
MEMORANDUM
RM-5772-ARPA
APRIL 1969

ARPA ORDER NO. 189-1

EXDAMS - EXTENDABLE DEBUGGING AND
MONITORING SYSTEM

R. M. Balzer

PREPARED FOR:

ADVANCED RESEARCH PROJECTS AGENCY

-------------~R~nD~
SANTA MONICA • CALIFORNIA-----

MEMORANDUM

RM-5772-ARPA
APRIL 19f>rl

ARPA ORDER NO. 189-1

EXDAMS- EXTENDABLE DEBUGGING AND

MONITORING SYSTEM

Thi- JT-'I'arch i- '''I'Jl"rlt·d 1,,. the -\rharwed H,·,"arch Proi•·r·t,- ·\,r,·un· undn Contrc~ct
\·,_ ll\I!Ch (,/ C Olll. \ i<'\\' or <'llllciu,ion' <·ontaitwd in thi' 'tlllh ,]wuld not Ill'
illl<'rprt'l•·d a- rqm·-<·lltin,'! til•· ,,ffwial <•pi11ion or policy of ABI'A. .

DISTB!BlTIO:\ STATE'\IEL\T

T!Ji, docunwnt ha' "''''ll appro\ ('d fur public rl'lt·a''' a11d ,ale; it,; di~trihution i' unlimikd.

R. M. Balzer

-----------~------------------ 7/U Q -D n D e~nfurtMiM<

This study is presented as a competent treatment of the subject, worthy of pub
lication. The Rand Corporation Youches for the quality of the research, without
necessarily endorsing the opinions and conclusions of the authors.

Published by The RAND Corporation

-iii-

PREFACE

This Memorandum describes an on-line debugging and
monitoring system designed to facilitate experimentation
with new on-line debugging and monitoring aids, and to
provide flexibility in alternating among these aids as
execution time is controlled in either the forward or
backward direction. This study is part of the ARPA
sponsored research to improve man-computer interaction.
The paper should be of interest to those concerned with
a proper programming environment for research and
development applications.

-v-

SUMMARY

This Memorandum describes EXDAMS (EXtendable ~ebugging
and ~onitoring ~ystem), a powerful set of source-level de
bugging and monitoring aids for higher-level computer
languages. These facilities are of two types: static,

which refer to a specific point in execution time; and
motion-picture, which vary with execution time and can be
viewed with execution time either advancing or reversing
at variable speed (e.g., the user can watch his program

executing, in reverse, backing up to some earlier state).
In addition to these facilities, the EXDAMS environ

ment features: 1) the ability to alternate, at any point
in execution time, between the data space (what happened)
and the control space (how it happened), thus associating
a program action with the exact statement(s) causing that
action; and 2) easy extendability for new user-defined
debugging and monitoring aids.

This Memorandum details the implementation of this
environment, through a model of the user's program and a
history tape of its behavior, and gives a short example.

-vii-

CONTENTS

PREFACE iii

SUMMARY v

Section
I. INTRODUCTION l

II. DESIGN GOALS 3

III. DEBUGGING AND MONITORING AIDS WITHIN
EXDAMS . 5
Static Displays• 5

Error Analysis .•...................... 5
Source Code • • 6
Flowback Analysis•........... 7

Motion-Picture Displays 8
Values . • 8
Source Code • . 9
Map . • 9
Windows . ll
Windows with Transitions.............. 12

IV. THE EXDAMS ENVIRONMENT . 13
Program Analysis . 13

Compilation . 14
Run-Time History-Gathering............ 14
Debug-Time History-Playback........... 15

V. THE ADDITION OF NEW DEBUGGING AND/OR
MONITORING FACILITIES................... 17

VI . EXAMPLE . 18
Original Source Program................. 18
Symbol Table . 19
Model . 20
Augmented Source Program•......... 22
History File . 24

Appendix
A. USE OF INDEX FIELD IN MODEL ENTRIES........ 26
B. STATEMENTS ADDED TO USER PROGRAM TO

PRODUCE EXDAMS HISTORY................... 27
C. INFORMATION RECORDED IN HISTORY FOR EACH

TYPE OF STATEMENT. 29

REFERENCES . 3 0

-1-

I. INTRODUCTION

With the advent of the higher-level algebraic lan
guages, the computer industry expected to be relieved of
the detailed programming required at the assembly-language
level. This expectation has largely been realized. Many
systems are now being built in higher-level languages (most
notably MULTICS [l]).

However, the ability to debug programs has advanced
but little with the increased use of these higher-level
languages. As Evans and Darlay point out:

We find that, broadly speaking, a close analog
of almost every principal assembly-language de
bugging technique exists in at least one debug
ging system pertaining to some higher-level
language. However, on-line debugging facilities
for higher-level languages are in general less
well-developed and less widely used (relative
to the use of the languages) than their assembly
language counterparts.*

In general, system builders have merely copied the
on-line assembly-language debugging aids, rather than de
signed totally new facilities for higher-level languages.
We have neither created new graphical formats in which to
present the debugging information, nor provided a reason
able means by which users can specify the processing re
quired on any available debugging data.

These features have been largely ignored because of the
difficulty of their implementation. The debugging systems
for higher-level languages are much more complex than those
for assembly code. They must locate the symbol table, find
the beginning and end of source-level statements, and de
termine some way to extract the dynamic information--needed
for debugging--about the program's behavior, which is now
hidden in a sequence of machine instructions rather than

* Ref. 2 , p . 4 l.

-2-

being the obvious result of one machine instruction. Is

it any wonder that, after all this effort merely to create

a minimal environment in which to perform on-line higher

level languages debugging, little energy remained for

creating new debugging aids that would probably require

an increased dynamic information-gathering capability?

EXDAMS (EXtendable ~ebugging ~nd ~onitoring ~ystem) is

an attempt to break this impasse by providing a single en

vironment in which users can easily add new on-line de

bugging aids to a system one-at-a-time without further

modifying the source-level compilers, EXDAMS, or their pro

grams to be debugged. It is hoped that EXDAMS will encourage

the creation of new methods of debugging by reducing the cost

of an attempt sufficiently to make experimentation practical.

At the same time, it is similarly hoped that EXDAMS will

stimulate interest in the closely related but largely

neglected problem of monitoring a program by providing new

ways of processing the program's behavioral information and

presenting it to a user. Or, as a famous philosopher once

almost said, "Give me a suitable debugging environment and

a tool-building facility powerful (and simple) enough, and

I will debug the world."

Since EXDAMS is currently being debugged and is not

operational, no performance statistics are available.

-3-

II. DESIGN GOALS

EXDAMS was designed to satisfy three needs: first, as
a vehicle to test some proposed, but unimplemented, on-line
debugging and monitoring facilities; second, as an extendable
facility to which new debugging and monitoring aids could
be added easily, then tested; and, third, as a system pro
viding some measure of independence of not only the particular
machine on which it is being run and the particular imple
mentation of the language being debugged and/or monitored,
but also of several source languages in which users' programs
could be written and debugged and/or monitored.

The normal techniques for on-line debugging, involving
dynamic manipulation of a running program, were inappro
priate for these three ambitious design goals for two reasons:
first, because these techniques were both implementation
dependent and difficult to control; second, certain important
facilities, such as the ability to run the programs back
wards, are impossible with these techniques.

Therefore, the program to be debugged will run with
an EXDAMS routine that will monitor it, collect necessary
information about the program's actions, and store this
information on a history tape. Subsequently, EXDAMS de
bugging routines can retrieve any information from the
history tape, format it, and present it to the user. Thus,
assuming the history tape is complete (i.e., contains all
relevant data), any debugging and/or monitoring tool in
volves only retrieving, then formatting, data from this
static file.

The parts of EXDAMS that analyze the program and
collect its history (the program-analysis and history
gathering phases discussed in Sec. IV) are language de
pendent. However, the major portion of EXDAMS, and the
portion chosen for experimentation--the debugging and
monitoring routines--interact with only the history file.

-4-

They are therefore independent of both the implementation
of the source language and the source language itself--to
the extent the history file is independent of the differences
between source languages, as it is for the common algebraic
languages (PL/I, ALGOL, FORTRAN, etc.).

With this approach, the three design goals have been
achieved. Any debugging and monitoring aids can be added
to EXDAMS easily by writing the appropriate file-search
and formatting routines. Moreover, these aids are inde
pendent of the implementation of the source language and,
to a certain extent, of the source language itself.

However, efficiency has been sacrificed. The EXDAMS
approach is based on the insulation from the running program
that results from the production of a history tape of the
program's behavior. The production and replaying of this
history involve large amounts of I/0. However, the flexi
bility gained far outweighs the inefficiency introduced,
especially when studying alternative debugging and monitor
ing aids.

The EXDAMS system output device is a cathode ray tube
(CRT) display, and all the debugging and monitoring aids
utilize its two-dimensional and high-data-rate capabilities.
Some aids, in addition, use the CRT's true graphic (point
and vector) and dynamic (time-variant) capabilities. The
input devices are a keyboard and some type of graphical
pointing device, e.g., a light-pen, RAND Tablet, joy-stick,
mouse, or keyboard cursor.

Before describing how EXDAMS works and how new debugging
and monitoring aids are added to the system, we present in
the following section some of the aids currently being added
to the basic EXDAMS system (described in Sec. IV) to give
the reader a better understanding of the types of debugging
and monitoring aids possible.

-5-

III. DEBUGGING AND MONITORING AIDS WITHIN EXDAMS

EXDAMS contains two types of debugging and monitoring
aids--static and motion-picture. The static aids display
information that is invariant with execution time (a time
value incremented as each source statement is executed and
used to refer to particular points in the execution of a
program), such as the values of variables at the time an
error occurred, a list of all values of a variable up to a
given execution time, or a display of a portion of the

source code.

The motion-picture aids, on the other hand, are exec
ution-time sensitive; that is, the data they display may
vary with execution time. These motion-picture aids in
clude the last n values of a set of variables, the current

instruction and subroutine, and the,current values of a
set of variables. The user can run motion-picture aids

either forwards or backwards at variable speeds, by control
ling execution time.

EXDAMS' most attractive features, from the user's
standpoint, are a) his ability to control his program's

execution time, moving at variable speed either forwards
or backwards, while a debugging and/or monitoring aid con
stantly updates its display of information; and b) his
ability to stop execution time at any point, switch to

another aid, and continue perusing the behavior of his

program.

STATIC DISPLAYS

Error Analysis

The user requests the value of certain variables at
the time an error occurred. The system displays the value
of these variables and all other variables in the error

causing source language instruction, the type of error, and
the source instruction in error.

-6-

Source Code

A portion of the user's source code is displayed in
optional formats that may include indications of the number
of executions per statement and the removal of levels in
the source code (such as the bodies of do-groups or the
code in the THEN or ELSE clauses) below a certain depth, to
afford the user a broader view of his program.

The user may request this display in two manners. He
may call for the code around a certain label by requesting
SOURCE AT and specifying a label, or a label plus or minus
some .number of source statements. He also may call for,
at any time, the source code around the exact statement
that caused a particular value of a variable by requesting
SOURCE FOR and specifying the desired value (the source
statement causing that value will be marked by its bright
ness). That is, EXDAMS can associate any value with the
exact source statement that produced it.

This ability, and its inverse of associating any
source statement with the values it produces, is fundamental
to the EXDAMS philosophy of debugging and monitoring that
the activity of a program may be viewed in either the data
or the control spaces. The data space shows which manipu
lations a program performs, which values change, and the
sequence in which they change. The control space demon
strates how a program performs its manipulation.

In a canonic debugging situation, according to the
EXDAMS philosophy, the user first ascertains what is
happening, then decides whether this behavior is correct,
and finally, if it is not correct, determines how the pro
gram performed these operations, at the same time seeking
the error in the program and/or data. Thus, any compre
hensive debugging and monitoring system must include
powerful facilities in both the data a~~ the control spaces
and provide a simple means of ~lternating between corres
ponding points in either space, as the user's needs or
personal preferences dictate.

-7-

Flowback Analysis

By calling for FLOWBACK FOR and specifying a particular

value, the user requests EXDAMS to analyze how information

flowed through his program to produce the specified value.

This analysis appears in the form of an inverted tree, with

the bottom node corresponding to the value for which the

flowback analysis was desired. Each node consists of the

source-language assignment statement that produced the value,

the value itself, and links to nodes at the next level.

These nodes correspond to the non-constant values in the

assignment statement displayed in the node that links with

these nodes. These nodes have the same format as the

original and are linked to nodes for all non-constant values

used in the particular assignment statement producing their

value. Thus, Fig. 1 shows a flowback analysis for a par

ticular value of A.

A=B+C-10;
= 105

Fig. 1--Flowback Analysis

R
K

-8-

This display shows that the assignment statement

"A=B+C-10;" produced the specified value of A, and its

value here was 105. The values of B and C used in this

assignment to A were 8 and 107, respectively, and were

produced by the assignment statements "B=R-1;" and "C=A+E;",

respectively. Each of the other nodes is explained in the

same manner.

As many levels as will conveniently fit on the screen

will be displayed. The user can request a similar flow

back analysis along any particular branch. He can also

call for the source code around any assignment statement

in the flowback analysis and, as described in the section

Motion-Picture Displays below, watch the execution either

forwards or backwards from any point.

A similar type of flowback analysis is possible for

the control space, which displays the flow of control

through the program between any two points in execution

time (i.e., between two nodes in the flowback analysis).
In a non-parallel processing environment, this is simply

a linear sequence, unless one wishes to indicate control

sequences at a lower level (within a subroutine or do

group) as a closed loop out of the main flow of control.

MOTION-PICTURE DISPLAYS

In all the following examples, the information dis

played is a function of execution time, whose rate of

change the user may increase or decrease, stop, or reverse.

Such control, together with the ability to alternate be

tween different debugging and monitoring aids, enables

him to discover and pinpoint the bugs in his program.

Values

This facility displays the values of the variables

or labels specified by the user. Each specified variable

-9-

or label is assigned a contiguous set of columns on the

display in which their values will appear. (The label
values will be a checkmark indicating at what point in

the execution the label was reached.) These values will
be ordered according to execution time, so that a value
produced earlier than another will appear higher on the

screen (Fig. 2). This display can be scrolled up or down
to show other values that can not fit on the screen at the

same time. This scrolling alters execution time appro
priately. The user can change the direction of scrolling
(and execution time) or stop at any point. Once stopped,
he may alter the list of variables on the screen and re-

start, or he may request the source code for a particular
value displayed.

Source Code

This facility allows the user to watch his program

statements execute either forwards or backwards. The

statement being executed will appear brightened on the
screen. If it is an assignment statement, the value of
the assignment will also be displayed. If the instruction

being executed is not on the screen, the portion of the

program containing this instruction will be displayed. The

user can command the system to follow subroutine calls and,
as in the static display of source code, to display all

levels.

This facility is an extension of the source-code

facility and is an adaptation of Stockham's work on flow
analysis [3]. The user specifies nodes (labels) to be

displayed. All code between these nodes may be considered

a single macro statement, for the purposes of execution
time advancement. Thus, as the user varies the execution

-10-

ABC R1 s FILE LABEL2

12

0

FILE1

-10

JOE

'101'B
'O'B

3001

1000

I

HAL

'1'B

1000

Fig. 2--Values Display

-11-

time, the node corresponding to the code being executed
brightens and, as execution moves from one node to another,
a displayed arrow indicates this shift. The length of time
a node brightens is determined by either a common execution
time rate for each macro statement or by the execution-time
rate for all statements executed within the macro statement.

The former display is most useful for following program
execution while searching for a bug, while the latter is
well-suited to monitoring applications in which the user is
trying to determine how the program operates and where it
spends most of its time. The EXDAMS environment--allowing
the user to dynamically stop the display, expand some nodes
into several separate nodes, collapse other nodes into a
single node, and then continue or reverse direction--should
greatly improve the usefulness of this display.

Windows

The current values of the variables specified appear
in "windows'' (i.e., areas on the display screen) as execu
tion advances or reverses. If the value exceeds the size
of the window, as much will be displayed as possible. In
the case of arrays, the system will display in the window
the value being changed and as many array elements, and
their indices, around it as can fit. In addition, for either
arrays or strings, certain variables can be specified as
pointers or indices into these data representations.

The values of these variables appear in graphic, rather
than numeric or alphanumeric, form according to thB position
of an arrow directed at the character or element at which
the pointer or index is also directed. Thus, in a buffer
application, where many buffers are scanned and processed
and new buffers created, the user can watch the data in the
buffers change dynamically, and see the pointers and in
dices move back and forth through the buffers.

-12-

Windows with Transitions

This facility performs the same operations as the
preceding Windows facility except that, in addition, it
indicates the interrelationships between the displayed
variables. As each new value is displayed, a flowback
analysis determines whether the current value of any dis
played variable was used in the creation of the new value.
If so, an arrow indicating this dependence appears, link
ing the windows of these variables to the window of the
variable being changed. To obtain more detail for a par
ticular transition indicated by the arrows, the user may
define a new display relevant to that transition only, then
either re-advance or reverse execution time. After com
pleting the study of this particular transition, he may
return to his original display.

-13-

IV. THE EXDAMS ENVIRONMENT

EXDAMS is a four-phase system predicated on the as

sumption that neither an incremental compiler nor a special

debugging compiler designed for EXDAMS requirements would

be available for the source language being debugged and/or

monitored. If either is available, considerable restruc

turing of these phases would be prerequisite to the full

utilization of these capabilities. The four phases are

program analysis, compilation, run-time history-gathering,

and debug-time history-playback.

PROGRAM ANALYSIS

The first phase analyzes the user's source program as

it performs four functions, the most important of which is

the creation of a model of that program. This model, the

heart of the debug-time history-playback, is the means by

which values gathered on the history tape are interpreted

and by which portions of the source code are retrieved, and

is the repository of all structural information known about

the program. The use of the model for these functions will

be explained in the section Debug-Time History Playback,

pp. 15-16, but the contents of the model will be discussed

here.

The program analysis produces both a symbol table and

a random-access file of the user's source program for the

history-playback. As it analyzes the program, it also

builds a model of the program, and inserts debugging state

ments into the program to provide the information necessary

for history-gathering. In general, the history contains

all the dynamic information needed to update execution

time either forwards or backwards, while the model con

tains all necessary static information.

Each model entry consists of an indicator of the type

of model entry, a pointer to the associated source statement,

-14-

and an index to an entry in either the model or the symbol
table, depending on the type of entry.t

The model contains both the static control-information
and the variable alteration-information of the user's pro
gram. The control-information consists of the CALL, GOTO,
IF-THEN-ELSE, and DO-END structure of the program, while
the variable alteration-information consists of the names
of the variables on the left-hand side of assignment state
ments and those altered by input statements.

The debugging statements added to the program pass the
relevant run-time information to the run-time history-

h . t' tt gat er1ng rou 1nes.

The updated program is passed to the compilation phase,
while the symbol table and model are saved for the debug
time history-playback.

Compilation

The standard source-language processor compiles the
source program, as updated during program analysis.

Run-Time History-Gathering

The compiled version of the updated program is run with
a set of run-time routines that it calls. These routines
gather dynamic information about the program's behavior.
This information is collected in a buffer that is written
out when full. It is the history tape of the program's
behavior and, together with the symbol table and model, is
sufficient to recreate the program's behavior in either the
forwards or backwards direction of execution time. This
history contains, basically, the values of the variables on
the left-hand side of assignment statements, the direction

t d' 1 . Appen lX A exp a1ns the use of the index field for
each type of model entry.

tt d' d '1 Appen lx B eta1 s these statements.

-15-

(THEN or ELSE) taken in IF statements, the direction (re
main in or flow out) taken at the end of DO-LOOPS, and the
point from which a GOTO or CALL was issued (to facilitate
execution-time backup) .t

Debug-Time History-Playback

This phase contains the debugging and monitoring aids
which present the history information to the user in a usable
form on his display screen. It also interprets the user's
commands for alternative displays and/or execution-time
variations, and provides an editing capability for modifying
discovered bugs and for returning this modified program to
the four phases for another debugging iteration.

The main function of this phase is to assemble in forma-
tion from the history and display it on the screen. Appro-
priately, the main routine in the phase is the information
retriever used by all the debugging and monitoring aids to
retrieve desired information from the history. It accepts
a) requests from the processing routines for information on
a certain variable or set of variables and b) a direction
for execution-time. Using this direction, it searches the
history for the next occurrence of a value change for any
variable in the requested set. It returns the name of this
variabl~, its new (or old, if executing backwards) value,
and its attribute.

Special calls facilitate the next subroutine call,
goto, return, assignment, iteration, or conditional
statement to be retrieved, so that all information-in the
history is retrievable through this routine. The calling
routine describes what information to retrieve, and com
bines, processes, and formats it for the display routines
that interact with the display equipment.

tAppendix C presents the precise information placed in the history.

-16-

The information retriever moves a marker through the
model as values are read in from the history. This movement

serves three purposes:

1) To permit interpretation of the bits in the

history. Since the values in the history are
not of a fixed length, knowledge-of the type of
the next value allows the routine to correctly
interpret the value and position itself at the

next value.

2) To associate the values in the history with

statements in the source program (through the
pointer to the source statement in the model) ,
enabling users to alternate between values in
the data space and the associated source state

ments in the control (program) space.

3) To reduce the amount of I/O necessary. By

using the model to interpret values from the
history, we need store only the value of source

variables and not also the identification of the
variables of which it is the value. This reduces
the amount of I/0 by roughly one-half; since the

system is I/O-bound, this obviously improves the

system's response.

-17-

V. THE ADDITION OF NEW DEBUGGING AND/OR
MONITORING FACILITIES

To add a new debugging and/or monitoring facility to
the EXDAMS system, first, extend the command language of
EXDAMS to include the new commands needed to control the
new facility and to route control to the new routine for
these commands. As long as these commands do not conflict
with existing ones, this is an easy task.

Second, obtain the information required to respond to
the new commands by requesting it from the information re
trieval routine as described in the previous section. This
is the essential issue in the EXDAMS philosophy: All the
information required by a routine can be obtained easily,
by request, without interacting with the source program,
the object code, or the history, but only with the informa
tion retrieval routine.

Third, process and combine the obtained information.
The ease or difficulty depends entirely on the facility
being added and is independent of the information collec
tion mechanism.

Finally, format and display the processed information.
Again, the effort required depends entirely on the facility
being added and is independent of the monitoring mechanisms.

Thus, the EXDAMS environment reduces the problems of
collecting information for a debugging and/or monitoring
facility, but provides only minimal capabilities in the
processing and presentation of this information. If the
collection of information is a major problem in the crea
tion of a debugging and/or monitoring facility, then EXDAMS
has met its design goals. In addition, as we gain more
experience in the types of processing and formatting re
quired, we may also be able to provide capabilities that
facilitate these areas.

-18-

VI. EXAMPLE

To illustrate the EXDAMS system, we present an example
source program written in PL/I [4), followed by the major
transformations performed on it by EXDAMS.

ORIGINAL SOURCE PROGRAMt

1) example program: PROCEDURE OPTIONS (MAIN); 2) DECLARE
3) a (10 1 3) CHARACTER (8) EXTERNAL, 4) i'BINARY FIXED,
5) switch BIT (1),
6) search_string CHARACTER (8) VARYING; 7)
8)
9) GET FILE (input) LIST (switch, search string); 10) IF switch THEN

11) loop: DO i = 1 TO 10;
12) DO j = 1 TO 3;
13) IF a(i,j) = search string THEN DO; 14) PUT LIST (i, 1<j);
15) CALL abc (i, i+j*3);
16) GO TO end_program; --· 17) END;
18) END loop;
19) ELSE
20) PUT LIST ('switch turned off'); 21) end program:
22) - i=j*i-5;
23) RETURN;
24) END example_prograrn;

tThe reserved keywords [4) of the source language are in all capital letters.

-19-

SYMBOL TABLE

The data are formatted here to facilitate reading,

but this format does not reflect actual internal representa

tion. The dummy entries (12 ·through 17) at end of the

Symbol Table represent the types of expressions being

passed to a subroutine or output.

Model
Symbol Entry
Number Name Attributes Number

----- ---- - -. - -

1 A ARRAY(*,*) ,CHARACTER(S)
2 ABC PROCEDURE (*I*)

3 END PROGRAM LABEL 26
4 EXAMPLE PROGRAM PROCEDURE 1 -
5 I BINARY,FIXED
6 INPUT FILE,STREAM
7 J BINARY,FIXED
8 LOOP LABEL 6
9 SEARCH STRING CHARACTER(S) ,VARYING -10 SWITCH BIT (l)

11 SYSPRINT FILE,STREAM

12 DUMMY BINARY,FIXED
13 DUMMY DECIMAL,FIXED
14 DUMMY BINARY,FLOAT
15 DUMMY DECIMAL,FLOAT
16 DUMMY CHARACTER(*) ,VARYING
17 DUMMY BIT(*) ,VARYING

-20-

MODEL

To facilitate the reader's interpretation, the pointer

to the source code is represented here as a line number in

the original program, and an explanation of the index field

of the model entry has been added.

Index to
Model Source Model or
Entry Code Symbol
Number Entry Type Pointer Table Explanation of Index

1 ·pROCEDURE 1 29 Index"of associated
END model entry.

2 GET 9 6 Index of Symbol Table
of file associated
with GET.

3 GET ASSIGNMENT 9 10 Index of symbol re-
ceiving new value.

4 GET ASSIGNMENT 9 9 Index of symbol re-
ceiving new value.

5 IF 10 22 Index of model entry
for end of THEN clause.

6 LABEL 11 8 Index of label in
Symbol Table.

7 ITERATIVE - DO 11 21 Index of model entry
for associated END
statement.

8 ITERATIVE ASSIGNMENT 11 5 Index in Symbol Table
of iteration variable.

9 ITERATIVE DO 12 20 Index of model entry
for associated END
statement.

10 ITERATIVE ASSIGNMENT 12 7 Index in Symbol Table
of iteration variable.

11 IF 13 19 Index of model entry
for end of THEN clause.

(Notice there is no entry for the non-iterative DO statement in line 13
of the source code.)

12 PUT 14 11 Index of Symbol Table
entry of file receiv-
ing new value.

13 PUT ASSIGNMENT 14 5 Index in Symbol Table
of first output value.

14 PUT ASSIGNMENT 14 17 Index in Symbol Table
of second output value.
(This is a dummy entry
for the attributes
(bit) of the output
expression.)

Model
Entry
Number

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Entry Type

CALL

CALL_PARAMETER

CALL PARAMETER

GOTO

SHORT IF END

ITERATIVE END

ITERATIVE END

ELSE

PUT

PUT ASSIGNMENT

FULL IF END

LABEL

ASSIGNMENT

RETURN

PROCEDURE-END

-21-

Source
Code

Pointer

15

15

15

16

17

18

18

19

20

20

20

21

22

23

24

Index to
Model or

Symbol
Table Explanation of Index

2

5

12

3

11

9

7

25

11

16

5

3

5

4

1

Index of label in
Symbol Table.

Index in Symbol Table
of value being passed
as first parameter.

Index in Symbol Table
of value being passed
as second parameter.
(This is a dummy entry
in Symbol Table that
represents the attri
butes of the expres
sion being passed.)

Index of label in
Symbol Table.

Index of model entry
of associated IF
statement.

Index of model entry
of associated
iterative do.

Index of model entry
of associated
iterative do.

Index of model entry
of end of ELSE clause.

Index in Symbol Table
of file receiving
new value.

Index in Symbol Table
of first output value.
(This is a dummy entry
for the attributes
(character) of the
output expression.)

Index of model entry
of associated IF
statement.

Index of label in
symbol table.

Index in Symbol Table
of variable left of
assignment stat~nt.

Index of associated
procedure label in
symbol table.

Index of model entry
of associated pro
cedure statement.

-22-

AUGMENTED SOURCE PROGRAM

The altered or inserted source statements are itali
cized to facilitate their recognition.

example program: PROCEDURE OPTIONS (MAIN);

loop:

DECLARE
a (10,5) CHARACTER (8) EXTERNAL,
i BINARY FIXED,
switch BIT (1) ,
search_string CHARACTER (8) VARYING;

DECLARE condition tester RETURNS (bit 1));
GET FILE (input) LIST (switch, search string);
CALL bit value (switch); /*record new-value*/
CALL character value (search string); /*record

new value*/ -
IF condition tester (switch) THEN DO; /*record

value of if condition*/
CALL goto issued from (5); /*record index

of model entry-from which control passed
to label*/

CALL outside do loop; /*record control outside
of do-loop*/-

DO i=l to 10;
CALL inside do loop; /*record control

ins ide of-do=-loop *I
CALL binary_fixed_value (i); /*record

new value*/
CALL outside do Zoop; /*record control

outside of-do~Zoop*/
DO j=l TO 3;
CALL inside do loop; /*record control

inside of-do~loop*/
CALL binary fixed value (j); /*record

new value*/ -
IF condition tester (a(i~j)=search string)

THEN DO; /*record value of if condition*/
PUT LIST (i,i<j);
CALL binary fixed value -(i); /*record

output value*/ -
CALL bit value (i<j); /*record output

value*/
CALL called from (15); /*record index

of model entry of call statement*/
CALL binary fixed value (i); /*record

value of passed-parameter*/
CALL binary fixed value (i+j*3);

/*record value of passed parameter*/

-23-

CALL abc (i,i+j*3);
CALL goto issued from (18); /*record

index of model-entry of goto
statement*/

GOTO end program;
CALL end-then clause; /*record end

of then clause*/
CALL inside_do_loop; /*record control

at end of do loop*/
END; /*explicitly end each iterative

do loop*/
CALL outside do loop; /*record control

outside of-do~loop*/
CALL inside do loop; /*record control at

end of do~loop*/
END loop;

CALL outside do loop; /*record control outside
of do-loop*/-

CALL end then clause; /*record end of then
clause*/ -

END; /*end non-iterative do group inserted
after if statement*/

ELSE DO; /*add do to enclose added statements
within else clause*/

PUT LIST ('switch turned off');
CALL character value ('switch turned off');

/*record output value*/
CALL end else clause; /*record end of else

clause*/
END; /*end non-iterative do group inserted

after else statement*/
CALL goto issued from (25); /* record index of

model entry from which control passed to label*/
end program:

- i=j*i-5;
CALL binary fixed value (i); /*record new value*/
CALL return-issued from (28); /*record index of model

entry of return statement*/
RETURN;
END example_program;

-24-

HISTORY FILE

We assume the input value for switch and search_string
to be TRUE and 'XYZ', respectively. We further assume that
the first element of array A that matches this string is
A(2,1). The format of the values in the file facilitates
reading. Comments appear on the right. The reader can
start either at the end of the history and work backwards
to the beginning of the program, or at the beginning of
the history and work forward towards the end of the program.

Value

TRUE
XYZ
TRUE
5

OUTSIDE DO LOOP
INSIDE DO LOOP
1
OUTSIDE DO LOOP
INSIDE DO LOOP
1
FALSE
INSIDE DO LOOP
INSIDE-DO-LOOP

2
FALSE
INSIDE DO LOOP
INSIDE-DO-LOOP

3
FALSE
INSIDE DO LOOP
OUTSIDE DO LOOP
INSIDE DO LOOP
INSIDE-DO-LOOP

2
OUTSIDE DO LOOP
INSIDE DO LOOP
1
TRUE

Comments

Input value of SWITCH.
Input value of SEARCH STRING.
Value of if-condition~
Index of model entry from which goto

was issued.
Control is outside outer do-loop.
Control is inside outer do-loop.
Value for iteration variable I.
Control is outside inner do-loop.
Control is inside inner do-loop.
Value for iteration variable J.
Value of if-condition.
Control is at end of inner do-loop.
Control is at beginning of inner

do-loop.
Value for iteration variable J.
Value of if-condition.
Control is at end of inner do-loop.
Control is at beginning of inner

do-loop.
Value for iteration variable J.
Value of if-condition.
Control is at end of inner do-loop.
Control is outside inner do-loop.
Control is at end of outer do-loop.
Control is at beginning of outer

do-loop.
Value for iteration variable I.
Control is outside inner do-loop.
Control is inside inner do-loop.
Value for iteration variable J.
Value of if-condition.

-25-

Value Comments

2 Output value on file SYSPRINT.
FALSE Output value on file SYSPRINT.
15 Index of model entry from which call

was issued.
2 Value of parameter being passed.
5 Value of parameter being passed.
18 Index of mode:_ entry from which goto

was issued.
-3 New value for I.
28 Index of model entry from which

return was issued.

-26-

Appendix A

USE OF INDEX FIELD IN MODEL ENTRIES

Model Entry

PROCEDURE, BEGIN,
ITERATIVE_DO, DO WHILE

END

IF

ELSE

SHORT IF END,
FULL IF END

CALL,
FUNCTION INVOCATION,
GOTO, LABEL

RETURN

GET,
PUT

ASSIGNMENT,
GET ASSIGNMENT,
PUT-ASSIGNMENT,
ITERATIVE ASSIGNMENT,
CALL ARGUMENT

Use of Index Field

Index of associated END model
entry.

Index of associated PROCEDURE
BEGIN, ITERATIVE DO, or DO WHILE
model entry. - -

Index of associated ELSE (if this
is an IF-THEN-ELSE statement)
or SHORT IF END (if this is an
IF-THEN statement) model entry.

Index of associated FULL IF END
model entry.

Index of associated IF model
entry.

Index in Symbol table of
associated label.

Index in Symbol table of
associated Procedure label.

Index in Symbol table of
associated file.

Index in Symbol table of
associated variable (or dummy
entry if an expression) .

-27-

Appendix B

STATEMENTS ADDED TO USER PROGRAM TO PRODUCE EXDAMS HISTORY

In the additions described below it is assumed that

DO END brackets are placed around statements as necessary

to preserve the semantics of the user program, e.g., when

the THEN clause is expanded from one statement to two or

more.

l. For each variable on the lefthand side of an

assignment statement, each parameter in a function

or procedure call, and each variable in an input

or output statement, a call to the appropriate (as

determined by the item's attributes) value saving

routine, passing the item as the argument, is

inserted after the source statement. In addition,

for each parameter in a function or procedure call

these same value saving calls are also inserted

before the source statement.

2. For each IF statement the condition is replaced by

a function call (which saves the value of the

condition) with the condition as the argument of

the function call.

3. At the end of a THEN clause a call is made to the

END THEN CLAUSE routine.

4. Similarly at the end of an ELSE clause a call is

made to the END ELSE CLAUSE routine.

5. Before a CALL statement, a RETURN statement, or a

GOTO statement or the occurrence of a label a call

to the CALL_ISSUED_FROM,RETURN_ISSUED_FROM, or

GOTO_ISSUED_FROM routine {passing the entry number

of the associated model entry as the argument) is

inserted.

6. Before an ITERATIVE DO or DO WHILE statement a call

to OUTSIDE DO LOOP is inserted. After the source

statement a call to INSIDE DO LOOP is inserted.

-28-

In addition, if the source statement is an

ITERATIVE DO statement, a call to the appropriate

value saving routine (passing the control variable

as argument) is inserted after the call to

INSIDE DO LOOP.

7. Before an END statement which is an end to an

ITERATIVE DO or DO WHILE statement a call to

INSIDE DO LOOP is inserted, and after this END

statement a call to OUTSIDE DO LOOP is inserted.

If the END statement specifies a label, it is

replaced by the appropriate number of simple END

statements before the above additions are made.

-29-

Appendix c

INFORMATION RECORDED IN HISTORY FOR EACH TYPE OF STATEMENT

Statement Type

l. Assignment

2.

3.

4.

5.

IF

end of then clause

end of else clause

Call, function invoca
tion goto, and return
statements

6. iterative do,
do while -

7. input, output

Information Recorded in History

Value of each variable on left
hand side of assignment statement
after the assignment is made.

Value of if-condition.

Indication of end of then clause.

Indication of end of else clause.

Index of model entry associated
with source statement, and for
return statement, index of model
entry to which return is being
made. In addition, the value of
each argument in the call or
function invocation is saved both
before and after the call or
function invocation.

Indication of the start and end
of do loop and two indicators
signalling each iteration around
the loop. Also, for iterative_do
loops, the value of the control
variable is saved each time around
the loop.

Value of each variable (or
expression) for which a value
was input or output after the
input or output operation.

-30-

REFERENCES

1. Corbato, F. J., and v. A. Vyssotsky, "Introduction and
Overview of the Multics System," AFIPS Conference
Proceedings (1965 FJCC), Vol. 27, Part I, Spartan
Books, Washington, D.C., 1965, pp. 185-196.

2) Evans, Thomas G., and D. Lucille Darlay, "On-Line De
bugging Techniques: A Survey," AFIPS Conference
Proceedings (1966 FJCC), Vol. 29, Spartan Books,
Washington, D.C., 1966, pp. 37-50.

3) Stockham, Thomas G., Jr., "Some Methods of Graphical
Debugging," Proceedings of the IBM Scientific
Computing Symposium on Man-Machine Communications,
held at the Thomas J. Watson Research Center,
Yorktown Heights, New York, May 3-5, 1965.

4) IBM Operating System/360 PL/I: Language Specification,
IBM Corporation, White Plains, New York, Form C28-
6571-4, 1967.

5) Ferguson, H., and Elizabeth Berner, "Debugging Systems
at the Source Language Level," Comm. ACM, Vol. 6,
No. 8, August 1963, pp. 430-432.

6) Halpern, Mark, "Computer Programming: The Debugging
Epoch Opens," Computers and Automation, Vol. 14,
No. 11, November 1965, pp. 28-31.

