The Implementation of Newsgueak

Rob Pike

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The implementation of theoncurrent applicative language Newsqueak has several
unusual featuresTheinterpretersquint, uses a copy-on-writecheme to manage stor-
age honoring Newsqueak’s strictly applicative (by-value) semantics for @ataeis no
explicit scheduler.Insteadthe execution of processes is interleaved very finelyrdyut
domly, by an efficient scheme that integrates process switchinthmiaterpreter's main
loop. Theimplementation ofselect, the non-deterministic, multi-wagommunica-
tions operator, exploits details in the implementation of processes.

This paperdescribes much of the interpreter but explains only small aspects of the
language. Furthetetail about the language may be found in the references.

Storage

Since the management of storage is central to the implementation of any languaggp@dsstart-
ing point for the description of the Newsqueak interpreut it is especially pertinent for Newsqueak
because the design of the language hinges on its strictly by-value (applicative) management of data.

Concurrent and applicative programming complement edlodr. The ability to send messages on
channels provides I/O without side effects, while the avoidanshared data helps keep concurrent pro-
cesses from collidingNewsqueaks an applicative concurrent language based on the concurrent composi-
tion of processes communicating on synchronous channels [Pike 89, Mcll88]computations share a
value only if they shara variable. All assignment of values to objeetsincluding function return, bind-
ing of parametero functions and processes, and passing values on channgldone by making a copy
of the assigned valueAlthough Newsqueak permits global variables, programming without thexwnige-
nient andimplicitly encouraged.Thelanguage promotes independent functions and processes operating in
environments defined exclusively byeir parametersSincethose parameters may include communication
channels, the language feels considerably different from traditional applicative languages.

Newsqueak does not require tlitatimplementation copy values in an assignment, but the behavior
must be as though the value were copi€tde Newsqueak interpretesquint, combines reference-count
garbage collection with a lazy copying scheme to defer copyitangsas possibleTheresult is similar to
copy-on-write page management schemes in operating systems.



Reference counting was chosen because it is easy to implement [K3jutlit was (correctly)
expected that storage management would not dominate performigloceover,when the language was
being designed there were several candidates for the Gilid eventually be run on, so it seemed pru-
dent to use simple, inherently portable techniques.

Each object in Newsqueak is represented uaisgngle word containing the address of a data struc-
ture describinghe object, except for integers, which are just stored in the wWdtelanguage itself has no
pointer types, but themplementation uses pointers extensivelyhe data structure begins with a header
that includes a reference count and a descriptidheo$ize and layout of the object, which simplifies copy-
ing the structures(The static type systemequires no run-time checking of the type of objects, but the
interpreter uses a single routine to copy all objecti¢ data containeth arrays of characters and integers
are storedmmediately after the headeArrays of non-integral objects are represented recursively by stor-
ing an array of pointers to the component objects after the initial he&dmords,defined usingthe
struct keyword, are stored using a hybrid scheme; a bit atape beginning of the data part of the
object indicates which elements of the structure are represented by pointers.

An object is freed (collected) whehe number of references to it goes to zero, which can occur when
a link to the object is broken by assignment or when a variable pointing to the object is released at the end
of an executing blockWhenan object is freed, pointers contained withiaré followed and their refer-
ence counts are decrement&dilhenthese counts go to zero, the algorithm continues recursively.

When an object is assigned to a variable, its reference count is incrétmeedver,when acompo-
nent of an object is updated, the resulting assignment may be done in plaé¢hentpntaining object has
a reference count of onéf. not, the object must first be copie@onsiderthe isolated assignments

A = somearray
B =A

Ali] = p.

After the second assignment, the array pointed ta laypd B has a reference count of at least twim
assignp toA[i], A is copied, the old array’s reference count is decremeated (ongerpoints to it, but

B still does), all its component objects’ reference counts are incremented (the new array poirganeethe
components), and is made to point to the new objecthis new object has a reference count of ofbe
original object pointed to b [i] andB[i] has its reference count decremented (after assigraierit
will not point toit buts[i] will), and a[i] may finally be pointed ab, whose reference count incre-
ments. Allthese operations occur as a single atomic acttaremust be taken ithe implementation to
guarantee that assignments such as

A[i] = A[i]

work properly, even when disguised, for example by communicatian arannel.But the method is not
hard to implement, and is beneficial for many common cases syzdissisg an array to a function that
examines it but does not change it.



Processes and scheduling

The unusual handling of processes and schedulirgrinint is most easilyapproached the same
way it was developed: by successive refinementlmdsic interpreterMany interpreters represent the tar-
get programas an array of function pointers, each of which represents pseudo-instructions in a simulated
CPU, and use a program counter to step thraligbe functions.Theend of the program is indicated by a
pseudo-instruction thaieturns zero (false); non-terminal pseudo-instructions return one (fbefode in
C looks like:

typedef int (*Inst) (void);
Inst *pc;

Inst programl[];

compile () ;

pc=program;

while ((**pc++) ())
As well, there are often some global pseudo-registers, asiéhstack pointer, and some associated data,

such as a stackTheseglobal variablegre manipulated by the pseudo-instructions to push variables on the
stack and perform other low-level operations.

Newsqueak needs process&incethe implementation is a sing{esal) process in a C program, we
need to simulate processes by interleaving the executioraridus Newsqueak programs in a single
instance of the basic loop/hena (simulated) process is not actively executing, its state can bateeld
data structure such as schematically at least-

typedef struct{

Inst *pc; /* program counter */

int *sp; /* stack pointer */

int stack [N]; /* stack storage */
}Proc;

A typical operating systemspproach at this point would be to use thec structure to hold thec and

sp of a suspended process and to swap thvtimthe global variables when the process is enabled again.
(The stack storage in theroc structure could be used as is, without copyinbhle execution loop might
then become

while (a process can run) {
while (randomtimer () !'=0 && (**pc++) ())
7
swap (schedule()) ;

}

whereschedule selects a process (i.e.paoc pointer) to run andwap exchanges the globals with the
named processAgain, this is a CPU-like model; the timer represents some sort of clock that theves



preemptive scheduling algorithnit might be implemented by having a softwarrrupt set a flag, or just
by running a counter.

Of course, these processes should be communicating, so some scheduling can lbertietlitdca-
tion. Forexample, whem sending process, say A, detects (through a data structure representing a channel,
which will be described in the next section) that another process, say B, idogadgive its message, A
can execute

swap (B)

thereby passing the flowf control to the receiving proces#n general, though, this approach does not
obviate the need for preemptive scheduliffiga process doasmt communicate often, it may never get run.
Worse, tying the scheduling to communication makes the system very determiflisticurrentlan-
guages, particularly those originating with Hoare’s Communic&getuential Processes (CSP) [Hoare 78],
have a tradition of non-determinism derived fromoabination of Dijkstra’s guarded commands [Dijk 76]
and distributed computatioiNon-determinisimalso has the advantage of avoiding certd@sses of live-
lock that can occur when communicating with a chatty proctksvsqueaktherefore shoulde non-
deterministic when scheduling and when choosing between multiple potential communi€atprsvide
non-deterministic scheduling without interrupting timers, we need a diffestardture for the interpreter
loop.

Squint has noscheduler and no global program counter or stack poiintstead,the state of all
processes is described only by theoc structures, using a model relatechrdware microtasking [Thack
79] and the HUBminiature operating system [ODell 87] [Mas 7@Ratherthan running the pseudo-
instructions by executing

(**pct++) ()
squint executes
(**proc—>pc++) (proc)

whereproc points to the head & queue of active processedsachpseudo-instruction needs theoc
pointer of the current process to access the approstiaté and registersTheseindirections may cost
some execution time, of course, but the hope is to gain some back by not having to save amlaesssre
state when schedulingBy not saving state when scheduliadj, that is required is to change-oc to run

the new processThatis inexpensive enough to do after every pseudo-instruction, if we can cycle through
the process queue cheaplgivena process queue anchaxt pointer in eaclproc the code becomes:



typedef int (*Inst) (Proc*);
Proc *proc; /* head of process queue */
Proc *ptail; /* tail of process queue */

while (proc) {
while ( (**proc—>pc++) (proc)) {
ptail->next = proc;
ptail = proc; /* append proc to tail */

proc = proc->next; /* delete proc from head */

}

The queuemanipulation succeeds even if the queue has only one pradesgthelessin the common
case that only a single process is running, we can improve the lolgawng the queue alonefroc
equalsptail:

while (proc) {

while ( (**proc—>pc++) (proc)) {

if (proc != ptail){
ptail->next = proc;
ptail = proc; /* append proc to tail */
proc = proc->next; /* delete proc from head */

}

If only oneprocess is running, the scheduling overhead is one comparison per pseudo-instruction, plus the
cost of accessing the simulated registers througbiater (which may be negligible; it depends on the
architecture ofthe real CPU).If several processes are active, thougtpc is not equal totail and

each execution of the loop accesses several global variabkesan do better by amortizing the coser

several instructions, by scheduling less oft®y. being statistical rather than absolute in deciding how
often, we have an opportunity to introduce non-determinism into the scheduler.

To randomize the interleaving of the processes, we need an extremely cheap way to decide how to
interleave. Thdirst requirement is a cheap random number generdtaoes not have to be good, it just
needs to be good enough that programs cannot exploit any correlattomfllowing generator, courtesy
of Jim Reeds, uses a 31-bit linear feedbstukt register to derive a random enough number in a handful of
minor instructions on most 32-bit computers:



long x = OXFFFFFFFFL;

X += x;
if(x < 0)

x ~= 0x88888EEFL;
n = x&MASK;

(The & operator is bitwisand;~ is bitwise exclusive or.)Theresultingn is a random number between 0
andMASK; MASK is 15 insquint . With the generator in the loop, the result is:

while (proc) {
X += X;
if(x < 0)
x "= 0X88888EEFL;
n = x&MASK;
while (-—n>=0 && (**proc—->pc++) (proc))

I

if (proc != ptail) {
ptail->next = proc;
ptail = proc; /* append proc to tail */
proc = proc->next; /* delete proc from head */

}

With x andn in registers, this loopuns insignificantly slower than the non-random one on a VAX-11 with

a single process, and about 40% faster with several procdsséso offers non-determinism anequires

no timer. Theonly remaining problem is to work in the scheduling requirements of inter-process communi-
cation, the subject of the next section.

Newsqueak provides a process creation operatafin) but no explicit procesdestruction opera-
tor. Whena process is instantiated, it is wrapped in an envelmgeconverts what would be its top-level
function return into the sequence that releases the function’s resouradec(bynenting reference counts

of thetop-level data structures) and removes the process from the run @e@ilagecollection does the
rest.

Communication

Consider a processsending an integerr to a procesg, using a channel. s executes

to save the value in. Communicatiorin Newsqueak is synchronous, which means that batihdrR must
be ready to communicate before either can do so; if, for instances to send o channel when no
receiver is ready, it suspends executimil a receiver, herg, tries to read from the same channkéla



process is prepared to communicate on a set of chaiinedes aselect statement, which announces the
possibility of communicatiomnd then executes a sequence of statements labeled by the single communica-
tion that finally proceedsForexample,

select {
case 1 = <-cl:
a =1;
case c2<- = i:
a = 2;

}

setsa to 1 if the process receives a value from charnelor to 2 if the process sends a valuegn |If
neitherc1 nor c2 can communicate, the process suspends until onelt&mth can, a non-deterministic
choice is madeThe semantics of these operations, but not the syntax, is taken from CSP [Hoare 78] and
Occam [INMOS 84].

Assume that reaches the communication point (rendezvous) figsinust wait— suspend execu-
tion — until R arrives, and whem® does arrives must resume executionlhe channelc has a pair of
gueues of processessndg andrcvg, to which processes append themselves while awaiting rendezvous.

The following sequence, structured as pseudo-instructions executedbgRr, ensues.Eachnum-
bered step is a single pseudo-instruction, labelettidprocess that executes it, except that steps 1, 5, and 7
may be many pseudo-instructionsammore complex exampleStepss; andR; are executed implicitly
and described in the textSomeof the details in the sequence allaglect to work, and will be
explained later.As described, these actions assume that no other pro@ssesgecuting, that the queues
are initially empty, ango on, but the sequence works (implements first-in-first-out rendezvous and com-
munication) when arbitrarily many processes are communicating in arbitrary dxsgumes arrives at
the rendezvous first:

1.s4: -Evaluatec.
The channel is now o#'s stack.

2.5,:  -Examinec, notice that . rcvg is empty.
-Appends to c. sendq.
-Suspend execution.
If ¢.rcvg had an entryR would have arrived first, and the order of execution betvgeandRr
would be mirrored.But since the queue is emptyannounces ir . sendq that it iswaiting for
a receiver, andguspends execution by returning zero (false) from this pseudo-instruétton.
some later timeR reaches the rendezvous.

3.R;. -Evaluatec.
The channel is now ar's stack.

4.R,:  -Examinec, notice that . sendg has an entry.
-Therefore remove the head (thatd¥from c. sendq.
-Executes 5 for s (see text).

-Placer andc on s’s stack.



7.Ry:

-SkipR 3 by incrementiniR—>pc.

-Enables by placings in the queue of running processes.

-Suspend.

R finds s in c.sendqg and prepares to communicate with K.must tells who is receiving its
data; the channel data structure (to identify wiiommunication succeeded insalect) and
the pointer t® are now placed o8'’s stack.

Because arrives second at the rendezvous, it musheeprocess to remove the queued process
(s) from the channel's queudt does this by executing 3 (that is, (**S->pc++) (S)) which
is a single pseudo-instruction ti@erpreter has generated to remavérom c.sendq. This
must be done before allowing any other process to execute, to avoid cahitiatd another pro-
cess be attemptingp communicate using. Ratherthan just unqueueing, R temporarily calls
upon S becauses may be in aselect and have more bookkeeping to dbhe next pseudo-
instruction inR’s stream, R 3, would remover from c. rcvq, and would be called by had s
arrived secondSincer did, the operation is just skipped.

-Evaluatei..
S now wakes up andvaluatesi, placing it on its stackThevalue to be sent may, of course, be
an arbitrary expression, even one involving communicati@e.will return to this subject below.

-Remover from stack.

-Placei onR’s stack.

-Resumer.

S now completes its half of the exchang@lith the receiving process and value to be sent in
hand, all that remains is to hand off the value and resulneappending it to the queue of run-
ning processes.

-Continue.
R now has the value on its stack and can proceed with that value by normal execution.

This sequence is an expansifrthe independently developed, abstract model by Cardelli [Card 84],

which does not integrate the communications operations into an interpreter.

If a process, sag, is executing aelect, the sequence remains essentially the same but the indi-

vidual operations executes are more involvetlVhethers is selecting is invisible ta.

Imagine thats is executing a selecin steps 1, the process evaluates all channels involved, pushing

all of them on its stack anecording which are being used to send and which to recé\though our

process i, it may be sending in gelect that also has receiving communication$his may,of course,

take many pseudo-instruction® steps,, S looks at all channels at onc&hereare two possibilities: no

communication may proceed, or some mag.this example, we assume none may,Ssatomically

appends itself to all appropriate queues for channels mentioned in the aetecispends execution.

WhenR arrives at the rendezvous, it findsin c.sendg. WhenR then executegs—->pc++) (S), S

removes itself from all queues avhich it has attempted communicatior’s arrival chooses which com-

munication proceeds.

Newsqueak allowselect to be applied to arrays of channe(Bivenan array



a: array[N] of chan of int;
the statement

select {
case <-al[]:
i=1;

}
is identical in behavior to the statement

select {

case <-a[0]:

}i

in other words, each element of the array participates equalhe iselection.Array selections are easy to
implement; all that needs to be don¢éopost each element as a potentially communicating channel, that is,
to perform at run-time the rewriting above.

A complicating factor is thas needs toknow which channel communicated, so it can execute the
appropriate subsequent statementisis why the channel is passed frento s during the rendezvous.

The rest of the execution is straightforward.

Some of the details of the execution sequence are necessaatdeclect work, and in particular
to keep a processnaware of its partner’s participation inrsalect statement. Théargest effect of this
constraint is in the order of evaluatioA. selecting, sending process must not evaluate the communicated
value before the rendezvous, as the evaluation may involve side effects that wioalopoepriate if a dif-
ferent communication irthe select proceeded. Newsqueakerefore specifies that the rendezvous
occurs before the transmitted value is evaluated, widashsome subtle effectEorexample, in the expres-
sion

cl<- = <-c2

(send onz1 the value received or2), thecl rendezvous happens before ttierendezvous.

Selection brings ufhe possibility of nondeterminism: a process must choose which of a set of ready
channels should communicate and, similarly, which of a set of cases corresponding to the same channel
should be executedrhis latter issue is exemplified in the code fragment:



-10 -

select {

case <-c:

Both of these problems may ledressed efficiently by applying the following little-known single-
pass choicalgorithm. Givenan array of integers of known length, but containing an unknown number
of non-zero entrieghe problem is to choose, fairly, one non-zero elem&hefollowing algorithm leaves
c set to the index of the chosen elemdhtz is —1 after the loop, no non-zero elements exist.

int al[N]
n =1
c = -1

for (i=0 to N) {
if(a[i] # 0){

if ((random() mod n) == 0)

}

Proof by induction: Whethe first non-zero element is foundjs one so(random () mod n) is zero,
and c records thecurrent elementlf n—-1 elements have been found, when tlle element is found, the

probability that the current element should repldice choice so far isl_, which is simulated by
n

(random () mod n)==0 whererandom () generates integers much larger tlanFor this algorithm,
squint uses the simple congruential random number generator tienrANSI C standard [K&R 88],
except that it includes the modulus calculation:
int
nrand (int n)
{
static unsigned long next=1l;
next = next*1103515245 + 12345;
return (next/65536) mod n;
}

A better generator would be overkill, and thare advantages of testability and portability to including the
generator in the program rather than calling upon a library function.



-11 -

Discussion

The implementation of processes usedhe Newsqueak interpreter allows for fine-grained non-
deterministic interleaving without resort to interrupts or timédscausegrocess switching is almost free,
there is negligible penalty for using many processes in an applic&t®oklcliroy demonstratefMcll 89],
the interpreter’'s performance is acceptable for the jobs the languageteveded to handleApplications
that may profitably be written as sets of communicating processes tinmeicomparable to the same pro-
grams expressed using more traditional methddis.a VAX 8550, a simple test program executes about
8000 transactions per second orlean of int. This is creditable but not spectacular performance.
Because the system is imerpreter, however, communication is very cheap relative to more traditional cal-
culations. Ifthe interpreter were instead a compimple computations would execute more quickly but
the communications operators would probably not run much faster, which might cancel some of the charm
of using communications iprograms (there would be temptations to improve performance by optimizing
out communications).

Although the interpreter usesference-count garbage collection for reasons of simplicity and porta-
bility, the greatest benefit of reference counting is thatakes copy-on-write storage management possi-
ble. Thephilosophical advantages of efficient array managemeat éompletely by-value language are
clear and worthwhile For Newsqueak programs, which can contain no pointer cycles and whi¢and
to use arrays rather than lists, sophisticated collectiethods are unnecessary and may in fact not gain
much performance over copy-on-write reference countifitig ease of porting the interpreter was also an
issue. Fancyollection schemes often involve low-level implementatioRartly becausestorage manage-
ment, likethe rest of the Newsqueak interpreter, is implemented entirely in C, the system has been com-
piled and run successfully without change on half a dozen architectures.

Finally, a word about sizeThe complete program, including parser, type checker, interpreter and
run-time libraries, is fewer than tehousand lines of C codd hisis a comfortable size for an experimen-
tal language, small enough to encourage experimentation with the language and its implementation.

References

[Card 84] Cardelli, L., “An implementatiomodel of rendezvous communicatiorPtoc. of NSF-SERC
Seminar on Concurrenc¢MU, 1984. Publishedby Springer-Verlag.

[Dijk 76] Dijkstra, E.W.,A Discipline of Programmind?rentice Hall, Englewood Cliffs, NJ, 1976.

[Hoare 78] HoareC.A.R., “Communicating Sequential Processe§dmm. ACM21(8), pp. 666-678,
1978.

[INMOS 84] Occam Programming ManudPrentice Hall International, Englewood Cliffs, NJ, 1984.

[Knuth 73] The Art of Computer Programming, Volurie Second Editionpg. 412, Addison-Wesley,
Reading, MA, 1973.

[K&R 88] The C Programming Language, Second Editirentice Hall, Englewood Cliffs, NJ, 1988.

[Mas 76] Masamoto, K., “Implementation of HUB Processor,” Master's Thesis, Unives§iljinois at
Champagne-Urbana, 1976.

[ODell 87] O’Dell, M. D., “The HUB: A Lightweight Object Substratefroc. of EUUG Conference,



-12 -

Dublin, Autumn, 1987
[Mcll 89] Mcliroy, M. D., “Squinting at Power Series,” Bell Labs, 1989

[Pike 89] Pike, R., “Newsqueak: Aanguage for communicating with mice,Computing Science
Technical Report 143 T&T Bell Laboratories, Murray Hill, New Jersey, 1989

[Thack 79] Thacker, C. P., McCreight, E. M., Lampson, B. W., Sproul,. Rand Boggs, D. R., “Alto: A
Personal Computer,” Xerox Palo Alto Research Center, Palo Alto, CA, 1979.



