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SUMMARY 
After summarizing different ways of generat- 
ing selection code for the case statement, the 
execution speed of each type of selection code 
is described using the RISC machine model. A 
method for combining the selection code 
schemes is proposed. The method, part of the 
PL.8 compiler, is flexible enough to handle 
case-selector data-types that have a large range 
of values, such as the character-string or float- 
ingpoint datatypes, and can be fine-tuned 
when the probabilities of the case selector 
taking on particular values are known. 
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INTRODUCTION 

A case statement (also known as a select statement 
or switch statement) tests a variable, the case selec- 
tor, against a set of specified constants called case 
items. Non-empty sets of case items may be grouped 
together into case clauses so that the same action is 
performed if the case selector has the value of any 
case item in the case clause. If the case selector is not 
equal to any case item, execution continues at a 
place specified by an otherwise clause. If there is no 
otherwise clause in the case statement, execution 
terminates abnormally; a trap occurs. The model 
for the case statement that is used is similar to Ada’s’ 
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with the exception that the case selector and case 
items may be floating point or string values. The 
case density, which is useful in deciding what kind 
of code to generate, is a real number greater than 0 
and less than or equal to 1. It is the number of values 
between the highest and lowest valued case items 
inclusive, divided by the number of case items. 
Rather than use the case density, the integer approx- 
imation of the inverse of the case density can be used 
just as easily to avoid floating-point operations. 

For machine instructions, a model of a reduced- 
instruction-set computer (RISC), such as the IBM 
801‘ having many internal registers for saving com- 
putations, and executing all its instructions in 
roughly the same cycle time, is used. As a rule of 
thumb, the number of 801 instructions required for 
an instruction of a conventional machine is the 
execution time of the complex instruction divided 
by the execution time of a register-to-register ‘add’ 
on the same machine. Thus, some instructions on 
conventional computers require 2 or 3 RISC in- 
structions. In  particular, on an 801 there are no 
instructions with ‘indirect’ operands other than 
‘load’ or ‘store’ instructions; to ‘jump indirect’, one 
instruction loads the desired address into a register 
and then another performs the jump. If instructions 
are put in their ‘reduced’ form, the execution time is 
proportional to the number of instructions, allowing 
us to blur the distinction between the number of 
instructions and the time it takes to execute them. 
Therefore, remarks about instruction length should 
be viewed as remarks about the speed with which a 
construct can be performed. T h e  relative speeds of 
constructs given should apply to certain convention- 
al architectures, even though fewer instructions are 
coded. 

In this paper, ‘producing code for the case state- 
ment’ refers only to the time the code needs to 
determine which alternative to select. Selection code 
can be carried out in a variety of ways. The  most 
common implementation is a jump table (or branch 
table). In this implementation, a range test is 
performed; that is, the case selector is compared 
against some range of values. If the case selector is in 
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this range, an address is computed and jumped to. 
The address can be computed in a variety of ways 
such as looking up  a relative address in a table or 
jumping to a jump instruction contained in a table. 
Many other variations are used in practice. Another 
implementation is to compare the case selector 
against one of the (middle) case items and use the 
ordering of the comparison to restrict future com- 
parisons to case items that are either higher or lower. 
If the case item is always the middle one of the 
remaining set of candidate case items, we get a 
binaty search. (Note that this is a binary search to 
determine membership in a set of case items and not 
a binary search to determine the value of the case 
selector, which is already known.) Another possibil- 
ity is a linear sequence of alternating ‘compare’ and 
‘branch equal’ instructions, called a linear search. 
Finally, there is the special case, but one that occurs 
often enough, where some subset of case items in a 
case clause forms a range with no gaps (the case 
density is 1). Here a compiler need only test that the 
case selector is in the appropriate range, omitting 
the code to modify a jump or index into a jump 
table. Sale3 describes these techniques in greater 
detail. 

EFFICIENT RANGE T E S T S  

A straightforward way to carry out a range test is to 
perform the following four pseud-801 instructions: 

compare case selector with lower bound 
if less goto out of range 
compare case selector with upper bound 
if greater goto out of range 
assertion: lower bound 5 case selector 5 upper bound 

But there is another way to do this test in two or 
three instructions on computers that allow unsigned 
or ‘logical’ (in IBM System/370 terminology) com- 
parisons. For an unsigned comparison, the contents 
of a register is interpreted as a positive value in the 
range 0 to 2“- 1 where n is the word size, rather than 
say a two’s complement value in the range -2”-’ to 
+2”-’ - 1. T h e  important point here is that 
negative numbers act like very large positive num- 
bers. Most computers either have ‘unsigned com- 
pare’ or ‘branch on unsigned condition’ instructions. 
T o  test that a register is in a desired range, the 
following three instructions suffice: 

k + case selector - lower bound 
compare k with (upper bound - lower bound 

- -this is an integer cons tan t 
if unsigned greater goto out of range 
assertion: lower bound 5 case selector I upper bound 

If the lower bourid is zero, the subtraction is 
unnecessary. T o  force a trap when the value is out of 
range, the 801 has a ‘trap on condition’ instruction, 
which can be used instead of the last branch. On 
many machines a trap can be forced by jumping to 
an illegal address. For example, on the IBM System/ 
370 or Motorola MC68000 a branch to an odd 
address forces a trap. 

DECIDING WHICH METHODS T O  USE 

As indicated by Sale, both binary search selection 
and jump table selection are asymptotically faster 
than linear search selection. However, it is as impor- 
tant to handle situations where the case statement 
has a few case items as it is to handle the situations 
where the case statement has an ‘asymptotic’ num- 
ber of case items. (Atkinson’ believes a two case- 
item case statement to be important enough to 
discuss how one might generate code for this special- 
ly.) Therefore, some care should be used to decide 
where a jump table, range test, binary search or 
linear search is appropriate. 

The  range test as previously given requires two or 
three 801 instructions. Another two or three 801 
instructions load the jump address from the jump 
table and two instructions perform the jump in- 
direct. So, 6-9 instructions select some alternative 
in a jump table. When there is no otherwise clause, 
all instructions are expected to be executed. The 
opposite is true for a linear or binary search where 
the maximum number of instructions get executed 
only when there is no equal case item. (It is perfectly 
reasonable to make the paths that lead to traps 
require more instructions, since these are the ones 
that would not get repeatedly executed.) If there are 
four scalar case items, the selection takes 2 instruc- 
tions if the case selector is equal to the first case 
item, 4 instructions if equal to the second case item, 
. . ., 8 instructions if equal to the fourth case item, 
and 9 instructions if the case selector is not equal to 
some case item. Assuming these events equally 
likely, fewer than 6 instructions are executed on the 
average. If some of the compare and branch instruc- 
tions can be combined to form a range test, all the 
better. When there are four or fewer scalar case 
items, a linear search is faster than a jump table. 

Binary searching performed as a sequence of three 
in-line ‘compare’, ‘branch greater’ and ‘branch equal’ 
instructions executes one more branch instruction 
than a linear search for each case item tested. Of 
course, there is never benefit in binary searching two 
case items. T h e  average number of instructions 
executed in binary searching 4 case items is about 5. 
Thus, binary searching is faster than linear sear- 
ching when there are at least 4 case items. When the 
comparison is more costly than one instruction, such 
as when floating-point or string comparisons are 
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required, or when a range test lumps together 
several case items, binary searching is preferred 
even if there are only 3 case items. It is better to put 
‘branch (not) greater’ tests before the ‘branch equal’ 
tests when the probability that the case selector is 
(not) greater than the current case item is not less 
than the probability that the two are equal. If case 
alternatives are equally likely, this is usually true. 

Although a jump table is the fastest method of 
selection when there are many case items, Hennes- 
sey and Mendelsohns suggest splitting a single jump 
table into several smaller ones if the overall case 
density is low (say less than 1/2), as a spacehime 
trade-off. Binary or linear searching is then used to 
select the appropriate jump table. Selecting the 
smallest number of clusters so that each cluster 
meets a minimum-density requirement is NP- 
complete. This is easily seen as this problem is a 
generalization of the clustering problem given as 
MS9 in Reference 6. In MS9, densities are res- 
tricted to integers, whereas our problem allows 
real-valued densities. 

A natural heuristic for forming clusters is the 
greedy approach, which always splits at the next 
largest gap between sorted case items. For example, 
if the integer-valued case items in sorted order are 
(1, 2, 3, 5 ,  lo),  having case density 1/2, we would 
first split between 5 and 10 with gap 5 yielding 
densities 4/5 and 1 for the two sub-ranges (1, 2, 3 , s )  
and (10). If case density 4/5 is not deemed suf- 
ficiently dense, we would then split between 3 and 5 
with gap 2. If a heap sort’ is used to sort the case 
items initially, the ‘extract maximum’ function of 
the sorting routine can be reused to find the next 
largest gap. 

ALGORITHM 

The following is an abstract descri tion of the 
algorithm used by the PL.8 compiler to generate 
selection code for the case statement. The  PL.8 
compiler generates code for machines including the 
IBM 801, IBM System/370, and Motorola 
MC68000. The  following is a list of parameters used 
in the algorithm and values that PL.8 uses when 
generating code for various machines. 

MinCaseDensity: minimum case density allowable 
for a jump table. (1/2 for all machines) 

MinForJumpTable: minimum number of case items 
allowed in a jump table (5 for 801, 6 for 
MC68000 and S/370) 

MinForBinSearch: minimum number of case items 
allowed in a binary search. (4 for all machines 
where the case selector is scalar, 3 for non-scalar 
case selectors.) 

f: 

Initially the case-statement selection code is 
generated as a linear search (i.e. a sequence of 
‘compare’ and ‘branch equal’ instructions) sur- 
rounded by markers to delimit the beginning and 
end of the code. From this code, case items are 
extracted from the immediate values of the compare 
instructions. T h e  process then proceeds as follows: 

1. Sort case items (giving error messages con- 
cerning duplicate case items in the case state- 
ment). 

2. Starting with all the case items as one cluster, 
break up cluster(s) using the greedy approach, 
until each has case density greater than Min- 
CaseDensity. (This does not necessarily mean 
that the cluster will be carried out as a jump 
table. ) 

3. For each cluster where the number of case 
items is greater than MinForJumpTable replace 
the code that performs ‘compare’ and ‘branch 
equal’ tests on these case items with a code 
fragment for a jump table, or simply use a 
range test if all case items of the cluster belong 
to the same clause and the case density is 1. 

4. For all remaining clusters not handled by the 
previous step because there were too few case 
items in the cluster, combine as many case 
items as possible into range tests. 

5. Combine range tests generated by the previous 
two steps (recall that a jump table contains a 
range test) and the remaining single case items 
not covered by some range test into a binary 
search if the number of such tests is greater 
than MinForBinSearch, or a linear search other- 
wise. 

The  initial code generation phases of the PL.8 
compiler try to produce strength-reduced code. 
Thus, a comparison of a string variable with a string 
constant will be changed into an unsigned register- 
to-integer constant comparison when the string is of 
fixed length and can fit into a register. The  integer 
value used corresponds to the bit pattern of the 
string reinterpreted as an integer. The  same is done 
for comparisons of short floating-point quantities. 
Since it is rare to find the values of case items 
densely packed under this new interpretation, float- 
ing point and string case items will invariably be 
assigned one case item per cluster. 

Faster executing code can be produced if the 
probabilities that the case selector takes on the case 
item values are known. These may be known as a result 
of trace information that is automatically supplied to 
the compiler, or perhaps as an extra-lingual mechanism 
pertaining to the case statement. In step 5 ,  the linear 
search can be arranged in decreasing probabilities, and 
a Huffman search rather than a binary search can be 
used. When combining case items into range tests 
(possibly used in a jump table), the probabilities 
should be added together. 
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