill Climber was implemented as a series of stochastic perturbations

of a solution, where the perturbation was only accepted if it improved upon

the seed.
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Simulated Annealing was implemented by threading an additional cost value

attached to each solution, which was used in the place of time in the cooling

strategy. The cooling strategy was the standard geometric method.

Genetic Algorithms were implemented by using the stepwise update, to modify

a population rather than one solution at a time. The algorithm implemented

took the population, sorted it into improving order, then paired the 1st value

with the 2nd , the 3rd with the 4th and so on. Each pair was used to generate

a single new solution through crossover. Every solution so generated was

then perturbed using the random mutation operation. Finally the new solu-

tions were merged with the old population, and the entire list was resorted

into improving order, and the new population was the same size as the old

population, consisting of the best solutions from the unified group.

Using these algorithms Tufts have given the best known results as being;

Barwin Sandwich 8

1017 771 2079

SA GA SHC

value time value time value time

barwin 1058 12m 1071 81m 1069 19m

sandwich 841 9m 891 79m 897 43m

8 2142 11m 2121 44m 2134 25m

Table 10.1: The value and time results of the original version of MRFy. Each

algorithm was sampled 10 times with a time limit of 2 hours on the total runtime.

Where the time limit was exceeded the result was discarded, but the time was kept

as 2 hours. Barwin and Sandwich are the averages of 6 successful samples, while

8 is based upon 9. All results are rounded to the nearest whole number.

10.3 Stream Model

In converting the MRFy algorithms to the stream model, the aim was to implement

the search logic as accurately as possible, but to demonstrate that the code is

shorter and simpler using the stream based framework. Some modification of the

solution representations was needed, as was the adaptation of the perturbation and

recombination functions to fit with the new approach.
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10.3.1 Representing the problem

To represent a solution the following data type was introduced, encapsulating;

• the placement of the beads as a list of integers,

• the scoring algorithm itself,

• and the score of the current placement.

This is represented using the following data type;

data PricedSol = PricedSol ([Int ]→ Double) [Int ] Double

This data type is made part of Eq, comparing the list of integers (the placement of

beads), and part of Optimisable comparing the Double valued price.

The perturbation and recombination functions are rewritten to operate over

PricesSol and correctly maintain the reference to the pricing function of the sys-

tem.

10.3.2 Perturbation and Recombination

The operations that applied perturbation to solutions were originally implemented

as self contained monolithic functions. Due to the restriction that only a com-

pleted placement can be priced, the concept of damage and repair would both be

restricted to purely stochastic methods, and hence is not particularly useful. How-

ever to enable experimentation upon the operators of the problem the following

underlying computation was identified, which provides a way to modify a solution

through the movement of one bead a specific distance left or right. Solutions are

guaranteed to be valid.

detPerturb :: QuerySequence→

[BetaStrand ]→

Int→ -- bead to move

Int→ -- change position by

PricedSol→ -- the solution to change

PricedSol

detPerturb qs bs p v s

= let (as,c : cs) = splitAt p $ solution s

as′ = concat [as, [c+ v ],cs]
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in if checkPlacement qs bs as′

then s {solution = as′,underlyingScore = pricer s as′}

else s

The detPerturb function makes use of an additional function checkPlacement

which is provided in Appendix F.3. This function validates the new placement

against the QuerySequence and BetaStrand information of the problem.

When lifted to operate over streams detMutate does not predefine the sources

of the information related to which bead to move, nor which way to move it nor

how far. This allowed it to be the basis for all subsequent perturbation operations

that will be seen in this Chapter. The original method of randomly selecting one

bead and moving it a random distance was implemented as follows:

stochasticPerturb :: RandomGen g⇒

QuerySequence→

[BetaStrand ]→

g→

Stream PricedSol→

Stream PricedSol

stochasticPerturb q b g

= uniformChoice g1

◦ zipWith (λ r→ checkAllOptions (detPerturb q b r))

◦ randomRs (0, length b−1)$ g2

where (g1,g2) = split g

The stochasticMutate function makes use of a further function which is pro-

vided in Appendix F.3, named checkAllOptions which yields all possible solutions

where this bead is moved, or if no legal options exist, the original solution as a

singleton list.

The recombination method was preserved in its original form, though updated

to operate over the PricedSol data type.

recombine :: PricedSol→ PricedSol→ PricedSol

recombine ...

10.3.3 Constructing Random Solutions

The approach taken to constructing random placements was to generate a set of

integers within the range (0,maxRight), where maxRight is a problem specific
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variable. Once sorted most lists generated in this fashion are valid placements

for the problem instance. The removal of invalid sequences can be achieved with

an auxiliary function invalidPlacement1, against which the stream of potential

placements is filtered.

generateSolutions :: RandomGen g

⇒ QuerySequence→ [BetaStrand ]→ Int

→ g

→ Stream [Int ]

generateSolutions query betas maxRight

= filter (¬◦ invalidPlacement query betas maxRight)

◦ (map sort)

◦ chunk (length betas)

◦ randomRs (0,maxRight)

The pricing of these placements and conversion into a stream of priced solutions

can be performed separately.

10.3.4 Termination Criteria

MRFy makes use of convergence checking on the qualities of the solutions that

are encountered, terminating the process when solution quality has not improved

for a given number of iterations. To implement this the following functions was

created, for application to a stream of always improving solutions.

convergenceCheck :: Eq a⇒ Int→ Stream a→ Stream a

convergenceCheck width as

= map snd ◦ takeWhile (¬◦ fst)

◦ map (λ (a,b)→ (length a>2 ∧ (last a≡ head a),b))

$ zip (window width as) as

10.3.5 Comparing algorithm implementation

The simplest search strategy, stochastic iterative improver, is used to illustrate

the transition from the original MRFy implementation to the stream based im-

plementation. Further code for implementing Genetic Algorithms and Simulated

1The source code for this function is complex and problem specific, and will not be provided.
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Annealing, both the original version from MRFy and the Stream implementations

can be found in Appendix F.

The construction of the data structure that represents a stochastic iterative im-

prover in the original MRFy code is shown below.

nss :: NewSS

nss hmm searchP query betas scorer = fullSearchStrategy

(fmap scorer $ initialize hmm searchP query betas)

(mutate searchP query betas scorer)

scoreUtility

(takeByCCostGap (acceptableCCostGap searchP))

id

What follows is a version of a stochastic iterative improver, mimicking the search

logic used by the MRFy version, but using the stream based framework.

stochasticII :: (Stream (PricedSol [Int ])→ Stream (PricedSol [Int ]))

→ Int

→ PricedSol [Int ]

→ Stream (PricedSol [Int ])

stochasticII perturb convergeLimit

= convergenceCheck convergeLimit ◦ keepBest

◦ loopP (map head ◦ improvement (doMany 1 perturb))

The stream method is not a direct translation of the MRFy version of the code.

For example while MRFy includes references to the termination criteria in this

code, it must be processed by a complex harness before final evaluation. By com-

parison, while the stream implementation requires a perturbation method to be

specified, and a seed solution provided, it is otherwise complete. In general the

stream based method contains simpler expressions providing a clearer understand-

ing of the search logic which is being used, specifically that this is improvement

over a singleton neighbourhood.

Both these examples need harnesses to run correctly, providing the problem

specific data, random number generators and gathering the results. The Stream

implementation can be placed into a larger program using the following line, cre-

ating a mutator from the parameterisation of stochasticPerturb. In this example

convergence width is set to 200, a value used in the MRFy testing of the last

section for the iterative improver and simulated annealing strategies.
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stochasticII (stochasticPerturb query betas g)

200 initialSol

10.4 New Strategies

10.4.1 Iterative Improvers

Modification of the initial stream based iterative improver to make use of other

possible characteristics of the algorithm family was straight forward. Neighbour-

hood size can be changed directly in the code, or extracted as a parameter set by

the user at runtime.

To allow greater variation in the search process it is also possible to remove

the taking of the first improving solution, seen in the original version, and replace

with simply taking the best at each step, even if it does not improve.

loopP (map best ◦doMany neighbourhoodSize stochasticPerturb)

The other alternative that was tried was to use a different neighbourhood with

more predictable properties than the stochastic neighbourhoods so far considered.

The approach taken was to create a cyclical perturbation following a regular pat-

tern, and then exhaustively generating all possible solutions from each seed.

cyclicalPerturb q b = zipWith3 (detPerturb q b)

(cycle (stretch 4 [0 . . length b−1 ]))

(cycle [1,−1,2,−2 ])

cyclicNeighbourhood q b = doMany (4∗ length b) (cyclicalPerturb q b)

10.4.2 TABU search

TABU search was implemented through direct application of the library function

using a basic TABU memory and a stochastic neighbourhood function as seen in

iterative improvers. The size of the memory and the size of the neighbourhood

were selected to be one apart so that at maximum usage the TABU list would

always leave one option open for movement.

Several memory sizes were tried out, however none proved significantly effec-

tive. This is believed to be caused by the very large number of possible solutions
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that can appear from perturbing any given solution, rendering TABU lists of neigh-

bourhoods generated in this way useless. The TABU lists cannot capture enough

of the possible neighbourhoods to ever prune the neighbourhoods in a meaningful

way, unless very large TABU lists are used, which are themselves impractical.

10.4.3 ACO

ACO had also not previously been tried in MRFy, so it was a useful candidate as a

new strategy. The objective of this algorithm here is to learn, through pheromone

build up, how to build good solutions to the problem. To try to achieve this, the

approach taken was to associate a probability distribution with each bead in a

solution and generate bead positions against these distributions.

The distribution for each bead was created through the blending of a number

of distributions. The base distribution was a uniform distribution. Once a solution

was created (generated by an ant), it was inversely weighted against known solu-

tion qualities, and a number of normal distributions were created, where the mean

was the position of the bead in the generating solution. The standard deviation

was based upon the weighting of the solution, and the entire distribution was then

scaled by the weight so that a better solution would provide more dominance to

the generation of new solutions. The code for this ACO was stream based, but

reasonably complex and will not be presented here.

In order to improve the quality of solutions used for the ACO recombination

more quickly, the strategy was hybridised with an iterative improver, using the

structured neighbourhood, and restart functionality seen in previous chapters.

10.4.4 Summary of experimentation

What has been seen is that the implementation of these new variations and strate-

gies is simple with the stream library, including entirely new methods such as

TABU search. The implementation of the ACO was harder, with problem spe-

cific methods for pheromone recombination and evaluation being needed, how-

ever subsequent hybridisation and experimentation with ACO was similarly sim-

ple.

In this section there has been no discussion of how effective, in terms of time

and solution quality, these algorithms were. What was found was that all the

strategies tended to stagnate quickly, and not be significantly stronger than the

existing MRFy strategies. The ACO and iterative improvement hybrid was the
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strongest, acting more consistently than the existing algorithms in terms of the

predictability of the qualities of the solutions that would be found.

Rather than allowing them to run for long periods as was done with the MRFy

strategies previously, they were given a 10 minute limit, as a pragmatic trade off

between reasonable evaluation of the strategies and practical experimental time

constraints. This was provided by the following new termination operation.

takeFor :: (NFData a, Integral target)⇒ target→ [a ]→ IO [a ]

takeFor targetTime (v : vs)

= do endTime← getCurrentTime >>= return◦floor

◦ toRational◦utctDayTime

if endTime > targetTime

then return [ ]

else (return◦ (v:)) =<< ((v ‘using‘ rdeepseq)

‘seq‘ takeFor targetTime vs)

10.5 Examining the effects of the operators

The neighbourhood based Iterative Improvers and the construction based upon

the learning ACO were reasonably successful, in some cases generating results

equivalent, or slightly better, than the best that had been previously reported for

these problems. A cursory examination of these superior results yielded a useful

insight into the problem, that high quality solutions would often share blocks of

beads, but offset differently in different solutions. Figure 10.1 illustrates a number

of solutions with widely varying solution qualities.

Figure 10.1: Block similarity, with quite different solution qualities. sandwich

problem file.

The existing perturbation methods for the metaheuristics operated by modi-

fying only one bead at a time. However if the beads needed to move in blocks,

it would be expected that moving only one bead would be more likely to break

the internal pattern of a block and hence lead to worse solutions, as seen in Fig-

ure 10.2.
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Figure 10.2: Example of movement of a single bead within a solution. sandwich

problem file.

Consideration of this characteristic by experts at Tufts revealed that the way a

placement pattern was broken down into inputs for the HMMs would cause this

concept of blocks that can be internally optimised and then moved. This adds

support for the concept that arbitrary movement of single beads would be unlikely

to help.

10.6 Building a new operator

To exploit the idea that it was often useful to move not just single beads but blocks

of beads simultaneously a block perturbation operation was created through an

alternative lifting of the detPerturb function. An auxiliary function blockOptions

was created, that would take a block defined by a pair of numbers and returned

the possible solutions that would result from moving the block. The function

blockOptionsS then lifts the blockOptions function to operate over streams, using

a random number generator to provide a stream of blocks.

blockOptions :: Eq a⇒

(Int→ Int→ PricesSol→ PricedSol)→

(Int, Int)→

PricedSol→

List PricedSol

blockOptions f (lower,upper)

= checkAllOptions g -- generate every possible movement of a block

where -- define how to move this block (g)

g offset sol = foldl (λ s i→ f i offset s) sol blockIndices

where blockIndices = if offset<0 then [ lower . .upper ]

else reverse [ lower . .upper ]

blockOptionsS :: RandomGen g⇒ QuerySequence→

[BetaStrand ]→

g→

Stream (PricedSol)→

Stream (List PricedSol)
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blockOptionsS qs betas g = zipWith perturb pairs

where pairs = map (λ [a,b ]→ (a,b))

◦ map sort

◦ filter (λ [a,b ]→ a 6≡ b)

◦ chunk 2

◦ randomRs (0, length betas−1)$ g

perturb = blockOptions (detMutate qs betas)

The blockOptions function is then composed with selection methods to create

a perturbation function using block motion as the underlying operation. Typically

the number of possible options from any particular selected block will be too high

to evaluate all solutions, so to allow for speed a uniform selection method was

chosen and is seen in blockPerturb.

blockPerturb qs bs g = uniformChoice g1◦

blockOptionsS qs bs g2

where (g1,g2) = split g

10.7 Developing the strategy

The blockPerturb operation may be used alone, or as a new operation composed

into a larger metaheuristic. This was done, composing it with the existing iterated

maximal improvement method, from which better solutions were successfully

generated. It was found that trying a small number of block perturbations from

each solution and selecting the best provided further improvements. This final lift-

ing is seen in blockPerturb′, which generates a neighbourhood using doMany in

the standard way. The size of the neighbourhood (10) was selected after a number

of trials and is a reasonable balance of range of solutions generated and practical

execution speed.

blockPerturb′ qs bs g = map minimum◦

doMany 10 (blockPerturb qs bs g)

10.7.1 Memory and Backtracking

It was noted in the previous experiments that the search strategies would often

move away from promising solutions too eagerly. To avoid this a new back track-

ing transformation was introduced, that could be composed into a search strategy



144

as needed. This function builds up a collection of solutions to a predefined limit

and then replaces the current solution with the best solution seen within the pre-

ceding collection. It is implemented in terms of chunking and mapping as a simple

stream transformation.

backTrack :: Ord a⇒ Int→ Stream a→ Stream a

backTrack n = concatMap (λa→ take (n−1) a++[minimum a ])

◦ chunk n

10.7.2 The Final Version

The final version of the metaheuristic makes use of the most successful features

seen in this study, combining:

• the iterated improvement method using a local neighbourhood search;

• the block perturbation method, used to created a manageable neighbour-

hood and subsequently explored for the best solution within it;

• and the back tracking feature to allow the system to focus upon useful av-

enues of exploration.

To avoid recomputation of the quality of specific placements, memoization of the

pricing function was introduced. This used Memo-Trie.

twolevelIterativeImprovement query header

= do rng← newStdGen

intialSols← newStdGen>>= return

◦ map (mkPricing scorer)

◦ (λg→ basicGuesser g

query (betas header))

return◦ loopP $

( backTrack 15

◦ localsearch

◦blockPerturb′ query (betas header) rng

) (head initialSols)

The backTrack parameter had to be chosen so as to allow reasonable exploration

from any given solution, but would allow backtracking quickly enough so as to
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avoid unproductive avenues. Given the slow speed of the pricing computation it

was known that only hundreds of solutions could be examined in practical time

limits, and 15 was chosen as a balance between these factors on a somewhat trial

and error basis.

This new metaheuristic was then tested, continuing with the 10 minute time

limit on the search, on a single core. For each of the three problem files the

program was run 15 times and the results of these tests can be seen in Table 10.2.

The high degree of reproducibility in the algorithm and the high quality of the

results relative to those seen previously, in comparatively limited time, are all

significant evidence that this metaheuristic is superior to the originals. Problem

“8” has the highest variance, caused by the slow rate of evaluation for the largest

problem, indicating that for problems in this class more computational time will

probably be needed for the system to achieve similar levels of stability as for the

smaller problems.

min max average Tufts Original Best

barwin 978 983 979 1017

sandwich 554 554 554 771

8 1905 1981 1946 2079

Table 10.2: Quality results of the final metaheuristic, created for MRFy. It should

be noted that the original version of the code provided by Tufts is effectively run-

ning in unlimited time, but with a convergence check, while the new metaheuristic

is run with a 10 minute time limit.

10.8 Library enhancement: parallel processing

The original versions of the MRFy program had been implemented taking advan-

tage of Haskell’s libraries for parallel processing, and it was natural to seek to

allow the new metaheuristic to do the same. While parallel processing of search

strategies has not been the focus of this Thesis, work on this metaheuristic for

MRFy has provided a useful opportunity to explore extending the basic library.

The metaheuristic that has been presented makes use of the doMany function

in 2 places to provide neighbourhoods of solutions. The evaluation of the qualities

of the solutions in these neighbourhoods is known to be required due to the se-

lection of the best element from them, which can only be done when all qualities

are known. The process of evaluation of a placement to a quality value is highly
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costly, but effectively a map operation and so inherently parallel.

This combination of inherent parallel processing and high cost of individual

operations makes the generation of priced neighbourhoods an ideal location for a

parallel operation. This is provided using an augmentation of the basic doMany

operation called parDoMany, causing the solutions contained in each neighbour-

hood to be evaluated in parallel with one another, making use of the standard

Control.Parallel libraries.

parDoMany :: NFData b⇒

Int→

(Stream a→ Stream b)→

Stream a→ Stream (List b)

parDoMany n f = map parChunks◦doMany n f

where parChunks x = x ‘using‘ parList rdeepseq

The quantity of the code that required replacement was only 2 functions,

specifically the use of doMany in the construction of neighbourhoods. This al-

lowed the parallelisation of a significant number of operations, for example the

neighbourhood size for the iterative improver, using the deterministic neighbour-

hood was 4n (e.g. 160 elements in problem “8”). These neighbourhoods could

now be evaluated in parallel, although the use of memoization would impact upon

the productivity of this parallelism, where a rapid look up might even cost more

than in a serial implementation. However the productivity of the program did in-

crease, examining twice as many solutions in an equivalent time when run on 3

processors rather than 1.

This demonstrates both the ease of extending the library with new operations

and the ease with which this stream based approach can make use of parallel eval-

uation in reasonably non-specialised ways. By comparison, extending a sealed

system like Opt4J is difficult and would require modifying the underlying library

or rewriting significant parts of the object hierarchy. These advantages are well

known generally in Haskell, and it is gratifying to be able to provide them in this

library for metaheuristics.

10.9 Conclusion

This case study demonstrates the practical use of the library of stream based meta-

heuristic combinators presented in this Thesis, for exploring the design space of
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search strategies and gaining greater insight into the problem. It has shown the

process of creating a simple self contained operator for a problem (the detPerturb

function) and then lifting and transforming it in a variety of ways, to yield a num-

ber of perturbation and neighbourhood functions; as well as how this enables rapid

experimentation with these operators.

While the library itself does not solve the optimisation problem, the provision

of a flexible framework and the ability to easily experiment with new algorithms

enables a rapid exploration of the design space. Shorter and clearer code allows

the underlying operation of the existing algorithms to be understood and manipu-

lated. The rapid experimentation and the lack of progress with the existing opera-

tors and strategies emphasised the need for alternative approaches to the problem.

This also serves to again illustrate the need for flexibility in experimenting with

metaheuristic algorithms for combinatorial optimisation problems.

An examination of the solutions being produced suggested a new operator,

which was implemented through the elaboration of the simplest underlying oper-

ator that was already available. The use of the new operator, in concert with ex-

isting elements that had been found to have some beneficial effect, then provided

a new algorithm that surpassed the original search methods used for MRFy, using

less time and providing higher quality results with a high degree of repeatability.

Further work can be done on the metaheuristic for this problem, examining

further the block motion characteristic of the solutions and trying to identify for a

particular problem instance:

• the number and size of blocks;

• the indices of blocks;

• and better ways to explore the neighbourhoods created through block mo-

tion.



Chapter 11

Conclusion

This Thesis has considered the use of metaheuristics in pure functional languages,

specifically Haskell, and how to create a library of general purpose combinators to

allow their implementation and hybridisation. The use of functional languages has

highlighted a new approach to implementing metaheuristics as a general class of

algorithms as opposed to a loose collection of monolithically defined algorithms.

There has previously been some research on implementing the algorithms of

operations research and tackling discrete combinatorial problems in pure func-

tional languages, however there has not been an effort to create a single general

purpose library for metaheuristics. It is hard to be sure why this is the case, how-

ever it can be hypothesised that it is related to:

• the natural construction of tree based exhaustive search methods in Haskell

(such as DFS), as opposed to the problems that are encountered with com-

plex state management and iteration required by meta heuristics;

• as opposed to the apparent lack of a significant improvement in functional

theory to be gained from investigating metaheuristics; and

• a lack of applications being created in Haskell that wish to make use of

metaheuristics methods, and so no incentive to work on this approach.

Despite is lack of structured effort on the topic of metaheuristics several imple-

mentations of algorithms such as Simulated Annealing and Genetic Algorithms

148
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exist and metaheuristics are in practical use in projects in Haskell such as the

work on Homology analysis in MRFy.

The hybridisation of metaheuristics has been a topic of some interest in the

field of optimisation, resulting in templates for how to approach the task, analyses

of existing approaches and the construction of a number of frameworks to aid the

programmer in these tasks. However other researchers have pointed out that these

frameworks tend to require advanced knowledge of both the language and the

frameworks to make use of them, while not enabling a full range of hybridisation

between all algorithms.

This Thesis has selected five major types of metaheuristic algorithm and cre-

ated a single framework and library of combinators to allow the implementation

and hybridisation of these algorithms. The algorithms were selected to be among

the most common strategies in use and not be naturally subject to hybridisation in

existing frameworks [56].

Several approaches to the implementation have been tried, each with difficul-

ties which have been illustrated. The method that this Thesis has settled upon

was the use of a stream-transformation approach to structure metaheursitics in a

data-flow style. This has successfully separated the termination conditions, the

analysis of the results and the common structures of the internal workings of the

algorithms into finer grained components.

The library has been presented and the difficulty of implementing new algo-

rithms and extensions to it have been compared with two existing frameworks. Fi-

nally the library was utilised to examine the optimisation problem encountered in

MRFy, and allowed for rapid experimentation on various metaheurisitic options.

This experimentation resulted in a new search strategy, utilising parallelism and

superior perturbation methods to yield consistently superior results to the problem,

while simultaneously having faster runtime than the existing search strategies.

11.1 Review

This thesis has successfully created a library of combinators for the pure func-

tional language Haskell, which enable the implementation and hybridisation of all

the metaheuristics that were selected at the outset. The power of Haskell in terms

of rewrite-rules and parallelism has been examined to a more limited extent but

been found to be of use in aiding in both performance and high level expression

of metaheuristics.
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The library has been demonstrated to be an effective tool for experimenta-

tion and algorithm design, enabling rapid testing of concepts and ideas to provide

metaheuristic solutions to combinatorial problems.

The framework has been used in the design of a metaheuristic for a non-trivial

real world problem in computational biological research, resulting in an effective

algorithm for this problem. This has demonstrated that the stream based com-

binators are effective tools for rapid experimentation in the course of designing

algorithms to solve combinatorial problems.

It has been seen that the use of this framework in Haskell can be competitive,

in terms of runtime, with metaheuristics implemented in frameworks written in

C++ or Java. There are still issues relating to performance, most noticable in the

direct use of the program logic seen in Opt4J, which resulted in a significantly

slower program written in Haskell. In general it is believed that there does remain

an issue of memory churn in the Haskell framework, however this is partially

related to Haskell itself, a high level language, that incurs costs for use of single

assignment to names and garbage collection. Unfortunately the approach of the

library further encourages this memory churn, with the flow of data through the

streams, and the pure nature of Haskell means that old data structures must be

deleted and new ones created, rather than memory being reused.

In some cases Haskell has been shown to get close to C through the use of

sophisticated compilation techniques such as stream fusion [11]. Further devel-

oping and exploiting these techniques is a significant part of the proposed future

work of this project, and it is hoped that this will further reduce the performance

gap between Haskell implementations of metaheuristics and those built in other

languages.

11.2 Domain Specific Languages for Metaheuristics

One approach which could have been taken to providing a suitable abstraction for

implementing metaheuristic algorithms is through a Domain Specific Language

(DSL). The creation of a DSL can involve the creation of an entire new program-

ming language, tailored for the specific domain, with a related interpreter or com-

piler (this is the approach taken by the Comet [83] language). The advantages of

building a DSL include the ability to closely match the symbols of the domain to

the new language, and improved performance, due to being able to take into ac-

count domain specific rules [57]. However it is also pointed out that this solution
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involves building a complete programming language, known to be a difficult task.

The alternative is an Embedded DSL (EDSL), where a general purpose lan-

guage is used as the host, and in a sense any Appliation Programming Interface

(API) is this already. The advantages of this approach are that they are often

more extensible, through adding new components in the host language, however

it can be harder to match the domain symbols and the expressions of the domain

as closely as in a DSL. Performance can also be an issue, due to using a general

purpose compiler, which does not have specific domain knowledge.

DSLs actually fall on more of a continuum, with these two as the extremes.

One alternative that falls between them is an EDSL where the API constructs a

data structure in the host language for compilation and execution later. An exam-

ple of this approach is the Co-Pilot language in Haskell, which is an EDSL for

stream processing, for creating monitoring software for system properties [63]).

This Thesis has put forward the approach of using streams and stream trans-

formations for implementing metaheuristics, does it make sense to build a DSL

for this task? It has been pointed out that Haskell is a good host language for

EDSLs [38], allowing for easy extensibility by users, often allowing for a close

match to the semantics of the domain, providing a powerful compiler and giving

some access to this compiler through the use of rewrite rules.

The toolkit that this Thesis has presented is a DSL for the stream transforma-

tions needed to express a wide variety of metaheuristic algorithms, lightly em-

bedded in Haskell. It allows a programmer to build new stream transformations

in Haskell as the need arises, and then compose these with existing transforma-

tions, or parachute them deeper into the code through parameters to higher order

functions, while not sacrificing performance. This extensibility is particularly im-

portant in the domain of metaheuristics which is still evolving as a field.

The modelling of combinatorial problems using Haskell has not been focused

upon in this Thesis. While this does mean that the library does not restrict the

types of problems that can be tackled, it also means that it does not provide a

modelling language for problems, such as is found in Comet. This lack of a lan-

guage for problems suggests that either a new EDSL (or several) for modelling

problems is needed to go with this library, or it is an indication that a separate

DSL is needed for this domain.
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11.3 Future Work

11.3.1 Compiler Optimisations

The current implementation makes limited use of rewrite-rules in Haskell1 to pro-

vide the capability to construct algorithms focusing upon the logic of the process

rather than the runtime performance. The use of the standard Haskell list type for

the representation of Streams does give access to built in fusion rules such as map

composition fusion, however only the standard2 operations are currently applied.

Given the data flow and stream based approach that the final library has ex-

ploited, a technique known as stream-fusion [11], could be adapted to improve

performance by reducing the number of intermediate data structures required. The

manual fusion that was performed to achieve results in Chapter 9 would be the ex-

pected starting place to attempt to improve the generic use of rewrite rules for

fusion in this system. Other forms of fusion, and a more generic approach to

fusion, can be seen here [34].

A specialised form of rewrite for selection methods when combined with

doMany was also used in Chapter 9, and could be generalised. This option ap-

peared because the repeated selection from a collection, based upon a single prob-

ability distribution could be improved through the creation of a tree based data

structure with the probability distribution forming the keys. However, where only

a single selection is taking place, this imposes an additional cost, rather than pro-

viding a performance boost. A study examining the use of rewrite rules to auto-

matically choose between these options depending upon the situation (matching

against the specific pattern of stretch and chunk or just against doMany) would be

a valuable exploration of using the power of functional programming and com-

piler reasoning to aid in metaheuristic programming.

The use of a specialised data structure, selected through rewrite rules, to im-

prove performance suggests a final direction for compiler optimisation work, that

of automated optimisation of data structures. For example, the TSP will often be

very fast in C if the metaheuristics use a city swapping method based upon arrays,

rather than trees as used in this Thesis. Automated mappings to efficient low level

data structures where appropriate could be an effective way to bring performance

1For more detail on rewrite-rules see Appendix C.6.
2The standard fusion rules in Haskell are based upon foldr/build fusion proposed in [25]. At

present a cursory examination of Haskell core code after compilation rules have been applied

suggests that few if any of these optimisations are currently being applied to metaheuristics written

using this framework.



153

of this library closer to that of a pure C approach, while maintaining the flexibility

of expression that Haskell provides.

11.3.2 Improved Support For Parallelism

Parallelism has been a key tool for tackling large instances of combinatorial prob-

lems using both exhaustive and metaheuristic search methods. The purity of

Haskell has been leveraged to support parallelism in a variety of flavours, how-

ever the research is still ongoing. Improving the exploitation of parallelism by the

library should be a key subject for future research.

The basic library of this Thesis has not focused upon exploiting parallelism,

although it has been seen in Chapter 10 that extending the library for this purpose

can be done easily using Haskell’s parallel combinators. This extension of the

metaheuristic library and its use on a real world problem was performed manually

at this time, though it was simple to accomplish and had successful results.

A further simple extension to the system could take advantage of properties

of operations such as doMany to automatically enable limited parallelism, with

automated settings of chunking sizes for nested lists computed from the number

of cores provided at runtime. This extension can be achieved using existing code

libraries at runtime, or at compile time through meta-programming provided by

Template Haskell [74].

11.3.3 Evolutionary Programming

The combinators and stream transformation operations that have been proposed

here are subject to logical constraints on their application and use, such as the

types of input and output, and the ratio of input elements to output elements. It is

hypothesised that these constraints should enable reasoning about these programs

and the combination of subcomponents automatically, though guaranteeing the

validity of the final combination of stream transformations.

This proposed technique is firmly in the realm of Genetic Programming, and

the use of Genetic Programming for hyper-heuristics. Hyper-heuristics were pre-

viously mentioned in Chapter 2, as a generalisation of metaheuristic methods,

which attempt to design, build, tune, hybridise or choose between existing meta-

heuristics to enable a more automated tool for complex combinatorial problems.

To enable a Genetic Programming approach this Thesis proposed a further

meta-language, implemented in Haskell, for the types of selection operator, and
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ranges of other parameters such as population size for the combinators in this

library. This metalanguage would then be run to give rise to a specific collection of

stream transformers and a grammar for their combination that would be subjected

to evolution by an existing standard genetic programming tool.

11.3.4 Generators for Imperative Languages

In chapter 9 it was seen that imperative languages can make use of the generator

pattern to facilitate on demand computations. ParadiseEO especially made use

of objects of this type to manage neighbourhood construction and exploration,

however the use of generators was not formalised nor made explicit, but rather

used in an ad-hoc way throughout the library structure.

Generators have not been used widely for the implementation of metaheuris-

tics, in either functional or imperative languages at the present time. It remains to

be seen how well the support for generators in other languages can be leveraged

to extend the use of these forms of combinators beyond Haskell, however it is

expected that it should be both possible and effective.
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Appendix A

Glossary

A description of a range of terms used in this Thesis for quick reference.

exhaustive search where the search process will, either explicitly or implicitly

examine every solution to a particular problem. These will typically be tree

based algorithms such as Depth or Breadth first search. Where branches

of a tree are pruned (thus avoiding explicit examination of some solutions)

it must be possible to prove that no better solution exists in that branch

than some remaining branch. These algorithms can find provably optimal

solutions to problems, but the runtime becomes prohibitive as problem sizes

increase.

heuristic a rule of thumb for constructing solutions, or performing search that

tends to give good results.

impure function a function which may read or modify properties of the environ-

ment in addition to its explicit parameters and returned results. See pure

function.

lazy evaluation a form of normal order reduction where indirection is used to

enable sharing of computations and hence avoid repeating work. The un-

derlying concept is that a place holder to the computation is passed into

each function as it is evaluated in normal order. When a result is required

(demanded) the computation is run and the placeholder is replaced by the
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value. This value is then present throughout the program, where the indi-

rection leads to the placeholder.

low level operator describes functions that are problem specific and provide a

generic interface for a metaheuristic to operate upon. While the interface is

generic, the method of operation and data structure for the problem are not

prescribed.

normal order evaluation the outermost expression is evaluated first, with the ex-

pressions for the arguments either substituted into the new expression or a

note made as to how to reach the argument for later use. Where an expres-

sion is not needed it will not be evaluated, but where it is used many times

it may be evaluated many times.

metaheuristic a general template for iterative heuristic methods. When com-

bined with low level operators for a particular problem, and other related

parameters, they give rise to a specific instance of a heuristic.

point based algorithm a metaheuristic that acts upon one seed solution at a time.

For example an Iterative Improver has one current solution. Typically these

algorithms do work by generating multiple options at each iteration and

selecting one to be the new seed solution for the next iteration.

population based algorithm is a metaheuristic that acts upon a group of solu-

tions, rather than only one. Internally they may then select one solution at

a time to change, but this will return to the group, before the process can

continue.

pure function a function that is exclusively a mapping from its input parameters

to its output value and nothing else. The sqrt function is typically pure

in that it maps from a value to a value, where as traditionally an RNG is

not pure, because it takes no parameters and gives back a value that varies,

based upon a hidden state.

strict evaluation where the expressions for the parameters of a function are eval-

uated down to their result values before the function body. Technically the

value can also be a memory pointer or reference rather than a value but

this distinction will not be of concern here. Also called eager and greedy

evaluation. The name Strict evaluation does not define the order in which
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arguments for functions are evaluated, only that all are evaluated before

the evaluation of the function body. The arguments are always (strictly)

evaluated.



Appendix B

Glossary of the Library

This appendix provides a summary of the major functions in the library of com-

binators for hybrid metaheuristics.

bestSoFar (p. 64), transforms a stream so that the next value that will appear

upon it is always the best seen until that point.

bestSoFar :: Optimisable s⇒ Stream s→ Stream s

bestSoFar (a : as) = scanl bestOf a as

chunk (p. 70), takes a constant value and a stream of values. It proceeds to

divide the stream into regularly sized blocks of size n, and results in a stream

of these blocks as lists. This does not typically preserve the speed of the

underlying stream, consuming more values than it produces lists.

chunk :: Int→ Stream v→ Stream (List v)

chunk n = unfoldr (Just ◦ splitAt n)

The varChunk command extends this concept by allowing each block to

have its own size. The size of each block is provided by a stream of sizes,

rather than a constant size as in chunk. While chunk may be implemented

in terms of varChunk this is seen as unnecessary.

varChunk :: Stream Int→ Stream v→ Stream (List v)

varChunk ns = zipWith take ns◦ loopP (zipWith drop ns)
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doMany (p. 71), is a composition of stretch and chunk. It enables a strategy to

be applied multiple times to each value in a stream, and the results collected

as a list.

doMany :: Int→ (Stream a→ Stream b)→ ExpandT a b

doMany n f = chunk n◦ f ◦ stretch n

divide (p. 70), takes a list of names and a stream of name values. Subsequently

the input stream of the transformation is divided into a collection of streams,

where each value appears in only one of the new streams. The streams are

in the order of the names in the list, and the values of the main stream are

linked with names in the stream of names to indicate where they should end

up.

divide :: Eq n⇒ List n→ Stream n→ Stream v→ List (Stream v)

divide names ns xs = [substream (map (≡ n) ns) xs | n← names ]

where substream bs = map snd ◦filter fst ◦ zip bs

improvement (p. 73), provides a transformation from an expansion operation ( a

transformation from a stream of values into a stream of lists of values), into

a new expansion where the output list contains only values that are better

than the original seed values.

improvement :: Optimisable s⇒ ExpandT s s→ ExpandT s s

improvement nf sols

= safe (map (:[ ]) sols)

$ zipWith (λa b→ filter (>:a) b) sols (nf sols)

join (p. 70), provides the inverse of divide. It takes the same additional param-

eters, a list of names and a stream of name values, but then takes a list of

streams, and reverses the division process.

join :: Eq n⇒ List (n,Stream v)→ Stream n→ Stream v

join streams ns = unfoldr f (ns,streams)

where

f (k : ks,vs) =

let (as,(n,p : ps) : bs) = break ((≡ k)◦ fst) vs

in Just (p,(ks,as++(n,ps) : bs))
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loopP (p. 64), provides a function for tying the knot on a stream described pro-

cess. This links the outputs of the stream process to the inputs, with an

initial value, and provides a single stream of values to the user.

loopP f seed = loopS f [seed ]

loopS (p. 64), provides a function for tying the knot on a stream described pro-

cess. This links the outputs of the stream process to the inputs, with a supply

of initial values, and provides a single stream of values to the user.

loopS :: (Stream s→ Stream s)→ [s ]→ Stream s

loopS f seed = let as = seed++ f as in as

nest (p. 72), is a composition of divide and join, which enables the insertion of

the results of different transformations into a stream.

nest :: Eq n⇒ List (n,Stream a→ Stream b)→ Stream n→

Stream a→ Stream b

nest fs ns = flip join ns◦ zipWith (λ (n, f ) s→ (n, f s)) fs◦

divide (map fst fs) ns

A variation upon nest is preNest where the supply of names is provided by

a stream transformation.

preNest :: Eq n⇒ (Stream a→ Stream n)→

List (n,Stream a→ Stream b)→

Stream a→ Stream b

preNest d fs xs = nest fs (d xs) xs

poisson (p. 74), a function that generates a Poisson distribution, of a particular

number of elements, subject to a parameter for the most likely value in the

distribution.

poisson :: Double→ Int→ Distribution

poisson mean sz = map f [0 . .(fromIntegral sz)]

where f k = exp (−mean)

∗ sum [(mean∗∗ i)/fi | (i,fi)← zip [0 . .k ] factorials ]

factorials = scanl (∗) 1 [1 . .]
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push (p. 73), converts a stream from inductive computation, to a consecutive

form, so that earlier solutions in the stream are evaluated before the later

solutions. It is typically applied to a stream of solutions generated by a

metaheuristic, before other processing such as selecting the best of the so-

lutions generated.

push :: Stream a→ Stream a

push (x : xs) = x ‘seq‘ x : push xs

restart (p. 72), combinators are provided as a variation upon nesting. In these

implementations they take a stream of solutions, the solutions to be restarted

from, and a strategy or transformation. This transformation is applied to the

first restart position, until a termination condition is detected. At this point

the second restart value is inserted into the stream, and the transformation

continued. restartExtract only provides the final value of each sequence of

transformations, making the result a stable stream transformation in its own

right.

restart,restartExtract :: (Stream a→ Stream a)

→ (Stream a→ Stream Bool)

→ Stream a

→ Stream a

restart f r (a : as)

= let ms = loopP (nest [(False, id),(True,const as)] (r ms)◦ f ) a

in ms

restartExtract f r (a : as)

= let ms = loopP (nest [(False, id),(True,const as)] rs◦ f ) a

rs = r ms

in [ l | (p, l)← zip (drop 2 $ window 2 rs) ms,p≡ [True,False] ]

safe (p. 74), provides functionality to combine two streams of lists. At each stage

it will pick between them based upon which is not empty. It is intended

that it be used where one stream may provide empty lists (e.g. improving

neighbourhoods) and there for might need a default, or alternative.

safe :: Stream (List v)→ Stream (List v)→ Stream (List v)

safe = zipWith (λa b→ if null b then a else b)
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select (p. 70), provides selections from a stream of collections with a likelihood

determined by a probability distribution. The probability distribution is pro-

vided as a function from an integer size to a list of values, where the list is

expected to be in ascending order. The type of values of the distribution is

expected to be a floating point number, but this is not required. Selections

from each list are made with respect to a stream of values of the same type

as the distribution.

{-# INLINE select #-}

select f = zipWith g (unsafePerformIO $

newStdGen>>= return◦ randoms)

◦map (λx→ zip (f ◦ length $ x) x)

where g r = snd ◦head ◦dropWhile ((<r)◦ fst)

stretch (p. 71), extends a stream by duplicating values in place for a finite number

of steps.

stretch :: Int→ Stream v→ Stream v

stretch n = concat ◦map (replicate n)

tabuFilter (p. 75), a transformation from a neighbourhood expansion operation,

replacing it with an expansion operation where the neighbourhoods are each

filtered for recently seen solutions.

tabuFilter :: Eq s⇒ (Stream s→ Stream (List s))→ -- window

(ExpandT s s)→ -- neighbourhood

(ExpandT s s)

tabuFilter wF nF xs

= safe (map (:[ ]) xs)

$ zipWith (λws→ filter (flip notElem ws)) (wF xs) (nF xs)

uniform (p. 75), a function that generates a uniform distribution of a particular

number of elements.

uniform :: Int→ Distribution

uniform sz = [x/ sz′ | x← [1 . .sz′ ] ]

where sz′ = fromIntegral sz
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until (p. 80), combinators evaluate a stream of values until a change over point is

reached (indicated by a stream of triggers). At this point, one of a number

of futures replaces the original stream on the output.

until :: Stream a -- current stream of values

→ Stream Bool -- stream of triggers for switch over

→ Stream (Stream a) -- stream of potential futures

→ Stream a

until (a: ) (True: ) ( : cs: ) = a : cs

until (a : as) (False : bs) ( : cs) = a : until as bs cs

window (p. 70), provides a stream of lists, where each list is a recent history of

the underlying stream. Several implementations are possible, for example

using a queue data structure, however this has been found to be no quicker

than the following implementation.

window :: Int→ Stream v→ Stream (List v)

window sz = map reverse◦ tail◦ scanl (λxs x→ take sz (x : xs)) [ ]



Appendix C

The Haskell Language

In this section a brief summary and example of the syntax of the Haskell language

will be given, to facilitate understanding of code segments present in this Thesis.

More detailed information about Haskell may be found in many text books, such

as [39, 60].

C.1 lhs2TeX

All the code presented in this Thesis has been processed by a Haskell pretty print-

ing library called lhs2TeX, giving it a more mathematical appearance. This trans-

lation is one for one with the underlying Haskell code with the following symbol

table giving the translations of the notation.

λ ++ ◦ → ← ≺ ⇒ 6≡ ≡ > 6

\ ++ . -> <- -< => /= == >= <=

C.2 Functions

A function is defined in Haskell as a name, followed by a series of parameter

names, the equals symbol and then the function body. All names are (mostly) a

lower case first letter followed by other letters and numbers as in many other pro-

gramming languages. For example the following are two very simple functions:
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theNumber5 = 5 -- a function with no parameters

id x = x -- the identity function

Functions are typically applied to parameters on their right until the function

has bound all its variable names, at which point it may be evaluated. Due to

functions themselves being first class members of the language, and hence able to

be passed as parameters, some care must be taken over the order of symbols being

passed. For example this usage of the square root function will fail, because the

first sqrt will be applied not to the square root of 5, but to the function sqrt.

f = sqrt sqrt 5

Function application order may be controlled using brackets as in other languages,

or using the $ function provided by the basic Haskell libraries for right-association.

For example, the $ function may be used to correct the application order for the

composed square root function in the following way.

f ′ = sqrt $ sqrt 5

The basic mathematical functions are provided and may be used infix within ex-

pressions. For example:

add5 x = x+5

The standard mathematical functions also predominantly follow the normal ap-

plication precedence rules for mathematical functions, for example division binds

more tightly than addition. More complicated mathematical functions are pro-

vided as named functions in standard libraries, such as the preceding example

involving sqrt.

C.2.1 Lambda expressions

Anonymous functions may be created through the use of lambda expressions.

These are similar to normal functions, but replace the name of the function with

λ . A normal function is equivalent to a named lambda expression. For example:

f = (λx y→ (x+ y)/ y) -- a lambda expression, bound to the name f
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C.2.2 Function types

Each function has a type, though the compiler can often infer the types, as in the

cases above. Where the programmer wishes to be more precise, or overrule the

compilers inferences, types can be provided. For example, this following type

definition would instruct the compiler that the function f is a function which takes

two parameters, both of type Int and the computation results in a boolean value.

f :: Int→ Int→ Bool

To specify a function as a parameter, the data type of the parameter function is

enclosed in brackets, such as in the following example, where the first parameter

will be a function from Ints to Ints.

f :: (Int→ Int)→ Double→ Bool

In the above examples the types at each stage are fixed to specific forms of data

with specific internal structures. Haskell supports a more flexible type definition

using type variables, which always begin with lower case letters. These generi-

cally defined functions can be used wherever the types of the parameters match.

For example:

f :: (a→ b)→ c→ a

It should be noted that the standard mathematics operators are all binary functions

internally, over the appropriate data types.

C.2.3 Sectioning functions

Functions in Haskell are also used in their higher order form, where a function

of this type a→ b→ c can be written as a→ (b→ (c)), that is a function from

a parameter of type a to a new function. Using this perspective on functions

allows for partial application of functions, or sectioning. For example it is possible

to write (+1), a function which adds one to any number given as a parameter.

This approach may be used to share computations and partial results throughout

Haskell programs.

C.2.4 Structuring code

To aid the construction of code two patterns are used in Haskell, where and let-

in. Each of these defines a new level of the code, where all terms are equal and
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have access to one another, as is seen in this Thesis in a number of the data-flow

approaches. The following two example illustrate the same function expressed

using each of these.

f x = let y = 5+ x

z = y+ y+ x

in (z,y)

g x = (z,y)

where y = 5+ x

z = y+ y+ x

C.2.5 Making choices

Haskell offers a variety of ways to implement program logic forking. The com-

mon control structure of if-then-else is provided, but tends to be used only for

simple choices because it only allows for a binary decision and so becomes ver-

bose quickly. For example:

f x = if x<5 then 0

else if x<7 then 1

else 2

Haskell provides three alternatives to basic if-then-else notation.

guards which allows for a less verbose chaining of if-then-else structures.

g x | x<5 = 0

| otherwise = 2

pattern matching provides a clean syntax for expressing different cases of a

function body based upon how variables match in the parameters. This

is more useful with more complex data structures such as lists and trees.

g 5 = 0 -- under score is wild card

g 6 6 = 7

g = 1 -- default
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case is an alternative syntax for pattern matching, which may be used on arbitrary

expressions.

g x = case x of

5 → 0

otherwise→ 2

C.3 Data types

A variety of basic types are present in Haskell. Bools, Ints and Doubles are simple

data types, but the basic types of Haskell also include tuples, lists and strings. A

user may create new type names through the use of the type keyword, for example;

type MyString = [Char ] -- the same definition as the basic library

type F a b = (a, [b ]) -- a tuple of a and the list of b

type G a = (Int, Int,Double,a)

Other methods for user defined data are

newtype allows for the creation of a data type with a single constructor. For

example, this data type from the State Monad definition.

newtype State s a = State {runState :: s→ (s,a)}

data is a more general purpose way to define data types, with multiple constructor

functions. See the rose tree example below.

Each of these can be used to create recursively defined data structures, through

the recursive application of their constructor functions. For example this definition

of a rose tree, which has been chosen to illustrate this point, but is not how rose

trees are defined in the standard Data.Tree library.

data Tree a

= Forest [Tree a ]

| Leaf {payload :: a} -- payload is an accessor function

-- for a single field of a Tree
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C.4 Lists in Haskell

Lists in Haskell are provided as a standard type, but their definition is as a recur-

sive type similar to the trees above. As such they can be defined to be generated

by computations lazily and be of indefinite or infinite length. They are used in this

form throughout this Thesis as streams, rather than defining a new data type.

Lists can be constructed recursively or through the use of list comprehension

notation. In the following example, each of the functions f, g and h will give the

same output.

f = [x∗ x | x← [0 . .10 ] ]

g = map (λx→ x∗ x) [0 . .10 ]

h = let h′ 10 = [10∗10 ]

h′ x = (x∗ x) : h′ (x+1)

in h′ 0

Pattern matching may also be used with lists, as in this example of the standard

head function.

head (x: ) = x

C.5 Type Classes in Haskell

The Haskell type class system provides a further mechanism for generalising over

data types. A class provides a number of function definitions which types within

that class promise to support. A data type may then be defined as an instance of a

class. A function defined over a type class can then be assured that it may use the

operations of that class on any data it is applied to.

The following example contains a reproduction of part of the standard Eq

class, which deals with equality of data types. The example also includes a generic

instantiation of tuples for equality testing.

class Eq a where

(≡) :: a→ a→ Bool

instance (Eq a,Eq b)⇒ Eq (a,b) where

(a,b)≡ (c,d) = a≡ c ∧ b≡ d

The not equal function (6≡) can now be expressed generically for all types that

are declared as instances of Eq.
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(6≡) :: Eq a⇒ a→ a→ Bool -- where a is in Eq, then the following holds

a 6≡ b = ¬ (a≡ b)

C.6 Rewrite Rules

A key advantage of functional programming systems is the ability of the compilers

to rearrange and reason about the structure of the program. In Haskell this is fa-

cilitated through rewrite rules1, which allow the programmer to give the compiler

additional information about how certain situations may be changed, typically for

performance.

In the following example, a rewrite rule from the standard libraries, two map

operations in sequence are rearranged to remove the intermediate data structure.

{-# RULES

"map/map" forall f g xs. map f (map g xs)

= map (f.g) xs

#-}

1For more information about rewrite rules see the following page of the online Haskell users

guide.

http://www.haskell.org/ghc/docs/5.04.3/html/

users_guide/rewrite-rules.html



Appendix D

Lucid Style Code in Haskell

The Lucid programming language is a Data Flow programming language, in

which variables are represented as varying values within the lifetime of the pro-

gram. The value taken by a variable is defined by an equation that may rely upon

previous values of that same variable, or values from other variables. In this way

Lucid provides a method to allow the creation of programs as graphs of data de-

pendencies, expressed through the equations linking the evolution of the different

variables of the problem. For example the natural numbers in Lucid can be ex-

pressed as;

n = 1 fby (n+1)

This describes a variable n, which takes the values 1 followed by 1+ 1 followed

by 2+1 and so on.

D.1 Similarities with Haskell

Ackerman [1] proposed six key properties that are required of a data flow lan-

guage. Three of these requirements are characteristics that are shared by modern

lazy functional languages:

• Freedom from side effects, Ackerman notes that pure functional languages

such as Pure Lisp share this property;
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• equivalence of instruction scheduling, that subject to data dependencies,

the precise order of instructions is irrelevant (a similar advantage is noted

by [42], pointing out that it enables compiler technology through rearrange-

ment and reduces the effort required by the programmer); and

• a single assignment convention, variables may appear only once in the pa-

rameter list and once set may not be changed.

The other three requirements that Ackerman proposed deserve a short note;

• An odd notation for iteration, is assumed to refer to the use of recursive

definitions rather than loop constructs, which may have been less accepted

at the time of writing;

• a lack of history sensitivity in procedures, no procedure has internal state

variables, this appears to be a repetition of the freedom from side effects

requirement; and

• locality of effect, it is unclear what this refers too, it may be (i) related

to the need to compile into tight loops or (ii) for the purposes of caching in

memory relating to performance. This confusion may be related to changing

priorities in the field of computer science.

The high degree of overlap between these requirements and characteristics

that have been argued as important in the field of modern functional languages,

suggest that Haskell should provide an ideal location for a shallow embedding of

data flow concepts.

D.2 Recursive lists in Haskell

In Haskell the implementation of a varying value may be done using an infinite

list or stream, exploiting lazy evaluation to provide both values on demand and

memoization of values in each stream once computed. For example, the natural

numbers from the previous example can be implemented as follows;

n = 1 : map (+1) n

This describes a list n, which takes the value 1 followed by a computation defining

the remainder of the list, in terms of the increment of previous values in the list

by 1. Due to lazy evaluation and sharing this list will yield the value 1, then the
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first result of the computation 1+1, then the application of +1 to the result of the

second computation and so on.

D.3 Shallow Lucid-like programming in Haskell

While there are clear similarities to Lucid in this implementation, it is possible to

make Haskell resemble Lucid more closely. The Lucid operation fby (followed by)

performs the same function as cons in this example, and so a direct synonym can

improve the resemblance. In order to capture the operation of numbers in Lucid

streams it is necessary to tell Haskell how to treat a list as if it were a number, so

as to overload the meaning of addition, and the automatic lifting of constants to

streams. This can all be achieved by making lists of numbers instances of the type

class Num.

instance Num a⇒ Num [a ] where

(+) = zipWith (+)

(∗) = zipWith (∗)

fromInteger = repeat ◦ fromInteger

It is now possible to rewrite the code for the generation of natural numbers in a

manner much closer to its appearance in Lucid.

n = 1 ‘fby‘ (n+1)

Fibbonaci numbers provide a more compelling example of the use of data

flow programming. What follows is a standard example written in Lucid, drawn

from [80].

fibo = 0 fby (fibo + (1 fby fibo))

Fibbonacci numbers are also used as a standard example of functional program-

ming, and the approach taken by Lucid can be described as short term memoiza-

tion over lists.

fib = 0 : 1 : zipWith (+) fib (tail fib)

The close correspondence is once again apparent, with some renaming of opera-

tions and the explicit using of zipWith (+). This example has eschewed the use

of the previous class instantiation, though it would have provided a direct trans-

lation of the Lucid code into Haskell. This Thesis has used the standard Haskell

functions, finding them perfectly adequate in themselves.



Appendix E

Examples of usage of Object

Oriented Frameworks

This appendix provides more detailed code for the implementation of solvers us-

ing the ParadiseEO and Opt4J frameworks.

E.1 ParadiseEO

E.1.1 TSP in ParadiseEO

This source code is based upon a genetic algorithm solver for the TSP found upon

the ParadiseEO website, and written by Sébastien Cahon and Thomas Legrand. It

was then modified using tutorials and information from the standard ParadiseEO

documentation found at;

http://paradiseo.gforge.inria.fr

route

typedef eoVector <float, unsigned> Route;

route eval

void RouteEval :: operator () (Route & __route) {

float len = 0 ;
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for (unsigned i = 0 ; i < Graph :: size () ; i ++)

len -= Graph :: distance

(__route [i],__route [(i + 1) % Graph :: size ()]);

__route.fitness (len) ;

}

route init

void RouteInit :: operator () (Route & __route) {

srand ( time(NULL) );

// Init.

__route.clear () ;

for (unsigned i = 0 ; i < Graph :: size () ; i ++)

__route.push_back (i) ;

// Swap. cities

for (unsigned i = 0 ; i < Graph :: size () ; i ++) {

unsigned j = (unsigned) (Graph :: size () *

(rand () / (RAND_MAX + 1.0)));

unsigned city = __route [i] ;

__route [i] = __route [j] ;

__route [j] = city ;

}

}

E.1.2 Selected code from ParadiseEO

From moRndWithoutReplNeighborhood.

virtual void init(EOT & _solution, Neighbor & _neighbor) {

unsigned int i, tmp;

maxIndex = neighborhoodSize ;

i = rng.random(maxIndex);

_neighbor.index(_solution, indexVector[i]);

tmp=indexVector[i];

indexVector[i]=indexVector[maxIndex-1];

indexVector[maxIndex-1]=tmp;

maxIndex--;

}

virtual void next(EOT & _solution, Neighbor & _neighbor) {

unsigned int i, tmp;
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i = rng.random(maxIndex);

_neighbor.index(_solution, indexVector[i]);

tmp=indexVector[i];

indexVector[i]=indexVector[maxIndex-1];

indexVector[maxIndex-1]=tmp;

maxIndex--;

}

From moLocalSearch, the superclass of point based algorithms such as moSA.

virtual bool operator()(EOT & _solution) {

if (_solution.invalid())

fullEval(_solution);

// initialization of the parameter of the search

// (for example fill empty the tabu list)

searchExplorer.initParam(_solution);

// initialization of the external continuator

// (for example the time, or the number of generations)

cont->init(_solution);

bool b;

do {

// explore the neighborhood of the solution

searchExplorer(_solution);

// if a solution in the neighborhood can be accepted

if (searchExplorer.accept(_solution)) {

searchExplorer.move(_solution);

searchExplorer.moveApplied(true);

} else

searchExplorer.moveApplied(false);

// update the parameter of the search

// (for ex. Temperature of the SA)

searchExplorer.updateParam(_solution);

b = (*cont)(_solution);

} while (b && searchExplorer.isContinue(_solution));

searchExplorer.terminate(_solution);

cont->lastCall(_solution);

return true;
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}

From moSAexplorer, a helper class that allows for the exploration of a neighbor-

hood in the style of simulated annealing. For each neighbour in a neighbourhood

it will provide a boolean acceptance, based upon the current temperature.

virtual void operator()(EOT & _solution) {

//Test if _solution has a Neighbor

if (neighborhood.hasNeighbor(_solution)) {

//init on the first neighbor: supposed to be

//random solution in the neighborhood

neighborhood.init(_solution, selectedNeighbor);

//eval the _solution moved with the neighbor and

//stock the result in the neighbor

eval(_solution, selectedNeighbor);

}

else {

//if _solution hasn’t neighbor,

isAccept=false;

}

};

virtual bool accept(EOT & _solution) {

if (neighborhood.hasNeighbor(_solution)) {

if (solNeighborComparator(_solution, selectedNeighbor))

// accept if the current neighbor is

// better than the solution

isAccept = true;

else {

double alpha=0.0;

double fit1, fit2;

fit1=(double)selectedNeighbor.fitness();

fit2=(double)_solution.fitness();

if (fit1 < fit2) // this is a maximization

alpha = exp((fit1 - fit2) / temperature );

else // this is a minimization

alpha = exp((fit2 - fit1) / temperature );

isAccept = (rng.uniform() < alpha) ;

}

}

return isAccept;

};
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E.2 Opt4J

E.2.1 TSP in Opt4J

This source code is based upon code drawn from the documentation of Opt4J at;

http://opt4j.sourceforge.net/documentation

The source code was modified to allow the loading of city positions from a file,

rather than random construction of problems (see file SalesmanProblem). The file

City is a problem specific helper class. The other files, while problem specific,

would require equivalent implementations for any other problem.

City

public class City {

protected final double x;

protected final double y;

public City(double x, double y) {

this.x = x;

this.y = y;

}

public double getX() {

return x;

}

public double getY() {

return y;

}

}

SalesmanRoute

@SuppressWarnings("serial")

public class SalesmanRoute

extends ArrayList<City>

implements Phenotype {}

SalesmanCreator

public class SalesmanCreator

implements Creator<PermutationGenotype<City>>

{

protected final SalesmanProblem problem;

http://opt4j.sourceforge.net/documentation
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@Inject

public SalesmanCreator(SalesmanProblem problem) {

this.problem = problem;

}

public PermutationGenotype<City> create() {

PermutationGenotype<City> genotype

= new PermutationGenotype<City>();

for (City city : problem.getCities()) {

genotype.add(city);

}

Collections.shuffle(genotype);

return genotype;

}

}

SalesmanDecoder

public class SalesmanDecoder

implements Decoder<PermutationGenotype<City>,

SalesmanRoute>

{

public SalesmanRoute

decode(PermutationGenotype<City> genotype)

{

SalesmanRoute salesmanRoute = new SalesmanRoute();

for (City city : genotype) {

salesmanRoute.add(city);

}

return salesmanRoute;

}

}

SalesmanProblem

public class SalesmanProblem {

protected Set<City> cities = new HashSet<City>();

@Inject

public SalesmanProblem() {

// modified to load from file 417.tsp, a series of

// floats as strings stored in recomputation form.

try{

Scanner lineScanner;
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lineScanner = new Scanner(new File("fl417.tsp"));

while(lineScanner.hasNextLine())

{

Scanner fScan = new Scanner(lineScanner.nextLine());

floatScanner.next();

final City city = new City(fScan.nextDouble(),

fScan.nextDouble());

cities.add(city);

}

}catch(Exception e){e.printStackTrace(System.out);}

}

public Set<City> getCities() {

return cities;

}

}

SalesmanModule

public class SalesmanModule extends ProblemModule {

@Constant(value = "size")

protected int size = 100;

public int getSize() {

return size;

}

public void setSize(int size) {

this.size = size;

}

public void config() {

bindProblem(SalesmanCreator.class,

SalesmanDecoder.class,

SalesmanEvaluator.class);

}

}

E.2.2 Selected code from Opt4J

Drawn from MutatePermutationSwap. This is presumed to be the standard

mutation strategy in an evolutionary algorithm.

public void mutate(PermutationGenotype<?> genotype, double p) {

int size = genotype.size();

if (size > 1) {

for (int i = 0; i < size; i++) {
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if (random.nextDouble() < p) {

int j;

do {

j = random.nextInt(size);

} while (j == i);

Collections.swap(genotype, i, j);

}

}

}

}

Drawn from MatingCrossoverMutate. This is presumed to be the standard list

crossover algorithm.

protected Pair<Individual> mate(Individual parent1,

Individual parent2,

boolean doCrossover) {

Genotype p1 = parent1.getGenotype();

Genotype p2 = parent2.getGenotype();

Genotype o1, o2;

if (doCrossover) {

Pair<Genotype> offspring = crossover.crossover(p1, p2);

o1 = offspring.getFirst();

o2 = offspring.getSecond();

} else {

o1 = copy.copy(p1);

o2 = copy.copy(p2);

}

mutate.mutate(o1, mutationRate.get());

mutate.mutate(o2, mutationRate.get());

Individual i1 = individualFactory.create(o1);

Individual i2 = individualFactory.create(o2);

Pair<Individual> individuals = new Pair<Individual>(i1, i2);

return individuals;

}

From the function optimize, in EvolutionaryAlgorithm, this code shows the

creation of a number of new solutions from a set of parents. All the new solutions

are added to the population, and then the lames, presumed to be the weakest, are

removed, restoring the population to a predefined maximum.

if (offspringCount > 0) {
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// evaluate new individuals first

if (offspringCount < lambda) {

completer.complete(population);

}

Collection<Individual> parents;

parents = selector.getParents(mu, population);

Collection<Individual> offspring;

offspring = mating.getOffspring(offspringCount, parents);

population.addAll(offspring);

}

if (population.size() > alpha) {

Collection<Individual> lames;

lames = selector.getLames(population.size() - alpha,

population);

population.removeAll(lames);

}

From CrossoverListXPoint, this code shows the cross over of two lists.

public Pair<G> crossover(G p1, G p2) {

ListGenotype<Object> o1 = p1.newInstance();

ListGenotype<Object> o2 = p2.newInstance();

int size = p1.size();

if (x <= 0 || x > size - 1) {

throw new RuntimeException(this.getClass() +

" : x is " +

x +

" for binary vector size " +

size);

}

SortedSet<Integer> points = new TreeSet<Integer>();

while (points.size() < x) {

points.add(random.nextInt(size - 1) + 1);

}

int flip = 0;

boolean select = random.nextBoolean();

for (int i = 0; i < size; i++) {
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if (i == flip) {

select = !select;

if (points.size() > 0) {

flip = points.first();

points.remove(flip);

}

}

if (select) {

o1.add(p1.get(i));

o2.add(p2.get(i));

} else {

o1.add(p2.get(i));

o2.add(p1.get(i));

}

}

Pair<G> offspring = new Pair<G>((G) o1, (G) o2);

return offspring;

}

E.2.3 Specialised code for Stream library, mimicking Opt4J

functionality

selectFromMap :: Stream (Map Double s)→ Stream b

selectFromMap = unsafePerformIO $

do rs← newStdGen>>= return◦ randoms

return $ map (snd ◦ fromJust)◦ zipWith M.lookupGT rs

makeDistPop :: List Double→ List s→Map Double s

makeDistPop dist

= snd ◦

(flip (M.mapAccum (λ (a : as) → (as,a))) seedDist)

where

seedDist = M.fromDistinctAscList [(x,()) | x← dist ]

mutate :: Double→ Stream TSPProblem→ Stream TSPProblem

mutate mutateRate = unsafePerformIO $

do is← newStdGen>>= return◦ randomRs (0,416)

ds← newStdGen>>= return◦ randoms
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return $ mutate′ (cycle [0 . .417 ] is ds

where

mutate′ (v : vs) sk@(s : ss) (b : bs) ck@(c : cs)

| v≡ 417 = c : newMutate′ vs sk bs cs

| b > mutateRate = newMutate′ vs sk bs ck

| otherwise = c′ ‘seq‘ newMutate′ vs ss bs (c′ : cs)

where c′ = swapCitiesOnIndex v s c

crossover :: Stream (List TSPProblem)

→ Stream (List TSPProblem))

crossover = unsafePerformIO $

do rs← newStdGen>>= return◦ randomRs (0,416)

return $ zipWith recombine rs

where

recombine i [a,b ]

= let bPath = getTSPPathAsList 0 b

aPath = getTSPPathAsList 0 a

(as, ) = splitAt i aPath

(cs, ) = splitAt i bPath

bs = filter (λx→ S.notMember x (S.fromList as)) bPath

ds = filter (λx→ S.notMember x (S.fromList cs)) aPath

in [setRoute (as++bs) a,setRoute (cs++ds) a ]



Appendix F

Code comparison with MRFy

These examples are to illustrate the difference in complexity of the code between

the implementation of metaheuristics using MRFy’s original framework, and the

stream combinator based framework, as compared in Chapter 10. Some values

appear as named variables, to indicate their function but these values are not ini-

tialised. The stream examples require that they are applied to seed data, have con-

vergence checking and final selection of the best solutions composed with them,

while the MRFy examples would need to be processed and seeded with random

number generators to be evaluated.

F.1 Genetic Algorithms

MRFy’s original code for an implementation of Genetic Algorithms;

nss :: NewSS

nss hmm searchP query betas scorer = fullSearchStrategy

(fmap (wrapBestScore◦map scorer)$ initialize hmm searchP query betas)

(mutate searchP query betas scorer)

scoreUtility

(takeNGenerations (generations searchP))

(unScored ◦minimum)

type Population = [Scored Placement ]

194
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initialize :: RandomGen r⇒

HMM→

SearchParameters→

QuerySequence→

[BetaStrand ]→

Rand r [Placement ]

initialize hmm searchP query betas =

sequence $ take n

$ repeat

$ projInitialGuess hmm (getSecPreds searchP) query betas

where n = getSearchParm searchP populationSize

-- invariant: len [SearchSolution] == 1

mutate :: SearchParameters

→ QuerySequence

→ [BetaStrand ]

→ Scorer Placement

→ Scored Population

→ Rand StdGen (Scored Population)

mutate searchP query betas scorer (Scored placements ) =

return◦wrapBestScore

=<< shuffle′

=<< return◦ take (getSearchParm searchP populationSize)

◦ sort

◦ (placements++)

=<<progeny

where progeny = parRandom $ map (λgs→ scorer< $ >

randomizePlacement betas gs (V.length query))

$ getPairings

$ map unScored placements

getPairings :: [Placement ]→ [Placement ]

getPairings [ ] = [ ]

getPairings [p ] = [p ]

getPairings (p1 : p2 : ps) = crossover p1 p2 : getPairings ps

The stream implementation of Genetic Algorithms, following the original logic

of MRFy.
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loopS ( concat

◦map (take popSize)

◦map sortO

◦ (λchunks→ zipWith (++) chunks

◦ map (map (λ [a,b ]→ crossover a b))

◦ map (chunk 2) -- getPairings

$ chunks

)

◦ chunk popSize

)

F.2 Simulated Annealing

MRFy’s original code for implementing the Simulated Annealing algorithm. The

temperature strategy is a standard geometric cooling schedule and the acceptance

criterion is the standard Simulated Annealing acceptance function. The cool-

ing schedule and acceptance function are combined as a single function called

boltzmannUtility.

nss :: NewSS

nss hmm searchP query betas scorer = fullSearchStrategy

(fmap scorer $ RHC.initialize hmm searchP query betas)

(RHC.mutate searchP query betas scorer)

(boltzmannUtility searchP)

(takeByCCostGap (acceptableCCostGap searchP))

id

boltzmannUtility :: RandomGen r⇒

SearchParameters→

Move a→

Rand r (Utility (Scored a))

boltzmannUtility searchP (Move {younger,older,youngerCCost})

= do uniform← getRandom

return $ if boltzmann youngerCCost

(scoreOf younger)

(scoreOf older)> uniform

then Useful younger
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else Useless

where boltzmann :: CCost→ Score→ Score→ Double

boltzmann cost (Score youngScore) (Score oldScore)

= exp ((oldScore− youngScore)/

(constBoltzmann∗ temperature))

where temperature = (constCooling cost)∗ constInitTemp

constBoltzmann = getSearchParm searchP boltzmannConstant

constInitTemp = getSearchParm searchP initialTemperature

constCooling = getSearchParm searchP coolingFactor

The above search strategy implemented in terms of Streams;

loopP (λ sols→ zipWith4 (saChoose quality)

(randoms g)

(geoCooling changeRate initialTemp)

sols (perturb sols)

)

F.3 Checking Placements

checkPlacement :: QuerySequence→

[BetaStrand ]→

PricedSol→

Bool

checkPlacement qs = isValid 0

where isValid lastGuess [ ] = True

isValid lastGuess (b : bs) (o : os)

| o< lastGuess = False

| o > betaSum = False

| otherwise = isValid (o+ len b) bs os

where

betaSum = U.length qs− sum (map len (b : bs))

checkAllOptions :: (Int→ PricedSol→ PricedSol)

PricedSol→

List PricedSol
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checkAllOptions changePlace p

= let as = map (λx→ changePlace x p) [1 . .]

bs = map (λx→ changePlace x p)$ map (0−) [1 . .]

in p : takeWhileDiff as++ takeWhileDiff bs

where

takeWhileDiff x = map fst

◦ takeWhile (λ (a,b)→ a 6≡ b)

$ zip (p : x) x
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