COMPUTER SYSTEMS LABORATORY
[

STANFGRD UNIVERSITY - STANFORD, CA 94305-2192

Improving Garbage Collector Performance
in Virtual Memory

Robert A. Shaw

Technical Report: CSL-TR-87-323

March 1987

This research was supported by, and is reproduced with the permission of, the
Hewlett—Packard Company.

Improving Garbage Collector Performance
in Virtual Memory

by
Robert A. Shaw
Technical Report CSL-TR-87-323
March 1987

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California 94305-4055

Abstract

Garbage collection and virtual memory have long been in an adversarial
relationship. Implementers of virtual memory systems have cited
garbage collectors as an excellent test case for undermining page
replacement algorithms [BabJoy81] and users of Lisp systems have
tumed off garbage collection (and suffered the consequences) rather than
live with the slowdown of garbage collector paging [Moong84].

This paper describes a way in which the garbage collector and virtual
memory system can work together to improve overall system
performance. By using a simple layout for storage and information
already maintained by most virtual memory systems, a garbage collector
can substantially reduce the amount of effort necessary to reclaim a large
majority of the available space. The techniques presented require no
special hardware and minimal disruption of the runtime environment.

Key Words and Phrases: Garbage Collection, Virtual Memory, Lisp
Measurement, Data Lifetime, Generation, Dynamic Storage, Allocation,
Reclamation.

Copyright © 1987, Hewleu-Packard Company

Reproduced with Permission of Hewlett-Packard Company

. Introducton

. Teminology

. Classic Garbage Collection Schemes . e
3.1 Reference Counting
32 Markand Sweep

33 StopandCopy

. Making Measurements

. Reducing Garbage Collection Effort . . .
5.1 The Heuristics (Lieberman and Hewitt)

5.2 Generation Scavenging . . e .
5.3 The Ephemeral Collector

. The New Scheme . . e e e . .

6.1 Requirements on the Language and Virtual Memory System

6.2 A Stop and Copy Approach . . .

6.3 A Compacting Mark and Sweep Collector Focusmg on N ewly Allocated
Space e e e .

6.4 Stop and Copy Collecmon thh Stable Data

6.5 Minimizing the Dirty Pages e e e e e e e e

6.6 Adding Aging . . e e e e

6.7 Handling Arbitrary Numbers of Generanons e e e e e e

6.8 Making the VM Hooks Realistic e e e e e e e e .

6.9 Bearsinthe Woods
SStatus . . . L . L L L L. ...

References

— O 00 00) WL RN R

s et
AL N

16
19
21
24
27
30
32

32

32
33

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure S.
Figure 6.
Figure 7.

LIST OF FIGURES

Mark and Sweep Garbage Collection

Stop and Copy Garbage Collection

Heap Layout for Quick Stabilization

Data Object Survival Rate in Four Programs
Views of a Multi-Generation Heap

Layout and Collection of a Multi-Generation Heap

Virtual Memory Structures

T

TABLE 1.
TABLE 2.
TABLE 3.
TABLE 4.
TABLE 5.
TABLE 6.
TABLE 7.

TABLE 8.

TABLE 9.

LIST OF TABLES

Static Base Set Measurements

Dynamic Base Set Measurements
Page Scanning Time (HP9000/350)

Dynamic Frequency of Writes

Memory Allocation by Data Type

Writes to Data Type (ignoring initialization) . .

Type Written on Base Set Pages

Writes Within Symbols by Part of Symbol Written (ignoring
initialization) . . . e e e e e e

Storage Allocated During Execution

- il -

15
17
18
21
22
22
23

24
25

1. Introduction

Garbage collection and virtual memory have long been mortal enemies. Virtual memory (VM)
provides the user freedom from concems about the size limitations of physical memories.
Automatic storage reclamation, or garbage collection, provides the users of many systems with
freedom from storage management. Unfortunately, these two worksaving conveniences interact
terribly. Though they both attempt to free the user of unwanted work, they do so by adding some
expense to the computation. “/irtual memory minimizes its cost by exploiting a general
observation about program executior: instruction and data references tend to be localized to
reasonably small areas of the address space [Dennin70]. Garbage collection saves the user effort
by searching through every data object in the system to locate those which are no longer in use.
Garbage collection violates the foundation upon which virtual memory depends. Virtual memory
presumes locality of reference, while garbage collection attempts to reference everything which
can be referenced in as short a time period as possible. The user pays for this by enduring long
interruptions that can often be spent doing little more than moving memory contents back and
forth between physical memory and backing store, a process known as thrashing.

The usually stated goal of garbage collection in a system is to recover reusable address space that
is no longer needed. As new architectures, operating systems, and virtual memory systems
provide larger and larger virtal address spaces, this goal decreases in importance. Indeed, if
there is such bad interaction and address space is not such a valuable resource, why bother with
garbage collection at all in large virtual memory systems?

There are two obvious reasons. Space used in virtual memory is not free: if data is not in
memory, it resides in some form of backing store. Although backing store is relatively cheap,
new architectures are making address space extremely cheap. In other words, address space may
be free, but the physical storage to back it up is not. If the majority of what is allocated could be
reused, then any real or backing store holding this useless information is truly wasted. For a
system with realistically limited resources, this may be a serious problem. The second reason
involves performance. Both [FenYoc69] and [White80] argue that due to the enormous size
possible in virtual memory systems, it is no longer proper to simply view a garbage collector as a
means of reclaiming address space; the purpose of a garbage collector in a large virtual address
space is to improve locality of reference so that virtual memory performance might be improved
through increased data density. This view is consistent with recent experience. Several users of
the Lisp system on which the author’s experimentation is being done have begun using extremely
large heaps in order to avoid lengthy garbage collection interruptions. What has been found is
that, as time progresses, the system becomes "sluggish.” The apparent cause of this sluggishness
is the increased virtual memory traffic in the system. Because data is spread throughout the heap
and separated by vast amounts of garbage, many more pages must be brought into the physical
memory to satisfy the needs of the user computation. A compacting garbage collector takes a
long time to run, but drastically improves the density of the data and thus reduces the
sluggishness.

The work described in this paper was motivated by an attempt to achieve a dramatic
improvement in garbage collector performance for an existing Common Lisp implementation
running on multiple types of conventional architectures. Major overhauls of the Lisp system or
the addition of custom hardware were not viewed as viable options, so simpler solutions were
sought. The remainder of this paper will explore classic garbage collection techniques, recent
improvements to them, and a new approach to collection that is designed to improve its
performance when run on conventional hardware.

2. Terminology

Terminology has always been an important part of the garbage collection literature. Terms such
as transporter, broken heart and remembered set are commonplace. There will be an attempt to
limit terminology even though the temptation to create new names remains very strong.

Since the organization, allocation, reclamation, and compaction of data memory is the focus of
this paper, a few definitions are necessary before proceeding. Data memory is the area in which
c.ssentially all data or data objects reside. Data objects may be stored in the execution stack(s)
and in processor registers as well as in data memory. Data objects are the structures containing
the actual information to be processed by the program. Examples of data objects are Lisp CONS
cells, vectors, or bignums.

References identify data objects and provide a uniform and efficient way to handle them.
Efficiency can be gained by passing around constant-sized references rather than arbitrary-sized
data objects.

Data memory is broken into a dynamic area and a static area. The dynamic area will be called the
heap. For the purposes of this paper, a heap will always be considered to be a reasonably large
contiguous area of memory. This is not always the case in practical systems, but helps simplify
the explanations. Storage in the heap is allocated for new data objects as the user program creates
them.

The static area of data memory will be called the base ser. In a Lisp system the base set consists
of data objects referred to by code or objects such as symbols which must always be available.
Data objects and references contained in the stack(s) and registers are usually also considered part
of the base set. A data object is considered live as long as it can be reached through some chain
of references originating in the base set. The storage associated with live data objects must not be
reclaimed. Only data objects in the heap are subject to reclamation; data objects in the base set
can never die.

An additional term, the minimal base set will be used to denote only the set of references from
the base set into the heap. References which do not point into the heap, and self-contained data in
the base set, are not considered part of the minimal base set. Duplicate references from the base
set into the heap do constitute separate entries in the minimal base set.

3. Classic Garbage Collection Schemes
All basic garbage collection schemes consist of two steps:
« identify live (or dead) data objects, and

o recover the storage associated with the dead data objects.

Different collection schemes use varying approaches to accomplish these steps. Three of the
most popular schemes are described below.

3.1 Reference Counting

Reference counting systems attempt to identify the point at which the data object is no longer live
by noting when the last reference to the data object is lost. This is done by incrementing a
. counter, the reference count, associated with each data object every time a reference to it is
created and decrementing the counter every time a reference is lost. References are created and
lost through assignment or the creation and destruction of environments. When the reference
count reaches zero, the data object is no longer referenced and its storage may be reclaimed.

-3-

Reference counting has the desirable feature that garbage collection is accomplished at the
earliest possible moment. The reclamation is spread out through time rather than being lumped
into a single long and potentially disruptive operation. Deutsch and Bobrow have implemented
effective methods for improving performance of reference counting systems by avoiding frequent
cases of incrementing and decrementing [DeuBob76]. Unfortunately there are stll two
fundamental problems with this garbage collection scheme. First, reference counting cannot
reclaim either dead data objects linked into a circular structure or data objects whose reference
counts have overflowed. Lieberman and Hewitt have commented that styles of programming that
utilize circular structure are becoming more prevalent [LieHew83], and [Rovner85] stated that
circular structure in the language Cedar (which used reference counting) caused more trouble in-
garbage collection than had been expected. -The second fundamental problem with reference
counting is, as Ungar has pointed out, the effort is proportional to the number of dead data objects
[Ungar86]. This may not sound like a substantial problem, but most of the significant
improvements recently made in garbage collection are premised on heuristics about the ratio of
live to dead objects in areas of recently created data objects. The importance of these heuristics
will be discussed in more detail later.

3.2 Mark and Sweep

One-space or mark and sweep collectors allocate storage from a free list (i.e. a list of free storage
in the heap) until some minimum threshold of available storage is reached. Upon reaching the
threshold the user computation is stopped and garbage collection begins (Figure 1a). The base set
is traversed to find all data objects recursively reachable. When an object in the heap is
encountered for the first time, it is marked. Then all objects in the heap which are recursively
reachable from the object are traversed and marked, if not already marked. Marking usually
involves setting a bit associated with the data object to indicate that it is live. Figure 1b shows
the state of the mark bits after the bottom element of the base set and those data objects
recursively reachable from it have been traversed and marked. Should a marked object be
encountered later through some other chain of references, the fact that it is marked will prevent
further effort from being expended in traversing the object and those reachable from it. When all
reachable objects have been marked, the mark phase ends and the sweep phase begins. See
Figure 1c. At this point it is known that all live objects in the heap have been marked; any
unmarked object is known to be dead. The sweep phase recovers the storage used by dead data
objects by linearly sweeping the heap looking for unmarked data objects. When a live object is
encountered, the mark associated with it is cleared. When a dead object is encountered, the
storage associated with it is placed on a free list. At the end of the sweep the garbage collection
is complete and the user computation may be resumed (Figure 1d).

The effort spent is a function of the size of the base set (which must be fully traversed), the
number of live references in the data memory (used during mark phase), the number of live
objects in the heap (marked once during mark phase and mark cleared during the sweep phase)
and the number of dead objects in the heap (added to free list during sweep phase). It is possible
to change the term involving the number of dead heap objects to a term proportional to the size of
the heap and number of contiguous chunks occupied by dead objects. This can prove to be
worthwhile in systems where mark bits are not part of the data object in memory but are held
somewhere else in a dense table. When an unmarked object is encountered in the table it is only
necessary to search the table for the next marked object to determine the size of the region to be
added to the free list; actually looking through dead objects in memory can be avoided.

An additional optimization of the mark and sweep scheme is compaction. Compaction reduces
allocation problems associated with fragmentation of the memory. Remember, space from dead

Heap Marks
0
0
BaseSet 0§ BaseSet
0
0
:74 0 ZEE
0
— FreeList Ptr , — FreeList Ptr
nil g ' | nil ‘_3
(a) Just Before GC (b) During Mark Phase
BaseSet BaseSet
— —d
— —
/
— A — A
— FreeList Ptr — FreeList Ptr
(c) Before Sweep Phase (d) Just After GC

Figure 1. Mark and Sweep Garbage Collection

objects has merely been added to a free list, it has not been combined into a single large space.
The heap is probably filled with holes. Compaction is an expensive operation, theoretically
requiring the movement of at least enough data objects to fill all the gaps, and in most realistic
systems, requiring the movement of every data object appearing after the first gap in the heap.
Additionally, a relocation map must be built to record what was moved where, and a linear pass
over all live objects must be made to adjust any references (presuming references do not use
indirection through a table in which case only the table need be updated).

The benefits of a mark and sweep collector are that no dead structure can survive a garbage
collection, data need not be moved (which may be important in some systems), and that the entire
space allocated to the heap can be used for data. A negative aspect of mark and sweep collectors
is that memory fragmentation can become a serious problem unless compaction or elaborate
multi-space allocation is done. Also, compaction must be an atomic operation since the data
memory is inconsistent during that time (barring complex schemes which will degrade
performance) and, because of the multiple garbage collection phases, accesses of the same
location are guaranteed to occur at substantially disjoint points in time. This can have substantial
bearing on the virtual memory performance.

33 Stop and Copy

The third and final collection scheme to be described is the two-space stop and copy collector.
Stop and copy works by copying live data objects from the space being collected into an unused
space. In this scheme the heap is divided into two equal-sized spaces (Figure 2).

ToSpace : ToSpace

BaseSet BaseSet 42
1 "foo"
0-\ ,.__/ —3
—X —
FromSpace £
= \4—72_“* ,_//
N : —

(a) Just Before GC ‘ (b) After Base Set Scan

- FromSpace
2.54
BaseSet BaseSet 42

I "foo”

— 4 —

,_/ ,_/

A
— —
(c) After ToSpace Scan ‘ (d) Just After GC

Figure 2. Stop and Copy Garbage Collection

All allocation takes place from one of the spaces (called FromSpace). The second space remains
empty until garbage collection begins. We will call the empty space ToSpace. When there is no
more room in FromSpace the user computation is stopped and garbage collection begins (Figure

2a). The base set is traversed looking for references into FromSpace. When one is found a
check is made to see if there is a forwarding pointer where the data object should be. A
forwarding pointer is a pointer used strictly by the collector to indicate the new location of a
moved data object. If there is a forwarding pointer, the original reference is updated to point
where specified by the forwarding pointer and the base set traversal is continued. If the data
object is in FromSpace, it is copied to the next available location in ToSpace, a forwarding
pointer is placed at the old location in FromSpace to indicate where the data object was copied
to, and the original reference is updated to reference the moved data object (Figure 2b). When
the base set has been fully traversed, ToSpace can be scanned linearly looking for references
from copied objects into FromSpace. As references are found into FromSpace, the data objects
are copied to ToSpace (if they have not already been copied) and the reference is updated to
reflect the new location. Since ToSpace is scanned from the same end that allocation first
occurred and the scan is in the direction of new allocation, data objects copied during the scan
will always be placed at the end of ToSpace where scanning has yet to happen. When the
scanning pointer reaches the new allocation pointer, the garbage collection is complete (Figure
2c¢). There should no longer be any references into FromSpace; all that remain are dead objects
and forwarding pointers. The uses of FromSpace and ToSpace are interchanged and the user
computation can continue. The interchange of the spaces reclaims all space in FromSpace for
use as ToSpace during the next collection (Figure 2d).

The algorithm described does a breadth first traversal of the objects referenced by the base set
[Cheney70]. A breadth first search can be quite detrimental to virtual memory performance since
data objects which are logically close may be made physically quite distant. Optimizations such
as list linearization [ClaGre77] or pseudo-depth first search [Moon84] can help alleviate problems
introduced by using this scheme.

The stop and copy garbage collector has expense proportional only to the size of the base set °
(which must be fully traversed), the total number and size of live objects in the heap (which must
be copied), and the number of references into FromSpace (which must be updated). This seems
very attractive since there is no dependence on the number or size of the dead objects. Unlike the
mark and sweep collector, however, every live data object in the heap must be moved; a data
object is live only if it is copied from FromSpace to ToSpace. If there is a large amount of
relatively stable structure, unless special steps are taken, the structure must be copied back and
forth during successive garbage collections. Neither reference counting nor the mark and sweep
collector has this problem. Even in the compacting variations of the mark and sweep scheme,
relatively stable structure will have a tendency to settle and remain in an area.

For systems which cannot tolerate movement of the data (e.g. those that pass non-updateable
pointers out of the system), stop and copy may be unacceptable. An additional aspect of the stop
and copy scheme that causes concern among implementers is the issue of memory utilization. At
best, the classical version of the algorithm described permits only half of the available dynamic
data memory to be allocated before a garbage collection must take place; the second half of the
memory remains idle and empty, waiting for copying to occur. In address space constrained
implementations this may make the scheme inappropriate. A VM expense that might be
excessive in the stop and copy scheme is that of having to actually access the heap when a
reference to FromSpace is encountered. The least predictable accessing in garbage collectors is
that involved with marking or checking to see if a data object needs to be copied. If there were
only one reference in existence for each data object, the same number of heap references would
be required for either scheme. But there is often more than one reference to a data object. In the
mark and sweep scheme a small table of mark bits can be used to avoid actually making accesses
to a large heap for any but the first reference encountered. The stop and copy scheme essentially

requires making these fairly random heap accesses to obtain the forwarding information.

The stop and copy scheme does have several advantages. Its implementation is quite simple.
There are no tricky tables to build and no elaborate techniques necessary to achieve recursion
without using large amounts of space. In the simplest case, in which the base set is a single
contiguous block, a linear scan of it followed by a linear scan of ToSpace will accomplish the
entire traversal of all live objects. A nice feature of this scheme in virtual memory is that each
reference is toucl ~d only once. While a compacting mark and sweep collector needs to access
each reference once (c initiate marking and once to relocate the reference after compaction has
occurred, the stop aud copy scheme combines these phases into a single pass, potentially reducing
virtual memory paging by a factor of two. Another aspect of the stop and copy scheme which has
added to its attractiveness is its ability to be converted into an incremental algorithm [Baker78].
Since the heap can be guaranteed to be consistent by making the runtime system cognizant of
forwarding pointers and by making the copying of data objects and storing of forwarding pointers
atomic, garbage collection can be distributed over long periods.

4. Making Measurements

- Much of the design and discussion which follows is based upon analysis of real programs running
on a commercially available Common Lisp system. All programs have been run on a Hewlett-
Packard Series 9000/350 computer under HP Common Lisp. The HP350 is a single user
workstation based on a 25MHz Motorola 68020 processor and 68881 floating point coprocessor.
The virtual memory system uses 4096 bytes per page. The workstation executes native
instructions at an approximate rate of 4 MIPS. HP Common Lisp is a full implementation of
Common Lisp as described in [Steele84]. The implementation is written primarily in Lisp. Lisp
references are encoded in four bytes.

The programs analyzed were chosen to be representative of some typical uses of Lisp. These -
programs are not fabricated benchmarks, nor are they hand optimized for the purpose of
benchmarking. All the normally present "missed opportunities” for optimization that appear in
medium sized systems exist in this code. There is even evidence that a function or two in some
of the tests is running interpreted rather than compiled. Execution of these tests represents well
over one billion instructions. The tests were chosen from programs which are either in daily
usage or wide distribution. The programs, along with the input used, are:

Compile a Common Lisp compiler compiling itself,

NL | a natural language system computing unambiguous parses of 44 sentences of
varying complexity,

Reduce a symbolic math package executing a standard test file, and

RSIM a transistor level circuit simulator simulating a ten bit counter counting to ten.

Tools used in the analysis took three forms. All data pertaining to dynamic writes were gathered
using a meta-circular 68020 emulator running in the Common Lisp system. This emulator is
heavily instrumented and quite knowledgable about the Lisp implementation. It allows
measurement of both the application and Lisp system while not gathering information about
either the garbage collector or underlying operating system. All garbage collector specific data
were obtained through instrumentation of the existing mark and sweep collector and a new stop
and copy collector. Allocation, timing and static data were gathered using specially designed
tools.

5. Reducing Garbage Collection Effort

Most people (all, in the author’s experience) would agree that garbage collection using the
classical schemes described takes too long. Interrupdons due to non-reference counted garbage
collecticn are viewed as unwelcomed distractions that impede progress and destroy trains of
thought. Reducing the interruptions is a laudable goal.

Reference counting was included above only for completeness. For the remainder of this paper
reference counting collectors will not be considered. This is done for several reasons. Reference
counting is not a full storage reclamation scheme; a second, different, scheme must be used to
recover even high mortality rate data which is circular or has overflowed counters. Reference
counting is an intimate part of the systems in which it is used and much work has been done
finding ways to optimize its performance. Finally, reference counting is sufficiently different in
spirit from the mark and sweep and the stop and copy collectors that ideas which can easily be
used for either mark and sweep or stop and copy cannot be used at all for reference counting. In
removing reference counting from the following discussion there is no intent to diminish its
viability as a very appropriate scheme for systems with specific requirements.

The remainder of this paper will focus on compacting mark and sweep schemes and especially on
stop and copy schemes. These schemes are in some ways outsiders to the systems in which they
operate. They are effectively a second process which is scheduled to run when the memory
resource is depleted. Only non-incremental versions of garbage collectors will be considered. It
is felt that incremental collectors attempt to hide the effort rather than reduce it. Some of the
techniques which will be described can be applied to incremental collectors, but discussing the
application will probably do little more than add complexity to schemes that might be adequate
without becoming incremental. Only mark and sweep and stop and copy collectors operating in
systems where the computation has been stopped for the duration of the collection will be
considered. ’

5.1 The Heuristics (Lieberman and Hewitt)

What can be done to reduce the time spent in garbage collection? In virtual memory systems
attempts to compress key information into small tables and make memory accesses more orderly
appears to be a good place to start. Allocating objects in the base set such that they are physically
contiguous (i.e. they may be linearly rather than randomly scanned) and using compact tables of
mark bits rather than mark bits spread through memory are examples of ways to improve VM
performance. Modifications such as these can result in substantial improvements, but do not
address a key problem. Garbage collectors historically must deal with (at least) every live object
in the system during a collection. This includes all the data structures used by those programs
which were created but rarely if ever used. Requiring the collector to access and possibly move
all this relatively stable structure takes time that would be better spent on the user computation.
In one of the worst cases it is possible that the entire user computation must be moved out of
physical memory to make room for the relatively stable structure which must be traversed during
garhage collection.

It is easy to believe that garbage collection in a system with a small base set and heap is faster
than garbage collection in a system with a large base set and heap. There is simply less to be
done. If the total space occupied by the base set and the heap is less than the physical memory
available to the process, it might be possible to do the entire garbage collection without any VM
paging. This has potential for enormous gains in performance. Unfortunately, reducing the size
of data memory available in the system is not an issue most users wish to discuss (remember that
reduced data space is considered to be a disadvantage of the stop and copy approach). The trick,

-9.-

then, is to make the base set and data memory appear smaller to the garbage collector, but not to
the user.

Recent work, beginning with [LieHewS3] and continuing with [BalShi83], [Moon84], and
[Ungar86], has suggested that effort spent in garbage collection can be reduced by making use of
two simple heuristics which depend on knowledge of the age of an object:

« The mortality rate among newly created objects is quite high and is substantially higher
than that of older objects (reduce collected area of heap).

 References contained in an object tend to identify previously cicrted objects (reduce base
set).

The first heuristic leads to a reduction in effort by reducing the size of the heap to be collected.
The reduction results from noting that newly allocated areas tend to yield the highest rato of
dead to live objects. By focusing the effort on regions of newly allocated objects where the
mortality rate is expected to be high, the size of the heap is effectively lessened. The older
portion of the heap can be temporarily absorbed into the base set. Only dead data objects in the
newer part of the heap are reclaimed, dead objects that are contained in the older part of the heap
are not reclaimed and may artificially prolong the life of some objects in the newer part.

But why should pushing objects out of the heap into the base set help performance? All that has
‘been done is to reduce the collectable heap size by enlarging the size of the base set. Indeed, why
isn’t performance worse since some dead data objects have been resurrected and added to the
base set? Informal tests were run to determine how much, if any, improvement could be
expected. Both a compacting mark and sweep and a stop and copy collector were modified to do
partial collection by temporarily moving data objects from the heap to the base set as described
above. Although many of the specific characteristics of the heap, base set and physical memory
were not measured, a general improvement of about 30% was seen for each collector over several
tests. This is certainly a substantial gain, but hardly enough to cause real excitement.

Where did the improvement come from? There are two bases for the speedup. First, by reducing
the size of the collectable heap it is possible to avoid much of the marking or copying that would
normally happen. The entire base set is to be traversed, so pointers into the base set are not
recursively followed. Thus, no effort is spent following pointers into the stable part of the heap;
the stable heap will be traversed as part of the base set. Second, the randomness of access has
been reduced substantially. Random accesses into the stable heap dictated by the base set are
replaced by a linear sweep of the stable heap. Basically, work has been reduced by replacing
decision (involving which objects are live in the stable heap) with definition and by imposing
order on an otherwise chaotic accessing pattern.

It is still necessary to look through the entire base set to find references into the reduced heap.
The price is still being paid to look through every single data object that could ever be used by
any program that was ever loaded into the system. This is not good. The second heuristic says
that the base set can be reduced. This is done by noting that when data objects are created they
are initialized to reference other data objects which already exist. It is quite hard to reference
something which has yet to be created. Therefore, there is a tendency for references to point
backward in time. Of course it is possible for an old object to be modified to reference a newer
object, but empirically that is the exception to the rule [BalShi83]. Thus, to garbage collect a
particular portion of the heap, it is only necessary to look for references in newer parts of the heap
and in places where older parts of the heap have been modified to reference the newer parts. Very
few of the variations of garbage collectors discussed so far preserve information regarding order
of creation (i.e. relative age) of objects across a collection. Using the heuristics requires having

- 10 -

some knowledge of this age information. As will be shown later, it is useful to differennate
between more than old and new objects; there needs to be multiple age groups. In a scheme
developed by Lieberman and Hewitt [LieHew83], it is suggested that the heap be broken into
many smaller subheaps. Associated with each subheap is an "age." By maintaining a table (or
entry vector) of older locations which have been modified to point into each younger subheap, the
base set for a given subheap can be reduced to the entry vector plus younger subheaps.

Unfortunately, by looking through newer areas of the heap to find references into older areas of
the heap, there will be scanning of a substantial percentage of dead objects that will be treated as
live. This is the price to be paid for doing a partial collect of some middle-aged portion of the
heap. Based on the heuristics, under normal circumstances it would be unwise to do a collection
of some middle-aged subheap since it is the youngest subheaps that contains the bulk of the
reclaimable space. If a subheap other than the youngest is to be collected, the best approach
would probably be to collect it at the same time younger areas are being collected.

5.2 Generation Scavenging

Ungar improved on the Lieberman and Hewitt algorithm in a scheme known as Generation
Scavenging {Ungar86]. Generation Scavenging breaks the heap into several logical (not physical)
subheaps or generations. Each reference contains a generation tag which identifies the "age" of
the data object. When a reference to a newer generation is stored in an older generation data
object, the location of the older data object is added to an entry vector known as the remembered
set. At garbage collection time the remembered set acts as the base set for the younger
generations. By reducing the size of the base set which needs to be searched, the amount of
paging that needs to take place will in all likelihood be reduced. If garbage collections occur
frequently enough the base set to be searched can be contained totally within the memory resident
working set [Dennin68].

Generation Scavenging employs an interesting memory layout to help minimize paging. The
dynamic memory is broken into an old area and a new area. Objects are always created in the
new area. When an object has survived for a sufficiently long time, it is moved from the new area
to the old area. Old area objects are considered fairly stable. Only occasional garbage collection
is performed on objects in the old area; during normal execution only the new area is collected.
By moving objects to the old area, the heap size can be reduced.

The new area of the heap is broken into three areas: NewSpace, PastSurvivorSpace, and
- FutureSurvivorSpace. PastSurvivorSpace and FutureSurvivorSpace perform much the same
functions as FromSpace and ToSpace in the stop and copy collector. During a collection, live
objects in PastSurvivorSpace are moved to FutureSurvivorSpace. When the collection is
complete, the two spaces are switched in preparation for the next collection. NewSpace is used to
avoid excessive VM paging. Rather than allocate new objects in PastSurvivorSpace as would be
done in a classic stop and copy scheme, all new objects are allocated in NewSpace. By keeping
the new allocation local to NewSpace, the pages always used for new allocation stand a good
chance of remaining memory resident. It is not necessary to move the allocation area back and
forth as PastSurvivorSpace and FutureSurvivorSpace are switched following collections.
Obviously, during a collection, live objects in NewSpace are moved to FutureSurvivorSpace.
Indeed, by careful layout of the area for new allocation, Generation Scavenging avoids gratuitous
paging and permits the partial collections to be run unnoticed during interactive sessions on the
SOAR Smalltalk system [Ungar86). ’

References contain the age information in a generation tag, so data objects of different
_ generations may be freely mixed in PastSurvivorSpace without fear of losing track of the age of

11 -

any individual object. When an object survives a given number of collections, its generation tag
is modified to indicate that it has gotten older. When the tag shows that the object is old enough,
the object is moved to the old area in a process known as tenuring.

Generation Scavenging was first implemented using custom hardware to trap situations in which
references to new objects were stored into older objects. Ungar has stated that in retrospect the
hardware does not justify itself; it is possible to use inline code surrounding the appropriate stores
to identify the exceptions with only minimal expense.- High frequency stores to stack frames and
registers do not require the inline tests; they are considered part of the youngest generation during
execution. This makes Generation Scavenging appear quite attractive for systems implemented
on conventional hardware. In fact, Generation Scavenging has been used successfully in a
commercial implementation of Smalltalk on a conventional processor [CauWir86].

When evaluating the possible use of Generation Scavenging on the existing Common Lisp
implementation used in measurement, a fundamental problem arose. As defined, Generation
Scavenging requires the use of a field in the reference to provide the age of the associated data
object. There is an additional bit necessary in each data object to aid in maintenance of the
remembered set. Experiments done by the author as well as studies by others have all concluded
that efficient implementation of tagging in a Lisp system is important to performance. It is not
unusual for a Lisp implementation that runs reasonably "safely” to spend approximately 20% of
its time dealing with extraction and testing of tags [TaHLPZ86] [SteHen86]. Special purpose
Lisp architectures are almost always tagged in recognition of this fact. Lisp implementations that
. require efficiency on conventional hardware usually exploit some peculiarity of the architecture
(e.g. word alignment on byte addressed machines or an address range smaller than the data word
size) and use some well thought out encoding scheme to get the best tagging performance
possible. Remember, on an untagged architecture, every dereference can require tag removal.
Getting the tag field to minimum size with maximum useful information while making access
and removal cheap are some of the primary goals of the implementer. Adding a two to four bit
field to each reference for the purpose of encoding a generation number may have great impact on
how tag handling is done. Even if the tag handling is not too expensive, the loss of bits in the
address field may cause an unacceptable loss of address space. Neither the additional tag
handling nor the loss of address bits is practical on the system being studied.

5.3 The Ephemeral Collector

About the same time Generation Scavenging was being added to Smalltalk, the Ephemeral
Collector was being added to ZetaLisp. Ephemeral Collection is an incremental scheme which
utilizes hardware to maintain the entry vectors and to decrease effort necessary to deal with
nonuniformity resulting from the interleaving of the user computation (mutator) with the garbage
collector (transporter and scavenger). The Ephemeral Collector is much more complex than the
following description. For full details see [Moon84].

Much like Generation Scavenging, this scheme is based on a two space copying scheme modified
to deal with reduced heap and base set size. The Ephemeral Collector supports two categories of
dynamic data (dynamic and ephemeral) and a single category of static data. Dynamic objects can
be viewed as either the fenured objects in Generation Scavenging or as a third, intermediate
lifetime generation. Within the category of ephemeral, or short lifetime objects, are several levels
which indicate the age of an object. The level of an object is derivable from its address through
the use of a table; no bits in the reference are needed to encode the age. As an object survives
collections it moves to higher levels until it is finally moved to the category of a dynamic object.
The Ephemeral Collector provides for fine grained control over which levels are being collected
at any time.

-12 -

Hardware is used to maintain the entry vector for the ephemeral regions. When a store occurs,
hardware (the barrier) which monitors the bus looks at the value being stored. If the tag of the
data indicates that the data is a reference, and from looking at the address contained in the
reference it is known that this reference is into an ephemeral area, then a mark is made in a page
table (GCPT) to indicate that the page being written contains a reference into ephemeral space.
Should it be necessary to remove a page from physical memory to make room for another page,
the system software searches the page looking for references into ephemeral space. If any are
found, the page and level of ephemeral object referenced are recorded in a B* tree (ESRT). The
GCPT and ESRT thus define the base set to be used during collection of any level of ephemeral
object. The difference between the remembered set of Generation Scavenging and the GCPT and
ESRT of the Ephemeral Collector is in the way they are maintained (inline code vs. hardware)
and in the detail of information being kept. The remembered set contains specific objects in the
base set. The GCPT and ESRT identify an object according to the page containing it. Because
entire pages can be scanned quickly, the detail of exactly which object contains the possible
reference of interest is not believed to be necessary.

The improvements suggested or implemented by Lieberman and Hewitt, Ungar, Moon, Ballard,
and Shirron have all pointed out ways to increase performance of garbage collection. They are all
based on reducing the heap to be collected and the base set to be traversed. Each of these
schemes provides a solution to the problem of improving garbage collector performance, but
there is a price to be paid. The Ephemeral Collector requires new hardware, the barrier and
GCPT, to be present in a tagged architecture to record references from region to region.
Generation Scavenging has been shown effective in systems running on conventional hardware,
but requires a new tag in each reference. The cost in additional tag handling and reduced address
range, along with the effort needed to maintain the remembered set, may make Generation
Scavenging impractical for many new or existing implementations.

6. The Ne%v Scheme

The scheme we present attempts to supply most of the benefits of improved schemes such as
Lieberman and Hewitt, Generation Scavenging and Ephemeral Collection while providing the
additional advantages of being reasonably easily graftable onto many existing stock systems,
being only minimally disruptive of the system at runtime, and actually benefiting from the
existence of virtual memory.

As with the other schemes, the focus of this scheme is performance improvement through the
reduction of collectable heap and base set size. The reduction of heap size does improve
performance of the collector and allows the effort to be focused in high return areas, but is most
important in that it allows substantial reduction of base set size. Time will not be wasted
searching through old, relatively stable data. The primary differences between the new scheme
and the other improved schemes are in the way the entry vectors or remembered set is maintained
and the identification of generations. The new scheme is premised on the idea that in virtual
memory systems a less specific form of the entry vector information used in Generation
Scavenging and Ephemeral Collection is already being maintained for other purposes.

Previous attempts to make garbage collection cooperate with virtual memory systems have
involved the collectors giving hints fo the virtual memory system, either to change the page
replacement algorithm [FodFat81] [BabJoy81] or to "lock down" areas of memory [Ungar86].
This scheme is based on getting hints from the virtual memory system about the location of
references and the current working set.

13-

In paged virtual memory systems physical memory acts as a cache for pages on disc representing
the entire address space of the process. There is usually hardware associated with the physical
memory page frames to maintain status information about each page, and to help the translation
from virtual to physical addresses. Among the status information normally kept is a bit set by
hardware to indicate that a given page has been written. This bit, the dirty bit, is used to let the
system software know whether or not the memory resident page is in sync with the corresponding
disc resident page. If it is necessary to remove the page from memory to make room for another
(a process called paging), the dirty bit is checked. When it is not set there has been no change to
the pagze; the disc copy is identical and there is no need to write the contents of the page to disc.
The page frame may simply be overwritten by the new page from disc. If the dirty bit is set, then
the page frame contains changes which must be written to disc before the page frame can be
overwritten. As the new page is brought into the memory, the associated dirty bit is reset to
indicate that this page is in sync with its counterpart on disc. The new scheme makes use of these
dirty bits to maintain the entry vector. Application of the scheme will be developed through a
series of examples after first describing the unusual requirements this scheme places on the
language and virtual memory systems.

6.1 Requirements on the Language and Virtual Memory System

In order for the scheme being proposed to work, the underlying virtual memory system must
support two requests. One is a request to clear all dirty bits for the pages in the process initiating
the request. For the moment one could imagine accomplishing this by forcing all dirty pages to
be written to disc (probably a very expensive operation!). A more practical solution for clearing
dirty bits will be described later. The second request is to return a map indicating which pages in
the process have been written (or written and paged out) since the last clear request. The map
could be encoded in many ways, but for this paper the map is assumed to be encoded as a vector
of bits with each bit representing a page in the process (or some portion of the process). For
many systems, this map is not as large as it might first seem. For a 32 Mbyte process on the
machine on which experimention was done, which has 4096 bytes per page, the entire map fits in
fewer than 256 bytes.

To accomodate the scheme, the language system also requires (not very extensive) modification.
Obviously the garbage collector must change.! There are two additional modifications aimed at
providing enough context to make it possible to scan a single arbitrary page in the process for
references into the region being collected.

First, it must be possible to identify the parts of the page map that can contain only valid base set
elements. This implies that code and data must be separated by page or that untagged code and
data must be encapsulated to make their bounds easy to determine.

Second, we need to be able to linearly scan arbitrary pages in the base set, so data (and code)
must be aligned on page boundaries. This makes it possible to determine whether or not
something that appears to be a reference actually is a reference and not just some random bit
pattern that looks like a reference. Pattems used in representing things such as the internal format

1. In a fully tagged system no more changes would be required, but few stock systems are fully tagged. Being fully
tagged means that every word in the memory contains information about how to interpret its content. Most systems
implemented on conventional hardware tag most data objects but fail to tag areas such as blocks of code which
would not normally be accessed as data by the program.

-14 -

for a floating point number are often, but not intentionally, ambiguous. An easy way to get the
necessary context yet provide the flexibility to represent large structures is to use the following
allocation approach. If a structure can be allocated totally on the current page, do it. If it will
overflow the page, set the remainder of the current page to a known value and start the structure
on the next page. If the structure overflows the page even though it starts at the beginning of the
page, note that the second and possibly following pages should be searched starting at the first
page on which it is allocated. Depending on the algorithm used to search pages during collection,
it may be possible to loosen the page alignment constraint if the structure which crosses pages is
known to contain only references. The exception table used to identify multi-page objects might
be nothing more than a bit table similar to that returned by the virtual memory system containing
ones for pages that are continued from the previous page.

6.2 A Stop and Copy Approach

The garbage collectors in which the new scheme is useful all involve traversing the base set to
identify live data objects in a heap. Unfortunately, it is not always the case that every reference
in the base set identifies some data object in the heap; a reference might point to some other piece
of data in the base set or, as is common in the representation of small integers, might actually
contain the data. Any effort spent looking through self-contained data in the base set or
references from the base set to other parts of the base set is nonproductive and may cause pages to
be retrieved from disc that are never referenced except during garbage collections. The first
example shows how the use of virtual memory information can help the garbage collector reduce
the base set to an approximation of the minimal base set and become less disruptive by reducing
unnecessary paging in the process.

Recall a system employing a conventional stop and copy collector. When a collection begins,
FromSpace is full of data and garbage. ToSpace is empty. As the base set is traversed and
references into FromSpace are found, the data is moved from FromSpace to ToSpace and a
forwarding pointer is left in FromSpace to indicate the new location of the data. The reference
in the base set is updated to reflect this new location. If a forwarding pointer is found where the
data should have been in FromSpace, the new location of the data is known and the reference
can be updated. When the base set has been entirely traversed, all references from the base set
into FromSpace have been updated to references into ToSpace.

ToSpace is then linearly searched from the beginning looking for additional references to
FromSpace. Any references to FromSpace are treated the same way that references found in the
base set would be treated. Because the data moved from FromSpace is always moved to the next
free part of ToSpace, the area to be linearly searched grows as the search progresses. When the
end of copied data in ToSpace is reached, the garbage collection is complete. FromSpace
contains only trash and ToSpace contains only live data and unallocated space.

Imagine what happens if the dirty bits are cleared just before the collection starts. As the
collection begins there are no references into ToSpace because there are no data objects there.
When the collection ends the pages written will include all pages in ToSpace which contain live
data, all pages in FromSpace which contain forwarding pointers, and all pages in the base set
containing references which have been updated. It is the pages in the base set that are important;
the other pages in ToSpace and FromSpace may be ignored. The pages marked in the base set
are only those pages that contain references updated to point into ToSpace. This is the smallest
set of pages containing the minimal base set for the newly collected heap. If another garbage
collection were requested at this instant, only the pages in this set would need to be scanned to
find all references into the heap. Another collection at this time would be unnecessary, but as the
user computation is continued, any additional pages in the base set which are written represent

- 15 -

the only other pages which could possibly contain references into the collectable heap.

When the next garbage collection occurs, it is not necessary to traverse the entire base set to find
references into the collectable heap. It is only necessary to scan the pages written during and
since the last collection. If a page in the base set contains no heap references and is not written
during the computation, there is no need to scan it during the collection.

Although the benefits of this example are not necessarily dramatic, the example is intended
primarily as a way of demonstrating the basic function of the scheme. By maintaining
information about where references into the collectable heap could have been stored, it i< vossible
to approximate the minimal base set. All of the following examples employ the same approach:
just before the first reference from the base set to data in the collectable heap is updated, clear the
dirty bits. In this way, if the only subsequent modifications to the base set are to update heap
references, then the pages in the base set written at the finish of the garbage collection will be
those containing the minimal base set for the collected heap.

As is fairly evident, adding the VM information to the operation of the collector did not require
any substantial garbage collector changes other than that necessary to scan the reduced base set.
In fact, the first map of dirty pages was generated via a normal traversal of the full base set. The
following examples will show ways in. which the base set and collectable heap can be reduced to
focus on the areas with the highest mortality rate.

6.2.1 Analysis. Superficially this reduction in base set may not sound very useful. To get some
indication of how useful this might actually be, the four test programs were analyzed to leam
about their base sets and minimal base sets. The results of the measurements follow in Table 1.

TABLE 1. Static Base Set Measurements.

Without Packages With Packages
Total Minimal Refs | Minimal Refs

Program | Base Set | Base Set % to Base Set % to

(Pages) (Pages) Heap (Pages) Heap
Compile 220 86 39 | 5403 200 91 16483
NL 276 120 43 | 7447 254 92 | 20549
Reduce | 278 95 34 | 6287 247 89 | 20469
RSIM 239 93 39 | 5625 210 88 | 17165

As can be seen in the table, the results are broken into two categories. The partition labeled
"With Packages" is a naive measure. These numbers were generated by simply searching all base
set pages for references into the heap. Each page containing a reference to the heap is considered
part of the minimal base set. A total of all references found is reported in the "Refs to Heap"
column. Unfortunately references were spread around enough that about 90% of the-pages in the
full base set contained at least one reference into the heap and thus would have to be scanned to
find all references into the heap. A collection would require a search through approximately 1
megabyte of base set. This does not bode well for the scheme just presented.

A closer inspection of the nature of the heap references showed that, because of the way in which
the system encodes symbols, well over half of the references were to package structures. These
are references which identify the home package for a symbol [Steele84]. Since there are
approximately 20 different package structures contained in the system and packages are by nature
fairly static, most can easily have their (small) top level structure absorbed into the base set. This

-16-

quirk due to encoding was factored out and the modified results are presented in the "Without
Packages" portion of the table. The number of heap references from the base set can thus be
reduced dramatically, and the number- of pages containing heap references can be reduced to
about 40% of the total. This reduction implies that around 60% of the pages in the base set must
be searched only if they have been written during the user computation. Potentially, this
reduction could have a very significant impact on collector performance.

6.3 A Compacting Mark and Sweep Collector Focusing on Newly Allocated Space

Assume a system that uses a compacting mark anc sweep collector which has just finished a
collection. All live heap data have been compressed into the bottom of the heap. The heap
remaining above the live data will be used for future allocation. The currently unallocated area
will be referred to as the new heap. This example will use the most simplistic method of
reducing the collectable heap size. The collectable region of the heap for the next collection will
consist only of the new heap. All objects which have survived the just concluded collection will
be declared stable: they will be considered part of the base set.

The heap size for the next collection has been reduced to include only the highest mortality area.
Now consider what can be done to reduce the base set for the next collection. Optimally, the
minimal base set will consist only of those locations in which references into the new heap will
exist when the next collection begins.

At this point it is known that there are no references into the new heap because there are no
objects allocated there yet. If the dirty bits are now cleared, when the user computation
continues, each write that takes place will cause a dirty bit to be set. When the user computation
is next suspended for garbage collection, the set of pages written will include all the pages in
which references into the new heap were stored. Also included in the pages written will be all
pages in the new heap (allocated storage must be initialized) and any other page which may have
been side-effected as a result of the computation. What is not included is the set of pages in the
base set that have not been written during the user computation. The garbage collection can now
occur in a normal manner with a minor exception. Instead of traversing the entire base set, the
map from the virtual memory system is requested and only the pages which are contained in the
base set and have been written are used. They are linearly scanned looking for references into the
reduced heap and later scanned again during the pointer update phase of the collection. When the
collection is complete, the dirty bits are cleared and the user computation is continued.

As before, the actual technique for garbage collection has not really been altered; all the same
phases normally present in a compacting mark and sweep collector take place. The only
difference is in the manner of traversing the base set.

This approach capitalizes on the idea that the minimal base set for reduced heap is substantially
smaller than the minimal base set for the previous, larger heap. Identifying only the minimal
base set is quite difficult. Neither Generation Scavenging nor the Ephemeral Collector can
guarantee that only the minimal base set will be identified since multiple side effects of the same
location may result in unnecessary entries in the tables. It certainly is the case that the
remembered set used in Generation Scavenging is a much closer approximation of the minimal
base set than the set of pages obtained using the proposed scheme.

The above example demonstrated an easy application of the scheme to reduce effort in.a
compacting mark and sweep scheme. The major problem with this example is that it requires an
object to survive only a single collection before it becomes stable (part of the base set).
Surviving a single collection is probably not sufficient criteria for making a piece of data
permanent in most systems. The stable heap might quickly fill with rapidly dying data.

217 -

Resolving this problem will be discussed in the following sections.

It is interesting to note that even though data that has survived a collection is considered to be
part of the base set, it is still possible to do collections on the data. By completely traversing that
part of the base set which excludes the stable heap and, once again considering the stable part of
the heap dynamic, a full compacting mark and sweep collection can be performed. Separating
the stable heap from the base set should be quite easy. Fully traversing the base set was the
normal operation of the collector prior to the initial clearing of the dirty bits. In fact, at the end of
this full collection the system is in exactly the state described at the beginning of the example.

6.3.1 Analysis. The performance of this scheme depends on the realized reduction in the base
set and the comparison with methods that record individual references rather than the page
containing the reference. The issue is whether there is sufficient overhead involved in scanning
the excess data on a page to make the proposed scheme ineffective. The programs mentioned
earlier were re-examined to determine how many pages would need to be scanned if only pages
modified by the user computation were searched. Table 2 shows the results for the number of
pages modified during the complete computation with no intervening collections.

TABLE 2. Dynamic Base Set Measurements

Total Written During
Program | Base Set Execution %
(Pages) (Pages)
Compile 220 41 19
NL 276 16 6
Reduce 278 37 13
RSIM . 239 17 7

The percentage of the total original base set pages that were modified is quite low (6-19%).
There is reasonable probability that the reduced base set could be held in physical memory. In
fact, there is some chance that all the pages in the reduced base set would be present in memory
when a collection was required. Even in the unlikely event that all base set pages need to be
paged in, it should be possible to do the entire traversal in no more than one fifth the full base set
traversal time.

An additional test was run to learn about the speed at which pages could be linearly scanned. If
page scanning is too costly, it would seem that the only reasonable approach would be adoption
of an entry vector system using inline code similar to that suggested by Generation Scavenging.
There are no clear criteria for deciding the point at which one scheme becomes more attractive
than the other. Many factors must be considered. Certainly as pages get smaller, the scanning
algorithm begins to look better, since, in the limit of page size matching reference size, they are
approximately equivalent. This does not take into account the overhead of maintaining or
searching the entry vector, the density of refererences into the heap contained on the pages
written, or paging involved in making the page to be scanned available. In the case of the
machine used for experimentation, 1024 references can be contained on a single page, so clearly a
single reference can be scanned in about 0.1% of the time for an entire page scan. As more
references into the heap are contained on a single page, the overhead in scanning the page goes
down. The question becomes whether or not on an absolute scale the time differential between
entry vector access and scanning is important. Table 3 shows the times necessary to linearly scan
three classes of memory resident pages: a page filled with references into the collectable heap, a

- 18 -

page filled with references to data objects not in the collectable heap, and a page filled with non-
references. Times given include calculating an address, fetching an item from the page,
extracting the tag, dispatching on the tag and performing a range check on references.

TABLE 3. Page Scanning Time (HP9000/350)

Type of Items Time to Scan 1K Items
(milliseconds)
References into heap 2.54
References outside heap 2.30
Non-references 1.89

There is no clear conclusion. The absolute times are not excessive (30 to 104 milliseconds to
scan all pages touched), but probably much worse than looking through an entry vector
containing only actual references into the heap. Nonetheless, there is no consideration of other
time expenses such as maintenance of the entry vector. It is not even obvious that this time will
not be dwarfed by the time necessary to copy data from one space to the other. It is obvious that
scanning a page takes substantially less time than that required to retrieve a page from disc. On
the system used a page fault takes between 20 and 30 milliseconds to handle, scanning takes
about 2.5 milliseconds. Regardless of comparison to other systems, the ability to avoid page
faults will significantly decrease the time spent in a garbage collection. This is one of the key
goals in reducing both heap and base set.

Maintenance of the entry vector is an overhead cost which must also be considered in deciding
what scheme to use. In the new scheme, there is essentially no time spent maintaining the entry
vector. The entry vector is primarily maintained in VM hardware with a small amount of time
being spent in maintenance during paging operations. There is some time required to retrieve the
entry vectors from the VM system when a garbage collection is to occur. Using the inline coded
version of Generation Scavenging, unnecessary page scanning is avoided by keeping much more
detailed information in the entry vector. When a store operation to a location other than the stack
or registers occurs, a test must be made to see if the generation tag of the destination object
indicates an older object than the generation tag of the value being stored. If a young object is
being stored in an older object it is necessary to add the destination object to the entry vector if
the value being stored is a reference into the collectable heap and the destination object is not
already in the entry vector. On the experimental machine, the inline code to extract the two
generation tags, make the comparison, and conditionally jump to a location where a more
detailed routine could decide if a new object should be added to the entry vector, requires a
minimum of five instructions. This assumes registers are available to hold the generation tag
values. Adding the necessary five instructions to each appropriate write will cause from 7.6 to
15.2% more instructions to be executed in the test programs (not including any instructions
executed if the entry vector may need modification). These results were generated from
information contained in Table 4. Clearly, this is not an insignificant cost.

A possibility which has not yet been mentioned, but which may be useful in systems which do
not support virtual memory or which do not provide the dirty page information, is the use of
inline code to keep track of pages written. This also provides a basis for making a cost
comparison of a detailed entry vector and a dirty page map. If the inline code merely records the
pages written in a vector of bits similar to that returned from the VM system, then the benefits of
the new scheme can be realized without any virtual memory modification. The cost is that of the
inline maintenance of the dirty page map. This cost may be traded off against any time spent in

-19-

the virtual memory system maintaining or returning the dirty page map. The inline code is only
required to extract the page number that is the destination of the store and set the appropriate bit
in the map to reflect the write. On the experimental machine, two instructions would be required
at each write to record the information. This represents a 3.0 to 6.1% increase in the number of
instructions executed and assumes that the map is at a fixed location and a register is available for
the page number.

If we now make the (very simplistic) assumption that all instructions execute in the same amount
of “.me, a reasonable comparison of the cost of entry vector maintenance versus page scan time
ca.l be made. The test program Reduce represents the worst case situation for the new scheme
(i.e. minimum write ratio with one of the largest percentages of pages written), so it will be used
in the comparison. On a 4 MIP machine with no paging or garbage collection, Reduce should
execute in approximately 18.8 seconds. If individual locations are stored in the entry vector, the
overhead would be approximately 1.429 seconds (just for generation tests). If only dirty pages
are recorded, the overhead would be about 0.564 seconds. The difference is 0.865 seconds which
would be the equivalent of scanning 346 pages. Since Reduce only writes 37 pages during its
entire run, the time difference corresponds to scanning all these pages more than nine times.
Thus, using this very simplistic analysis, the inline dirty page map approach is faster than the
inline version of Generation Scavenging until garbage collections are necessary at intervals of
less than two seconds. There is substantial reason to believe that the use of the VM system to
maintain the dirty page map will result in even less overhead, and therefore better performance.

6.4 Stop and Copy Collection with Stable Data

The stop and copy example given earlier only reduces the base set by eliminating some self-
contained structure. This example will show how the stop and copy scheme can be modified in
much the same way as the compacting mark and sweep to reduce the space being collected and,
therefore, further reduce the base set.

Consider a heap divided into two equal spaces. The dirty bits are cleared. New data objects are
allocated starting from the lower end of the upper space (i.e. starting from the middle of the
heap), and continuing toward the upper end of the space (Figure 3a). The user computation
continues until the upper space is filled with newly allocated data objects. The user computation
is suspended for garbage collection.

The dirty bit map is requested but not cleared. A normal stop and copy collection proceeds using
bits in the dirty bit map to determine which pages to scan. The upper space is treated as
FromSpace and the lower space is treated as ToSpace (Figure 3b). Surviving data is copied to
the Jower end of ToSpace and scanned for other references into FromSpace.

When the collection is completed, all live data from the upper space has been copied to the
bottom of the lower space. This is the data which has survived a collection and will be
considered stable. It no longer needs to be considered part of the heap. Removing data from the
heap obviates the need to have storage in both spaces to allow the data to be copied back and
forth. In essence this means that stable data has half the storage requirement of dynamic data.

Because this new stable data is sitting at the bottom of a contiguous heap, it is possible to remove
it from the heap by defining a new bottom for the heap which sits just above the data being
removed (Figure 3c). The newly defined heap is divided into two equal spaces and, after the dirty
bits have been cleared, the user computation may be continued once again using the upper space
for allocation.

FromSpace |
Upper

ToSpace
| i Stable
Stable Stable
(a) Normal Execution (b) During GC (c) After GC

Figure 3. Heap Layout for Quick Stabilization

Even though this layout differs dramatically from the Baker semispaces [Baker78] used in most
stop and copy garbage collectors, the fundamental operations involved in setting up the spaces,
allocating and copying data are identical. There are several benefits of this approach over a
conventional stop and copy collector. First, the collectable heap has been reduced to only the
upper half of the dynamic heap and the newly allocated, high mortality objects contained in it.
The base set can be reduced to reflect this reduction in collectable heap. This should result in
faster collections focused in high return areas.

Second, paging performance should be improved since the new allocation is always being done in
the upper half of the heap. The top of the lower space in the heap should never be touched during
normal operation since data is only copied to the bottom of the lower space. The pages
corresponding to the top of the lower space should be able to remain on disc only to be brought in
during full collections or in the unlikely event that almost the entire collectable heap survived a
collection.

Third, conventional stop and copy collectors can only utilize half of the available data memory
since any collection may require copying all of the data in FromSpace to ToSpace. This scheme
allows up to two thirds of the space to be utilized while still permitting an almost complete
conventional stop and copy collection of the entire stable and dynamic data memory.

The full collection is slow but possible. It should be triggered when, just after a reduced
collection, the stable area exceeds one third of the available data space. Note that just before the
reduced collection approximately two thirds of the data space was in use. If the stable heap does
not exceed half of the available data space, then dividing the available data space into two halves
and performing a full conventional stop and copy collect after clearing the dirty bits will reduce
the stable area but leave it in the upper half of the data space. A second (reduced base set)
collection either before or after allocating the remainder of the upper half of data space will
minimize the stable data size and retum it to the proper place. After clearing the dirty bits and
re-establishing the upper and lower spaces, partial collections can continue if stable space was
reduced to less than a third of available space or if it is acceptable to lose the ability to collect
stable data space using a stop and copy collector.

-21-

If, when the full collection was indicated, the stable heap was over one half of the available
space, a more complex sequence must occur. A full stop and copy collection must be done to
move the newly stable data from lower space back to the upper space. The old stable space must
be treated as part of the base set. Then one full and one reduced base set collection must be done
to move the stable area into lower space and back while considering upper space part of the base
set. A final full collection of upper space to lower space with stable space in the base set
completes the process. The only structures which cannot be collected using this regrettably
complex scheme are circular structures which cross the boundary between stable space and
dynamic space. Of course it is always possible to use a compacting mzrk and sweep collector to
regain all possible space, but this means that two different types of collectors must be supported.

6.5 Minimizing the Dirty Pages

This paper is wrtten with the intent of describing techniques to improve garbage collection
performance in existing or planned systems implemented on conventional hardware. It is not
considered reasonable to expect a major overhaul of an existing language system as a prerequisite
of adopting the techniques presented. Nonetheless, in analyzing some of the data generated, it
became quite evident that a single aspect of data representation could have major impact on both
the virtual memory and garbage collector performance.

Locality of reference is important for efficiency in virtual memory, and minimizing the number of
dirty pages in the base set is important for scanning efficiency in the garbage collector. Writing
to a particular page causes it to be added to the set of pages to be scanned during garbage
collection. It is important to understand more about the nature of writing in the system. The four
test programs were again analyzed. All data presented in this section are based on dynamic
measurements.

Table 4 shows the frequency of writes to memory (not the stack) as a function of instructions
executed. The test programs tend to have about 1.7% of their instructions writing to memory.
RSIM was the only exception with 3% of its instructions performing writes. The most probable
cause for the increased write rate in RSIM is data representation: RSIM makes heavy use of
floating point arithmetic. Floating point numbers are fairly large and are created for each floating
point operation that returns a floating point result.

TABLE 4. Dynamic Frequency of Writes

Instructions Writes Write
Program Executed Executed Frequency

(thousands) | (thousands) %
Compile 471,087 8,543 1.8
NL 703,344 11,591 1.7
Reduce 75,187 1,146 1.5
RSIM 23,849 725 3.0

The write data in the table does not differentiate between writes to pages in the base set and
writes to the newly allocated heap. In order to understand the writes which define the pages in
the base set to be scanned it is necessary to eliminate writes to the new portion of the heap. For
the purpose of this analysis, writes done to initialize newly allocated data are factored out. The
amount of storage allocated to each of the Lisp data types was measured over the duration of each
of the programs. Almost all of the storage allocated is dynamic. There are only a few instances
in which the allocation is done in the static area of the heap. The memory allocation information

=22 -

is shown in Table 5. Also measured was the number of writes made to data objects of the various
types. Based on the total number of writes made to each data type and the number of writes
necessary to handle initialization for the newly allocated data, a measure of the number of writes
that could result in pages being added to the scanning set was generated. This set of results is
shown in Table 6. CONS cells are clearly the dominant data type allocated in the heap. This is
not too surprising. However, once a CONS cell is allocated and initialized, it becomes relatively
unimportant as the destination »f a write operation.

TABLE S. Memory Allocation by Data Type

Compile NL Reduce RSIM
Type 4-byte Items % 4-byte Items % 4-byte Items % 4-byte Items %
(thousands) (thousands) (thousands) (thousands)
Cons 2,472 73.8 1,383 45.7 370 75.2 290 48.3
Vect/Struct 721 21.5 1,301 43.0 50 10.1 14 2.3
String 127 3.8 158 52 51 10.4
Float 296 493
Object 97 3.2
Ratio 87 2.9
Symbol 32 1.0 1 0.2
Fundef 21 43
TABLE 6. Writes to Data Type (ignoring initialization)
Compile NL Reduce RSIM
Type Writes % Writes % Writes % Writes %
(thousands) (thousands) (thousands) (thousands)
Symbol 3,845 74.1 2,529 29.5 434 66.4 239 87.6
Vect/Struct 611 11.8 4802 56.1 107 164 33 12.1
Cons 351 6.8 466 54 20 3.1
String 385 74 287 34 80 12.2 1 04
Object 481 5.6
Fundef 13 2.0

The rows labeled "Symbol” contain the most interesting information. No symbols at all are
allocated during execution in two of the four programs. The two programs which do allocate
symbols, Compile and Reduce, use less than 1% of their total dynamic allocation for new
symbols. Symbols appear to be relatively static. Yet when it comes to non-initializing writes, at
least 29% and as many as 87% of all writes are to symbols. As shown in the table the NL
program is skewed toward writes to vectors. Upon examination as to the reason for the skew, it
was found that approximately 46% of the total non-initializing writes (to all types) in NL are to a
single vector. This vector is used by the interpreter to cache arguments passed from compiled
code. If all code were compiled, the percentage of symbol writes would rise to well over 50%.
Even factoring out the effects of code interpretation, NL has a lower symbol write rate than the
other programs. This is believed to result from NL's use of an object-oriented extension to
Common Lisp. The use of objects has a tendency to shift accesses of global values to accesses of
instance variables which are held in data objects of type "object.” Accesses of the object data type
account for an additional 10% of the writes in NL.

-23.

With the exception of the NL program, writes to symbols exceed writes to any other data type by
at least a factor of four. The symbols being discussed are not the local variables used in
functions. Local variables are stored in activation records on the stack. The symbols being
written are in the global name space.

It certainly appears that some effort should be applied to maximizing the density of symbols in
the system. Some measurements were made of the base set to determine what type of data
objects were modified on the pages written in the dynamic base set. Table 7 shows the
breakdown of pages by contents.

TABLE 7. Type Written on Base Set Pages

Total Symbols Non-Symbols
Program Pages Written % Written %o
Written Only Only
Compile 41 36 88 5 12
NL 16 13 81 3 19
Reduce 37 34 92 3 8
RSIM 17 15 38 2 12

The large majority (81-92%) of pages written were accessed only to alter a symbol. Additional
tests showed that there were many more symbols written than pages, so there is some locality to
the symbol accesses. How can the locality be increased so that fewer pages would need to be
scanned or included in the working set? In other words, what is the best way to get the maximum
number of symbols onto a single page?

Consider what constitutes a Lisp symbol. According to Common Lisp [Steele84], a symbol
consists of five parts: a function cell, a value cell, a property list, a home package, and a name.
The five fields are independent and each may be viewed as being represented by a uniform sized
reference. It is not important to understand the use of each field, only their relationship. There
are two obvious ways of encoding the five fields: they may be encoded into a five field record
which represents a single symbol, or they may be encoded as the contents of an identical offset
into five parallel vectors. Each vector contains the same field for all symbols. The record
approach is used by the experimental system and has the benefit of keeping all fields for a single
symbol quite local. There is an additional benefit in that, because each symbol is independent,
symbols may be created and reclaimed quite easily. The parallel vector approach is not so
flexible, but keeps fields local by the type of field, not by the symbol. That is, the function cell
and value cell of a given symbol are probably spread far apart using this encoding, but the
function cells of all the different symbols are as close as is possible. The problems with the
parallel vector approach are that the vectors are not easily extensible and reclamation of unused
symbols can become quite messy.

Since the two schemes offer different types of locality, it is necessary to determine which will be
most beneficial. Through examination of all defined symbols in the system, it was found that a
symbol tends to be used for one of three purposes: a function name, a global variable, or just a-
name (i.e. a flag). The use of a symbol as a name has no bearing on locality, so that use will be
ignored. The use of symbols as function names and global variables tend to be disjoint: fewer
than 10% of the symbols in the system had both a bound function cell and a bound value cell.
The access rates of the different fields are also important. The bulk of read accesses to symbols
are to the function cells. Almost every time a new function is to be called, it is necessary to

_24 -

access a function cell. This represents about 4% of the instructions in the experimental system.
Value cells are a distant second most likely to be read. The remaining fields are rarely read. As
for write access of symbol fields, things change as Table 8 shows. Essentially every write access
of a symbol is a write of the value cell. For the four programs, the lowest non-initializing write
rate of the value cell was 99.59%.

TABLE 8. Writes Within Symbols by Part of Symbol Written (ignoring initiaiization)

Compile NL Reduce | RSIM
Symbol Part % % % %
Function 0.13 0.03
Value 99.59 10000 | 99.87 100.00
.| Prop-List 0.13 0.07
Package 0.05 0.02
Name 0.10 0.01

The data is all very supportive of the parallel vector encoding. Use of the record style of
encoding surrounds one of the two most useful fields of a symbol with four fields that have little
chance of being accessed. Useful locality is artificially reduced. By using the parallel vector
encoding, there is a greater probability of keeping the heavily used parts of the symbols memory
resident while allowing the relatively unused portion of each symbol to migrate to secondary
storage. Based only on locality and accessing issues, there seems to be a clear winner. A program
using lots of functions will make better use of virtual memory with the parallel vector encoding.
The same encoding means that the value cells are all closer together resulting in more writes
falling on fewer pages. Scanning fewer pages should improve garbage collector performance.

6.6 Adding Aging

It has been stated that new data has a much higher mortality rate than old data. The obvious
problem is defining the age of an object. The previous two examples provided a very simple way
of establishing age: young data is that which has not survived a collection, old data has. This
may be acceptable, but certainly requires some form of evidence that it is sufficient for a practical
System. :

What is a reasonable technique for determining age? The obvious direct use of wall clock time
does not seem appropriate since the lifetime of an object on a slow processor would be longer
than the lifetime of the same object on a faster processor. The age needs to be tied in some way
to the computation. There are many possible metrics which could be used. The one which will
be used here is one of the simplest to implement that still maintains some intuitive meaning. This
metric bases the age of an object on the amount of storage allocated. Each time a fixed amount of
storage is allocated, a new generation is created.? If it is believed that a computation has a
roughly constant allocation rate, the age can be converted into wall clock time scaled for the
speed of the processor.

2. It can be argued that the aging of data (i.e. frequency of reclamation) should be based on wall clock time since
virtual memory algorithms often include time in page freeing policies. The justification for excluding time directly
is that it seems inappropriate to expend any effort reclaiming garbage if there is no demand on the memory
resource. As long as new data objects are not being allocated, the primary benefit of periodic reclamations is to
increase the density of the working set. It is felt that if the area of new allocation is sufficiently small, the impact of
these periodic reclamations on the size of the working set should not be very significant.

.25

Experiments were run to both test mortality rates and learn more about how to deal with aging
data objects. The system used for the experiments contains a hand-coded compacting mark and
sweep collector. This particular collector has the very useful property that the compaction phase
maintains the creation order of the data objects. That is, a given data object in the heap is
younger than those lower in the heap and older than those higher in the heap. Consequently,
markers placed in the heap can be used to gather statistics about the mortality rate in various
generations.

The collector was modified to keep track of the size of each generation in the heap both before’
and after a collection. Statistics were maintained for the nine youngest generations and for a
single group including all older data objects. As described above, to give some intuitive meaning
to the concept of a generation, after each collection the ‘region for new allocation was always
initialized to a constant size. The size of the area to be allocated was increased by factors of two
from 16 kilobytes to 1 megabyte for different runs. A constant allocation area implied that
collections would occur at roughly equal time intervals if the rate of new allocation could be
approximated as a constant. Were this not done the collections would occur at times which
depended on the number of data objects in previous generations; when lots of data objects
existed, the collections would become more frequent and objects would age more quickly.

The test programs were analyzed with respect to their allocation characteristics. The amount of
storage allocated and the number of garbage collections required to run each test is given in Table
9. A plot of the fraction of the originally allocated area which survives to a given generation is
given in Figure 4. For the purpose of this table and plot, a generation is said to pass when 32
kilobytes of the heap have been allocated. This corresponds to 8192 references being allocated
during a single generation. .

TABLE 9. Storage Allocated During Execution
Total Storage | Generations
Program Allocated During Run
(megabytes) (32KB/Gen)

Compile 13.6 435
NL 12.4 398
Reduce 2.0 64
RSIM 2.6 84

We are unaware of any other quantitative studies of data object lifetimes in Lisp. Ungar has done
a study of the lifetimes of objects in Smalltalk which involved a single test program that only
required three collections before termination of a single iteration [Ungar86]. Nonetheless, the
Smalltalk data is similar in appearance to that reported here. There are significant results
contained in Figure 4. First, even though these programs are different (yet reasonably
representative of some normal types of Lisp loads) they all substantiate the premise that the
mortality rate of young objects tends to be significantly higher than that of older objects. Even
the lowest first generation mortality rate is over 69% with only 32 kilobytes being allocated per
generation. With larger allocation areas the rate rises quickly into the 80-98% range. The
mortality rate does not always monotonically decrease as the generation number increases, but a
weak tendency in that direction is apparent. In every case the mortality rate of the youngest
generation far exceeds that of any other generation.

.76 -

Fraction of Data Surviving

Number of Collections (32Kbytes/collection)

Figure 4. Data Object Survival Rate in Four Programs

Second, since the members of older generations are just the survivors of younger generations it is
also true that, in absolute terms, the storage reclaimed from the youngest generation is greater
than the storage reclaimed from any other single generation. In fact, the raw data from which the
plot was created indicate that on the average the storage recovered from the youngest generation
exceeds that recovered from all (eight) other generations.

Third, the lifetimes of data objects in the different programs are not the same. Certainly they
exhibit strong similarities, but, for instance, RSIM data objects seem to die quite rapidly with
about 4% surviving the entire run while NL data objects average much longer lifetimes and
dwindle to less than 1% when the run is complete. Much of the difference can be attributed to the
nature of the data objects generated. RSIM is doing a large amount of floating point computation
while NL does none. On the system being used, floating point computations always produce new
allocations of a floating point object to hold the result. Since floating point data objects used for
intermediate results in calculations have relatively short lifetimes and are created in substantial
numbers by RSIM, the mortality rate is increased for small allocation areas. The increased use of
global data structure in RSIM accounts for discrepancy in the percentage of data objects that
survived the entire run. '

Does the idea of making data stable after it has survived a single collection make sense? For
sufficiently large allocation areas, this may be quite reasonable since the mortality rate will likely
be well over 90% and the frequency of collections will be low. Unfortunately, for smaller
allocation areas the mortality rate among data that has survived a single collection may not be
low enough to prevent the heap from filling with uncollectable data that has died after surviving a
single collection. Ungar has referred to the problem of stabilizing data too quickly as premature
tenuring.

227 -

There is a tradeoff involved in choosing the size of allocation area. If the area is too small,
collections will be frequent and not very effective. If the area is too large, collections will not be
as frequent and will be much more effective, but may result in long delays due to sheer size and
unwanted paging due to the inability to fit the entire area into physical memory. For a system
which makes data stable after only surviving a single collection it would be best to err on the side
of making the allocation area too large, but an optimum size would still allow the area to reside in
memory. .

There are benefits to using small allocition areas in determining generations. Garbage
collections take less time and the entire heap stands a better chance of remaining in physical
memory. There are also benefits to using larger allocation areas. Fewer short lived data objects
will become stable so fewer full scale collections will be needed. By requiring multiple
generations to be survived before stabilization, the benefits of both sizes of allocation areas can
be realized. The next section will explore ways in which data objects can be made to survive an
arbitrary number of generations before moving out of the collectable heap.

6.7 Handling Arbitrary Numbers of Generations

This final example will show how the use of virtual memory information can be combined with
storage layout to create an efficient collection scheme that

¢ focuses on high mortality areas to reduce effort,
« is not excessively disruptive of the working set for a computation,
« allows for stabilization of data after an approximate age has been reached, and

e permits better utilization of memory than more conventional schemes on conventional
hardware.

The method for using virtual memory information has been demonstrated in each of the
preceding examples and is now restated. At a time when the area to be collected during the next
collection is vacant, clear the dirty bits. References to the collectable area cannot exist outside
the set of pages which will be written as the area is allocated.

The new problem which must be addressed in this example is how to handle an arbitrary number
of generations. Generation Scavenging includes a field in each reference to indicate the
generation of the referenced data object. The use of this field allows generations to be mingled
without fear of losing track of age. This approach has some great characteristics, but, as
mentioned earlier, this approach was not considered viable for use in the existing implementation.
The additional tag field would require extensive redesign and would have severe effects on
performance.

It is viewed as critical that the scheme not be overly complex nor put excessive constraints on
memory utilization. For instance, the most straightforward way to handle an arbitrary number of
generations would be to have one heap for each generation. As a data object ages it would pass .
from heap to heap. Figure 5a illustrates the organization of heaps for a system requiring survival
of N garbage collections before a data object could become stable. This approach converts the
explicit field used in Generation Scavenging into positional information; the generation of an
object could be determined by its location. The problem with this approach is that it requires the
division of a single contiguous heap into several smaller heaps. Problems conceming how the
heap should be subdivided and how to adjust the various sizes dynamically will probably result in
poor memory utilization and prevent this from being a viable solution.

-28 -

New =~ 1 H= 2 }f= -+ —= N-2 §—={ N-1 §—={Stable

(a) Simple view

Up to N-1 times N-1 times

Agitheap StableHeap

(b) Modification for easy implementation

Figure 5. Views of a Multi-Generation Heap

Lieberman and Hewitt associate an age with each page of data. This scheme avoids the problem
of having independent heaps since heaps for the various generations are segregated only by
pages. Nonetheless, this scheme was not extensively investigated because it superficially appears
to require a fair bit of bookkeeping and elaborate memory allocation to make everything work

properly.

The storage layout chosen is an engineering compromise which trades control over the exact age
at which an object becomes stable for high memory utilization with a very simple layout and
garbage collector. The layout is based on the use of a stop and copy collector. The easiest way to
understand the scheme is to view data space as consisting of three independent regions:
StableHeap, AgingHeap, and NewHeap. These three regions form a bucket brigade as shown in
Figure 5b. Operation of the scheme is quite similar to the operation of the N stage scheme just
described. StableHeap is where data that has survived sufficient collections resides. Data in
StableHeap is only subject to garbage collection at the rare occasions when a full collection is
signalled. AgingHeap is where the guarantee of age is achieved. When data is moved from
NewHeap to AgingHeap all that is known about its age is that the data has survived at least one
collection. The data may have survived as many as N-1 collections before advancing to the
AgingHeap. The data must then sit in AgingHeap for N-1 collections before being transferred to
StableHeap. Because there is no way to differentiate among the various generations that sit in
AgingHeap, no new data may be added to AgingHeap until the full N-1 collection aging period
is up and/or AgingHeap is emptied. Consequently, new data objects, which may only be
generated in NewHeap, must remain there through up to N-1 garbage collections waiting for
AgingHeap to be vacated. When AgingHeap is empty the contents of NewHeap are then
transferred. Any data objects which reach StableHeap are thus guaranteed to have survived at
least N collections and possibly as many as 2N-1.

Due to the subdivision of a single contiguous heap into three sections it would seem that this
proposal has all the same problems as the earlier subdivided heap proposal. Luckily, this is not
the case. In fact, it is possible to lay out the three areas in such a way that all necessary
movement between heaps and all dynamic sizing of the heaps is accomplished by trivial pointer
manipulation.

The memory layout is shown in Figure 6. StableHeap sits at the top of memory and grows
downward. Below, but touching StableHeap, is a pair of equally sized spaces used as the two
spaces of a stop and copy collector. At any point in time only one of the two spaces is actually in
use, so NewHeap and AgingHeap must share one of the spaces (FromSpace) yet maintain their
independence. This is done by allocating NewHeap from the bottom of the space and allocating
AgingHeap (downwards) from the top. A single pointer identifies the boundary between them.

StableHeap StableHeap StableHeap

i StableHeap
AgingHeap

NewHeap *_
AgingHeap

AgingHeap j

NewHeap |

AgingHeap

NewHeap

(a) Normal Aging GC (b) Heap Transfer GC

Figure 6. Layout and Collection of a Multi-Generation Heap

During a normal garbage collection in which there is no transfer between heaps, the VM page
map is requested, the dirty bits are cleared, then a slightly modified stop and copy garbage
collection is performed. Data objects copied from NewHeap are copied to the bottom of
ToSpace. Data objects to be copied from above the boundary between NewHeap and
AgingHeap are copied to the top of ToSpace. See Figure 6a. The linear search of the top of
ToSpace must also be slightly modified to account for the reverse allocation into the next version
of AgingHeap being done.

Transferring AgingHeap contents to StableHeap looks quite similar to a normal nontransfer
collection. One constraint is that the transfer must always happen just prior to a collection which
will move the data from the space adjacent to StableHeap. When in this configuration
AgingHeap is contiguous with StableHeap (Figure 6b). The stabilization of the aging data
requires nothing more than moving the boundary of StableHeap to include AgingHeap. The
boundary between the two lower spaces can (but may not need to) be adjusted so that the spaces
are again of equal size.

All that remains is to move the data from NewHeap to AgingHeap. The transfer of NewHeap to
AgingHeap can be accomplished by just moving NewHeap/AgingHeap boundary pointer to
indicate that what used to be contained in NewHeap is now contained in AgingHeap. Executing
a normal collection will result in everything appearing in the proper place for the next N-1
normal collections to proceed as required.

-130-

The same garbage collector can be used for all collections and transfers of data from heap 10
heap, only the manipulation of three pointers differentiates among the types of collections being
done. Because the division of the overall data space into three parts is similar to that used in a
previous example, it is possible to follow the same algorithm described for doing a full
collection.

If the allocation from the top of NewHeap is felt to cause excessive paging, the same technique
used in Generation Scavenging can be applied to decrease VM activity. At the bottom of the
heap a fixed size area can be defined which may only ve used for new allocadon. When garbage
collection is required, this area would be considered part £ NewHeap. The heap above the new
allocation area should be broken into thirds, and the boundary between the two semispaces used
in the collection should be fixed at the first third mark above the fixed space; the upper two thirds
will be the original size of the upper semispace. If new allocation is done in the fixed area and
the NewHeap and AgingHeap are copied back and forth as before, with no adjustment of the
bottom semispace size when stabilization occurs, then the paging characteristics will be quite
similar to those of Generation Scavenging. This refinement would be most useful in systems
intending to do very frequent collections (e.g. each few seconds).

6.8 Making the VM Hooks Realistic

The reduction in base set hinges on the ability of the garbage collector to obtain information
about the pages in the process which have been written since a particular time in the computation.
Establishing the time in the computation from which the record is to be kept is the purpose of the
"clear dirty bits" request. Since dirty bits are only set when writes occur, it is not possible to
determine if a page has been written since a particular time unless the dirty bit is reset at that
time. Unfortunately, the resetting of dirty bits interferes with their normal use by the virtual
memory system. They are nommally used to indicate that a page is different from the

" corresponding page held on disc. If the bits are artificially cleared, there is no record that the
page must be written to disc to record the modifications when its time for being paged out arrives.
The changes will be lost unless it becomes the policy that all pages are written out when they
must vacate physical memory. Neither the loss of changes nor the unnecessary disc traffic
resulting from writing out every page is acceptable. Also unacceptable is the technique described
earlier for clearing dirty bits: writing all dirty pages in the process to disc. The purpose of the
proposed scheme is to improve, not degrade garbage collector performance.

Changing the state of the dirty bits indirectly (e.g. by paging out dirty pages) is too expensive
because of the time consuming work which must be done, yet only the hardware dirty bits can
provide the information needed by the collector. The solution then centers on how to save the
state of the bits at a given point in time so that the hardware can be used to record more recent
events. The state recorded in the dirty bits is the information necessary for the garbage collection
(presuming nothing has been paged out). The combination of the state recorded in the dirty bits
and the state saved when the dirty bits were cleared represents the information previously
available to the paging software.

How should the dirty bit state prior to a clear request be held? This information is not of any use
to the garbage collector, so it should be held in the manner that leads to highest efficiency in the
virtual memory system. It can certainly be viewed as a vector of bits in the same orientation as
the physical dirty bits are found, ordered in the same way as page table entries. It is not necessary
that this state information be duplicated for each process. There is only one set of dirty bits so
there only needs to be one set of bits to represent the saved state. See Figure 7.

-31-

Paged |
Bits Processl

-R
——

_Physical Memory _ L]

!

1 I

1 |

1 |

| |

1 | 1 |

Saved | Di ! |

Sggi:!el Bl::sy Page Frames ! B: !

0 | nl :

1 1

I) | !

Q:Q} : P}z;gedlP 2:
- its 1 rocess

00 : a'r

= d i SH |

! i

Q:Q | mp | !

S | n

Ho

my

1 i

N

lm:l

Figure 7. Virtual Memory Structures

Assuming the existence of clearable dirty bits and a bit vector to represent the saved dirty bit
state, the clear request would cause the following sequence to occur. Page frames used by the
process making the request must be found. For each page frame found, if the dirty bit is clear, it
may be skipped. If the dirty bit is set, the corresponding bit in the saved state table must be set
then the dirty bit must be cleared.

The paging software must also be modified to be cognizant of the separation of dirty bit
information into two distinct areas. When a page is paged in, both the dirty bit and the saved
state of the dirty bit must be cleared to indicate that the new page matches the page on disc.
When a page is to be paged out, both copies of the bit must be tested to decide if modifications
have been made to the page. If either bit is set, the page must be written to disc to record the
modifications.

There is still one problem to be solved. Consider the situation in which a page is written then
paged out. Because it is not memory resident, there is no record of it having been modified, yet
all pages on disc cannot be assumed dirty or else each and every one would need to be paged in
for scanning. A modification to the paging out software that recorded dirty pages written out
would provide the necessary information. This record would best be held in exactly the same
format as the dirty page map requested by the user process. By holding it in the same format, the
map which needs to be returned to the user process is nothing more that the inclusive-or of the
map generated by looking through the hardware dirty bits and the paged out map. The paged out
map should be cleared whenever a clear request is received. It should not be cleared when a
paged out page is paged in.

An interesting way to avoid combining maps and improve paging performance as well is to return
the dirty page map and the dirty paged out page maps individually rather than as a single
combined map. The benefit comes from the fact that the collector is now given information about
which of the dirty pages are probably in physical memory and which are probably on disc. By
allowing the collector to order the page scanning in such a way that memory resident pages are
scanned first, paging can be minimized. Memory resident pages will not accidently be paged out
to make room for disc resident pages. If pages in the dirty paged out map can be requested to be
brought in from disc without causing the collector to wait, even greater gains are possible.

When virtual memory requirements were discussed earlier in this paper, the.two requests
mentioned were to clear the dirty bits and to return the dirty page map. For pragmatic reasons it
is probably wise to add an additional call that combines both requests into a "return the map and
clear the dirty bits” call. The reason for this addition is that operating system calls usually carry a
substantial cost in time. Since these calls often occur in close sequence, the ability to combine
them may save half of the overhead involved.

6.9 Bears in the Woods

As with any general approach to a problem, there are specific cases in which the approach is
inappropriate or unnecessary. One must have some understanding of several aspects of a
language implementation and the underlying virtual memory system before blindly adopting the
scheme described. It is important 10 know that virtual memory paging is a substantial expense in
the system. If the entire system is memory resident then the only speedups will come from
reducing the base set or heap and base set. The big benefit of avoiding disruption of the working
szt will not be seen. If the overhead involved in clearing or requesting the dirty page information
is too large (e.g. on systems which either have inefficient system calls or which "page the page
table") or if these actions expose the process to overly expensive rescheduling, much or all of the
potential gains may be lost. If the ratio of process size to page size is large the structures needed
to maintain information about page state may become too cumbersome to readily handle. There
are, however, some techniques of grouping and encoding that may alleviate this problem.

The key point is to understand the various expenses so that a reasonable assessment of the
applicability of the scheme to a given system can be made. It is expected that this scheme will
probably display the largest benefit on single user systems with a simple virtual memory
implementation and a large, but not enormous, virtual to physical memory ratio.

7. Status

The scheme proposed has not yet been fully implemented; it is currently a paper tiger. As is well
known, a paper tiger can have arbitrarily sharp teeth. It is hoped that claims made in this paper
do not exceed the results that will be realized. Many of the key aspects of the scheme have been
based on analysis of real data from real programs running on a real implementation. Special
simulations have been done and some parts of the collection schemes have been implemented and
tested. Some speculation has been made based on other collection schemes which share some
common ideas. Nonetheless, the only way to verify that this scheme will not fall short of
expectations (or exceed expectations) is through an actual implementation.

8. Summary

Classic garbage collection algorithms and virtual memory systems interract poorly because
garbage collection violates some of the basic premises that make virtual memory effective. Past
attempts to alleviate the problem have ranged from giving the virtual memory system hints about

233 -

the impending change in memory accessing characteristics during garbage collection to focusing
effort in the collection process on smaller heaps and base sets so that garbage collection
characteristics will more closely resemble the expectation of the virtual memory system. An
approach has been presented which directly uses the information normmally maintained by a
conventional virtual memory system to reduce collector effort and improve virtual memory
performance.

Experiments were done on an existing Lisp system which confirm for Lisp the validity of the data
object "lifetime" heuristics observed in Smalltalk systems. These heuristics about mortality rates
were used to design a simple heap layout that permits good memory utilization while allowing
the garbage collector to control the period of aging necessary before a data object becomes stable.

Although the new scheme is not expected to outperform either hardware-assisted Generation
Scavenging or the Ephemeral Collector, it should exhibit similar performance while providing
several benefits important to existing or planned implementations on conventional hardware:

» 1o special hardware is required,
¢ N0 new tag field must be handled,
e 1o address range decrease is required,

« no runtime degradation of the language system, only page alignment guidelines must be
followed, and

e good potential for retrofitting to existing systems.

There is a price to be paid in implementing this scheme. The language system must be designed
or modified to obey some simple alignment rules, and the virtual memory software must be
modified to maintain and provide information about some tables which only need to be touched
during paging operations and at the time of a user request. The modifications to the virtual
memory are straightforward and general; the data maintained could prove useful to users of other
programs wishing information about the modified portions of the working sets of their processes.

Garbage collectors have typically had to do more work than necessary because they have had
essentially no information about the process for which they collect. When memory runs out, the
collector has to look through everything to find the garbage. Virtual memory systems know what
has been going on in a process during the recent past and expect similar things to continue. If the
virtual memory keeps just a little more information than usual and makes it available to the
garbage collector so that it too can have knowledge of what has transpired in the process, the job
of collection can be simplified and the expectations of the virtual memory system can be better
met.

References

[BabJoy81] O. Babaoglu and W. Joy, "Converting a Swap-Based System to do Paging in an
Architecture Lacking Page-Referenced Bits," Proceedings of the Eighth
Symposium on Operating Systems Principles, Pacific Grove, California, 1981,
78-86.

[Baker78] H. Baker, "List Processing in Real Time on a Serial Computer,” Communications
of the ACM, Vol. 21, 4 (April 1978), 280-294.

[BalShi83] S. Ballard and S. Shirron, "The Design and Implementation of VAX/Smalltalk-
80," in Smalltalk-80: Bits of History, Words of Advice, G. Krasner (editor),
Addison Wesley, 1983, 127-150.

[CauWir86]

[Cheney70]
[ClaGre77]
[Dennin68]
[Dennin70]
[DeuBob76]

[FenYoc69]
[FodFat81]
[LieHew83]

[Moon84]

[Rovner85]

[Steele84]
[SteHen86]

[TaHLPZ36]

[Ungar86]

[White80]

-34 -

P. Caudill and A. Wirfs-Brock, "A Third Generation Smalltalk-80
Implementation," Object-Oriented Programming Systems, Languages and
Applications Conference Proceedings, Portland, Oregon, 1986, 119-130.

C. Cheney, "A Nonrecursive List Compacting Algorithm," Communications of
the ACM, Vol. 13, 11 (November 1970), 677-678.

D. Clark and C. Green, "An Empirical Study of List Structure in Lisp,”
Communications of the ACM, Vol. 20, 2 (February 1977), 78-87.

PJ. Denning, "The Working Set Model for Program Behaviour,"
Communications of the ACM, Vol. 11, 5 May 1968), 323-333.

P.J. Denning, "Virtual Memory," Computing Surveys, Vol. 2, 3 (September
1970), 153-189.

L.P. Deutsch and D. Bobrow, "An Efficient Incremental Automatic Garbage
Collector,” Communications of the ACM, Vol. 19, 9 (September 1976), 522-526.

R. Fenichel and J. Yochelson, "A LISP Garbage-Collector for Virtual-Memory
Computer Systems,” Communications of the ACM, Vol. 12, 11 (November
1969), 611-612.

J. Foderaro and R. Fateman, "Characterization of VAX Macsyma," Proceedings
of the 1981 ACM Symposium on Symbolic and Algebraic Computation,
Berkeley, California, 1981, 14-19.

H. Lieberman and C. Hewitt, "A Real-Time Garbage Collector Based on the
Lifetimes of Objects,” Communications of the ACM, Vol. 26, 6 (June 1983),
419-429.

D. Moon, "Garbage Collection in a Large Lisp System," ACM Symposium on
Lisp and Functional Programming, Austin, Texas, 1984, 235-246.

P. Rovner, On Adding Garbage Collection and Runtime Types to a Strongly-
Typed, Statically-Checked, Concurrent Language, CSL-84-7, Xerox PARC, Palo
Alto, California, 1985.

G. Steele, Common Lisp: The Language, Digital Press, 465pp., 1984.

P. Steenkiste and J. Hennessy, "LISP on a Reduced-Instruction-Set-Processor,"
Proceedings of the 1986 ACM Conference on Lisp and Functional Programming,
Cambridge, Massachusetts, 1986, 192-201.

G. Taylor, P. Hilfinger, J. Larus, D. Patterson, and B. Zom, "Evaluation of the
SPUR Lisp Architecture," Proceedings of the Thirteenth Symposium on
Computer Architecture, Tokyo, Japan, 1986, 444-452.

D. Ungar, The Design and Evaluation of a High Performance Smalltalk System,
Ph.D. Thesis, UC Berkeley, UCB/CSD 86/287, March 1986.

J. White, "Address/Memory Management For A Gigantic LISP Environment or,
GC Considered Harmful," Conference Record of the 1980 LISP Conference,
Redwood Estates, California, 1980, 119-127.

