/\/a?ﬁud @5@7

ISPS: A Retrospective View

Alice C. Parker and Donald E. Thomas

Electrical Engineering Department
Carnegie-Mellon University

1. ABSTRACT

This paper describes the authors’ experiences with
applications of ISPS. The main application areas discussed
include description, simulations and emulations, hardware
synthesis, software synthesis and verification. The paper
concentrates on semantic inadequacies of the language;
desirable features of the language for the applications
discussed have been described elsewhere. Finally, a
proposed language extension, the PROCESS construct, is
presented.

2. FOREWORD

ISFS has provided a vehicle for some exciting research
- simulations of new architectures[15], automatic design of
digital circuits [2], [19], [11], [18], [16], automated emulator
generation [12], compiler-compiler research [8], verification
of machine language programs [9], verification of microcode*,
and automated generation of diagnostics [14]. In turn, each
of these projects has exercised the ISPS language and
supporting software to an extent not possible with paper
designs of HDL's. Furthermore, the use of the language and
software in an undergraduate classroom setting has greatly
enhanced our understanding - as well as highlighted our
misunderstandings - of the ISPS semantics.

The goal of this paper is to provide the reader with a
better understanding of the requirements of a language for
the applications stated above. First, however, we should lay
the groundwork by discussing the intent and philosophy
underlying the ISPS language. Then, we will enumerate the
applications of ISPS the authors have been involved in, and
doscribe the experience with ISPS for these applications.
Finally, we draw on our experience with these applications to
discuss the inadequacies of the language in its present form.

THE 1SPS PHILQSOPHY

In the past, confusion about the intent and philosophy
of ISPS has arisen, and some criticisms of ISPS have resulted
from the attempted use of ISPS for reasons other than that
for which it was intended. Thus, before we begin the
critique of the language, it is appropriate to discuss the
history and goals of ISPS.

The original intent of ISP as described by Bell and
Newell [7] was to aid in their exposition of instruction sets.
It was used to produce a behavioral description of the
functioning of a CPU, as seen by the machine language user.
ISPL, the first software supported version of ISP, began
under this definition, but almost immediately was used for
descriptions of hardware other than CPUs. ISPS, the newest
version of ISP,

lrosoarch in progress

CH1436-5/79/0000-0021$00.75 © 1979 IEEE

Stephen Crocker

Information Sciences Institute
University of Southern California

Roderic G. G. Cattell

Computer Science Laboratory
Xerox Palo Alto Research Center

was invented with the intent of using it for many applications
of machine description languages. These applications include
de<cription of the behavior of arbitrary register-transfer
level circuits: processors, display processors, elevator
controllers, video terminals, and disk controllers. Description
of the physical hardware itself, however, has not been one of
the goals of ISPS and attempts to apply ISPS in this manner
have resulted in a set of pathological examples which
illustrate the inadequacies of ISPS for this purpose. When
ISPS was designed, simulation, machine description for a
compiler- compiler, and hardware synthesis were three of
the applications considered. ISPS was designed to be
application independent through the use qualifiers, a simple
syntactic extension to the language allowing insertion of
application-specific information in curly brackets(i.e. { and }
). The semantics of ISPS were to be loosely defined, so that
the applications essentially provided the definition.
Preliminary studies were done to determine the problems
with ISPL, in order to correct these problems a priori with
ISPS. ISPS was then defined, and feedback was obtained
from a group of uscrs via a series of workshops. Finally,
I3P3G was frozen syntactically.

The ability to describe behavior rather than structure
of a digital system is the overriding advantage of ISP
languages. It has allowed the measurement of instruction set
performance independently of implementation details; it has
provided the funclional specification necessary for digital
designs to be automatically produced and optimized; it has
obscured unnecessary detail so that the problem of
microcode generation was simplified; it has provided
structured control flow, thus allowing the possibilities of
symbolic execution and verification.

The software to support ISPS at Carnegie-Mellon
consists primarily of a parser, code generator and
interpreter [3] and [4] The parser accepts ISPS
descriptions and outputs parse trees known as “"GDB trees"
(GDB stands for "Global Data Base"). It was intended that
the applications programs would consume this intermediate
form, thus decreasing the work to build a new application
and providing some force for unifying the semantics of the
language. Although we intend to confine our comments to
the ISPS language and not the underlying software, the
design and use of the GDB as a common intermediate form
proved to be an excellent choice: widely ranging applications
have been able to use this common description language
representation quite easily. However, the applications have
also pinpointed several semantic inadequacies of the
language. It is the purpose of this paper to relate some of
our experiences and suggest semantics to strengthen the
base language. By its nature, this paper will necessarily
focus on the shortcomings and difficulties we have seen.
However, it would not be worth relating these criticisms if
the language did not already provide very useful capabilities.
In fact, no existing machine description language has been
used for so wide a range of applications.

- 21 -

3. ISPS/ISPL APPLICATIONS

The application areas we will discuss here can be
subdivided into the problem domains of:

DESCRIPTION
digital systems
control engines
interfaces,1/0 and buses
SIMULATION / EMULATION
digital systems
control engines
interfaces,1/0, buses
HARDWARE SYNTHESIS '
digital systems -
interfaces
SOFTWARE SYNTHESIS
compiler generation
assembler generation
VERIFICATION
machine language
microcode

Description of digital systems has been done for simulation
and automated design purposes, and will be discussed under
thece topics. Description of control engines was undertaken
in order to determine the capabilities of ISP for these
purposes, for pedagogical purposes, and for architectural
evaluations. Since ISP is a procedural language, the control
function and hence the structure is implicit in a conventional
ISP description. Any assumptions about the nature of the
control must be made on the basis of the control tlow of the
ISP description. Description of the control engine explicitly
allowed more accurate simulation measurements and
therefore more accurate architecture evaluation to be made.
Simulating the control also allowed students to write and
debug microcode easily, providing a wide range of
microprogrammable machines in a microprogramming course.

Interface and bus descriptive capabilities were first
motivated by the desire to automate interface design, and
the need to simulate multiple function-unit systems. To this
end, several abortive attempts were made to describe th?
UNIBUS in ISPL. Finally, an existing I/O language, GLIDE
[17, 21]), was examined to determine missing ISPL capabilities.
A compiler was constructed to translate this language to ISPL
in order to formalize the relationship between the two
languages[13]. The process of producing this compiler
affected the development of ISPS and made explicit the
limitations of ISP family languages for description of
device-level interfaces (i.e., GLIDE semantics for which there
were no corresponding ISPL semantics),some of which are
still valid with regard to ISPS. .

Digital system description and simulation using ISPL
and later ISPS formed the core of the evaluation procedure
for the Military Computer Family effort[5] In addition, the
same ISPL and ISPS simulators provided a teaching tool in
the undergraduate Computer Structures course at
Carnegie-Mellon. Course students simulated a PDP-8-like
processor, and then simulated the modified processor with
added I/O capabilities communicating with another processor
or external device.

LGLIDE has since been renamed SLIDE, for structured GLIDE

Fast emulation of an architecture can be obtained by
generating microcode directly from the machine description,
rather than simulating the architecture through interpretation
of an intermediate representation of the description. The
generation of MLP-900 microcode [12] from ISPS allows the
automatic creation of an emulation of any system described
in ISPS.

The synthesis of digital systems using a formal
machine description began at Carnegie-Mellon with
Darringer[10], continued with Barbacci[6] and is now a large
project involving many students and faculty. The latest
synthesis program designs data paths from an ISPS
description, and provides feedback on the qualities and
capabilities of the language [11],[16].

Software synthesis research has focused on several
areas: generation of assemblers from a derivative of ISP
[22), the attempted use of ISPS to describe a machine for
input to a compiler-compiler, and the use of ISPS to generate
assertions. The use of ISPS in the compiler-compiler work
was not investigated completely due to lack of time, but the
requirements for such an input description were given [8]
Oakley [14] performed symbolic execution of ISPS
descriptions in order to generate a non-procedural
"asserfion description” suitable as input to programs that
require knowledge of a target machine's instruction set (for
example, the compiler-compiler). :

ISPS is used in the verification research [9] to
generale state deltas, a form for representing segments of
computation. A state delta is a first-order predicate which
takes a precondition, a post condition, a modification list and
an environment list. These state deltas are then used in a
proof system.

Verification of the FTSC microprogram [20] was done
by describing both the host and target machines in ISPS.
The verification system accepts these descriptions along with
a listing of the microcode and a set of proof commands.

4. THE ISPS EXPERIENCE

Our criticisms of the language could fall into several
categories: semantics, syntax, and support software. Each
of these in itself is important. We will emphasize, however,
issues dealing with semantics because without these the
other issues are moot points.

SEMANTIC INADEQUACIES

In some applications, ISP is viewed as a general digital
system specification language. In other cases, it is viewed as
a notation for specifying just the instruction set for the CPU
of .a machine. Considering that the language has these two
main bodies of users (the general digital system designers
and instruction set processor specifiers), we can argue the
inadequcies from each point of view.

The digital system designers will find that the language
is inadequate primarily in the specification of concurrency,
timing and interconnection of processors.

- A simple “execute the following in parallel”
construct is provided (%"); this really means
"order independence" and not "at the same
time". Nothing is said about the relative speeds
of execution, the granularity of operations, or
what happens if one of the actions fails to
complete normally, It is clear that

A<=13B< 2

can be executed without ambiguity, but also that
= it may not be different from

- 22 -

|
repres
abstra

A <~ 1 next B <= 2

The code
A<-B: B<-A

does not produce a well-defined result. Under
some interpretations, it defines a register swap;
in others, it is equivalent to

A<= B

and in still others the result is completely
unspccified. A compiler could detect the
independence of the two actions and allow
parallel computation if the facilities permit;
synlactic forcing of the concurrency is only
uscful where interference is a possibility.
However, it is precisely in the case of
interference that the definition of the language
is silent.

High level abstractions are not provided for
signalling between processors, processes, or
functional units. As a consequence, modelling
the interaction between concurrent machines,
e.g. a CPU and an /O controller, requires the
introduction of shared variables which are set,
reset and tested by the communicating
processes. As certain 1/0 controllers and other
functional units become hardware primitives the
description of systems containing these
functional units along with their interaction is
necessary. Protocols to implement the intended
communication must be invented by the writer
of the ISPS description. In some cases, these
protocols may correspond to their actual
implementation, but in many cases, the designer
is fcrced to overspecify in their design and
obscure his intentions. The language should
allow him to functionally specify the interactions.
In fact, the designer cannot even specify the
names of inputs or outputs which are not
registers or storage locations, except by means
of the qualifiers ({ }), which are not part of the
formal language. Thus description and simulation
of interfaces and interconnections become
difficult and in some cases impossible.

No facilities are provided in the base language
for specifying the length of time that operations
take. This may not be known if the description
is to be input to a synthesis program; then the
timings might refer to required time intervals.
Timing is essential for simulation and emulation
fidelity, however,

In the area of interconnection of processors,
there is no way to parameterize a module and
call for its instantiation in a system. In addition
to needing to introduce multiple copies of
modules, it is also necessary to paramelerize
their descriptions so that each use can be
specialized. Simulation of large systems is
therefore inconvenient.

syclems, and (2) the need for a constrained structure to the
description. The latter problem can be remedied through the
use of qualifiers identifying sections of the description (the
address computations, the processor state, the instruction
interpretation, etc.); this structure is explicitly not desirable
in ISPS for general digital system design. On the other hand
the former problem, concerning abstract operations, is
shared by general system designers as well. For example:

- No operator exists for transferring a block of
memory into another block, or extracting a a
field from a variable position in a register. As a
consequence, it is necessary to describe such
instructions indirectly, with loops or shifts and
masking. The detection of the higher-level
functions expressed in terms of these more
involved descriptions is difficult for both
software and hardware synthesis programs.
There are some hardware structures which are
now considered 1o be hardware primitives.
These include FIFO buffers and LIFO stacks,
associative memories, and large AND-OR arrays
of logic (PLAs). Descriptions of the functions
these provide with ISPS produce lengthy code;
many 1/0 operations such as code conversion
and buffering require these structures.

- No facilities are provided for describing floating
point operations. Long sequences of operations
are required to describe floating point add and
multiply, leaving the reader to depend upon the
mnemonics and comments for help in
understanding. Similar but lesser difficulties
attend the description of character and
integer-oriented operations. A
compiler-compiler requires higher-level
abstractions.

- A compiler-compiler must have knowledge of the
addressing computations available on the
machine. In order to generate good code and
simplify processing, it is essential to separate
the description of the address computations
from the description of the instructions
thernselves. This requires, in addition to the
syntactic section separation mentioned
previously, an abstraction to package an access
mechanism as a single identifier. The fetch and
store mechanisms would then be invoked when a
fetch or store using that identifier s
encountered. This allows the actual instructions
to be expressed simply, e.g. Dest_Dest+Source
for an addition on the PDP-11.

- There is no way to specify the meaning of
declared variables or code segments except via
qualifiers. (Again, this specification is not a part
of the formal language.) For example, code
generation programs need to know about the
program counter, primary memory and main
instruction cycle. For 1/0 emulations, the
microcode generator needs to know about the
interrupt line(s). Finally, compiler generators
need to know the instruction formats.

From the point of view of ISPS as an instruction set - There are some ISPS constructs which produce
representation, the chief weaknesses are (1) the lack of unwieldy simulations, code or hardware. One of
abstractions to cover certain operations common in hardware

- 23 -

these is the arbitrary mapping fat:ilny.1 The
hardware required to support such a mapping
facility could be costly and inefficient, and
simulations would also be slow. Microcode
generated to support such a mapping of one
memory size onto another is lengthy. Another
construct which can cause difficuity if misused is
the ability to declare fields of a register to be
treated differently. If the fields are really
functionally different, then they should be
treated so in the description. While it is
possible to “discover" this from the ISPS
description, to do so would require quite a bit of
processing overhead.

Under pressure from users with these different views,
compromises have been made in the language design. The
mechanisms provided for describing concurrency, timing and
interconnection of processors are too weak to support the
general digital systems designer. But, those needed specify
more than the instruction set designer may want. The
operations and data types present, while being adequate for
general systems designers, have not kept pace with the
requirements to describe some of the now "standard"
instructions (e.g. floating point) of computers.

SEMANTIC FLAWS

We turn now to the language as it is, ignoring what it
might be. As defined, there are some internal inconsistencies
and ambiguities. These stem primarily from the lack of a
clear, precise, formal semantic definition of the language. To
address this point, a preliminary attempt has been completed
at providing a formal semantic definition of ISPS, using the
techniques of denotational semantics. For this purpose,
Information Sciences Institute has developed a different
parse tree form of ISPS, called AMDL [1]). For example:

Within an expression, the order of activation is not
specified. Since calls to procedures are permitted within
expressions and since procedures may have arbitrary
side-effects, the order of evaluation is crucial. These
matters are not application dependent and therefore should
be a part of the formal language definition.

Instruction Set Processor Specifications

Space limitations do not allow a thorough analysis here
of I1SPS from the point of view of an application like a
compiler-compiler. However, a relatively complete
specification of requirements can be found in [8] and [14].

Basically, the required portions of a machine
description for a compiler-compiler would be:

- A description of the set of registers and
memories available, including their size and an
indication of their use in some cases {e.g., the
primary memory, from which instructions are
fetched, must be distinguished).

- A description of the instruction fields and
formats.

- Instruction descriptions. These can be found in
current ISPS descriptions within a large case
statement, decoding instruction fields. The
remainder of the processor operation must

essentially be ignored and assumed to be of a
standard form.

he mapping facility allows registers and memories to be "mapped
onto" previously declarod storage. Thus, a 16 bit/word memory can
be accessed in ISPS either by the word or byte.

- A description of the data types and formats,
separate from the instruction descriptions (e.g.,
a floating point plus operator, "+F", might be
defined).

- A description of the operand access processes,
separate from the instruction descriptions.

Several extensions are needed to the syntax and
semantics of ISPS to allow a description to be given in this
form.

5. PROCESS LEVEL CONSTRUCTS, AN EXAMPLE

One of the main strengths of ISPS is in its description
of single Process entities. By a process we mean a single
control environment or state machine. This control
environment, however, may interact in an asynchronous
fashion with other control environments and thus the need
for synchronization of the different machines becomes
necessary. This synchronization is a standard operation in
hardware (and software) and is instantiated, for example, in
the data-ready and transmitter-ready signals of a UART. As
hardware systems are built out of higher level functional
modules, the need to describe the interconnection and
synchronization of the units becomes apparent.

Software systems have long seen the need for such
mechanisms. Real time processing applications with interrupt
procedures that service peripheral (asynchronous) devices,
require synchronization between the producer of data, say
the main program, and the consumer of the data, say the
device. Catastrophic effects can occur if the proper mutual
exclusions and signalling conventions are not used to
maintain data integrity. We do not suggest that ISPS should
be able to describe real time processing and operating
systems. However, we do want to draw the analogy between
the Process concept in hardware and software.

Here are two examples:

1) The buffer memory of a video terminal. One
process or state machine (the consumer) responds to the
video sync signals and accesses the buffer memory for a line
of characters. Another process responds to the
communications port and moves data from the port to the
buffer memory, possibly with some processing.

?) The buffer queue in a disk drive. The producer
responds during a read to a continuous stream of bits from
the disk head, gathers a word, and puts it in the queue. The
consumer takes words from the queue, requests a DMA, and
writes the words into memory.

In each of the above cases, there are two processes
sharing both data and control information. Control signals
(synchronization) are needed to enforce the integrity of the
data in the queue. In software, signals are set up to indicate
the condition of the queue (e.g. queue.full, queue.empty) and
one of the processes would. be given exclusive access to the
shared data and control.

Presently in ISPS, separate processes can be specified,

and "started" asynchronously with busy-wait loops.
However, it is not possible to suspend or terminate these
processes external to the processes themselves. The

simulator does have facilities for this due to an attempt to
use 1SPS for interface description, and to use the simulator
for 1/0O simulations. We feel though that it is time that such
capabilities be allowed in the description. Any sort of
priority logic must be explicitly described in the ISPS

~ 24 -

m
ct

st
dc
bé
lai
pr
ec
ne
al
fu

ad

inc

con

language. The leave, restart and resume operators do
provide methods for control over process termination within
the process itself. However, these, along with the busy-wait
initiation procedures, require each process to understand the
overall priority structure each is embedded in. We propose
that constructs to appropriately synchronize and control
these situations be added to the base language.

Another example of a multi-process system s
appropriate at this point to illustrate the need for new
process level semanlics. We provide this example to
motivate the semantics; the syntax used here has been
chosen for convenience. Take, for instance, the Intel 8086
which has an instruction and PC-relative prefetch unit, as
shown in the figure. To accurately and appropriately
describe the function of this unit and its interaction with the
basic processor we need more than the present ISPS
language. (This is also true of the previous examples).

It may be argued that functionally describing a
preictch unit suggests an implementation of an otherwise
equivalent architecture. The depth of description however is
necessary for the synthesis applications because a synthesis
algorithm cannot be expected to automatically insert a new
function of this type. Snow [18] showed how a single
fetch-execute cycle could be placed in parallel but did not
address the possibility of multiple prefetches.

The prefetch unit shares the program counter with the
instruction execution unit (IEX) and uses it to fetch ahead for
increased performance. The IEX contains all of the processor
registers and logic for executing instructions. When
instructions or data are fetched using the PC, the prefetch
unit is requested for the information. All other operand
fetching and storing is done directly with the bus arbiter and
memory.

Several sets of information must be arbited for in this
system: the main memory, since access is requested by the
IEX and prefetch; and the prefetch buffer which is accessed
by the IEX and prefetch. However, we will only consider the
IEX and Prefetch interactions in this example.

Let us consider the prefetch unit which is itself a
functional unit or process.

process prefetch := Inotation
lindicates a
{process
Q[words]<bits>,
head<3: 0>,
tail<3:0>,
INIT load() 1this tells us
twhat gets
Istarted !
load = (
head_tail_0 next tmake
tqueue
fempty

repeat begin
wait q,not,full next
qput()_bus,arbiter(pe)
end
), lend load
)

A few words of explanation are needed here. The INIT
command specifies where the process starts (or is restarted).

The procedure load once init’ed is always running and if the
queue is not full it will try to fill it by accessing memory and
calling the qput() procedure.

The qput() and gget() procedures control access to a
shared memory. Because they deal with shared information
they must be placed in a mutual excluson block to indicate
that both will not be working at once.

begin critical teritical section
qput()<>:= (
tail_tail+l next
QL taill_qput next
signal queue,noct,empty next
lpossibly wake
tup the TEX
if <not full> => signal q,not,full
Ipossibly wake
tup load
I
aget(<> 1= (
<access done here>
),

end tend critical scction

A new construct within the procedure is the SIGNAL
construct which is used to provide an indication that some
other entity will be waking up to perform an action. This
could also be described by setting a flag to one and having
the other entity busy-wait for the flag. However, such a
description is not obvious in that it is not clear whether the
flag is data (as in an overflow bit) or control (as in a
data-ready bit). It also suggests an implementation.

The other part of the example is the IEX.

Process TEX :=
tmany declarations and procedures

if pc,access =>begin
wait q,not,empty next
op _ qget()

end

if jump,instruction => begin
pc_new,pc next
init prefetch

end

), tend 1EX

The above process describes how the IEX unit may
access memory. If a memory access is not using the PC, then
the access is made directly through the bus arbiter. If the
access is a PC access, then the system waits for a value to
be available in the Q (q.not.empty) and then the qget()
procedure is called. The wait is done outside of qget

‘because allowing a wait in a critical section allows for the

possibility of a deadlock. The last part indicates what
happens when a jump instruction occurs: the queue is
flushed by the reinitialization of the prefetch process.

The control structure of the system (shown in the
figure) is now apparent: the waits and signals correspond
and indicate in no uncertain terms a synchronization of {wo
entities operating asynchronously with respect to each other.
To be complete, .functional assertion and release of the
signals must be possible. Note that this example assumes

- 25 =

that when a wait responds to a signal, the signal becomes
released. This is not always the case and thus there may be
other interpretations to consider in implementation of such a
construct.

The addition of process level constructs to the ISPS
language will add the following benefits:

1) Clarity of description of large systems of interacting
1EX < e Bus.arbiter & Memory processes. As we strive for higher levels of functional i
descriptions, this becomes the highest level control construct
necessary at the functional level. As functional units become
integrated on chips and systems are built with them, it
becomes necessary to describe large systems as the
interconnection of process level components.

2) Design synthesis systems will be able to recognize
Prefetch the "handshake" as a functional operation with a variety of
possible implementations rather than the setting and clearing
of flags. Also, verification programs will be able to detect
process communication,

e A

(a) Hardware Organization of the Example We have shown that the introduction of the semantics (
. to cover process level description can broaden the horizons |
Q.PUT 1 of the language. As this paper is not intended to be a .
language proposal, we have not set about to define a ;‘
complete set of semantics and syntax for these constructs. 1;
INSERT However, we feel that such work should be undertaken. .
TEX Many of these limitations we have discussed have been h
overcome in one way or another in the applications r)
* ‘ described here. Either the applications have operated in a .
limited fashion or the necessary semantics have been defined L
WAIT L SIGNAL by a particular application. Only in the case of process "
= termination,suspension and priorities has little been done. In -
Q.NOT.EMPTY Q.NOT.EMPTY LOAD thic case, since most of the multi-process descriptions have :
involved 1/0 and interfaces a separate HDL, SLIDE has been ;
+ * * proposed [21] However, it is desirable to have a single
language to describe digital systems and thus it is time that
SIGNAL o WAIT such constructs be incorporated into ISPS.
Q.GET Q.NOT.FULL Q.NOT. FULL
I
‘ ‘ * 6. THE IDEAL BEHAVIORAL LANGUAGE G
Using ISPS in a variety of applications has allowed us 2.
to understand some specific as well as global requirements of In
q
EXECUTE MEMORY ACCES: a behavioral language. A discussion of these would require a Fe
paper in itself. Here, we just list these and indicate why Pr
I * they seem reasonable to us. They are: S¢
1. An abstraction facility for adding new primitives 8
PUT to the language! as hardware becomes more ; 5
Q. complex. . Ce
C:
b) Three of the Processes 2. The ability to specify behavior without ;

(____j specifying structure. ! é(
Figure 1. Example ITlustrating Multiple 3. Support for structured programming constructs. 8:
Processes. i

4. The capability to specity additional information 5
which may be application specific (e.g. with { Fa
qualifiers). ! Pr

5. The capability to express concurrency more 6.
precisely than the ISPS semicolon now allows. foi

Co

6. The capability to describe multi-process Pa
functionality, including terminations, suspensions,
and priorities. 7.

Ex

lThosa primitives may not be functions of existing primitives, so
simple text subslitulion is not all that is implied here.

- 26 -

7. The capability to express synchronization
primitives explicitly,

Formal semantic definition of the language
opcrators fo the greatest possible extent.

o8]

It <hould be noted that ISPS incorporates items two,
three and four now as three of its main advantages.

7. CONCLUSIONS AND ACKNOWLEDGEMENTS

ISPS has proven invaluable in providing a useful tool
for digital description, synthesis and simulation. A great deal
of research would not have been possible without ISPS and
the efforts of Mario Barbacei to continually support the
language. The success of these applications speaks to the
advantages and usefulness of ISPS; because of that we can
concentrale here on the limitations. We feel that the best
language development can continue by testing, trying and
exercising an existing language in order to discover both
desirable and undesirable qualities. Users (particularly
undergraduate students with homework due) are the cruelest
of critice - and the most honest. The ISPS user community
had enormous effect on this paper; virtually every point
raised here came from this group. Vittal Kini, Gary Barnes,
and Andy Nagle provided many of the ideas and comments,
Lou Hafer, Bill Morgart,and John Oakley also participated in
many discussions. Additional comments were provided by
Pete Alfvin, Charlie Hayden, Bill Overman, Leo Marcus, Sarma
Sastry, Dono Van-Mierop and Will Sherwood. Valuable
feedback came from many industrial CAD groups.

References

L. Alfvin, Peie. A Formal Definition of AMDL. Master Th,,
Computer Science Department, UCLA, 1979.

2. Barbacci,M, Siewiorek,D. The CMU RT-CAD System: An
Innovative Approach to Computer Aided Design. American
Federation of Information Processing Societies Conference
Proceedings vol.45, Amer. Fed. of Information Processing
Socicties, June, 1976, pp. 643-655,

3. Barbacci,M, Barnes,G,, Cattell,R, Siewiorek,D. The
Symbolic Manipulation of Computer Descriptions ; The 1SPS
Computer Description Language. Dept. of Computer Science,
Carnegie-Mellon University, Pittsburgh, Pa., March, 1978.

4. Barbacci,M, Nagle,A. The Symbolic Manipulation of
Computer Descriptions ; ISPS Application Note: An ISPS
Simulator. Dept. of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pa., March, 1978.

5. Barbacci, M, Siewiorek, D. An Architectural Research
Facility - ISP Descriptions, Simulation, Data Collection. AFIPS
Proceedings 46 (1977), 161-173.

6. Barbacci,M. Automated Exploration of the Design Space
for Register Transfer (RT) Systems. Ph.D. Th., Dept. of
Computer Science, Carnegie-Mellon University, Pittsburgh,
Pa., November 1973.

7. Bell, C,, Newell, A. Computer Structures: Readings and
Examples. McGraw-Hill Book Co., New York, 1971.

8. CattelR. Formalization and Automatie Derivation of Code
Generatore. Ph.D. Th., Dept. of Computer Science,
Carnegic -Mellon University, Pittsburgh, Pa., April 1978.

9. Crocker, S. State Deltas: A Formalism for Representing
Segments of Computation. Ph.D. Th., Computer Science
Department, UCLA, 1977.

10. Darringer, J. The Description, Simulation and
Implementation of Digital Computer Processors. Ph.D. Th,,
Department of Electrical Engincering, Carnegie-Mellon
University, 1969,

Lo Hafer L, Parker A, Register-Transfer Level Digital Design
Automation: The Allocation Process. Design Automation
Conference Proceedings no. 15, ACM SIGDA, IEEE Comp. Soc.
Tech. Com. on Design Automation, June, 1978, pp. 213-219.

12, Morgart, W. Automatic Emulator Generation. Work in
progress, Department of Electrical Engineering,
Carnegie-Mellon Univ., Pittsburgh, PA, April, 1979

13. Nagle, A. An Investigation of GLIDE - A Generalized
Languane for Interface Description and Evaluation. Master
Th., Dept. of Electrical Engineering, Carnegie-Melion
University, Sept. 1976.

L4. Oakley, J. Symbolic Execution of Formal Machine
Descriptions. Ph.D. Th,, Computer Science Department,
Carnegie-Mellon University, April 1979.

15. Parker, AC. Description and Simulation of Microcode
Execution. Proceedings of the 5th Annual Computer
Architecture Symposium, ACM SIGDA, IEEE Computer Society,
April, 1978,

16. Parker, AC, et al. The CMU Design Automation System .
Design Automation Conference Proceedings No. 16, ACM
SIGDA, IEEE Tech. Comm. on Design Automation, June, 1979.

17. Parker, A.C. Digital Interface Description. Proceedings
COMPCON, IEEE Computer Society, February, 1978.

18. Snow,E. Automation of Module Set Indepcndent Register
Transfer Level Design. Ph.D. Th,, Dept. of Electrical
Engineering, Carnegie-Mellon University, Pittsburgh, Pa., April
19783.

19. Thomas,D. The Design and Analysis of an Automated
Design Style Selector. Ph.D. Th., Dept. of Electrical
Engineering, Carnegie-Mellon University, Pittsburgh, Pa., April
1977.

20. vanMierop, D,, Crocker, S. and Marcus, L. Verification of
the FTSC Microprogram. Proceedings of the 11th Annual
Microprogramming Workshop, ACM SIGMICRO and IEEE Tech.
Comm. on Microprogramming, November, 1978.

21. Wallace, J. and Parker, A. SLIDE: An I/0 Hardware
Descriptive Language. to be published in the Proceedings of
the 1979 International Symposium on Hardware Descriptive
Languages, Palo Alto, CA, October

22. Wick,J. Automatic Generation of Assemblers. Ph.D. Th,,
Dept. of Computer Science, Yale University, New Haven,
Conn,, 1975.

- 27 -

Proceedings of the
4th Interhational Sympogium,on,

Gomputer“Hardware
“Description“Languages

Palo ¢ Alto, Galiforfjia
October 8-9, 1979

W. (M. vanGleemput
~ QGonference Ghairinan,
N D. Dietmeyer Qt
Program, Ghairinan,

IEEE (atalog ¢No. 79CH1436-5C
Libraryof Gongress (No. 79-87963

@ IEEE COMPUTER SOCIETY 0@3»45 INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
®

Additional copies available from:

IEEE Computer Society
5855 Naples Plaza, Suite 301
Long Beach, CA 90803

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854

Copyright © 1979 @ @ by The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y., Printed in USA

