
SOFTWARGPRACTICE AND EXPERIENCE, VOL. 26(6), 635652 (JUNE 1996)

Lua-An Extensible Extension Language

ROBERTO IERUSALIMSCHY, LUIZ HENRIQUE DE FIGUEIREDO AND WALDEMAR CELES FILHO
TeCGraf; Computer Science Department, PUC-Rio, Rua M.S. Wncente 225, Rio de Janeiro, Brazil

(email: {roberto,lhf ,celes}Bicad.puc-rio. br)

SUMMARY

This paper describes Lua, a language for extending applications. Lua combines procedural features with
powerful data description facilities, by using a simple, yet powerful, mechanism of tables. This mechanism
implements the concepts of records, arrays and recursive data types (pointers), and adds some object-
oriented facilities, such as methods with dynamic dispatching.

Lua presents a mechanism offallbacks that allows programmers to extend the semantics of the language
in some unconventional ways. As a noteworthy example, fallbacks allow the user to add different kinds
of inheritance to the language.

Currently, Lua is being extensively used in production for several tasks, including user configuration,
general-purpose data-entry, description of user interfaces, storage of structured graphical metafiles, and
generic attribute configuration for finite element meshes.

KEY WORDS: extension languages; end-user programming; programming languages

INTRODUCTION

There is increasing demand for customizable applications. As applications became more
complex, customization with simple parameters became impossible: users now want to
make configuration decisions at execution time; users also want to write macros and scripts
to increase productivity.14 In response to these needs, there is an important trend nowadays
to split complex systems in two parts: kernel and con3guration. The kernel implements
the basic classes and objects of the system, and is usually written in a compiled, statically
typed language, like C or Modula-2. The configuration part, usually written in an inter-
preted, flexible language, connects these classes and objects to give the final shape to the
applicati~n.~

Configuration languages come in several flavors, ranging from simple languages for se-
lecting preferences, usually implemented as parameter lists in command lines or as variable-
value pairs read from configuration files (e.g., MS-Windows’ . i n i files, X11 resource files),
to embedded Languages, for extending applications with user defined functions based on
primitives provided by the applications. Embedded languages can be quite powerful, be-
ing sometimes simplified variants of mainstream programming languages such as Lisp and
C. Such configuration languages are also called extension languages, since they allow the
extension of the basic kernel semantics with new, user defined capabilities.

What makes extension languages different from stand alone languages is that they only
work embedded in a host client, called the host program. Moreover, the host program
can usually provide domain-specific extensions to customize the embedded language for

CCC 0038-0644/96/060635-18
01996 by John Wiley & Sons, Ltd.

Received I2 May I995
Revised 23 August I995

636 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. ElLHO

its own purposes, typically by providing higher level abstractions. For this, an embedded
language has both a syntax for its own programs and an application program interface
(API) for communicating with hosts. Unlike simpler configuration languages, which are
used to supply parameter values and sequences of actions to hosts, there is a two-way
communication between embedded languages and host programs.

It is important to note that the requirements on extension languages are different from
those on general purpose programming languages. The main requirements for extension
languages are:

1 . extension languages need good data description facilities, since they are frequently
used as configuration languages;

2. extension languages should have a clear and simple syntax, because their main users
are not professional programmers;

3. extension languages should be small, and have a small implementation. Otherwise,
the cost of adding the library to an application may be too high;

4. extension languages are not for writing large pieces of software, with hundreds of
thousands lines. Therefore, mechanisms for supporting programming-in-the large, like
static type checking, information hiding, and exception handling, are not essential;

5. finally, extension languages should also be extensible. Unlike conventional languages,
extension languages are used in a very high abstraction level, adequate for interfacing
with users in quite diverse domains.

This paper describes Lua, an extensible procedural language with powerful data descrip-
tion facilities, designed to be used as a general purpose extension language. Lua arose
as the fusion of two descriptive languages, designed for the configuration of two specific
applications: one for scientific data entry,6 the other for visualizing lithology profiles ob-
tained from geological probes. When users began to demand increasingly more power in
these languages, it became clear that real programming facilities were needed. Instead of
upgrading and maintaining two different languages in parallel, the solution adopted was to
design a single language that could be used not only for these two applications, but for any
other application. Therefore, Lua incorporates facilities common to most procedural pro-
gramming languages - control structures (whiles, i f s , etc), assignments, subroutines, and
infix operators - but abstracts out facilities specific to any particular domain. In this way,
Lua can be used not only as a complete language but also as a languageframework.

Lua satisfies the requirements listed above quite well. Its syntax and control structures
are quite simple, Pascal-like. Lua is small; the whole library is around six thousand lines of
ANSI C, of which almost two thousand are generated by yacc. Finally, Lua is extensible.
In its design, the addition of many different features has been replaced by the creation of
a few meta mechanisms that allow programmers to implement those features themselves.
These meta mechanisms are: dynamic associative arrays, reflexive facilities and fallbacks.

Dynamic associative arrays directly implement a multitude of data types, like ordinary
arrays, records, sets, and bags, They also lever the data description power of the language,
by means of constructors.

Reflexive facilities allow the creation of highly polymorphic parts. Persistence and multi-
ple name spaces are examples of features not directly present in Lua, but that can be easily
implemented in Lua itself using reflexive facilities.

Finally, although Lua has a fixed syntax, fallbacks can extend the meaning of many
syntactical constructions. For instance, fallbacks can be used to implement different kinds
of inheritance, a feature not present in Lua.

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 637

AN OVERVIEW OF LUA

This section contains a brief description of the main concepts in Lua. Some examples of
actual code are included, to give a flavor of the language. A complete definition of the
language can be found in its reference m a n ~ a l . ~

Lua is a general purpose embedded programming language designed to support procedural
programming with data description facilities. Being an embedded language, Lua has no
notion of a 'main' program; it only works embedded in a host client. Lua is provided as
a library of C functions to be linked to host applications. The host can invoke functions
in the library to execute a piece of code in Lua, write and read Lua variables, and register
C functions to be called by Lua code. Moreover, fullbacks can be specified to be called
whenever Lua does not know how to proceed. In this way, Lua can be augmented to cope
with rather different domains, thus creating customized programming languages sharing a
single syntactical framework.8 It is in this sense that Lua is a language framework. On the
other hand, it is very easy to write an interactive, stand alone interpreter for Lua (Figure 1).

#include <stdio.h>
#include "lua. h"
#include "lualib . h"

/* lua header file */
/* extra libraries (optional) */

int main (int argc, char *argv [I 1
<
char line [BUFSIZ] ;
iolib-openo ; /* opens 1/0 library (optional) */
strlib-open (1 ; /* opens string lib (optional) */
mathlib-openo ; /* opens math lib (optional) */
while (gets (line) ! = 0)

lua-dostring (line) ;
>

Figure I . An interactive interpreter for Lua

All statements in Lua are executed in a global environment, which keeps all global
variables and functions. This environment is initialized at the beginning of the host program
and persists until its end.

The unit of execution of Lua is called a chunk. A chunk may contain statements and
function definitions. When a chunk is executed, first all its functions and statements are
compiled, and the functions added to the global environment; then the statements are exe-
cuted in sequential order.

Figure 2 shows an example of how Lua can be used as a very simple configuration
language. This code defines three global variables and assigns values to them. Lua is a
dynamically typed language: variables do not have types; only values do. All values carry
their own type. Therefore, there are no type definitions in Lua.

More powerful configurations can be written using flow control and function definitions.
Lua uses a traditional Pascal-like syntax, with reserved words and explicitly terminated

638 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. FILHO

width = 420
height = width*3/2
color = "blue"

-- ensures 3/2 aspect r a t i o

Figure 2. A very simple configuration file

blocks; semicolons are optional. Such syntax is familiar, robust, and easily parsed. A small
example is presented in Figure 3. Notice that functions can return multiple values, and mul-
tiple assignments can be used to collect these values. Thus, parameter passing by reference,
always a source of small semantic difficulties, can be discarded from the language.

Functions in Lua are first class values. A function definition creates a value of type
function, and assigns this value to a global variable (Bound, in Figure 3) . Like any other
value, function values can be stored in variables, passed as arguments to other functions
and returned as results. This feature greatly simplifies the implementation of object-oriented
facilities, as described later in this section.

Besides the basic types number (floats) and s t r ing , and the type function, Lua provides
three other data types: n i l , userdata, and tab le . Whenever explicit type checking is
needed, the primitive function type may be used; it returns a string describing the type of
its argument.

The type n i l has a single value, also called n i l , whose main property is to be different
from any other value. Before the first assignment, the value of a variable is n i l . Therefore,
uninitialized variables, a major source of programming errors, do not exist in Lua. Using
n i l in a context where an actual value is needed (for instance, in an arithmetic expression)
results in an execution error, alerting the programmer that the variable was not properly
initialized.

The type userdata is provided to allow arbitrary host data, represented as void* C
pointers, to be stored in Lua variables. The only valid operations on values of this type are
assignment and equality test.

Finally, the type table implements associative arrays, that is, arrays that can be indexed
not only with integers, but with strings, reals, tables, and function values.

funct ion Bound (w , h)
i f w < 20 then w = 20
e l s e i f w > 500 then w = 500
end
l o c a l midl = w*3/2 -- l oca l var iab le
i f h < minH then h = minH end
r e t u r n w , h

end

width, height = Bound(420, 500)
i f monochrome then color = "black" e l s e color = "blue" end

Figure 3. Configuration file using functions

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 639

list = (1
current = list
i = O
while i < 10 do

-- creates an empty table

current.value = i
current. next = {>
current = current.next
i = it1

end
current.value = i
current.next = list

Figure 4. A circular linked list in h a

Associative arrays

Associative arrays are a powerful language construct; many algorithms are simplified
to the point of triviality because the required data structures and algorithms for searching
them are implicitly provided by the language.' Most typical data containers, like ordinary
arrays, sets, bags, and symbol tables, can be directly implemented by tables. Tables can also
simulate records by simply using field names as indices. Lua supports this representation
by providing a. name as syntactic sugar for a ["name"].

Unlike other languages that implement associative arrays, such as AWK,'O Tcl," and
Perl,I2 tables in Lua are not bound to a variable name; instead, they are dynamically cre-
ated objects that can be manipulated much like pointers in conventional languages. The
disadvantage of this choice is that a table must be explicitly created before used, The ad-
vantage is that tables can freely refer to other tables, and therefore have expressive power
to model recursive data types, and to create generic graph structures, possibly with cycles.
As an example, Figure 4 shows how to build circular linked lists in Lua.

Lua provides a number of interesting ways for creating a table. The simplest form is the
expression (1, which returns a new empty table. A more descriptive way, which creates a
table and initializes some fields, is shown below; the syntax is somewhat inspired in the
BibT$I3 database format:

window1 = Cx = 200, y = 300, foreground = "blue")

This command creates a table, initializes its fields x, y, and foreground, and assigns it to
the variable windowl. Note that tables need not be homogeneous; they can simultaneously
store values of all types.

A similar syntax can be used to create lists:

colors = ("blue", l'yellow", ''red'', "green" , "black")
This statement is equivalent to:

colors = {>
colors [l] = "blue"; colors [23 = "yellow"; colors [3] = "red"
colors [41 = "green" ; colors [5] = "black"

640 R. IERUSALIMSCHY. L. H. DE FIGUEIREDO AND W. C. FILHO

Sometimes, more powerful construction facilities are needed. Instead of trying to pro-
vide everything, Lua provides a simple constructor mechanism. Constructors are written
name(. . .3, which is just syntactic sugar for name ((. . . I > . Thus, with a constructor, a
table is created, initialized, and passed as parameter to a function. This function can do
whatever initialization is needed, such as (dynamic) type checking, initialization of absent
fields, and auxiliary data structures update, even in the host program. Typically, the con-
structor function is pre-defined, in C or in Lua, and often configuration users are not aware
that the constructor is a function; they simply write something like:

window1 = Window(x = 200, y = 300, foreground = "blue" 3
and think about 'windows' and other high level abstractions. Thus, although Lua is dynam-
ically typed, it provides user controlled type constructors.

Because constructors are expressions, they can be nested to describe more complex struc-
tures in a declarative style, as in the code below:

hbox(
d = dialog(

button(l a b e l = "ok" 3 ,
button(l a b e l = "cancel" I

3
3

Reflexive facilities

Another powerful mechanism of Lua is its ability to traverse tables, using the built-in
function next. This function takes two arguments: a table to be traversed and an index of
this table. When the index is n i l , the function returns a first index of the given table and the
value associated to this index; when the index is not n i l , the function returns a next index
and its value. The indices are retrieved in an arbitrary order, and a n i l index is returned
to signal the end of the traversal. As an example of the use of Lua's traversal facilities,
Figure 5 shows a routine for cloning objects. The local variable i runs over the indices of
the object 0, while v receives their values. These values, associated to their corresponding
indices, are stored in a local table new-o.

The same way next traverses a table, a related function, nextvar, traverses the global
variables of Lua. Figure 6 presents a function that saves the global environment of Lua
in a table. As in function clone, a local variable n runs over the names of all global
variables, while v receives their values, which are stored in a local table env. On exit, the
function save returns this table, which can be later given to function r e s t o r e to restore the
environment (Figure 7). This function has two phases. First, the whole current environment
is erased, including predefined functions. Then, local variables n and v run over the indices
and values of the given table, storing these values in the corresponding global variables. A
tricky point is that the functions called by r e s to re must be kept in local variables, because
all global names are erased.

Although it is an interesting example, the manipulation of the global environment in Lua
is scarcely needed, since tables, used as objects, provide a better way to maintain muItipIe
environments.

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 64 1

function clone (01
local new-o = C3
local i, v = next(o,nil)
while i do

-- creates a new object
-- get first index of "0" and its value

new-oCi] = v -- store them in new table
i, v = next(o,i) -- get next index and its value

end
return new-o

end

Figure 5. Function to clone a generic object

Support for object oriented programming
Because functions are first class values, table fields can refer to functions. This property

allows the implementation of some interesting object-oriented facilities, which are made
easier by syntactic sugar for defining and calling methods.

First, method definitions can be written as

function object :method (params)

end
. . .

which is equivalent to

function dummy-name (self, params)

end
object.method = dummy-name

. . .

That is, an anonymous function is created and stored in a table field; moreover, this function
has a hidden parameter called self.

function save 0
local env = {I -- create a new table
local n, v = nextvar(ni1)
while n do

-- get first global var and its value

envCn1 = v -- store global variable in table
n, v = nextvar(n1 -- get next global var and its value

end
return env

end

Figure 6. Function to save Lua environment

642 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. FILHO

function restore (env)
-- save some built-in functions before erasing global environment
local nextvar, next, setglobal = nextvar, next, setglobal
-- erase all global variables
local n, v = nextvar(ni1)
while n do

setglobalh, nil)
n, v = nextvar(n)

end
-- restore old values
n, v = next(env, nil) -- get first index; v = env[nl
while n do
setglobal (n, v) -- set global variable with name n
n, v = next(env, n>
end

end

Figure 7, Function to restore a Lua environment

Second, a method call can be written as

receiver : method(params1

which is translated to

receiver.method(receiver,params)

In words, the receiver of the method is passed as its first argument, giving the expected
meaning to the parameter self.

It is worthwhile to note some characteristics of the above construction. First, it does not
provide information hiding. So, purists may (correctly) claim that an important part of object
orientation is missing. Second, it does not provide classes; each object carries its operations.
Nevertheless, this construction is extremely light (only syntactic sugar), and classes can be
simulated using inheritance, as is common in other prototype based languages, like Self. l 4

However, before discussing inheritance, it is necessary to discuss fallbacks.

FALLBACKS

Being an untyped language, Lua has a semantics with many run-time abnormal conditions.
Examples are arithmetic operations applied to non numerical operands, trying to index a
non table value, or trying to call a non function value. Because halting in these situations
would be unsuitable for an embedded language, Lua allows programmers to set their own
functions to handle error conditions; such functions are called fullback functions. Fallbacks
are also used to provide hooks to handle other situations that are not strictly error conditions,
such as accessing an absent field in a table and signaling garbage collection.

To set a fallback function, the programmer calls the function setf allback, with two
arguments: a string identifying the fallback, and the new function to be called whenever the

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 643

corresponding condition occurs. Function se t f a l lback returns the old fallback function,
so programs can chain fallbacks for different kinds of objects.

"ari th" , "order" , " concat" - These fallbacks are called when an operation is applied
to invalid operands. They receive three arguments: the two operands and a string
describing the offended operator ("add", I'sub", . . .). Their return value is the final
result of the operation. The default functions for these fallbacks issue an error.

"index" - This fallback is called when Lua tries to retrieve the value of an index not
present in a table. It receives as arguments the table and the index. Its return value is
the final result of the indexing operation. The default function returns n i l .

"ge t t ab le" , "settable" - Called when Lua tries to read or write the value of an index
in a non table value. The default functions issue an error.

Lua supports the following fallbacks, identified by the given strings:

f unct ion" - Called when Lua tries to call a non function value. It receives as arguments
the non function value and the arguments given in the original call. Its return values
are the final results of the call operation. The default function issues an error.

llgcII - Called during the garbage collection. It receives as argument the table being col-
lected, and n i l to signal the end of garbage collection. The default function does
nothing.

Before going on, it is important to notice that fallbacks are not usually set by ordinary
Lua programmers. Fallbacks are used mainly by expert programmers when binding Lua to
a specific application. After that, the facility is used as an integral part of the language. As a
typical example, most real applications use fallbacks to implement inheritance, as described
below, but most Lua programmers use inheritance without even knowing (or caring) how
it is implemented.

Using fallbacks
Figure 8 shows an example that uses fallbacks to allow a more object oriented style of

interpreting binary operators. When this fallback is set, expressions like a+b, where a is

func t ion dispatch (rece iver , parameter, operator)
i f type(receiver1 == " tab le" then

e l s e

end

r e t u r n rece iver [operator] (rece iver , parameter)

r e t u r n oldJ?allback(receiver , parameter, operator)

end

oldFallback = se t f a l lback ("a r i th" , dispatch)

Figure 8. An example of fallbacks

644 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. FILHO

a table, are executed as a: add(b). Notice the use of the global variable oldFallback to
chain fallback functions.

Another unusual facility provided by fallbacks is the reuse of Lua's parser. Many appli-
cations would benefit from an arithmetic expression parser, but do not include one because
not everyone has the required expertise or the inclination to write a parser from scratch
or to use a parser generator such as yacc. Figure 9 shows the complete implementation
of an expression parser using fallbacks. This program reads an arithmetic expression on
the variables a, . . . , z , and outputs the series of primitive operations needed to evaluate
the expression, using variables t 1, t2, , , . as temporary variables. For example, the code
generated for the expression

(a*a+b*b)*(a*a-b*b)/(a*a+b*b+c)+(a*(b*b)*c)

is

tl=mul (a, a) t 2=mul (b , b)
t4=sub (t 1, t2) t5=mul (t3, t4) t6=add (t3, c)
t7=div(t5, t6) t8=mul(a,t2) t9=mul (t8, c)
tlO=add(t7,t9)

t 3=add (t 1 , t 2)

The main part of this program is the function arithfb, which is set as a fallback for
arithmetic operations. Function create is used to initialize the variables a, . . . , z with
tables, each with a field name containing the variable name. After this initialization, a loop
reads lines containing arithmetic expressions, builds an assignment to the variable E and
passes it to the Lua interpreter, calling dostring. Every time the interpreter tries to execute
code like a*a, it calls the "arith" fallback, since the value of a is a table, not a number.
The fallback creates a temporary variable to store a symbolic representation of the result of
each primitive arithmetic operation.

Although small, this code actually performs global common sub-expression identification
and generates optimized code. Notice in the example above how a*a+b*b and a*a-b*b
are both evaluated based on a single evaluation of a*a and b*b. Notice also that a*a+b*b
is evaluated once only. Code optimization is done simply by caching previously computed
quantities in a table T, indexed by a textual representation of the primitive operations,
whose values are the temporary variables containing the results. For example, the value of
T["mul(a,a)"l is tl.

The code in Figure 9 can be easily modified to handle commutativity of addition and
multiplication and anti-commutativity of subtraction and division. It is also easy to change
it to output postfix representations or other formats.

In a real application, the variables a, . . . , z would represent application objects, such as
complex numbers, matrices, or even images, and the "arith" fallback would call applica-
tion functions to perform the actual computation on these objects. Thus, the main use of
Lua's parser is to allow programmers to use familiar arithmetic expressions to represent
complex calculations on application objects.

Inheritance via fallbacks
Certainly, one of the most interesting uses of fallbacks is in implementing inheritance in

Lua. Simple inheritance allows an object to look for the value of an absent field in another
object, called its parent; in particular, this field can be a method. This mechanism is a

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 645

n=O -- counter of temporary variables T={)
-- table of temporary variables

function ar i thf b (a b op)
local i=op . . "(" . . a.name . . I t s " . . b.name . . ")"
if T [i] ==nil then -- expression not seen yet
n=n+ 1
T[i]=create("t". .n> -- save result in cache
print(T[i] .name . .)='. .i)

end
return TCiI
end

setf allback("arith" arithfb) -- set arithmetic fallback

function create(v)
local t={name=v)
setglobal (v, t
return t

-- create symbolic variable

end

create("a") create("b") create(Ilc") . . . create("z")
while I do -- read expressions
local s=readO
if (s==nil) then exit0 end
dostring("E=" . . s>
pr in t (s , . 11=11 . .E.name. . "\n")

-- execute fake assignment

end
Figure 9. An optimizing arithmetic expression compiler in Lua

kind of object inheritance, in contrast to the more traditional class inheritance, adopted in
Smalltalk and C++. One way to implement simple inheritance in Lua is to store the parent
object in a distinguished field, called parent for instance, and set an index fallback function
as shown in Figure 10. This code defines a function Inherit and sets it as the "index"
fallback. Whenever Lua attempts to access a field that is absent in an object, the fallback
mechanism calls the function Inherit. This function first checks whether the object has a
field parent containing a table value. If so, it attempts to access the desired field in this
parent object. If this field is not present in the parent, the fallback is automatically called
again; this process is repeated 'upwards' until a value for the field is found or the parent
chain ends.

The above scheme allows endless variations. For instance, only methods could be inher-
ited, or only fields starting with an underscore. Many forms of multiple inheritance can
also be implemented. Among them, a frequently used form is double inheritance. In this
model, whenever a field is not found in the parent hierarchy, the search continues through an

646 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. HLHO

funct ion Inhe r i t (ob jec t , f i e l d)
i f f i e l d == "parent" then

end
l o c a l p = object .parent
i f type(p) == " tab le" then

else

end

-- avoid loops
r e t u r n n i l

-- access parent object
-- check i f parent is a t a b l e
-- (t h i s may c a l l I n h e r i t again) r e t u r n p [f i e l d l

r e tu rn n i l

end

setfal lback("index" , Inhe r i t)

Figure 10. Implementing simple inheritance in Lua

alternative parent, usually called "godparent 'I. In most cases, one extra parent is enough.
Moreover, double inheritance can model generic multiple inheritance. In the code below,
for instance, a inherits from a l , a2, and a3, in this order:

a = {parent = a l , godparent = {parent = a2, godparent = a3))

THE USE OF LUA IN REAL APPLICATIONS

TeCGraf is a research and development laboratory at the Pontifical Catholic University
in Rio de Janeiro (PUC-Rio) with many industrial partners. Some forty programmers at
TeCGraf have used Lua in the past two years to develop several substantial products. This
section describes some of these uses.

Configurable report generator for lithology profiles

As mentioned in the introduction, Lua initially arose for supporting two different applica-
tions that had their own, but limited, extension languages. One of these applications is a tool
for visualizing lithology profiles obtained from geological probes. Its main characteristic is
to allow the user to configure profile layout, combining instances of objects and specifying
the data to be shown. The program supports several kinds of objects, such as continuous
curves, histograms, lithology representation, scales, etc.

To build a layout, users may write Lua code describing these objects (Figure 11). The
application itself also has Lua code that allows the creation of such descriptions by means
of a graphical user interface. This facility was built over the EDG framework, described
below.

Storing structured graphical rnetafiles
Another important use of Lua is for the storage of structured graphical metafiles. The

generic drawing editor TeCDraw, developed by TeCGraf, saves metafiles containing high

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 647

Grid(
name = ''log'',
log = TRUE,
h-step = 25,
v-step = 25,
v-tick = 5,
step-line = Line (color = RED, width = SIMPLE),
tick-line = Line (color = CORAL)

Figure 11. Description of a lithology profile object in Lua

level descriptions, in Lua, of the graphic objects that compose the drawing. Figure 12
illustrates these descriptions.

Such generic structured metafiles bring several benefits for development:

1. As a direct consequence, the Lua interpreter can be used to load and parse the metafile;
the editor only provides functions for holding Lua objects and converting them to the
corresponding application objects.

2. Applications can share graphical objects by using the same metafile format. Moreover,
graphical objects generated in such applications can be edited with TeCDraw.

3. The structured description with Lua syntax makes the metafile editable by humans: it
is easy to identify and modify an object using conventional text editors.

4. Since each object is easily identified, it can be individually manipulated. This feature
is exploited in the EDG system for implementing support to active graphic objects.

5 . A graphical metafile in Lua allows the instantiation of procedural objects. For example,
it is possible to describe curves using mathematical expressions.

High level, generic graphical data entry
Lua features are also heavily exploited in the implementation of EDG, a system for

supporting the development of data entry programs, with high abstraction level. The sys-
tem provides manipulation of interface objects (such as buttons, menus, lists) and graphic
objects (such as lines, circles, and groups of primitives). Hence, programmers can build
sophisticated interface dialogs in a high abstraction programming level. Programmers can
also associate callback actions to graphic objects, thus creating active objects that react
procedurally to user input.

The EDG system uses the Lua fallback feature for implementing double inheritance, as
explained above. Thus, new interface and graphic objects can be built, inheriting original
object behavior. Another interesting use of inheritance present in EDG is cross-language
inheritance. EDG is built upon the portable user interface toolkit IUP.'' To avoid duplicating
in Lua IUP data residing in the host, EDG uses fallbacks for "gettable" and "settable"
to access fields in the toolkit directly from Lua. Thus, host data can be accessed directly,
using an intuitive record syntax, without creating an access function for each exported data
item in the host.

The EDG system has been used in the development of several data entry programs.

648 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. FILHO

line(
x = { 0.0, 1.0 >,
y = C 5.0, 8.0 >,
color = RED

text(
x = 0.8,
y = 0.5,
text = ’an example of text’,
color = BLUE

3
circle(

x = 1.0,
y = 1.0,
r = 5.0

3

Figure 12. A excerpt from a structured graphical metafile

In many engineering systems, the complete analysis is divided in three steps: data entry,
called pre-processing; the analysis itself, called processing or simulation; and result report
and verification, called post-processing. The data entry task can be made easier by drawing
graphical representation of the data that must be specified as input to the analysis. For such
applications, the EDG system is extremely helpful and provides a fast development tool for
customized data entry. These graphical data entry tools have given new life to the legacy
code of batch simulation programs.

Generic attribute configuration for finite element meshes
Another engineering area where Lua is being used is the generation of finite element

meshes. A finite element mesh is composed by nodes and elements, which decompose
the domain of analysis. To complete the model, physical properties (attributes) must be
associated to nodes and elements, such as material type, support conditions and loading
cases. The set of attributes that must be specified varies widely according to the analysis to
be done. Thus, to implement versatile finite element mesh generators, it is recommended
that the attributes remain configurable by the user, and not hard coded in the program.

ESAMI6 is a generic system that uses Lua to provide support for attribute configuration.
Like EDG, ESAM adopts an object oriented approach: users create specific properties
deriving from pre-defined core classes. Figure 13 shows an example of how to create a new
kind of material, called ‘Isotropic’.

RELATED WORK
This section discusses some other extension languages, and compares them with Lua. There
is no intention of being comprehensive; instead, some representatives of current trends in

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 649

ISO-MAT = c t r c l a s s (parent = MATERIAL,
name = "Iso t ropic" ,
vars = Cllell, rrnu")

3

funct ion ISO-MAT:CrtDlg 0

end
. . . -- c rea t e s a dialog t o specify t h i s mater ia l

Figure 13. Creating a new material in ESAM

extension languages have been selected: Scheme, Tcl, and Python. A comprehensive list of
embedded languages is available in the Internet.I7 This section also compares the fallback
mechanism with some other language mechanisms.

Lisp dialects, particularly Scheme, have always been a popular choice for extension
languages, for their simple, easily parsed syntax and built-in e~tensibility.*~'~J~ For instance,
a major part of the text editor Emacs is actually written in its own variant of Lisp; several
other text editors have followed the same path. There are currently many implementations
of Scheme in the form of libraries, especially designed to be used as an embedded language
(for instance, libscheme,** OScheme," and Elk3). However, Lisp cannot be called user-
friendly when it comes to customization. Its syntax is rather crude for non-programmers.
Moreover, few implementations of Lisp or Scheme are truly portable.

Another very popular extension language nowadays is Tcl." Undoubtedly, one of the
reasons for its success is the existence of Tk, a powerful Tcl toolkit for building graphical
user interfaces. Tcl has a very primitive syntax, which greatly simplifies its interpreter, but
also complicates writing even slightly complex constructions. For example, the Tcl code to
double the value of a variable A is s e t A [expr $A*21. Tcl supports a single primitive
type, string. This fact, added to the absence of pre-compilation, makes Tcl rather inefficient,
even for an extension language. Correcting these problems can improve the efficiency of
Tcl by a factor of 5 to 10, as shown by TC21 Lua, with more adequate data types and
pre-compilation, runs 10 to 20 times faster than Tcl. A simple test shows that a procedure
call with no arguments, in Tcl 7.3 running in a Sparcstation 1, costs around 44 ps, while
the increment of a global variable takes 76 ps. In Lua v. 2.1, the same operations cost 6
ps and 4 ps, respectively. On the other hand, Lua is approximately 20 times slower than
C. This seems to be a typical value for interpreted languages.22

Tcl does not have built-in control structures, such as whiles and i f s . Instead, control
structures are programmable via delayed evaluation, as in Smalltalk. Although powerful
and elegant, programmable control structures can lead to very cryptic programs, and are
seldom used in practice. Moreover, they often bring a high performance penalty.

Python23 is an interesting new language that has also been proposed as an extension
language. However, according to its own author, there is still a need for 'improved support
for embedding Python in other applications, e.g., by renaming most global symbols to have
a 'F'y' prefix'.24 Python is not a tiny language, and has many features not necessary in
extension languages, like modules and exception handling. These features add extra cost to
applications using the language.

Lua has been designed to combine the best of existing languages in order to fulfill its

650 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. FILHO

aim as an extensible extension language. Like Tcl, Lua is a small library, with a simple
interface to C; this interface is a single header file with 100 lines. Unlike Tcl, however, Lua
is pre-compiled to a standard bytecode intermediate form. Like Python, Lua has a clean but
familiar syntax, and a built-in notion of objects. Like Lisp, Lua has a single data structure
mechanism (tables), powerful enough to efJicientZy implement most data structures. Tables
are implemented using hashing. Collisions are handled by linear probing, with automatic
reallocation and rehashing when the table becames more than 70% full. Hash values are
cached to improve access performance.

The fallback mechanism presented in Lua can be viewed as a kind of exception han-
dling mechanism with re~umption.'~ However, the dynamic nature of Lua allows its use in
many cases where a statically typed language would issue an error at compile time; both
examples presented above are of this kind. Three particular fallbacks, "arith", "order"
and " concat I ! , are mainly used to implement overloading. In particular, the example in
Figure 9 could be readily translated to other languages with overloading, like Ada or C++.
However, because of its dynamic nature, fallbacks are more flexible than exception handling
or overloading mechanisms. On the other hand, some authorsz6 argue that programs that
use these mechanisms tend to be difficult to verify, understand, and debug; these difficulties
are worsened when using fallbacks. Fallbacks should be written with care and moderation,
and only by expert programmers.

CONCLUSION

The increasing demand for configuration applications is changing the structure of programs.
Nowadays, many programs are written in two different languages: one for writing a pow-
erful 'virtual machine', and another for writing single programs for this machine. Lua is a
language designed specifically for the latter task. It is small: as already noted, the whole
library is around six thousand lines of ANSI C. It is portable: Lua is being used in platforms
ranging from PC-DOS to CFUY. It has a simple syntax and a simple semantics. And it is
flexible.

Such flexibility has been achieved through some unusual mechanisms that make the
language highly extensible. Among these mechanisms, we emphasize the following:

Associative arrays are a strong unifying data constructor. Moreover, it allows more efficient
algorithms than other unifying constructors like strings or lists. Unlike other languages
that implement associative arrays,'&'* tables in Lua are dynamically created objects
with an identity. This greatly simplifies the use of tables as objects, and the addition
of object-oriented facilities.

Fallbacks allow programmers to extend the meaning of most built-in operations. Particu-
larly, with the fallbacks for indexing operations, different kinds of inheritance can be
added to the language, while fallbacks for "ari th" and other operators can implement
dynamic overloading.

Reflexive facilities for data structure traversal help produce highly polymorphic code. Many
operations that must be supplied as primitives in other systems, or coded individually
for each new type, can be programmed in a single generic form in Lua. Examples are
cloning objects and manipulating the global environment.

In addition to using Lua in several industrial applications, we are currently experimenting
with Lua in a number of research projects, ranging from computing with distributed objects

LUA-AN EXTENSIBLE EXTENSION LANGUAGE 65 1

that send each other messages containing Lua codez7 (an idea previously proposed in Tc14),
to transparently extending WWW browsers with client-side Lua code. Because all functions
that interface Lua with the operating system are provided in external libraries, it is easy to
restrict the power of the interpreter in order to provide adequate security.

We also plan to improve the facilities for debugging Lua; currently, only a simple stack
traceback is available. Following the philosophy of providing powerful meta mechanisms
that allow programmers to build their own extensions, we plan to add simple hooks to the
run time system to allow user programs to be informed when important events happen, such
as entering or exiting a function, executing a line of user code, etc. Different debugging
interfaces can be built on top of these basic hooks. Moreover, the hooks are also useful for
building other tools, such as profilers for performance analysis.

The implementation of Lua described in this paper is available in the Internet at:

ftp://ftp.icad.puc-rio.br/pub/lua/lua-2.l.tar.gz
http://www.inf.puc-rio.br/-roberto/lua.html

ACKNOWLEDGEMENTS

We would like to thank the staff at ICAD and TeCGraf for using and testing Lua, and John
Roll, for valuable suggestions by mail concerning fallbacks in a previous version of Lua.
The industrial applications mentioned in the text are being developed in partnership with
the research centers at PETROBRAS (The Brazilian Oil Company) and ELETROBRAS
(The Brazilian Electricity Company). The authors are partially supported by research and
development grants from the Brazilian government (CNPq and CAPES). Lua means moon
in Portuguese.

1.
2.
3.

4.

5.

6.

7.

8.

9.
10.

1 1 .
12.
13.
14.
15.

REFERENCES

B. Ryan, ‘Scripts unbounded’, Byte, 15(8), 235-240 (1990).
N. Franks, ‘Adding an extension language to your software’, Dr. Dobb’s Journal, 16(9), 34-43 (1991).
0. Laumann and C. Bormann. Elk: The extension language kit. f tp : //f tp . cs . indiana.
edu: /pub/scheme-repository/im p/elk-2.2. tar. gz, Technische Universitlt Berlin, Germany.
J. Ousterhout, ‘Tcl: an embeddable command language’, P mc. of fhe Winter 1990 USENIX Conference.
USENIX Association, 1990.
D. Cowan, R. Ierusalimschy, and T. Stepien, ‘Programming environments for end-users’, 12th World
Computer Congress. IFIP, Sep 1992, pp. 54-60 Vol. A-14.
L. H. Figueiredo, C. S. Souza, M. Gattass, and L. C. Coelho, ‘GeraGlo de interfaces para captura de dados
sobre desenhos’, V SIBGRAPI, 1992, pp. 169-175.
R. Ierusalimschy, L. H. Figueiredo, and W. Celes, ‘Reference manual of the programming language Lua
version 2.1’, Monografias em Citncia da Computapio 08/95, PUC-Rio, Rio de Janeiro, Brazil, 1995.
(Available by ftp at ftp. inf .puc-rio .br/pub/docs/techreports.)
B. Beckman, ‘A scheme for little languages in interactive graphics’, Software-P ractice & Experience, 21,

J. Bentley, More programming pearls, Addison-Wesley, 1988.
A. V. Aho, B. W. Kerninghan, and P. J. Weinberger, The AWK programming language, Addison-Wesley,
1988.
J. K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.
L. Wall and R. L. Schwartz, Programming perl, O’Reilly & Associates, Inc., 199 1.
L. Lamport, UTS: A Document Preparation System, Addison-Wesley, 1986.
D. Ungar et al., ‘Self: The power of simplicity’, Sigplan Notices, 22(12), 227-242 (1987). (OOPSLA’87).
C. H. Levy, L. H. de Figueiredo, C. J. Lucena, and D. D. Cowan. IUPLED: a portable user interface
development tool. submited to Software: Practice & Experience.

187-207 (1991).

652 R. IERUSALIMSCHY, L. H. DE FIGUEIREDO AND W. C. FILHO

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.
27.

M. T. de Carvalho and L. F. Martha, ‘Uma arquitetura para configuraqilo de modeladores geomktricos:
aplicaqiio a meclnica computacional’, PANEL95 - XXI Confer&ncia Latino Americana de Informritica, 1995,

C. Nahaboo. A catalog of embedded languages. f t p : / /koala . in r ia . f r : /pub/hbedded
I n t e r p r e t e r s C a t a 1 o g . t x t .
B. W. Benson Jr., ‘libscheme: Scheme as a C Library’, Proceedings of the 1994 USENIX Symposium on
Very High Level Languages. USENIX, October 1994, pp. 7-19.
A. Sah and J. Blow, ‘A new architecture for the implementation of scripting languages’, Proc. USENIX
Symposium on Very High Level Languages, 1994.
A. Baird-Smith, OScheme manual. h t t p : //mu. i n r i a . fr/koala/abaird/oscheme/manual . h t ml,
1995.
A. Sah, ‘TC: An efficient implementation of the Tcl language’, Master’s Thesis, University of California
at Berkeley, Dept. of Computer Science, Berkeley, CA, 1994.
Sun Microsystems, Java, The Language, 1995. http://java.sun.com/people/avh/talk.ps.
G . van Rossum, ‘An introduction to Python for U N W C programmers’, Proc. of the NLUUG najaarscon-
ferentie. Dutch UNIX users group, 1993. (f t p : //f t p . c w i . nl/pub/python/nluug-paper . ps).
G. van Rossum, Python frequently asked questions. f t p : //f t p . cwi . nl/pub/python/python-FA Q,
March 1995. version 1.20++.
S . Yemini and D. Berry, ‘A modular verifiable exception handling mechanism’, ACM Transactions on
Programming Languages and Systems, 7(2) (1985).
A. Black, ‘Exception handling: the case against’, PhD. Thesis, University of Oxford, 1982.
R. Cerqueira, N. Rodriguez, and R. Ierusalimschy, ‘Uma expenencia em programa@o distribuida dirigida
por eventos’, PANEL95 - XXI Confergncia Latino Americana de Informdtica, 1995, pp. 225-236.

pp. 123-134.

