
38 communications of the acm | july 2011 | vol. 54 | no. 7

practice

Passing
a Language
Through the
Eye of a Needle

doi:10.1145/1965724.1965739

 Article development led by
 queue.acm.org

How the embeddability of Lua
impacted its design.

by Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes

Many languages (not necessarily
scripting languages) support extend-
ing through a foreign function interface
(FFI). An FFI is not enough to allow a
function in the system language to
do all that a function in the script can
do. Nevertheless, in practice FFI cov-
ers most common needs for extend-
ing, such as access to external librar-
ies and system calls. Embedding, on
the other hand, is more difficult to
support, because it usually demands
closer integration between the host
program and the script, and FFI alone
does not suffice.

In this article we discuss how em-
beddability can impact the design of
a language, and in particular how it
impacted the design of Lua from day
one. Lua3,4 is a scripting language with
a particularly strong emphasis on em-
beddability. It has been embedded in
a wide range of applications and is a
leading language for scripting games.2

The Eye of a Needle
At first sight, the embeddability of a
scripting language seems to be a fea-
ture of the implementation of its in-
terpreter. Given any interpreter, we
can attach an API to it to allow the host
program and the script to interact.
The design of the language itself, how-
ever, has a great influence on the way
it can be embedded. Conversely, if you
design a language with embeddabil-
ity in mind, this mind-set will have a
great influence on the final language.

The typical host language for most
scripting languages is C, and APIs for
these languages are therefore mostly
composed of functions plus some
types and constants. This imposes a
natural but narrow restriction on the
design of an API for a scripting lan-
guage: it must offer access to language
features through this eye of a needle.
Syntactical constructs are particularly
difficult to get through. For example,
in a scripting language where meth-
ods must be written lexically inside
their classes, the host language can-
not add methods to a class unless
the API offers suitable mechanisms.

Sc r i p t i n g la n g uag e s a r e an important element
in the current landscape of programming
languages. A key feature of a scripting language
is its ability to integrate with a system language.7
This integration takes two main forms: extending
and embedding. In the first form, you extend the
scripting language with libraries and functions
written in the system language and write your main
program in the scripting language. In the second
form, you embed the scripting language in a host
program (written in the system language) so that
the host can run scripts and call functions defined
in the scripts; the main program is the host program.
In this setting, the system language is usually called
the host language.

c
r

e
di

t

 t
k

july 2011 | vol. 54 | no. 7 | communications of the acm 39

Similarly, it is difficult to pass lexical
scoping through an API, because host
functions cannot be lexically inside
scripting functions.

A key ingredient in the API for an
embeddable language is an eval
function, which executes a piece of
code. In particular, when a scripting
language is embedded, all scripts are
run by the host calling eval. An eval
function also allows a minimalist ap-
proach for designing an API. With an
adequate eval function, a host can
do practically anything in the script
environment: it can assign to vari-
ables (eval”a = 20”), query variables
(eval”return a”), call functions
(eval”foo(32,’stat’)”), and so on.
Data structures such as arrays can
be constructed and decomposed by
evaluating proper code. For example,
again assuming a hypothetical eval
function, the C code shown in Figure
1 would copy a C array of integers into
the script.

Despite its satisfying simplicity
and completeness, an API composed
of a single eval function has two
drawbacks: it is too inefficient to be
used intensively, because of the cost
of parsing and interpreting a chunk
at each interaction; and it is too cum-
bersome to use, because of the string
manipulation needed to create com-
mands in C and the need to serialize
all data that goes through the API.
Nevertheless, this approach is often
used in real applications. Python calls
it “Very High-Level Embedding.”8

For a more efficient and easier-to-
use API, we need more complexity.
Besides an eval function for execut-
ing scripts, we need direct ways to call
functions defined by scripts, to han-
dle errors in scripts, to transfer data
between the host program and the
scripting environment, and so on. We
will discuss these various aspects of
an API for an embeddable language
and how they have affected and been
affected by the design of Lua, but first
we discuss how the simple existence
of such an API can affect a language.

Given an embeddable language

with its API, it is not difficult to write
a library in the host language that ex-
ports the API back into the scripting
language. So, we have an interesting
form of reflection, with the host lan-
guage acting as a mirror. Several mech-
anisms in Lua use this technique. For
example, Lua offers a function called
type to query the type of a given val-
ue. This function is implemented in
C outside the interpreter, through an
external library. The library simply
exports to Lua a C function (called
luaB _ type) that calls the Lua API to
get the type of its argument.

On the one hand, this technique
simplifies the implementation of
the interpreter; once a mechanism is
available to the API, it can easily be
made available to the language. On
the other hand, it forces language fea-
tures to pass through the eye of the
needle, too. We will see a concrete
example of this trade-off when we dis-
cuss exception handling.

Control
The first problem related to control
that every scripting language must
solve is the “who-has-the-main-
function” problem. When we use the
scripting language embedded in a
host, we want the language to be a li-
brary, with the main function in the
host. For many applications, however,
we want the language as a standalone
program with its own internal main
function.

Lua solves this problem with the
use of a separate standalone program.
Lua itself is entirely implemented as a
library, with the goal of being embed-
ded in other applications. The lua
command-line program is just a small
application that uses the Lua library
as any other host to run pieces of Lua
code. The code in Figure 2 is a bare-
bones version of this application. The
real application, of course, is longer
than that, as it has to handle options,
errors, signals, and other real-life de-
tails, but it still has fewer than 500
lines of C code.

Although function calls form the I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 J
.F

.
P

o
d

e
vi

n

40 communications of the acm | july 2011 | vol. 54 | no. 7

practice

bulk of control communication be-
tween Lua and C, there are other
forms of control exposed through the
API: iterators, error handling, and co-
routines. Iterators in Lua allow con-
structions such as the following one,
which iterates over all lines of a file:

for line in io.lines(file) do

 print(line)

end

Although iterators present a new
syntax, they are built on top of first-
class functions. In our example, the
call io.lines(file) returns an itera-
tion function, which returns a new line
from the file each time it is called. So,
the API does not need anything spe-
cial to handle iterators. It is easy both
for Lua code to use iterators written
in C (as is the case of io.lines) and
for C code to iterate using an iterator
written in Lua. For this case there is
no syntactic support; the C code must
do explicitly all that the for construct
does implicitly in Lua.

Error handling is another area
where Lua has suffered a strong in-

fluence from the API. All error han-
dling in Lua is based on the longjump
mechanism of C. It is an example of a
feature exported from the API to the
language.

The API supports two mechanisms
for calling a Lua function: unprotected
and protected. An unprotected call
does not handle errors: any error dur-
ing the call long jumps through this
code to land in a protected call farther
down the call stack. A protected call
sets a recovery point using setjmp,
so that any error during the call is
captured; the call always returns with
a proper error code. Such protected
calls are very important in an embed-
ded scenario where a host program
cannot afford to abort because of oc-
casional errors in a script. The bare-
bones application just presented
uses lua _ pcall (protected call) to
call each compiled line in protected
mode.

The standard Lua library simply ex-
ports the protected-call API function
to Lua under the name of pcall. With
pcall, the equivalent of a try-catch in
Lua looks like this:

local ok, errorobject = pcall(function()	

 --here goes the protected code

 ...

end)

if not ok then

� --here goes the error handling code

 �--(errorobject has more information about

the error)

 ...

end

This is certainly more cumbersome
than a try-catch primitive mechanism
built into the language, but it has a
perfect fit with the C API and a very
light implementation.

The design of coroutines in Lua is
another area where the API had a great
impact. Coroutines come in two fla-
vors: symmetric and asymmetric.1 Sym-
metric coroutines offer a single con-
trol-transfer primitive, typically called
transfer, that acts like a goto: it can
transfer control from any coroutine
to any other. Asymmetric coroutines
offer two control-transfer primitives,
typically called resume and yield, that
act like a pair call–return: a resume
can transfer control to any other co-
routine; a yield stops the current co-
routine and goes back to the one that
resumed the one yielding.

It is easy to think of a coroutine as a
call stack (a continuation) that encodes
which computations a program must
do to finish that coroutine. The trans-
fer primitive of symmetric coroutines
corresponds to replacing the entire
call stack of the running coroutine by
the call stack of the transfer target. On
the other hand, the resume primitive
adds the target stack on top of the cur-
rent one.

A symmetric coroutine is simpler
than an asymmetric one but poses a big
problem for an embeddable language
such as Lua. Any active C function in a
script must have a corresponding ac-
tivation register in the C stack. At any
point during the execution of a script,
the call stack may have a mix of C func-
tions and Lua functions. (In particular,
the bottom of the call stack always has
a C function, which is the host program
that initiated the script.) A program
cannot remove these C entries from
the call stack, however, because C does
not offer any mechanism for manipu-
lating its call stack. Therefore, the pro-
gram cannot make any transfer.

Figure 1. Passing an array through an API with eval.

void copy (int ar[], int n) {
 int i;
 eval(“ar = {}”); /* create an empty array */
 for (i =0; i <n; i++){
 char buff[100];
 sprintf(buff, “ar[%d] = %d”, i + 1, ar[i]);
 eval(buff); /* assign i-th element */
 }
}

Figure 2. The bare-bones Lua application.

#include <stdio.h>
#include “lauxlib.h”
#include “lualib.h”

int main (void) {
 char line[256];
 lua_State *L = luaL_newstate(); /* create a new state */
 luaL_openlibs(L); /* open the standard libraries */

 /* reads lines and executes them */
 while (fgets(line, sizeof(line), stdin) != NULL) {
 luaL_loadstring(L, line); /* compile line to a function */
 lua_pcall(L, 0, 0, 0); /* call the function */
 }

 lua_close(L);
 return 0;
}

practice

july 2011 | vol. 54 | no. 7 | communications of the acm 41

Asymmetric coroutines do not
have this problem, because the resume
primitive does not affect the current
stack. There is still a restriction that a
program cannot yield across a C call—
that is, there cannot be a C function in
the stack between the resume and the
yield. This restriction is a small price to
pay for allowing portable coroutines in
Lua.

Data
One of the main problems with the
minimalist eval approach for an API
is the need to serialize all data either
as a string or a code segment that re-
builds the data. A practical API should
therefore offer other more efficient
mechanisms to transfer data between
the host program and the scripting en-
vironment.

When the host calls a script, data
flows from the host program to the
scripting environment as arguments,
and it flows in the opposite direction
as results. When the script calls a host
function, we have the reverse. In both
cases, data must be able to flow in both
directions. Most issues related to data
transfer are therefore relevant both for
embedding and extending.

To discuss how the Lua–C API han-
dles this flow of data, let’s start with an
example of how to extend Lua. Figure
3 shows shows the implementation of
function io.getenv, which accesses
environment variables of the host pro-
gram.

For a script to be able to call this
function, we must register it into the
script environment. We will see how
to do this in a moment; for now, let us
assume that it has been registered as
a global variable getenv, which can be
used like this:

print(getenv(“PATH”))

The first thing to note in this code
is the prototype of os _ getenv. The
only parameter of that function is a
Lua state. The interpreter passes the
actual arguments to the function (in
this example, the name of the environ-
ment variable) through a data struc-
ture inside this state. This data struc-
ture is a stack of Lua values; given its
importance, we refer to it as the stack.

When the Lua script calls getenv,
the Lua interpreter calls os _ getenv

with the stack containing only the ar-
guments given to getenv, with the first
argument at position 1 in the stack.
The first thing os _ getenv does is
to call luaL _ checkstring, which
checks whether the Lua value at posi-
tion 1 is really a string and returns a
pointer to the corresponding C string.
(If the value is not a string, luaL _
checkstring signals an error using a
longjump, so that it does not return to
os _ getenv.)

Next, the function calls getenv
from the C library, which does the real
work. Then it calls lua _ pushstring,
which converts the C string value into
a Lua string and pushes that string
onto the stack. Finally, os _ getenv
returns 1. This return tells the Lua in-
terpreter how many values on the top
of the stack should be considered the
function results. (Functions in Lua
may return multiple results.)

Now let’s return to the problem
of how to register os _ getenv as
getenv in the scripting environment.
One simple way is by changing our pre-
vious example of the basic standalone
Lua program as follows:

 lua _ State *L = luaL _ newstate();

 /* creates a new state */

 luaL _ openlibs(L);

 /* opens the standard libraries */

+ �lua _ pushcfunction(L, os _ getenv);

+ lua _ setglobal(L, “getenv”);

The first added line is all the magic
we need to extend Lua with host func-
tions. Function lua _ pushcfunc-
tion receives a pointer to a C func-
tion and pushes on the stack a (Lua)
function that, when called, calls its
corresponding C function. Because
functions in Lua are first-class values,
the API does not need extra facilities
to register global functions, local func-
tions, methods, and so forth. The API
needs only the single injection func-

tion lua _ pushcfunction. Once cre-
ated as a Lua function, this new value
can be manipulated just as any other
Lua value. The second added line in
the new code calls lua _ setglobal
to set the value on the top of the stack
(the new function) as the value of the
global variable getenv.

Besides being first-class values,
functions in Lua are always anony-
mous. A declaration such as

function inc (x) return x + 1 end

is syntactic sugar for an assignment:

inc = function (x) return x + 1 end

The API code we used to register
function getenv does exactly the same
thing as a declaration in Lua: it creates
an anonymous function and assigns it
to a global variable.

In the same vein, the API does not
need different facilities to call different
kinds of Lua functions, such as global
functions, local functions, and meth-
ods. To call any function, the host first
uses the regular data-manipulation fa-
cilities of the API to push the function
onto the stack, and then pushes the ar-
guments. Once the function (as a first-
class value) and the arguments are in
the stack, the host can call it with a sin-
gle API primitive, regardless of where
the function came from.

One of the most distinguishing
features of Lua is its pervasive use of
tables. A table is essentially an asso-
ciative array. Tables are the only data-
structure mechanisms in Lua, so they
play a much larger role than in other
languages with similar constructions.
Lua uses tables not only for all its data
structures (records and arrays among
others), but also for other language
mechanisms, such as modules, ob-
jects, and environments.

The example in Figure 4 illustrates
the manipulation of tables through the

Figure 3. A simple C function.

static int os_getenv (lua_State *L) {
 const char *varname = luaL_checkstring(L, 1);
 const char *value = getenv(varname);
 lua_pushstring(L, value);
 return 1;
}

42 communications of the acm | july 2011 | vol. 54 | no. 7

practice

API. Function os _ environ creates
and returns a table with all environ-
ment variables available to a process.
The function assumes access to the
environ array, which is predefined in
POSIX systems; each entry in this array
is a string of the form NAME=VALUE, de-
scribing an environment variable.

The first step of os _ environ is
to create a new table on the top of the
stack by calling lua _ newtable. Then
the function traverses the array envi-
ron to build a table in Lua reflecting
the contents of that array. For each en-
try in environ, the function pushes
the variable name on the stack, push-
es the variable value, and then calls
lua _ settable to store the pair in the
new table. (Unlike lua _ pushstring,
which assumes a zero-terminated
string, lua _ pushlstring receives an
explicit length.)

Function lua _ settable assumes
that the key and the value for the new
entry are on the top of the stack; the
argument –3 in the call tells where the
table is in the stack. (Negative numbers
index from the top, so –3 means three
slots from the top.)

Function lua _ settable pops
both the key and the value, but leaves
the table where it was in the stack.
Therefore, after each iteration, the

table is back on the top. The final re-
turn1 tells Lua that this table is the
only result of os _ environ.

A key property of the Lua API is that
it offers no way for C code to refer di-
rectly to Lua objects; any value to be
manipulated by C code must be on the
stack. In our last example, function
os _ environ creates a Lua table, fills
it with some entries, and returns it to
the interpreter. All the time, the table
remains on the stack.

We can contrast this approach with
using some kind of C type to refer to
values of the language. For example,
Python has the type PyObject; JNI
(Java Native Interface) has jobject.
Earlier versions of Lua also offered
something similar: a lua _ Object
type. After some time, however, we de-
cided to change the API.6

The main problem of a lua _ Ob-
ject type is the interaction with the
garbage collector. In Python, the pro-
grammer is responsible for calling
macros such as Py _ INCREF and DE-
CREF to increment and decrement
the reference count of objects being
manipulated by the API. This explicit
counting is both complex and error
prone. In JNI (and in earlier versions
of Lua), a reference to an object is valid
until the function where it was created

returns. This approach is simpler and
safer than a manual counting of refer-
ences, but the programmer loses con-
trol of the lifetime of objects. Any object
created in a function can be released
only when the function returns. In con-
trast, the stack allows the programmer
to control the lifetime of any object in a
safe way. While an object is in the stack,
it cannot be collected; once out of the
stack, it cannot be manipulated. More-
over, the stack offers a natural way to
pass parameters and results.

The pervasive use of tables in Lua
has a clear impact on the C API. Any-
thing in Lua represented as a table can
be manipulated with exactly the same
operations. As an example, modules in
Lua are implemented as tables. A Lua
module is nothing more than a table
containing the module functions and
occasional data. (Remember, functions
are first-class values in Lua.) When you
write something like math.sin(x), you
think of it as calling the sin function
from the math module, but you are ac-
tually calling the contents of field “sin”
in the table stored in the global variable
math. Therefore, it is very easy for the
host to create modules, to add func-
tions to existing modules, to “import”
modules written in Lua, and the like.

Objects in Lua follow a similar pat-
tern. Lua uses a prototype-based style
for object-oriented programming,
where objects are represented by ta-
bles. Methods are implemented as
functions stored in prototypes. Similar-
ly to modules, it is very easy for the host
to create objects, to call methods, and
so on. In class-based systems, instanc-
es of a class and its subclasses must
share some structure. Prototype-based
systems do not have this requirement,
so host objects can inherit behavior
from scripting objects and vice versa.

eval and Environments
A primary characteristic of a dynamic
language is the presence of an eval
construction, which allows the execu-
tion of code built at runtime. As we dis-
cussed, an eval function is also a basic
element in an API for a scripting lan-
guage. In particular, eval is the basic
means for a host to run scripts.

Lua does not directly offer an eval
function. Instead, it offers a load func-
tion. (The code in Figure 2 uses the
luaL _ loadstring function, which

Figure 4. A C function that returns a table.

extern char **environ;
static int os_environ (lua_State *L) {
 int i;

 /* push a new table onto the stack */
 lua_newtable(L);

 /* repeat for each environment variable */
 for (i = 0; environ[i] != NULL; i++) {

 /* find the ’=’ in NAME=VALUE */
 char *eq = strchr(environ[i], ’=’);

 if (eq) {
 /* push name */
 lua_pushlstring(L, environ[i], eq -environ[i]);

 /* push value */
 lua_pushstring(L, eq + 1);

 /* table[name] = value */
 lua_settable(L, -3);
 }
 }

 /* result is the table */
 return 1;
}

practice

july 2011 | vol. 54 | no. 7 | communications of the acm 43

is a variant of load.) This function does
not execute a piece of code; instead,
it produces a Lua function that, when
called, executes the given piece of code.

Of course, it is easy to convert eval
into load and vice versa. Despite this
equivalence, we think load has some
advantages over eval. Conceptually,
load maps the program text to a value
in the language instead of mapping it
to an action. An eval function is usually
the most complex function in an API.
By separating “compilation” from ex-
ecution, it becomes a little simpler; in
particular, unlike eval, load never has
side effects.

The separation between compila-
tion and execution also avoids a combi-
natorial problem. Lua has three differ-
ent load functions, depending on the
source: one for loading strings, one for
loading files, and one for loading data
read by a given reader function. (The
former two functions are implemented
on top of the latter.)

Because there are two ways to call
functions (protected and unprotected),
we would need six different eval func-
tions to cover all possibilities.

Error handling is also simpler, as
static and dynamic errors occur sepa-
rately. Finally, load ensures that all Lua
code is always inside some function,
which gives more regularity to the lan-
guage.

Closely related to the eval function
is the concept of environment. Every
Turing-complete language can inter-
pret itself; this is a hallmark of Turing
machines. What makes eval special
is that it executes dynamic code in the
same environment as the program that
is using it. In other words, an eval
construction offers some level of re-
flection. For example, it is not too dif-
ficult to write a C interpreter in C. But
faced with a statement such as x=1,
this interpreter has no way of access-
ing variable x in the program, if there
is one. (Some non-ANSI facilities, such
as those related to dynamic-linking li-
braries, allow a C program to find the
address of a given global symbol, but
the program still cannot find anything
about its type.)

An environment in Lua is simply a
table. Lua offers only two kinds of vari-
ables: local variables and table fields.
Syntactically, Lua also offers global
variables: any name not bound to a lo-

cal declaration is considered global.
Semantically, these unbound names
refer to fields in a particular table asso-
ciated with the enclosing function; this
table is called the environment of that
function. In a typical program, most
(or all) functions share a single envi-
ronment table, which then plays the
role of a global environment.

Global variables are easily acces-
sible through the API. Because they
are table fields, they can be accessed
through the regular API to manipu-
late tables. For example, function
lua _ setglobal, which appears in
the bare-bones Lua application code
shown earlier, is actually a simple
macro written on top of table-manip-
ulation primitives.

Local variables, on the other hand,
follow strict lexical-scoping rules, so
they do not take part in the API at all. Be-
cause C code cannot be lexically nested
inside Lua code, C code cannot access
local variables in Lua (except through
some debug facilities). This is practi-
cally the only mechanism in Lua that
cannot be emulated through the API.

There are several reasons for this
exception. Lexical scoping is an old
and powerful concept that should fol-
low the standard behavior. Moreover,
because local variables cannot be ac-
cessed from outside their scopes,
lexical scoping offers programmers a
foundation for access control and en-
capsulation. For example, any file of
Lua code can declare local variables
that are visible only inside the file.
Finally, the static nature of local vari-
ables allows the compiler to place all
local variables in registers in the regis-
ter-based virtual machine of Lua.5

Conclusion
We have argued that providing an API
to the outside world is not a detail in
the implementation of a scripting lan-
guage, but instead is a decision that
may affect the entire language. We
have shown how the design of Lua was
affected by its API and vice versa.

The design of any programming
language involves many such trade-
offs. Some language attributes, such as
simplicity, favor embeddability, while
others, such as static verification, do
not. The design of Lua involves sev-
eral trade-offs around embeddability.
The support for modules is a typical

example. Lua supports modules with
a minimum of extra mechanisms, fa-
voring simplicity and embeddability at
the expense of some facilities such as
unqualified imports. Another example
is the support for lexical scoping. Here
we chose better static verification to
the detriment of its embeddability. We
are happy with the balance of trade-
offs in Lua, but it was a learning experi-
ence for us to pass through the eye of
that needle. 	

 Related articles
 on queue.acm.org

Purpose-Built Languages
Mike Shapiro
http://queue.acm.org/detail.cfm?id=1508217

A Conversation with Will Harvey
Chris Dibona
http://queue.acm.org/detail.cfm?id=971586

People in Our Software
John Richards, Jim Christensen
http://queue.acm.org/detail.cfm?id=971596

References
1.	 de Moura, A., Ierusalimschy, R. Revisiting coroutines.

ACM Trans. Programming Languages and Systems 31,
2 (2009), 6.1–6.31.

2.	 DeLoura, M. The engine survey: general results.
Gamasutra; http://www.gamasutra.com/blogs/
MarkDeLoura/20090302/581/The_Engine_Survey_
General_results.php.

3.	 Ierusalimschy, R. Programming in Lua, 2nd Ed. Lua.org,
Rio de Janeiro, Brazil, 2006.

4.	 Ierusalimschy, R., de Figueiredo, L. H., Celes, W. Lua—
An extensible extension language. Software: Practice
and Experience 26, 6 (1996), 635–652.

5.	 Ierusalimschy, R., de Figueiredo, L. H., Celes, W.
The implementation of Lua 5.0. Journal of Universal
Computer Science 11, 7 (2005): 1159–1176.

6.	 Ierusalimschy, R., de Figueiredo, L. H., Celes, W.
The evolution of Lua. In Proceedings of the 3rd ACM
SIGPLAN Conference on History of Programming
Languages (San Diego, CA, June 2007).

7.	O usterhout, J.K. Scripting: Higher-level programming for
the 21st century. IEEE Computer 31, 3 (1998), 23–30.

8.	 Python Software Foundation. Extending and
embedding the Python interpreter, Release 2.7 (Apr.
2011); http://docs.python.org/extending/.

Roberto Ierusalimschy is an associate professor
of computer science at PUC-Rio (Pontifical Catholic
University of Rio de Janeiro), where he works on
programming-language design and implementation. He
is the leading architect of the Lua programming language
and the author of Programming in Lua (now in its second
edition).

Luiz Henrique de Figueiredo is a full researcher and
a member of the Vision and Graphics Laboratory at the
National Institute for Pure and Applied Mathematics
in Rio de Janeiro. He is also a consultant for geometric
modeling and software tools at Tecgraf, the Computer
Graphics Technology Group of PUC-Rio, where he helped
create Lua.

Waldemar Celes is an assistant professor in the
computer science department at Pontifical Catholic
University of Rio de Janeiro (PUC-Rio) and a former
postdoctoral associate at the Program of Computer
Graphics, Cornell University. He is part of the computer
graphics technology group of PUC-Rio, where he
coordinates the visualization group. He is also one of the
authors of the Lua programming language.

© 2011 ACM 0001-0782/11/07 $10.00

