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Many languages (not necessarily 
scripting languages) support extend-
ing through a foreign function interface 
(FFI). An FFI is not enough to allow a 
function in the system language to 
do all that a function in the script can 
do. Nevertheless, in practice FFI cov-
ers most common needs for extend-
ing, such as access to external librar-
ies and system calls. Embedding, on 
the other hand, is more difficult to 
support, because it usually demands 
closer integration between the host 
program and the script, and FFI alone 
does not suffice. 

In this article we discuss how em-
beddability can impact the design of 
a language, and in particular how it 
impacted the design of Lua from day 
one. Lua3,4 is a scripting language with 
a particularly strong emphasis on em-
beddability. It has been embedded in 
a wide range of applications and is a 
leading language for scripting games.2 

The Eye of a Needle 
At first sight, the embeddability of a 
scripting language seems to be a fea-
ture of the implementation of its in-
terpreter. Given any interpreter, we 
can attach an API to it to allow the host 
program and the script to interact. 
The design of the language itself, how-
ever, has a great influence on the way 
it can be embedded. Conversely, if you 
design a language with embeddabil-
ity in mind, this mind-set will have a 
great influence on the final language. 

The typical host language for most 
scripting languages is C, and APIs for 
these languages are therefore mostly 
composed of functions plus some 
types and constants. This imposes a 
natural but narrow restriction on the 
design of an API for a scripting lan-
guage: it must offer access to language 
features through this eye of a needle. 
Syntactical constructs are particularly 
difficult to get through. For example, 
in a scripting language where meth-
ods must be written lexically inside 
their classes, the host language can-
not add methods to a class unless 
the API offers suitable mechanisms. 

Sc  r i p t i n g  la  n g uag e s  a r e  an important element 
in the current landscape of programming  
languages. A key feature of a scripting language  
is its ability to integrate with a system language.7 
This integration takes two main forms: extending 
and embedding. In the first form, you extend the 
scripting language with libraries and functions 
written in the system language and write your main 
program in the scripting language. In the second 
form, you embed the scripting language in a host 
program (written in the system language) so that  
the host can run scripts and call functions defined  
in the scripts; the main program is the host program. 
In this setting, the system language is usually called 
the host language. 



c
r

e
di


t

 t
k

july 2011  |   vol.  54  |   no.  7   |   communications of the acm     39

Similarly, it is difficult to pass lexical 
scoping through an API, because host 
functions cannot be lexically inside 
scripting functions. 

A key ingredient in the API for an 
embeddable language is an eval 
function, which executes a piece of 
code. In particular, when a scripting 
language is embedded, all scripts are 
run by the host calling eval. An eval 
function also allows a minimalist ap-
proach for designing an API. With an 
adequate eval function, a host can 
do practically anything in the script 
environment: it can assign to vari-
ables (eval”a = 20”), query variables 
(eval”return a”), call functions 
(eval”foo(32,’stat’)”), and so on. 
Data structures such as arrays can 
be constructed and decomposed by 
evaluating proper code. For example, 
again assuming a hypothetical eval 
function, the C code shown in Figure 
1 would copy a C array of integers into 
the script.

Despite its satisfying simplicity 
and completeness, an API composed 
of a single eval function has two 
drawbacks: it is too inefficient to be 
used intensively, because of the cost 
of parsing and interpreting a chunk 
at each interaction; and it is too cum-
bersome to use, because of the string 
manipulation needed to create com-
mands in C and the need to serialize 
all data that goes through the API. 
Nevertheless, this approach is often 
used in real applications. Python calls 
it “Very High-Level Embedding.”8 

For a more efficient and easier-to-
use API, we need more complexity. 
Besides an eval function for execut-
ing scripts, we need direct ways to call 
functions defined by scripts, to han-
dle errors in scripts, to transfer data 
between the host program and the 
scripting environment, and so on. We 
will discuss these various aspects of 
an API for an embeddable language 
and how they have affected and been 
affected by the design of Lua, but first 
we discuss how the simple existence 
of such an API can affect a language. 

Given an embeddable language 

with its API, it is not difficult to write 
a library in the host language that ex-
ports the API back into the scripting 
language. So, we have an interesting 
form of reflection, with the host lan-
guage acting as a mirror. Several mech-
anisms in Lua use this technique. For 
example, Lua offers a function called 
type to query the type of a given val-
ue. This function is implemented in 
C outside the interpreter, through an 
external library. The library simply 
exports to Lua a C function (called 
luaB _ type) that calls the Lua API to 
get the type of its argument. 

On the one hand, this technique 
simplifies the implementation of 
the interpreter; once a mechanism is 
available to the API, it can easily be 
made available to the language. On 
the other hand, it forces language fea-
tures to pass through the eye of the 
needle, too. We will see a concrete 
example of this trade-off when we dis-
cuss exception handling. 

Control 
The first problem related to control 
that every scripting language must 
solve is the “who-has-the-main-
function” problem. When we use the 
scripting language embedded in a 
host, we want the language to be a li-
brary, with the main function in the 
host. For many applications, however, 
we want the language as a standalone 
program with its own internal main 
function. 

Lua solves this problem with the 
use of a separate standalone program. 
Lua itself is entirely implemented as a 
library, with the goal of being embed-
ded in other applications. The lua 
command-line program is just a small 
application that uses the Lua library 
as any other host to run pieces of Lua 
code. The code in Figure 2 is a bare-
bones version of this application. The 
real application, of course, is longer 
than that, as it has to handle options, 
errors, signals, and other real-life de-
tails, but it still has fewer than 500 
lines of C code. 

Although function calls form the I
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bulk of control communication be-
tween Lua and C, there are other 
forms of control exposed through the 
API: iterators, error handling, and co-
routines. Iterators in Lua allow con-
structions such as the following one, 
which iterates over all lines of a file: 

for line in io.lines(file) do 

   print(line) 

end 

Although iterators present a new 
syntax, they are built on top of first-
class functions. In our example, the 
call io.lines(file) returns an itera-
tion function, which returns a new line 
from the file each time it is called. So, 
the API does not need anything spe-
cial to handle iterators. It is easy both 
for Lua code to use iterators written 
in C (as is the case of io.lines) and 
for C code to iterate using an iterator 
written in Lua. For this case there is 
no syntactic support; the C code must 
do explicitly all that the for construct 
does implicitly in Lua. 

Error handling is another area 
where Lua has suffered a strong in-

fluence from the API. All error han-
dling in Lua is based on the longjump 
mechanism of C. It is an example of a 
feature exported from the API to the 
language. 

The API supports two mechanisms 
for calling a Lua function: unprotected 
and protected. An unprotected call 
does not handle errors: any error dur-
ing the call long jumps through this 
code to land in a protected call farther 
down the call stack. A protected call 
sets a recovery point using setjmp, 
so that any error during the call is 
captured; the call always returns with 
a proper error code. Such protected 
calls are very important in an embed-
ded scenario where a host program 
cannot afford to abort because of oc-
casional errors in a script. The bare-
bones application just presented 
uses lua _ pcall (protected call) to 
call each compiled line in protected 
mode. 

The standard Lua library simply ex-
ports the protected-call API function 
to Lua under the name of pcall. With 
pcall, the equivalent of a try-catch in 
Lua looks like this: 

local ok, errorobject = pcall(function()	

   --here goes the protected code 

   ... 

end) 

if not ok then 

�   --here goes the error handling code 

   �--(errorobject has more information about 

the error) 

   ... 

end 

This is certainly more cumbersome 
than a try-catch primitive mechanism 
built into the language, but it has a 
perfect fit with the C API and a very 
light implementation. 

The design of coroutines in Lua is 
another area where the API had a great 
impact. Coroutines come in two fla-
vors: symmetric and asymmetric.1 Sym-
metric coroutines offer a single con-
trol-transfer primitive, typically called 
transfer, that acts like a goto: it can 
transfer control from any coroutine 
to any other. Asymmetric coroutines 
offer two control-transfer primitives, 
typically called resume and yield, that 
act like a pair call–return: a resume 
can transfer control to any other co-
routine; a yield stops the current co-
routine and goes back to the one that 
resumed the one yielding. 

It is easy to think of a coroutine as a 
call stack (a continuation) that encodes 
which computations a program must 
do to finish that coroutine. The trans-
fer primitive of symmetric coroutines 
corresponds to replacing the entire 
call stack of the running coroutine by 
the call stack of the transfer target. On 
the other hand, the resume primitive 
adds the target stack on top of the cur-
rent one. 

A symmetric coroutine is simpler 
than an asymmetric one but poses a big 
problem for an embeddable language 
such as Lua. Any active C function in a 
script must have a corresponding ac-
tivation register in the C stack. At any 
point during the execution of a script, 
the call stack may have a mix of C func-
tions and Lua functions. (In particular, 
the bottom of the call stack always has 
a C function, which is the host program 
that initiated the script.) A program 
cannot remove these C entries from 
the call stack, however, because C does 
not offer any mechanism for manipu-
lating its call stack. Therefore, the pro-
gram cannot make any transfer. 

Figure 1.  Passing an array through an API with eval.

void copy (int ar[], int n) { 
      int i; 
      eval(“ar = {}”); /* create an empty array */ 
      for (i =0; i <n; i++){ 
        char buff[100]; 
        sprintf(buff, “ar[%d] = %d”, i + 1, ar[i]); 
        eval(buff); /* assign i-th element */ 
      }
} 

Figure 2. The bare-bones Lua application.

#include <stdio.h> 
#include “lauxlib.h”
#include “lualib.h” 

int main (void) { 
  char line[256]; 
  lua_State *L = luaL_newstate(); /* create a new state */ 
  luaL_openlibs(L);          /* open the standard libraries */ 

  /* reads lines and executes them */ 
  while (fgets(line, sizeof(line), stdin) != NULL) { 
    luaL_loadstring(L, line); /* compile line to a function */ 
    lua_pcall(L, 0, 0, 0);             /* call the function */ 
  } 

  lua_close(L); 
  return 0; 
} 
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Asymmetric coroutines do not 
have this problem, because the resume 
primitive does not affect the current 
stack. There is still a restriction that a 
program cannot yield across a C call—
that is, there cannot be a C function in 
the stack between the resume and the 
yield. This restriction is a small price to 
pay for allowing portable coroutines in 
Lua.

Data 
One of the main problems with the 
minimalist eval approach for an API 
is the need to serialize all data either 
as a string or a code segment that re-
builds the data. A practical API should 
therefore offer other more efficient 
mechanisms to transfer data between 
the host program and the scripting en-
vironment. 

When the host calls a script, data 
flows from the host program to the 
scripting environment as arguments, 
and it flows in the opposite direction 
as results. When the script calls a host 
function, we have the reverse. In both 
cases, data must be able to flow in both 
directions. Most issues related to data 
transfer are therefore relevant both for 
embedding and extending. 

To discuss how the Lua–C API han-
dles this flow of data, let’s start with an 
example of how to extend Lua. Figure 
3 shows shows the implementation of 
function io.getenv, which accesses 
environment variables of the host pro-
gram. 

For a script to be able to call this 
function, we must register it into the 
script environment. We will see how 
to do this in a moment; for now, let us 
assume that it has been registered as 
a global variable getenv, which can be 
used like this: 

print(getenv(“PATH”)) 

The first thing to note in this code 
is the prototype of os _ getenv. The 
only parameter of that function is a 
Lua state. The interpreter passes the 
actual arguments to the function (in 
this example, the name of the environ-
ment variable) through a data struc-
ture inside this state. This data struc-
ture is a stack of Lua values; given its 
importance, we refer to it as the stack. 

When the Lua script calls getenv, 
the Lua interpreter calls os _ getenv 

with the stack containing only the ar-
guments given to getenv, with the first 
argument at position 1 in the stack. 
The first thing os _ getenv does is 
to call luaL _ checkstring, which 
checks whether the Lua value at posi-
tion 1 is really a string and returns a 
pointer to the corresponding C string. 
(If the value is not a string, luaL _
checkstring signals an error using a 
longjump, so that it does not return to 
os _ getenv.) 

Next, the function calls getenv 
from the C library, which does the real 
work. Then it calls lua _ pushstring, 
which converts the C string value into 
a Lua string and pushes that string 
onto the stack. Finally, os _ getenv 
returns 1. This return tells the Lua in-
terpreter how many values on the top 
of the stack should be considered the 
function results. (Functions in Lua 
may return multiple results.) 

Now let’s return to the problem 
of how to register os _ getenv as 
getenv in the scripting environment. 
One simple way is by changing our pre-
vious example of the basic standalone 
Lua program as follows: 

 lua _ State *L = luaL _ newstate();  

 /* creates a new state */ 

 luaL _ openlibs(L);  

 /* opens the standard libraries */ 

+ �lua _ pushcfunction(L, os _ getenv); 

+ lua _ setglobal(L, “getenv”); 

The first added line is all the magic 
we need to extend Lua with host func-
tions. Function lua _ pushcfunc-
tion receives a pointer to a C func-
tion and pushes on the stack a (Lua) 
function that, when called, calls its 
corresponding C function. Because 
functions in Lua are first-class values, 
the API does not need extra facilities 
to register global functions, local func-
tions, methods, and so forth. The API 
needs only the single injection func-

tion lua _ pushcfunction. Once cre-
ated as a Lua function, this new value 
can be manipulated just as any other 
Lua value. The second added line in 
the new code calls lua _ setglobal 
to set the value on the top of the stack 
(the new function) as the value of the 
global variable getenv. 

Besides being first-class values, 
functions in Lua are always anony-
mous. A declaration such as 

function inc (x) return x + 1 end 

is syntactic sugar for an assignment: 

inc = function (x) return x + 1 end 

The API code we used to register 
function getenv does exactly the same 
thing as a declaration in Lua: it creates 
an anonymous function and assigns it 
to a global variable. 

In the same vein, the API does not 
need different facilities to call different 
kinds of Lua functions, such as global 
functions, local functions, and meth-
ods. To call any function, the host first 
uses the regular data-manipulation fa-
cilities of the API to push the function 
onto the stack, and then pushes the ar-
guments. Once the function (as a first-
class value) and the arguments are in 
the stack, the host can call it with a sin-
gle API primitive, regardless of where 
the function came from. 

One of the most distinguishing 
features of Lua is its pervasive use of 
tables. A table is essentially an asso-
ciative array. Tables are the only data-
structure mechanisms in Lua, so they 
play a much larger role than in other 
languages with similar constructions. 
Lua uses tables not only for all its data 
structures (records and arrays among 
others), but also for other language 
mechanisms, such as modules, ob-
jects, and environments. 

The example in Figure 4 illustrates 
the manipulation of tables through the 

Figure 3. A simple C function.

static int os_getenv (lua_State *L) {
  const char *varname = luaL_checkstring(L, 1);
  const char *value = getenv(varname);
  lua_pushstring(L, value);
  return 1;
}
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API. Function os _ environ creates 
and returns a table with all environ-
ment variables available to a process. 
The function assumes access to the 
environ array, which is predefined in 
POSIX systems; each entry in this array 
is a string of the form NAME=VALUE, de-
scribing an environment variable. 

The first step of os _ environ is 
to create a new table on the top of the 
stack by calling lua _ newtable. Then 
the function traverses the array envi-
ron to build a table in Lua reflecting 
the contents of that array. For each en-
try in environ, the function pushes 
the variable name on the stack, push-
es the variable value, and then calls 
lua _ settable to store the pair in the 
new table. (Unlike lua _ pushstring, 
which assumes a zero-terminated 
string, lua _ pushlstring receives an 
explicit length.) 

Function lua _ settable assumes 
that the key and the value for the new 
entry are on the top of the stack; the 
argument –3 in the call tells where the 
table is in the stack. (Negative numbers 
index from the top, so –3 means three 
slots from the top.) 

Function lua _ settable pops 
both the key and the value, but leaves 
the table where it was in the stack. 
Therefore, after each iteration, the 

table is back on the top. The final re-
turn1 tells Lua that this table is the 
only result of os _ environ. 

A key property of the Lua API is that 
it offers no way for C code to refer di-
rectly to Lua objects; any value to be 
manipulated by C code must be on the 
stack. In our last example, function 
os _ environ creates a Lua table, fills 
it with some entries, and returns it to 
the interpreter. All the time, the table 
remains on the stack. 

We can contrast this approach with 
using some kind of C type to refer to 
values of the language. For example, 
Python has the type PyObject; JNI 
(Java Native Interface) has jobject. 
Earlier versions of Lua also offered 
something similar: a lua _ Object 
type. After some time, however, we de-
cided to change the API.6 

The main problem of a lua _ Ob-
ject type is the interaction with the 
garbage collector. In Python, the pro-
grammer is responsible for calling 
macros such as Py _ INCREF and DE-
CREF to increment and decrement 
the reference count of objects being 
manipulated by the API. This explicit 
counting is both complex and error 
prone. In JNI (and in earlier versions 
of Lua), a reference to an object is valid 
until the function where it was created 

returns. This approach is simpler and 
safer than a manual counting of refer-
ences, but the programmer loses con-
trol of the lifetime of objects. Any object 
created in a function can be released 
only when the function returns. In con-
trast, the stack allows the programmer 
to control the lifetime of any object in a 
safe way. While an object is in the stack, 
it cannot be collected; once out of the 
stack, it cannot be manipulated. More-
over, the stack offers a natural way to 
pass parameters and results. 

The pervasive use of tables in Lua 
has a clear impact on the C API. Any-
thing in Lua represented as a table can 
be manipulated with exactly the same 
operations. As an example, modules in 
Lua are implemented as tables. A Lua 
module is nothing more than a table 
containing the module functions and 
occasional data. (Remember, functions 
are first-class values in Lua.) When you 
write something like math.sin(x), you 
think of it as calling the sin function 
from the math module, but you are ac-
tually calling the contents of field “sin” 
in the table stored in the global variable 
math. Therefore, it is very easy for the 
host to create modules, to add func-
tions to existing modules, to “import” 
modules written in Lua, and the like. 

Objects in Lua follow a similar pat-
tern. Lua uses a prototype-based style 
for object-oriented programming, 
where objects are represented by ta-
bles. Methods are implemented as 
functions stored in prototypes. Similar-
ly to modules, it is very easy for the host 
to create objects, to call methods, and 
so on. In class-based systems, instanc-
es of a class and its subclasses must 
share some structure. Prototype-based 
systems do not have this requirement, 
so host objects can inherit behavior 
from scripting objects and vice versa. 

eval and Environments 
A primary characteristic of a dynamic 
language is the presence of an eval 
construction, which allows the execu-
tion of code built at runtime. As we dis-
cussed, an eval function is also a basic 
element in an API for a scripting lan-
guage. In particular, eval is the basic 
means for a host to run scripts. 

Lua does not directly offer an eval 
function. Instead, it offers a load func-
tion. (The code in Figure 2 uses the 
luaL _ loadstring function, which 

Figure 4. A C function that returns a table.

extern char **environ; 
static int os_environ (lua_State *L) { 
  int i; 

  /* push a new table onto the stack */ 
  lua_newtable(L); 

  /* repeat for each environment variable */ 
  for (i = 0; environ[i] != NULL; i++) { 

    /* find the ’=’ in NAME=VALUE */ 
    char *eq = strchr(environ[i], ’=’); 

    if (eq) { 
      /* push name */ 
      lua_pushlstring(L, environ[i], eq -environ[i]); 

      /* push value */ 
      lua_pushstring(L, eq + 1); 

      /* table[name] = value */ 
      lua_settable(L, -3); 
    }
  } 

  /* result is the table */ 
  return 1; 
} 
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is a variant of load.) This function does 
not execute a piece of code; instead, 
it produces a Lua function that, when 
called, executes the given piece of code. 

Of course, it is easy to convert eval 
into load and vice versa. Despite this 
equivalence, we think load has some 
advantages over eval. Conceptually, 
load maps the program text to a value 
in the language instead of mapping it 
to an action. An eval function is usually 
the most complex function in an API. 
By separating “compilation” from ex-
ecution, it becomes a little simpler; in 
particular, unlike eval, load never has 
side effects. 

The separation between compila-
tion and execution also avoids a combi-
natorial problem. Lua has three differ-
ent load functions, depending on the 
source: one for loading strings, one for 
loading files, and one for loading data 
read by a given reader function. (The 
former two functions are implemented 
on top of the latter.) 

Because there are two ways to call 
functions (protected and unprotected), 
we would need six different eval func-
tions to cover all possibilities. 

Error handling is also simpler, as 
static and dynamic errors occur sepa-
rately. Finally, load ensures that all Lua 
code is always inside some function, 
which gives more regularity to the lan-
guage. 

Closely related to the eval function 
is the concept of environment. Every 
Turing-complete language can inter-
pret itself; this is a hallmark of Turing 
machines. What makes eval special 
is that it executes dynamic code in the 
same environment as the program that 
is using it. In other words, an eval 
construction offers some level of re-
flection. For example, it is not too dif-
ficult to write a C interpreter in C. But 
faced with a statement such as x=1, 
this interpreter has no way of access-
ing variable x in the program, if there 
is one. (Some non-ANSI facilities, such 
as those related to dynamic-linking li-
braries, allow a C program to find the 
address of a given global symbol, but 
the program still cannot find anything 
about its type.) 

An environment in Lua is simply a 
table. Lua offers only two kinds of vari-
ables: local variables and table fields. 
Syntactically, Lua also offers global 
variables: any name not bound to a lo-

cal declaration is considered global. 
Semantically, these unbound names 
refer to fields in a particular table asso-
ciated with the enclosing function; this 
table is called the environment of that 
function. In a typical program, most 
(or all) functions share a single envi-
ronment table, which then plays the 
role of a global environment. 

Global variables are easily acces-
sible through the API. Because they 
are table fields, they can be accessed 
through the regular API to manipu-
late tables. For example, function 
lua _ setglobal, which appears in 
the bare-bones Lua application code 
shown earlier, is actually a simple 
macro written on top of table-manip-
ulation primitives. 

Local variables, on the other hand, 
follow strict lexical-scoping rules, so 
they do not take part in the API at all. Be-
cause C code cannot be lexically nested 
inside Lua code, C code cannot access 
local variables in Lua (except through 
some debug facilities). This is practi-
cally the only mechanism in Lua that 
cannot be emulated through the API. 

There are several reasons for this 
exception. Lexical scoping is an old 
and powerful concept that should fol-
low the standard behavior. Moreover, 
because local variables cannot be ac-
cessed from outside their scopes, 
lexical scoping offers programmers a 
foundation for access control and en-
capsulation. For example, any file of 
Lua code can declare local variables 
that are visible only inside the file. 
Finally, the static nature of local vari-
ables allows the compiler to place all 
local variables in registers in the regis-
ter-based virtual machine of Lua.5 

Conclusion 
We have argued that providing an API 
to the outside world is not a detail in 
the implementation of a scripting lan-
guage, but instead is a decision that 
may affect the entire language. We 
have shown how the design of Lua was 
affected by its API and vice versa. 

The design of any programming 
language involves many such trade-
offs. Some language attributes, such as 
simplicity, favor embeddability, while 
others, such as static verification, do 
not. The design of Lua involves sev-
eral trade-offs around embeddability. 
The support for modules is a typical 

example. Lua supports modules with 
a minimum of extra mechanisms, fa-
voring simplicity and embeddability at 
the expense of some facilities such as 
unqualified imports. Another example 
is the support for lexical scoping. Here 
we chose better static verification to 
the detriment of its embeddability. We 
are happy with the balance of trade-
offs in Lua, but it was a learning experi-
ence for us to pass through the eye of 
that needle. 	
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