
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 15(10), 1021-1024 (OCTOBER 1985)

Short Communication

PRODUCING GOOD CODE FORTHE
CASE STATEMENT

ROBERT L. BERNSTEIN
IBM ThomasJ. Watson Research Center, Yorktown

Heights, New York 10598, U S A .

SUMMARY
After summarizing different ways of generat-
ing selection code for the case statement, the
execution speed of each type of selection code
is described using the RISC machine model. A
method for combining the selection code
schemes is proposed. The method, part of the
PL.8 compiler, is flexible enough to handle
case-selector data-types that have a large range
of values, such as the character-string or float-
ingpoint datatypes, and can be fine-tuned
when the probabilities of the case selector
taking on particular values are known.

KEY WORDS Case statement Code generation

INTRODUCTION

A case statement (also known as a select statement
or switch statement) tests a variable, the case selec-
tor, against a set of specified constants called case
items. Non-empty sets of case items may be grouped
together into case clauses so that the same action is
performed if the case selector has the value of any
case item in the case clause. If the case selector is not
equal to any case item, execution continues at a
place specified by an otherwise clause. If there is no
otherwise clause in the case statement, execution
terminates abnormally; a trap occurs. The model
for the case statement that is used is similar to Ada’s’

0038-0644185/101021-04$01 .OO
0 1985 by John Wiley & Sons, Ltd.

with the exception that the case selector and case
items may be floating point or string values. The
case density, which is useful in deciding what kind
of code to generate, is a real number greater than 0
and less than or equal to 1. It is the number of values
between the highest and lowest valued case items
inclusive, divided by the number of case items.
Rather than use the case density, the integer approx-
imation of the inverse of the case density can be used
just as easily to avoid floating-point operations.

For machine instructions, a model of a reduced-
instruction-set computer (RISC), such as the IBM
801‘ having many internal registers for saving com-
putations, and executing all its instructions in
roughly the same cycle time, is used. As a rule of
thumb, the number of 801 instructions required for
an instruction of a conventional machine is the
execution time of the complex instruction divided
by the execution time of a register-to-register ‘add’
on the same machine. Thus, some instructions on
conventional computers require 2 or 3 RISC in-
structions. In particular, on an 801 there are no
instructions with ‘indirect’ operands other than
‘load’ or ‘store’ instructions; to ‘jump indirect’, one
instruction loads the desired address into a register
and then another performs the jump. If instructions
are put in their ‘reduced’ form, the execution time is
proportional to the number of instructions, allowing
us to blur the distinction between the number of
instructions and the time it takes to execute them.
Therefore, remarks about instruction length should
be viewed as remarks about the speed with which a
construct can be performed. T h e relative speeds of
constructs given should apply to certain convention-
al architectures, even though fewer instructions are
coded.

In this paper, ‘producing code for the case state-
ment’ refers only to the time the code needs to
determine which alternative to select. Selection code
can be carried out in a variety of ways. The most
common implementation is a jump table (or branch
table). In this implementation, a range test is
performed; that is, the case selector is compared
against some range of values. If the case selector is in

Received 12 June 1984
Revised 16 November 1984 and

24 January 1985

1022 SHORT COMMUNICATION

this range, an address is computed and jumped to.
The address can be computed in a variety of ways
such as looking up a relative address in a table or
jumping to a jump instruction contained in a table.
Many other variations are used in practice. Another
implementation is to compare the case selector
against one of the (middle) case items and use the
ordering of the comparison to restrict future com-
parisons to case items that are either higher or lower.
If the case item is always the middle one of the
remaining set of candidate case items, we get a
binaty search. (Note that this is a binary search to
determine membership in a set of case items and not
a binary search to determine the value of the case
selector, which is already known.) Another possibil-
ity is a linear sequence of alternating ‘compare’ and
‘branch equal’ instructions, called a linear search.
Finally, there is the special case, but one that occurs
often enough, where some subset of case items in a
case clause forms a range with no gaps (the case
density is 1). Here a compiler need only test that the
case selector is in the appropriate range, omitting
the code to modify a jump or index into a jump
table. Sale3 describes these techniques in greater
detail.

EFFICIENT RANGE T E S T S

A straightforward way to carry out a range test is to
perform the following four pseud-801 instructions:

compare case selector with lower bound
if less goto out of range
compare case selector with upper bound
if greater goto out of range
assertion: lower bound 5 case selector 5 upper bound

But there is another way to do this test in two or
three instructions on computers that allow unsigned
or ‘logical’ (in IBM System/370 terminology) com-
parisons. For an unsigned comparison, the contents
of a register is interpreted as a positive value in the
range 0 to 2“- 1 where n is the word size, rather than
say a two’s complement value in the range -2”-’ to
+2”-’ - 1. T h e important point here is that
negative numbers act like very large positive num-
bers. Most computers either have ‘unsigned com-
pare’ or ‘branch on unsigned condition’ instructions.
T o test that a register is in a desired range, the
following three instructions suffice:

k + case selector - lower bound
compare k with (upper bound - lower bound

- -this is an integer cons tan t
if unsigned greater goto out of range
assertion: lower bound 5 case selector I upper bound

If the lower bourid is zero, the subtraction is
unnecessary. T o force a trap when the value is out of
range, the 801 has a ‘trap on condition’ instruction,
which can be used instead of the last branch. On
many machines a trap can be forced by jumping to
an illegal address. For example, on the IBM System/
370 or Motorola MC68000 a branch to an odd
address forces a trap.

DECIDING WHICH METHODS T O USE

As indicated by Sale, both binary search selection
and jump table selection are asymptotically faster
than linear search selection. However, it is as impor-
tant to handle situations where the case statement
has a few case items as it is to handle the situations
where the case statement has an ‘asymptotic’ num-
ber of case items. (Atkinson’ believes a two case-
item case statement to be important enough to
discuss how one might generate code for this special-
ly.) Therefore, some care should be used to decide
where a jump table, range test, binary search or
linear search is appropriate.

The range test as previously given requires two or
three 801 instructions. Another two or three 801
instructions load the jump address from the jump
table and two instructions perform the jump in-
direct. So, 6-9 instructions select some alternative
in a jump table. When there is no otherwise clause,
all instructions are expected to be executed. The
opposite is true for a linear or binary search where
the maximum number of instructions get executed
only when there is no equal case item. (It is perfectly
reasonable to make the paths that lead to traps
require more instructions, since these are the ones
that would not get repeatedly executed.) If there are
four scalar case items, the selection takes 2 instruc-
tions if the case selector is equal to the first case
item, 4 instructions if equal to the second case item,
. . ., 8 instructions if equal to the fourth case item,
and 9 instructions if the case selector is not equal to
some case item. Assuming these events equally
likely, fewer than 6 instructions are executed on the
average. If some of the compare and branch instruc-
tions can be combined to form a range test, all the
better. When there are four or fewer scalar case
items, a linear search is faster than a jump table.

Binary searching performed as a sequence of three
in-line ‘compare’, ‘branch greater’ and ‘branch equal’
instructions executes one more branch instruction
than a linear search for each case item tested. Of
course, there is never benefit in binary searching two
case items. T h e average number of instructions
executed in binary searching 4 case items is about 5.
Thus, binary searching is faster than linear sear-
ching when there are at least 4 case items. When the
comparison is more costly than one instruction, such
as when floating-point or string comparisons are

SHORT COMMUNICATION 1023

required, or when a range test lumps together
several case items, binary searching is preferred
even if there are only 3 case items. It is better to put
‘branch (not) greater’ tests before the ‘branch equal’
tests when the probability that the case selector is
(not) greater than the current case item is not less
than the probability that the two are equal. If case
alternatives are equally likely, this is usually true.

Although a jump table is the fastest method of
selection when there are many case items, Hennes-
sey and Mendelsohns suggest splitting a single jump
table into several smaller ones if the overall case
density is low (say less than 1/2), as a spacehime
trade-off. Binary or linear searching is then used to
select the appropriate jump table. Selecting the
smallest number of clusters so that each cluster
meets a minimum-density requirement is NP-
complete. This is easily seen as this problem is a
generalization of the clustering problem given as
MS9 in Reference 6. In MS9, densities are res-
tricted to integers, whereas our problem allows
real-valued densities.

A natural heuristic for forming clusters is the
greedy approach, which always splits at the next
largest gap between sorted case items. For example,
if the integer-valued case items in sorted order are
(1, 2, 3, 5 , lo), having case density 1/2, we would
first split between 5 and 10 with gap 5 yielding
densities 4/5 and 1 for the two sub-ranges (1, 2, 3 , s)
and (10). If case density 4/5 is not deemed suf-
ficiently dense, we would then split between 3 and 5
with gap 2. If a heap sort’ is used to sort the case
items initially, the ‘extract maximum’ function of
the sorting routine can be reused to find the next
largest gap.

ALGORITHM

The following is an abstract descri tion of the
algorithm used by the PL.8 compiler to generate
selection code for the case statement. The PL.8
compiler generates code for machines including the
IBM 801, IBM System/370, and Motorola
MC68000. The following is a list of parameters used
in the algorithm and values that PL.8 uses when
generating code for various machines.

MinCaseDensity: minimum case density allowable
for a jump table. (1/2 for all machines)

MinForJumpTable: minimum number of case items
allowed in a jump table (5 for 801, 6 for
MC68000 and S/370)

MinForBinSearch: minimum number of case items
allowed in a binary search. (4 for all machines
where the case selector is scalar, 3 for non-scalar
case selectors.)

f:

Initially the case-statement selection code is
generated as a linear search (i.e. a sequence of
‘compare’ and ‘branch equal’ instructions) sur-
rounded by markers to delimit the beginning and
end of the code. From this code, case items are
extracted from the immediate values of the compare
instructions. T h e process then proceeds as follows:

1. Sort case items (giving error messages con-
cerning duplicate case items in the case state-
ment).

2. Starting with all the case items as one cluster,
break up cluster(s) using the greedy approach,
until each has case density greater than Min-
CaseDensity. (This does not necessarily mean
that the cluster will be carried out as a jump
table.)

3. For each cluster where the number of case
items is greater than MinForJumpTable replace
the code that performs ‘compare’ and ‘branch
equal’ tests on these case items with a code
fragment for a jump table, or simply use a
range test if all case items of the cluster belong
to the same clause and the case density is 1.

4. For all remaining clusters not handled by the
previous step because there were too few case
items in the cluster, combine as many case
items as possible into range tests.

5. Combine range tests generated by the previous
two steps (recall that a jump table contains a
range test) and the remaining single case items
not covered by some range test into a binary
search if the number of such tests is greater
than MinForBinSearch, or a linear search other-
wise.

The initial code generation phases of the PL.8
compiler try to produce strength-reduced code.
Thus, a comparison of a string variable with a string
constant will be changed into an unsigned register-
to-integer constant comparison when the string is of
fixed length and can fit into a register. The integer
value used corresponds to the bit pattern of the
string reinterpreted as an integer. The same is done
for comparisons of short floating-point quantities.
Since it is rare to find the values of case items
densely packed under this new interpretation, float-
ing point and string case items will invariably be
assigned one case item per cluster.

Faster executing code can be produced if the
probabilities that the case selector takes on the case
item values are known. These may be known as a result
of trace information that is automatically supplied to
the compiler, or perhaps as an extra-lingual mechanism
pertaining to the case statement. In step 5 , the linear
search can be arranged in decreasing probabilities, and
a Huffman search rather than a binary search can be
used. When combining case items into range tests
(possibly used in a jump table), the probabilities
should be added together.

1024 SHORT COMMUNICATION

ACKNOWLEDGEMENTS

Dick Goldberg initially wrote the programs that
process case statements for the PL.8 compiler; his
ideas have greatly influenced the given method. I
would like to thank Peter Markstein who suggested
writing this paper and Hank Warren for discussions
that have improved my understanding and presenta-
tion of the problem. Finally, I thank the editor and
reviewers for concentrating my diffuse verbiage.

REFERENCES

1. Reference Manual for ”’he M a Pmgramming f a n -
guage, U.S. Department of Defense, July 1980.

2. G. Radin, ‘The 801 minicomputer’, Proceedings ofthe
M‘M Symposium on Architectural Suppart for Pmg-

ramming Languages and Operating Systems, Palo
Alto, 1-3 March, 1982, pp. 39-47.

3. A. Sale, ‘The implementation of case statements in
Pascal’, Software-Practice and Experience, 11,929-
942 (1981).

4. L. Atkinson, ‘Optimizing two-state case statements in
Pascal’, Software-Practice and Experience, 12, 57 1-
582 (1982).

5. J. Hennessey and N. Mendelsohn, ‘Compilation of the
Pascal case statement’, Software-Practice and Ex-
penence, 12, 879-882 (1982).

6. M. Carey and D. Johnson, Computers and Intracta-
bilitv, A Guide to the Theoty of NP-Completeness, W.
H. Freeman & Co., San Francisco, 1979, p. 281.

7. A. Aho, J. Hopcroft and J . Ullman, The Design and
Analysis of Computer dgonthms, Reading, Mass.,
1974.

8. M. Auslander and M. Hopkins, ‘An overview of the
PL.8 compiler’, S I G P W Symp. on Compiler Con-
struction, Boston, 23-25 June 1982, pp. 22-31.

