Explicit Stack Management in C—

Russ Cox
rsc@eecs.harvard.edu

ABSTRACT

The portable assembly language C-- currently assumes that pro-
gram execution takes place on a one-way infinite stack. We propose
modifications to the language to allow the front end to implement the
stack management policy of its choice. The modifications are compli-
cated by C--’s tail call.

We do not address the implementation of C--’s yield call, except
to note that it cannot use the program’s stack pointer.

Introduction

The portable assembly language C-- [1, 2] assumes that programs run on a one-
way infinite stack. This assumption implicitly affects the standard C-- calling conven-
tion and stack frame management; these effects in turn make the implementation of
other stack management policies (e.g., the segmented copy-on-write stacks used to
implement first-class continuations in Chez Scheme [3, 4]) difficult if not impossible.

To remedy this situation, we propose that C-- rely on the front end to provide a
function prologue and epilogue to handle stack frame allocation and deallocation. We
also propose that C-- use a front-end-provided ‘‘argument frame” allocator to create
space in which to store overflow parameters for function calls. After providing justifica-
tion for these interfaces, we propose additions to the C-- runtime to allow programs
management of the stacks from the front end run-time systems.

Goals
We would like C-- to enable the following stack management methods.

e One-way infinite stack. The current stack protocol should still be possible, and
should be no more expensive than it currently is.

e “No stack’. A compiler such as the one used by Standard ML of New Jersey [5, 6]
should be able to use heap-allocated objects for function arguments and activation
records.

o Segmented stacks. The implementation of first-class continuations in Chez
Scheme uses a linked list of stack segments to implement continuations efficiently.

We want to allow the front end to be able to implement a policy such as these but
still be isolated from as many details (hopefully all!) as possible about the target archi-
tecture.

Background

Ramsey and Peyton Jones identify three different parameters that describe the
space in use by an instance of a function. Specifically, the space consists of an n-byte
activation record and an i-byte incoming overflow parameter area; if the function is
preparing to do a call or a jump, there will be an o-byte outgoing overflow parameter

-2

area as well. Ramsey and Peyton Jones, working on a one-way-infinite stack, note that
considering parameters to be part of the caller’s or callee’s activation record is mostly a
question of point of view. Unfortunately, this question becomes more precise and more
hairy when we break this model; in fact, the overflow parameters will have to be treated
differently than the activation records.

Front end provisions

To make the stack management explicit, we propose that the C-- back end inline
‘““calls”” to helper routines provided by the front end to handle activation record and
overflow argument management in the generated code. We assume three pseudoregis-
ters': £p points at the activation frame, ip points at the incoming overflow parameter
frame, and op points at the outgoing overflow parameter frame. The helper routines
are used as follows.

- fn_prologue(n, i, ...): allocate an activation record of size n, storing a
pointer to its base in fp; also set ip to point at the i bytes of incoming overflow
arguments, if any, using the helper parameters returned by fn_findargs. The
old value of £p must be recoverable.

- fn_epilogue(n, i, ..): in preparation to return, deallocate the activation
record to which f£p points, which is of size n; additionally, deallocate the argument
frame to which ip points, which is of size i and was found using the given helper
parameters. The old value of f£p (i.e., its value when £fn_prologue was called)
must be restored.

- fn_jumpepilogue(n, i, o, ...): Like fn_epilogue, but in preparation for a
tail call.

- fn_allocargs(o): allocate an o-byte overflow argument frame, storing a
pointer to its base in op; return some number of values (possible zero) that can be
used in a call to fn_prologue to locate the argument frame.

For the mechanism to work efficiently, the C-- compiler must inline the calls and per-
form optimizations such as constant propagation and unreachable and dead code elimi-
nation. The number of values returned by fn_allocargs must be the number of
extra parameters taken by fn_prologue and fn_epilogue; this restriction is eas-
ily checked by the compiler. (The number of values used to locate the overflow frame
influences the number of overflow parameters, so the compiler must find this anyway).

As an example, consider the following tail recursive C-- function to compute ele-
ments of the Fibonacci sequence. We assume we must spill all function parameters but
that the return value can be kept in a register.

" The pseudoregisters could go in favor of more values passed and returned to the “‘calls”’, assum-
ing the compiler implements a sufficiently aggressive register coalescing algorithm. The C-- com-
piler is free to treat these pseudoregisters as variables that can be dead at given points in the func-
tion; for example a function with no incoming overflow parameters would not need that register.
Further, if the compiler deduces that two registers have a constant difference and one is only used
as a base register for loads and stores, it seems reasonable to expect that the compiler could rewrite
those loads and stores to use the other register.

fib(n) {
m = fibhelp(l, 1, n);
return m;

}

fibhelp(f0, f1, n) {
if(n == 0)
return fO0;
jump fibhelp(fl, f0+fl, n-1);
}

A C-- compiler might translate this into the following pseudo-assembly (before inlining)
for a 386.

TEXT fib
/* find argument, load into register */
fn_prologue(0, 1%*4)
MOV 0(ip) —> AX

/* prepare arguments and call */
fn_allocargs(3*4)

MOV $1, O(Cop)

MOV $1, 4(op)

MOV AX, 8(op)

CALL fibhelp

fn_epilogue(0, 1%4)
RET
TEXT fibhelp
/* find arguments, load into registers */
fn_prologue(0, 3%4)
MOV 0(ip) —> AX
MOV 4(ip) —> BX
MOV 8(ip) —> X

DEC CX
JGE tailcall /* jump if CX >= 0 */
RET

tailcall:
ADD BX —> AX

/* prepare arguments and jump */
fn_allocargs(3*4)

MOV BX —> 0(op)

MOV AX —> 4(op)

MOV CX —> 8(op)

fn_jumpepilogue(0, 3*4, 3%*4)
JMP fibhelp

Because the front end provides the inlined functions, it retains control over allocation
policies and the like.

Justification

Before continuing, it likely seems startling that function call arguments are allo-
cated and managed separately from activation records. This is dictated by C--’s unre-
stricted tail calls.

An activation record is created and destroyed by the function that uses it. This is

-4 -

necessary mainly for independent compilation of modules: it is unreasonable to expect
every caller to know how large a stack frame to allocate or destroy for each function it
calls. Function arguments are fundamentally different, as they anticipate the callee’s
stack frame but can outlive the caller’s stack frame (as is the case in a tail call). Thus we
must allocate and reclaim them separately from stack frames. Techniques developed to
handle tail calls in the case of a one-way infinite stack can still be expressed efficiently
via this model, as will be shown.

Example: One-way infinite stacks

We must ensure that the implementation of a simple one-way infinite stack does
not become inefficient. The simplest way to do this is to keep the frame pointer point-
ing at the bottom of the stack frame, and write outgoing arguments under it. It will be
up to the callee to move the frame pointer down to acomodate the arguments and any
desired extra stack space, and to restore it upon return.

The prologue, epilogue, and argument allocator are as expected:
fn_prologue(bits32 n, bits32 i) {

ip = fp-i;
fp —= n+i;
}
fn_epilogue(bits32 n, bits32 i) {
fp += n+i;
}
fn_allocargs(bits32 o) {
op = fp-o;
}

For a jump, we will copy the arguments up over our own stack frame.

fn_jumpepilogue(bits32 n, bits32 i, bits32 o) {
move (fp+n+i, fp, 0);
fp += n+i+o;

}

The only arguably inefficient part of the resulting scheme over a hand-coded one is the
block copy for the outgoing arguments at a jump. In the general case, though, the stack
frame might contain enough vital information, and the number of outgoing arguments
might be so large, that the copy would be necessary anyway. The details of move could
be such that the small cases were picked off, if desired. While algorithms do exist to
handle such argument transformations, they would need to be implemented by the front
end, which would require intimate knowledge of the stack layout; the issue does not
seem pressing enough to consider bringing the front and back ends so close together.

On a RISC machine, this is the whole story, but on a CISC machine like the 386, we
need to worry about the return address, which is kept on the stack, and could poten-
tially be wiped out by the epilogues. Since the return address for a call never outlives
the caller, the C-- back end can arrange for the return address to go in the stack frame
rather than be treated a true argument. If we map fp to the stack pointer, then we can
reserve the bottommost word of the stack frame for the return address. Then a call to
foo () translates to

ADD $4, SP
CALL foo
SUB $4, SP

while a jump remains a JMP instruction. In the case where no calls are made by the
function, the extra word need not be allocated.? Alternate schemes might treat the

2 We might consider using the return address as an argument and simply jumping to it rather than

-5-

return address as the first or last argument, but that would involve the epilogues in
machine-dependent operations and thus hinder their portability. The benefit of this
scheme is that the front end need not worry at all about the fact that it is compiling for a
386.

Example: Heap allocated activation records

We note that a compiler employing heap allocated activation records has an easy
time of providing this interface. We assume that a copying collector is in use, that ‘“hp”’
points and the heap frontier, and that “hlimit” points at the end of the heap. We
punt the implementation of garbage collection to the next half of this paper, and ignore
synchronization completely.

The prologue and argument allocator are both inlined calls to the heap allocator;
the prologue need not save the current frame pointer, since we will not return.

fn_prologue(bits32 n, bits32 i, bits32 passed_ip) {
if(n > 0) {
fp = hp;
hp += n;
ifChp > hlimit)
yield();
}
ip = passed_ip;
ks
fn_allocargs(bits32 o) {
op = hp;
hp += o;
ifCchp > hlimit)
yield();
return op;

}

The two epilogues are empty functions, leaving the garbage collector to pick up the
stack and argument frames. We also assume that garbage collection will fix £p and op
when yield is called. Note the dependence upon constant propagation and code elim-
ination to trivialize fn_prologue in the case where there is no stack frame to be allo-
cated, or no arguments to be located (in which case ip will not be used in the rest of
the function).

The prologue and argument allocation could be folded into one, to avoid the extra
instance of yield; however, it seems to me a case of premature optimization, since the
usual case in which such allocation patterns arise is in a continuation-passing compiler,
which will make exactly one call per function, so at best we save a factor of two (assum-
ing no computation whatsoever is being performed).

Code Restrictions

Clearly arbitrary code cannot be placed in the prologue and epilogue functions,
since there is no activation record in which to spill temporaries and the like. It is hard, if
not impossible, to give a useful definition of what might be expected to be a valid
sequence of code to inline. Precisely, a sequence is valid if and only if the back end
compiler is able to compile it using no spilled temporaries. This is horribly target and
compiler dependent. To the front end writer we can only give the advice to keep the

using the native return instruction. In fact, failure to use the native call and return instructions re-
sults in enormous performance hits on the Pentium, due to conflict with the instruction prefetch and
branch prediction units. For a doubly-recursive Fibonacci computation, the cost of using POP AX;
JMP AX rather than RET is an approximately 60% increase in wall clock time. To put things in per-
spective, POP AX; PUSH AX; RET results in only a 10% increase.

-6 -

prologues simple, perhaps envisioning a target machine with four to six registers in
which to work.

Back end provisions

Since stack and argument frames are now heap allocated, they are subject to gar-
bage collection. We have deferred that issue up to this point because it requires extra
functions to be provided by the back end, specifically by the C-- run-time system.

The activation walking mechanisms need the front end to provide a function that,
given a frame pointer, returns the saved frame pointer in that frame, or zero if this is
the last frame:

void *GetNextFP(activation *a, void *fp);

This is necessary because only the front end knows where the prologue squirrels away
the old frame pointer.

Further, the front end needs the back end to provide information3 about the frame
sizes (i, n, and o in the previous discussion) for a given activation.

int GetFrameSize(activation *a);
int GetInputSize(activation *a);
int GetOutputSize(activation *a);

When the suspended function has been stopped between fn_allocargs and the cor-
responding function call, GetOutputSize returns the size of the overflow area; oth-
erwise it returns zero. Finally, the function FindReg returns a pointer to the value of a
pseudoregister like fp, ip, or op.

void *FindReg(activation *a, int reg);

Example: Heap allocated activation records, continued

It seems a safe assumption that pointers into the stack frames do not exist; cer-
tainly in a continuation-passing compiler, the only use of stack variables should be to
spill temporaries or local variables which would otherwise be in registers. Given this
assumption, the copying of the C-- stack frame is simple.

3 It is not reasonable to put these in spans because only the back end knows their value at various
points in the code; in fact, the span ranges would not even correspond to line boundaries in the C--
source.

void
CopyStack(void)
{
int i, n, o;
void **p;
activation *a;
a = FirstActivation();
if(n = GetFrameSize(a)) {
p = FindReg(a, FP);
*p — Copy(*p, n);
}
if(i = GetInputSize(a)) {
p = FindReg(a, IP);
7':p — Copy(*p, l),
}
if(o = GetOutputSize(a)) {
p = FindReg(a, OP);
:‘:p = Copy(:':p’ O),
}
+

Since there is no next activation, we need not look for it. Note that the C-- run-time
interface must use the locations returned by FindReg when it needs to look at the val-
ues therein, so that changes are accurately reflected.

Example: Segmented stacks

As a final example, we consider the implementation of segmented stacks d la Chez
Scheme. The run-time system keeps a linked list of segment descriptors, each of which
contains a pointer to a stack segment and the size of the segment. The top frame
(assuming downward stack growth) has as its return address a special stack underflow
handling routine rather than a real return address. The original return address for that
frame is also kept in the segment descriptor. We need a mechanism both for rewriting
this return address and jumping to the old one. A priori, it is not clear that the ability to
make such modifications would not run afoul of the optimizer. For instance, the ability
to arbitrarily set the program counter to which a thread resumes would certainly invali-
date the large majority of optimizations performed by the compiler. However, it does
seem reasonable to be able to find and write to the return address in an activation; since
pointers to functions, especially exported functions, enable their calling from arbitrary
locations, the optimizer cannot depend on properties of the return address. So let us
posit that FindReg can treat the return address as a special register. Since we are not
overly concerned with the efficiency of handling stack underflow, the following works
portably, if not elegantly. As in Chez Scheme, we have a handler function called
underflow:

export underflow;

underflow() {
underflowyield();

}

export underflowyield;

underflowyield() {

yield();
}
Underflowyield is exported so that C-- does not consider inlining it. Now when
the stack underflows, we will ‘‘return” to wunderflow, which will «call

underflowyield, which will yield to the run-time system. Then the run-time sys-
tem can modify the environment as necessary, changing the return address of

underflowyield to be the intended return address, clearing the underflowed stack
in the process. Of course, these hoops are necessary only for machines that keep the
return address on the stack; RISC machines will work with slightly simpler methods, but
this scheme will work as well.

Conclusions

We believe that the use of inlined code fragments and the extra runtime calls out-
lined here enable a variety of stack-management policies, leaving the ultimate decision
in the hands of the front end. Further, they do so in a way that is almost completely
machine independent. One of the few machine details directly exposed is stack direc-
tion; a magic direction multiplier would be sufficient to remove this dependency. The
problem of what code is allowed to appear in a prologue or epilogue is trickier (and, we
believe, insoluble).

The current scheme does not allow the allocation of all overflow arguments along
with the activation record; we might envision passing a maxo parameter to the
fn_prologue routine; if desired, the prologue could allocate the overflow area and
then fn_allocargs would simply be a no-op. Such a scheme (reusing argument
space for multiple calls) is only viable in the absence of first-class continuations.

The twisting to handle CISC machines like the 386 seems unfortunate but unavoid-
able; future work might address cleaner ways to deal with such a machine, since it is not
likely to go away soon.

References

1. Norman Ramsey and Simon L. Peyton Jones. ‘‘Machine-independent support for
garbage collection, debugging, exception handling, and concurrency (draft)’”.
Technical Report CS-98-19, Department of Computer Science, University of Vir-
ginia, August 1998.

2. Norman Ramsey, Simon L. Peyton Jones, and Fermin Reig. ‘““C--: a portable assem-
bly language that supports garbage collection’. International Conference on Prin-
ciples and Practice of Declarative Programming, LNCS 1702, September 1999.

3. Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. ‘‘Representing Control in the
Presence of First-Class Continuations’’. ACM SIGPLAN 1990 Conference on Pro-
gramming Language Design and Implementation, June 1990.

4. Carl Bruggeman, Oscar Waddell, and R. Kent Dybvig. ‘“‘Representing Control in the
Presence of One-Shot Continuations’’. ACM SIGPLAN 1996 Conference on Program-
ming Language Design and Implementation, June 1996.

5. Andrew W. Appel and Trevor Jim. ‘““‘Continuation-passing, closure-passing style’’.
Proc. Sixteenth ACM Symposium on Principles of Programming Languages, pp.
293-302, January 1989.

6. Andrew W. Appel Compiling with Continuations. Cambrige University Press, New
York, 1992.

