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Resumo. O suporte à concorrência pode ser considerado no projeto de uma linguagem
de programação ou provido por construções incluı́das, frequentemente por meio de bib-
liotecas, a uma linguagem sem suporte ou com suporte limitado a funcionalidades de
concorrência. A escolha entre essas duas abordagens não é simples: linguagens com
suporte nativo à concorrência oferecem eficiência e elegância de sintaxe, enquanto bib-
liotecas oferecem mais flexibilidade. Neste artigo discutimos uma terceira abordagem,
disponı́vel em linguagens de script: embutir a concorrência. Nós utilizamos a linguagem
de programação Lua e explicamos os mecanismos que ela oferece para suportar essa
abordagem. Em seguida, utilizando dois sistemas concorrentes como exemplos, demon-
stramos como esses mecanismos podem ser úteis na criação de modelos leves de con-
corrência.
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Abstract. Concurrency support can be considered in the design of a programming lan-
guage or provided by constructs added, often by means of libraries, to a language with
limited or lacking concurrency features. The choice between these approaches is not an
easy one: explicitly concurrent languages offer efficiency and syntax elegance, while li-
braries offer greater flexibility. In this paper we discuss yet another approach, available to
scripting languages: embedding concurrency. We take the Lua programming language
and explain the mechanisms it offers to support embedding. Then, using two concur-
rent systems as examples, we show how these mechanisms can be useful for creating
lightweight concurrency models.

Keywords: concurrency, Lua, embed, extend, scripting, threads, multithreading



In charge of publications :

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
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1 Introduction

Traditionally, two approaches can be used in order to provide concurrency support in
a programming language: either the language is designed from scratch to incorporate
this support, or concurrency constructs are added by means of libraries to a language
with limited or lacking concurrency features. Considering support for concurrency in
the language design often results in elegant formulations but, on the other hand, in lim-
ited scope of use. Such languages are frequently useful only for the type of application
originally envisaged by the designers. Libraries generally require a smaller effort to de-
velop and offer more flexibility, allowing the programmer to choose the best concurrency
model for each application at hand and even to combine different models in a single ap-
plication [1]. However, it can be hard to provide arbitrary abstractions over languages
that have no support whatsoever for concurrency. How can a library, for instance, hide
access to shared memory?

Scripting languages can offer a third approach. In order to explore it, we must recall
that there are two standard ways to integrate a scripting language with another language:
extending and embedding [2, 3]. To ease the discussion, let us assume that the scripting
language is Lua [4] and the other language is C.

Extending Lua means using C to write new libraries. The main loop of the applica-
tion runs in a Lua script, which calls functions written in C for extra functionality. For
instance, a library written in C can export the POSIX threads (pthreads) model to Lua
scripts. This conforms to the second approach mentioned earlier. A common problem
with this approach is synchronizing the interpreter: a single main loop usually requires
a global interpeter lock (GIL) [5, 6], which limits true concurrency.

Embedding Lua means using it to write new functions that can be called from C. The
main loop of the application runs in C, which calls Lua scripts for extra functionality. For
instance, a C program may use pthreads to run Lua scripts concurrently. This gives us the
third approach. With this approach, any global lock is restricted to the C code. Because
the real work is done by the scripts, such a global lock creates much less contention.

In this paper we discuss the use of this third alternative to implement two different
concurrency abstractions for Lua. We also discuss how some specific Lua mechanisms
aimed at embedding are particularly suitable for building concurrency abstractions.

This paper is organized as follows. In section 2 we discuss the mechanisms that Lua
offers for embedding and how they can be used for concurrency. In sections 3 and 4
we present two concurrency models based on message-passing and discuss each of their
implementations. In section 5 we present some performance analysis results of the previ-
ously discussed implementations. In section 6 we present a brief survey of related work.
Lastly, in section 7 we draw some final remarks.

2 Embedding in Lua

Unlike most other scripting languages, the design of Lua puts great emphasis on embed-
ding [4, 7]. Among the Lua mechanisms aimed at embedding, here we are particularly
interested in coroutines and Lua states.

Coroutines are similar to cooperative threads, which explicitly request transfers of
control. Lua supports asymmetric coroutines [8]. Besides a primitive for creating new
coroutines (threads), this model offers two other relevant primitives: resume, which (re)starts

1



the execution of a coroutine; and yield, which suspends its execution. Coroutines are use-
ful in embedding because they allow a script to return the control to the main loop in the
application and continue its execution later. A typical example is a character in a game:
for each turn, the engine resumes the character script, which runs some predefined ac-
tions and yields.

Lua coroutines are implemented completely inside the interpreter. There is no relation
between Lua coroutines and operating system processes or threads. It is easy to write a
simple scheduler in Lua to emulate non-preemptive concurrency using coroutines [9].
Nevertheless, coroutines by themselves do not support simultaneous execution of multi-
ple flows in multi-processor or multi-core machines.

Most scripting language interpreters maintain state in C global (extern) variables. For
extending, this design is not a problem. However, embedding means using the inter-
preter as a library, and libraries should not keep internal, static, state. The Lua interpreter
maintains its whole state in an instance of a structure called Lua state.

Before any interaction with Lua, an application must create a Lua state. Thereafter,
any call to the Lua-C API gets this state as its first argument. When the application is
done with a state, it can close the state, so that all its resources are freed.

An application may create and manipulate multiple states. Each state is completely
independent; any communication between states must be provided by the application,
through C code. Because the state data structure is quite light, a single C program run-
ning in an off-the-shell desktop can create and manipulate hundreds of thousands of Lua
states.

The programming models we describe in this paper use multiple independent states
in Lua in order to explore the concept of Lua processes, lightweight execution flows of
Lua code able to communicate only by message passing. Each Lua process runs in its
own Lua state, without any form of memory sharing. This implementation results in a
behavior similar to that of operating system (OS) processes, but lighter.

A set of workers, kernel threads implemented in C with the POSIX Threads library
(pthreads) [10], are responsible for effectively executing Lua processes. Workers repeat-
edly take a Lua process from a ready queue and run it either to completion or until a
blocking operation is performed. Potentially blocking operations yield control back to
C code; the worker then can enqueue the Lua process if it should block. When the re-
quested operation is completed, if the Lua process was blocked, it returns to the ready
queue to have its execution resumed.

Both the systems we will discuss are based on message passing. There is of course no
single solution for process communication, but in general the option for no memory shar-
ing simplifies parallel programming, avoiding fine-grained race conditions. Message-
passing primitives are implemented in C and exported to Lua (therefore doing a small
extension to Lua). Messages are managed through a shared C data structure, accessible
only to the internal worker code and controlled through conventional locking operations.

Lua states are fundamental for guaranteeing that Lua processes communicate only
through messages. This approach is in contrast with work such as the one described
in [11], which had to resort to separate OS processes communicating through sockets to
create actors that communicate only though message passing.
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3 luaproc

The programming model we present in this section combines concurrent execution of Lua
code with a deterministic, synchronous, communication scheme. It offers Lua processes
through a library called luaproc [12] and is further detailed in [13]. As discussed on the
previous section, independent Lua states are used and thus there is no shared memory
between Lua processes, which rely exclusively on message passing for communication.

In luaproc, processes have no identifiers, and messages are sent to and received from
channels. Channels are entities on their own, without direct relation to specific processes,
and must be explicitly created. A channel is identified by a name (an arbitrary string
specified when the channel is created). Lua processes only need to know the name of a
channel in order to use it.

Each message carries a tuple of values with basic Lua data types. More complex or
structured data can be transmitted either by serializing it beforehand, as detailed in [9],
or by encoding it as a string of Lua code which will be later executed by the receiving
process.

Sending a message is a synchronous operation, which means control will return to the
sending process only after the message is delivered. Receiving a message, on the other
hand, can be either a synchronous or asynchronous operation, depending on a parameter
passed to the receive function.

4 ALua//

We have also been working with concurrency in event-driven systems [14]. ALua// is a
system which provides a basis for the creation of distributed, event-driven applications
written in Lua.

In ALua//, each event is processed to completion before the next one can be handled.
Lua processes send messages that are chunks of Lua code. Each process has a unique
identifier in the system, and these identifiers are used for specifying the destination of
a message. ALua//’s main loop is responsible for receiving an event and dispatching it
to the respective handler — the default handler is the execution of the enclosed code.
Control returns to the loop only after the handler has finished. This creates a simple
model in which concurrency issues can be ignored, but that also limits the tasks that may
be executed inside a handler to non-blocking, short chunks of code.

We are also investigating, with ALua//, the possibility of combining multithreading
with events. Its architecture allows us to employ threads in order to deal with several
event handlers inside the same processes, in addition to the distributed behavior.

The ALua// model again uses Lua processes with corresponding Lua states. How-
ever, each ALua// process has its own event loop. When creating a new process, the
programmer can choose whether to host it in the current operating system (OS) process
or in a different one.

The ALua// API offers a single function for Lua processes to send events. This func-
tion abstracts the location of the destination process, which may be in the same OS pro-
cess, in another OS process in the same machine, or in a different machine in the network.
The implementation can choose the appropriate way to deliver messages according to
destination.
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5 Performance

In this section we present the results of some performance tests with luaproc and ALua//.
We also present a comparative view to evaluate them against Erlang [15]. Since Erlang
has built-in support for concurrency and is well regarded for its massive concurrency
support and efficient implementation of lightweight processes, we believe this compari-
son is a good benchmark for a library implementation of concurrency.

5.1 Armstrong Challenge

Joe Armstrong proposes a challenge [16] that can be useful to determine the number of
processes that a language or library can support and the extent to which increasing the
number of processes degrades performance. The challenge consists of putting N pro-
cesses in a ring, sending a message around this ring M times, and increasing N until the
system crashes. It also suggests answering a few questions after running the challenge,
such as how long did it take to start the ring, how long did it take to send a message and
when did the ring crash.

In our implementation of the challenge, both in Lua and in Erlang, we created rings
of up to 100,000 processes and passed a simple message 100 times through the ring. We
measured, in seconds, both the time taken to create the processes and the time taken
to complete passing the message around the ring for the specified number of times. In
order to do so, we used the statistics( wall_clock ) call in Erlang and the os.time

function in Lua. Code in Erlang was executed in interpreted (escript) and compiled (erl)
modes, both with SMP support enabled. We ran the test on a machine with an Intel Core
2 Quad Q6700 processor with four cores of 2.66GHz and 3GB of RAM, running Fedora 8
kernel 2.6.26.8-57.fc8 #1 SMP.

Figure 1 shows the time taken to create up to 100,000 processes using luaproc and
Erlang. It is worth noticing that times measured for luaproc account both for creating
the processes and for creating a communication channel for each of them. Also, we were
not able to create 80,000 processes or more using interpreted Erlang code, as our ring
implementation would exhibit an error indicating not enough memory was available to
complete its execution.

It is clear that compiled Erlang shows the best performance with constant and very
small times (under one second) for process creation. However, when using interpreted
code, luaproc shows better performance results.

Figure 2 shows the average time taken to send a single message. We calculated this
time by dividing the total time required to pass the message around the ring for the
specified number of times by the total number of actual send operations (100 * N).

Once again, compiled Erlang shows the best performance, with very small times to
send messages. Also once more, when running interpreted code, luaproc shows better
results than escript. As it can be observed, both luaproc and Erlang show almost constant
times to send messages, despite the increasing number of processes.

Lastly, we observed the ring would crash with around 300,000 processes in luaproc,
around 80,000 processes in interpreted Erlang and around 2,500,000 processes in com-
piled Erlang.
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Figure 1: Time taken to create up to 100,000 processes in our ring implementation.

5.2 HTTP Server

In this section we present an HTTP benchmark in order to test both an Erlang based
webserver and a Lua based webserver enhanced with ALua//. We performed some
tests using the latest version of the Yaws HTTP server [17], implemented in Erlang, and a
variant of Xavante HTTP server [18], which is implemented in Lua. We modified Xavante
in order to leave an ALua// process responsible for listening at the server socket and
dispatching the new connections to a set of ALua// processes that handle the HTTP
requests.

We ran the tests with a client sending multiple simultaneous requests to the server.
We measured the average number of serviced requests per second for dynamic content
(an HTML page where the numbers from 1 to 5,000 are generated). We used the Apache
HTTP server benchmarking tool (ab) [19] as a client. The HTTP client was executed in a
machine with an Intel Core 2 Duo E6750 processor with two cores of 2.66GHz and 1GB
of RAM, running Fedora 8 kernel 2.6.26.8-57.fc8. The HTTP servers were executed on the
same machine where the luaproc tests were performed.

Yaws ran with its default configuration, but we tested Xavante with differents param-
eters. For example, we used 100, 200, 400, and 800 pre-created ALua// processes that
handle the connections. Also, we experimented with 2, 4, and 8 workers to execute the
ALua// processes.

The number of pre-created ALua// processes did not cause significant difference in
the benchmark, so we present the results for 800 ALua// processes in figure 3. The
concurrency level refers to the number of simultaneous requests launched by the client.

We can observe that the Yaws webserver was able to serve more requests than Xavante
with 2 threads as workers, since Yaws used the four available cores. On the other hand,
it is interesting to notice the obvious speedup in Xavante when the number of workers
increased to 4 and 8. We can also notice that Yaws served less requests when the client
augmented the number of requests per second.
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Figure 2: Average time required to send a message in our ring implementation.

6 Related Work

Concurrency in scripting languages is yet to be thoroughly explored. However, there
are some implementations focused on providing concurrency support in scripting lan-
guages, both by extending the languages and by creating concurrency libraries. Lu-
aLanes [20], for instance, is another library for multithreating in Lua which is similar to the
luaproc library presented in this paper. It allows multiple independent execution flows
(or lanes) to run in parallel and offers a tuple space inspired on Linda [21] to allow for
communication between them. Other popular scripting languages such as Python and
Ruby, both of which include some native support for concurrency, also have alternative
concurrency implementations.

Native concurrency in standard Python relies on the operating system to supply (ker-
nel) thread support and is built on top of a conventional preemptive multithreading with
shared memory model. However, despite being able to use kernel threads, the potential
for parallel execution is hampered by its global interpreter lock (GIL) [5, 22]. Alternative
implementations for Python such as Stackless Python [23] offer a complete Python distri-
bution which includes an enhanced interpreter. Stackless Python supports microthreads
(or tasklets) which are user threads managed by the interpreter and scheduled by a built-
in scheduler; it also supports communication channels for inter-process communication.
The greenlets package [24] is derived from Stackless Python and can be used with the
standard Python interpreter as a C extension. It supports greenlets, which work as mi-
crothreads without implicit scheduling and are regarded as a coroutine implementation.
Stage [25] is an actor model [26] programming language based on Python. It extends
and modifies the Python programming language constructs to provide a new language
that presents abstractions that make the actor model more consistent with object oriented
methodologies. Here we can observe both language-based (Stackless Python, Stage) and
library-based approaches (greenlets).

Native concurrency in standard Ruby relies on user threads managed by the inter-
preter. In earlier versions these threads were refered to as Ruby threads and were serviced
by a single kernel thread. Ruby threads were preemptive and could use shared mem-
ory to communicate. In later versions, however, Ruby introduced fibers, which are user
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Figure 3: HTTP requests served per second in Yaws and Xavante with 2, 4 and 8 workers.

threads that rely on cooperative scheduling. Fibers are semi-coroutines, which are like
asymmetric coroutines but can only transfer control back to their caller. Regardless, the
potential for parallel execution in Ruby is still hampered, as in Python, by its global in-
terpreter lock (GIL) [6]. Ruby was used to create an implementation of the actor model,
influenced by the Erlang programming language, which is also named Stage [11], de-
spite holding no direct relationship with the Python implementation of the same name.
Another alternative implementation for concurrency in Ruby is JRuby [27], a pure Java
implementation of the Ruby programming language. Concurrency in JRuby is based on
Java threads, which means Ruby threads can be mapped to kernel threads without a
global interpreter lock between them [6]. Here both approaches are language-based.

7 Final Remarks

The discussion about library-based versus language-based approaches to concurrency is
an old one [28]. In this paper, we discussed a third approach to building concurrency
support into a programming language, based on embedding. We showed how mech-
anisms originally created to support embedding, such as states and coroutines, can be
useful for integrating lightweight concurrency models into Lua.

In the conventional choice between language-based and library-based concurrency, li-
braries usually result in more cumbersome notations and programming [28]. One aspect
we did not discuss in this work is the level of elegance we can attain when using embed-
ding to provide concurrency to scripting languages. This aspect should be the object of
further investigation. However, features such as dynamic typing and first-class functions
with lexical scoping, available in Lua, tend to facilitate seamless integration between li-
braries and language [29].
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