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How Statically-Typed Functional Programmers Write Code
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How working statically-typed functional programmers write code is largely understudied. And yet, a better

understanding of developer practices could pave the way for the design of more useful and usable tooling, more

ergonomic languages, and more effective on-ramps into programming communities. The goal of this work is

to address this knowledge gap: to better understand the high-level authoring patterns that statically-typed

functional programmers employ. We conducted a grounded theory analysis of 30 programming sessions of

practicing statically-typed functional programmers, 15 of which also included a semi-structured interview. The

theory we developed gives insight into how the specific affordances of statically-typed functional programming

affect domain modeling, type construction, focusing techniques, exploratory and reasoning strategies, and

expressions of intent. We conducted a set of quantitative lab experiments to validate our findings, including that

statically-typed functional programmers often iterate between editing types and expressions, that they often

run their compiler on code even when they know it will not successfully compile, and that they make textual

program edits that reliably signal future edits that they intend tomake. Lastly, we outline the implications of our

findings for language and tool design. The success of this approach in revealing program authorship patterns

suggests that the same methodology could be used to study other understudied programmer populations.
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1 INTRODUCTION

Statically-typed functional programming languages like Haskell, OCaml, Elm, F#, and SML offer
features and normsÐlike expressive type systems, strong static guarantees, and an emphasis on
small and reusable functions free of side effectsÐthat differentiate them from other classes of
languages. These attributes are different enough from those found in more mainstream languages
that they engender distinct modes of interaction between statically-typed functional programmers
and their language, environment, and tooling. The aim of this work is to understand how the
specific affordances of statically-typed functional programming affect the way programmers author
code. The end goal is to deepen our understanding of an understudied programmer population, lay
the foundation for evidence-based design of useful and usable languages and tools, and elucidate
tacit community knowledge, which could ease the onboarding of new members to the community.

Authors’ addresses: Justin Lubin, justinlubin@berkeley.edu, University of California, Berkeley, Berkeley, California, USA;

Sarah E. Chasins, schasins@cs.berkeley.edu, University of California, Berkeley, Berkeley, California, USA.

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART155

https://doi.org/10.1145/3485532

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 155. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485532
https://doi.org/10.1145/3485532


155:2 Justin Lubin and Sarah E. Chasins

We conducted a mixed-method investigation, beginning with a grounded theory analysis of 30
statically-typed functional programmers engaged in coding sessions, 15 of which occurred live
over Zoom and included a semi-structured interview afterward. The other 15 sessions were drawn
from livestreaming websites for increased ecological validity. Our theory (Section 4) unifies our
observations in a framework consisting of four primary categories: (1) type construction, (2) focusing
techniques, (3) hierarchical and opportunistic programming, and (4) reasoning and intent. After
constructing this theory, we conducted a set of quantitative lab experiments (Section 5) to test
some of our theory’s predictions. Lastly, based on our theory and the results of our experiments,
we outline some implications for tool design and unresolved questions in this area (Section 6).

This paper does not introduce or evaluate any new tools. Our theory development method
was open-ended, driven by the goal of understanding the programming practices of working
statically-typed functional programmers. The insights generated by our theory can be used not
only as a foundation for improved languages and tooling, but also as a starting point for further
interdisciplinary investigation into why statically-typed functional programmers write code the
way that they do, whether or not their strategies could be improved, and whether the behavior of
working functional programmers should shape howwe teach beginners. Moreover, the methodology
we used to develop this theory is generalizable to other understudied classes of programmers.

Contributions. In summary, we observed statically-typed functional programmers write code,
interviewed them about their code authoring processes, and performed controlled experiments to
test hypotheses generated by these methods. These endeavors resulted in four key contributions:

• A grounded theory of how statically-typed functional programmers author code, including
their domain modeling, type construction, focusing techniques, exploratory and reasoning
strategies, and expressions of intent.

• An experimental validation of hypotheses generated by this theory.
• A set of implications for tooling for statically-typed functional programming languages.
• A template for future need-finding studies of understudied programmer populations.

2 BACKGROUND

We first provide a brief background on two concepts this paper relies on.

2.1 Grounded Theory

Grounded theory methodology (GTM) is an approach to theory development with a long history
in the social sciences that emphasizes an iterative cycle of data collection, data interpretation, and
theory development (Glaser and Strauss, 1967). The goal of GTM is not to test a fixed hypothesis or
existing theories, but rather to build up a new theory, grounded in data, to understand a phenomenon
or domain. At a high level, it operates as follows:

1. The researcher collects data.
2. As the researcher collects data, they tag it with increasingly abstract categories that are,

ideally, the simplest possible explanation for the data at hand.
3. As more data accumulates, this simplest possible explanation will grow more nuanced when

unexpected or surprising new data challenges the developing theory.
4. This process finishes when the theory reliably accounts for the data being collected and no

more łsurprisesž are found. (This is often called theoretical saturation.)

The key principle is constant comparison of data-with-data and data-with-theory (Charmaz, 2006,
Glaser and Strauss, 1967, Urquhart and Fernandez, 2006), which allows the iteratively-developed
theory to guide the data collection process by choosing data samples that will test the theory at its
weakest points (Awbrey and Awbrey, 1995). Theories that survive this process of weakness-driven
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data sampling are likely to be broad, robust, and predictive (Muller, 2014). Stol et al. (2016) give an
overview of the use of GTM specifically in the context of software engineering research.

An example of the grounded theory process. To make GTM more concrete, we present here an
example of how this process unfolded for developing the łCoding as a process of clarificationž
subsection in Section 4.3.2. All steps come from the standard grounded theory procedure and were
interleaved with data collection.

1. First, when reviewing our recorded participant footage, we tagged hundreds of low-level
descriptions of the activities occurring without any regard to abstraction. For example, two
such tags were łpipeline forces top-down / generic thinkingž and łrewrites to pipeline later
if obvious pattern emerges.ž

2. In a second pass over all tagged materials, we grouped these descriptions into about 100
summary tags that group similar activities. The above two tags were grouped under łswitches
from explicit case to pipeline.ž

3. We abstracted these clusters into higher-level summaries, of which there were about 20. The
above tag was grouped under łreuses prototype code.ž (This tag was later refactored into the
idea of łcoding as a process of clarification.ž)

4. Finally, these tags were grouped into the highest-level categoriesÐthose that appear as section
headers in this paper. The above tag was grouped under łtwo modes and their harmonyž
(where these łmodesž referred to hierarchical and opportunistic programming). This tag was
eventually refactored to łinterplay of hierarchical and opportunistic programming.ž

5. As a final step, after we wrote up the grounded theory, we reviewed our theory to derive
hypotheses to test in future work (and in our quantitative evaluation in Section 5).

2.2 Hierarchical and Opportunistic Programming

An important distinction in the psychology of programming is between hierarchical and opportunis-
tic patterns of program construction. Guindon (1990) and Davies (1991) characterize hierarchical
programming as a systematic approach of refining the abstract to the concrete via a plan con-
structed ahead of time and opportunistic programming by deviations from this pattern (caused by,
for example, a lack of conceptual clarity or tasks that exceed the capabilities of working memory).
We discuss this distinction further in Section 8.2.1.

3 METHOD

Participants and recruitment. We conducted live study sessions with 15 participants with a variety
of experience backgrounds, focusing mostly on those with at least two years of statically-typed
functional programming experience. See Table 1 for details of each participant’s background, years
of experience with functional programming, and the language they used for the study. We screened
participants (recruited from personal contacts, Slack workspaces, and Twitter) via a survey for
(1) sufficient prior experience with statically-typed functional programming and (2) a diverse set of
programming languages used.

Study protocol. Study sessions consisted of two back-to-back recorded sections of approximately
45 minutes each on a Zoom call with the first author. In the first half, participants narrated their
thought processes aloud as they completed a subset of the tasks in Table 3 in a statically-typed
functional programming language of their choice. We selected these tasks to be mostly open-ended
and adapted them as time went on as a form of theoretical sampling to investigate particular themes
that emerged. Additionally, as participants completed tasks, the first author incrementally asked
them to complete follow-up tasks to investigate how they adapted their code. In the second half,
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Table 1. Participants we observed write code
while thinking aloud and interviewed. Exp. is
experience with statically-typed functional program-
ming. OSS is open source software.

ID Language Exp. Exp.

(Years) (Kind)

P1 SML 3 Academia
P2 OCaml 9 Academia, industry
P3 OCaml 3 Academia, industry, OSS
P4 OCaml 0.5 Academia
P5 Elm 3 Industry, OSS
P6 Elm 1 Industry
P7 Reason 2.5 Academia
P8 Elm 7 Industry
P9 Haskell 7 Academia
P10 Haskell 10 Industry, OSS
P11 Haskell 7 Academia
P12 F# 10 Industry, hobby
P13 PureScript 3 Academia, OSS
P14 BuckleScript 20 Industry, OSS
P15 Haskell 25 Academia

Table 2. Livestreamers we observed write code.
Additional details available at https://github.com/

plait-lab/stfp-livestreams.

ID Language Task

L1 Haskell HTTP requests to GitHub API
L2 Elm Board game with GUI
L3 Haskell REST API for cryptography
L4 OCaml Back-end web server
L5 Haskell Advent of Code (coding challenge)
L6 PureScript Front-end web development
L7 F# Twitch chat bot
L8 PureScript Networking for in-memory database
L9 OCaml Ray tracer
L10 F# Realtime number clicking game
L11 Haskell PureScript language server
L12 Reason Front-end for penetration testing tool
L13 Elm Narrative engine for interactive stories
L14 F# Full-stack web development
L15 F# City management game

Table 3. Tasks for grounded theory sessions. These tasks were open-ended by design, and we often made
slight per-participant modifications in accordance with the constant comparison and theoretical sampling
aspects of GTM. We presented each numbered sub-task only after participants completed the previous one.

Description Purpose

Calculator. 1) Implement a calculator that takes in an expres-

sion representing a mathematical computation and evaluates

it. The calculator should support addition, subtraction, and

multiplication of integers. 2) Extend the addition operation so

that multiple integers can be added at once. 3) Extend the cal-

culator to support division. 4) Extend the calculator to include

an operation that returns the last calculation’s answer.

To observe how participants refactor their code to han-

dle evolving requirements, especially in the presence

of effects such as partiality (division) and mutable state

(calculator history).

Geometry API. 1) Implement a function that, given two cir-

cles, determines if they intersect. 2) Implement a function that,

given two lines, determines if they are parallel. 3) Implement

a function that, given a shape, prints out a description of what

kind of shape it is.

To observe how participants reconcile different type

modeling strategies. (Each shape was initially presented

as independent, but later both must be handled by the

description function.)

String manipulation. Create a function that takes a number

and returns a list of strings containing the number cut off at

each digit. For example, when called with 1080, the function

should return ["1", "10", "108", "1080"]. (Drawn from

Barke et al. (2020).)

To observe how participants decompose tasks when

dealing with relatively unstructured data types (integers

and strings), especially paying attention to their use of

pipelines.

Tic-tac-toe. Implement a 3 × 3 tic-tac-toe game. To observe how participants settle on type representa-

tions, how they decompose larger tasks, and how they

maintain invariants throughout their programs (such as

turn order, win conditions, and validity of moves).

the first author asked participants in a semi-structured interview to talk about their experience
with statically-typed functional programming and to elaborate on particular topics that came up
during their narration.
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Livestreamed programmers. Operating on the premise that livestreamers’ programming tasks
are more diverse and more representative of actual tasks faced by statically-typed functional
programmers, we also analyzed video clips approximately an hour in length from 15 statically-
typed functional programmers who publicly livestreamed coding sessions. See Table 2 for summaries
of the programming task in each clip and the programming language used. The clips were selected
manually at the first author’s discretion specifically to screen for diverse languages and tasks.
Livestreamers’ task diversity also had the benefit of introducing an element of randomness into
our theoretical sampling, which ultimately influenced the tasks for the live sessions.

Analysis. We used a constructivist grounded theory approach (Charmaz, 2006) to analyze the
video recordings. The first author began the process of grounded theory analysis for each video
by tagging łchunksž of the videos with specific summaries, thereafter grouping these chunks by
similarity into open codes while memoing and discussing findings with the second author. As we
continued data collection, we built up larger categories until identifying the key categories at play
in the programmers’ authoring processes. We ensured that we had reached theoretical saturation
(as signaled by a lack of surprises or unexplored consequences) before ceasing data collection.

4 THEORY

Our grounded theory analysis revealed that:

(§4.1) Participants often started a task by iteratively constructing types to model their problem
domain and encode design decisions.

(§4.2) Participants then leveraged types to help themselves focus by (i) relying on the compiler as
an assistant and (ii) using types to plan and decompose their tasks.

(§4.3) Sometimes, when faced with a difficult or unknown problem domain, participants comple-
mented this systematic style of programming with a more exploratory one, the details of
which were highly varied in comparison to the systematic style.

(§4.4) Lastly, no matter the style of programming, participants reasoned about code differently
and expressed their authorship intent in diverse ways, not all via valid code.

Based on these observations, we identify a set of hypotheses in outlined boxes throughout this
section. The subset of these hypotheses that are also numbered and styled with a shaded background
form the basis for the quantitative lab experiments in Section 5; we selected these hypotheses based
on our subjective assessment of which would be most actionable for tool and language designers.
Some of these observations are not necessarily specific to statically-typed functional program-

mers, but this section describes how they play out specifically in the statically-typed functional
programming process; the goal of this work is to understand and characterize the statically-typed
functional programming community rather than to identify particular patterns as exclusive to them.
We speculate that some of the insights described here will generalize to non-functional program-
ming languages with rich static type systems such as Swift and Rust as well as dynamically-typed
functional programming languages such as Racket, Clojure, and Erlang; studying these communities
and performing a comparative analysis would be an exciting avenue for future research.

4.1 Type Construction

P2 stressed the importance of using types for domain modeling:

That’s usually my first instinct . . . let me understand my domain, let’s write down what these things are,

let’s give them a name, let’s organize them appropriately, and then we can start to define our behavior on

top of these things.
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Step 1

let

hardBit =

Debug.todo "?"

in

⟨ body ⟩

Step 2

let

hardBit =

Debug.todo "?"

in

⟨ body (using hardBit) ⟩

Step 3

let

hardBit : Int → Maybe Int

hardBit =

Debug.todo "?"

in

⟨ body (using hardBit) ⟩

Step 4

let

hardBit : Int → Maybe Int

hardBit =

⟨ implementation of hardBit ⟩
in

⟨ body (using hardBit) ⟩

Fig. 1. Constructing a łhard bitž of a function. P8 (1) introduces the hard bit in a let binding, then (2)
uses the new variable in the body. This usage helps them (3) deduce an explicit type for the variable, which
helps them (4) implement its definition.

P6 noted that types help them detect design flaws early in the process, adding: łOnce you get
the types right, the rest of [the program] follows pretty quickly.ž Given the perceived benefits of
type-driven development, one might wonder: How are types constructed łrightž in the first place?

4.1.1 Iteratively Constructing Types and Expressions. For many participants, type construction
was not just a linear (or even branching) process, but, rather, a cyclical one, often including the
construction of expressions before the types had solidified. For example, participants wrote example
expressions before and during the construction of their types (P4, P6, P8), basing their decisions
of how to structure their types on how they structured their expressions. P7 took an iterative,
usage-centric approach, noting that although they first think łFrom a simple/conceptual/ontological
kind of level: How should these types be?ž they sometimes realize łOh, okay, wow this is actually
way more painful. Like, it felt right to me from just like a lofty, abstract perspective, but now that
I’m getting into the nitty-gritty . . . ergonomically, it’s too costly.ž Similarly, P10 noted they often
choose the simplest type representation that supports the operations they need for the task at
hand (such as representing mutable state as a function); then, as they code and begin to understand
the problem domain better, they switch the type to a more specific one (such as representing
states specifically as a dictionary or finite-state machine). Figure 1 depicts another kind of iteration
between types, signatures, and expressions: P8’s handling of a łhard bitž of a function, which they
pithily characterize as ł[Having] the usage drive the type rather than the type drive the usage.ž

Hypothesis 1. When constructing new programs, statically-typed functional programmers iterate between

editing types and editing expressions.

4.1.2 Feeling Odd When Types Are Amiss. At times, participants reported feeling łvery wrongž (P4)
or that something felt łweirdž (P5) or łfishyž (P7) while coding. Ultimately, each time a participant
reporting feeling this way, it could be traced to types they viewed as unsatisfactory: in all cases,
participants either identified particular discomforting aspects of how they modeled their types or
reported being more at ease after modifying their types. One prominent trigger for these feelings
was data representation redundancy, which both P7 and P8 explicitly called out as particularly
undesirable, recalling that this phenomenon had lead to bugs in the past. As a consequence of their
feeling of personal discomfort, participants were able to diagnose and repair issues with their types.

Hypothesis. Statically-typed functional programmers experience personal discomfort when working

with redundant type representations.

4.2 Focusing Techniques

No, they’re pairs! What am I doing? Yeah, ugh, okayÐI’m trying to do too many things at once. That’s also

a pretty common thing. (P3)

Part of the challenge of programming is managing mental workload, or łthe amount of mental
work or effort necessary for a person . . . to complete a task over a given period of time,ž which łis
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not merely a property of the task, but also of the individual, and their interactionž (Xie and Salvendy,
2000). Some of the variance in mental workload comes from individuals’ ability to manage their
working memory, a łtemporary storage system under attentional control that underpins our capacity
for complex thoughtž (Baddeley, 2007, Chapter 1). To complete complex tasks, programmers must
focus their attention on relevant information, reducing extraneous mental burden.
Although a rigorous workload analysis would be required to determine whether the following

strategies are actually effective, we observed (and participants described) a few focusing techniques
that are made possible by the nature of statically-typed functional programming languages.

4.2.1 Relying on Compilers as Assistants. There were two main ways in which participants relied
on their compilers as assistants:1 as corrective tools and as directive tools.

Compilers as corrective tools. Participants often invoked their compilers on code that they believed
to be correct, only to be met with a stream of error messages. While these errors could be viewed
as obstacles to having the computer run their programs, participants commonly stressed that this
corrective behavior of the compiler was useful not just to fix their programs, but also to correct
their mental models of the problem domain. P11 described such a process:

Every few functions I’ll be like łOh, have I correctly seen the relationship between all of the things I just

wrote and the data types that I actually care about?ž by loading it in and seeing if all the types match up.

P14 reinforced this idea, noting that feedback from the compiler was helpful first for correcting
their mental model, then, later, for correcting their actual program:

To me, the type errors are an indication that I don’t understand what I’m trying to put in next correctly

more than a hint or guardrails per se. And then they become [guardrails] when I say łOkay, this what I

believe I want, now tell me how I did it wrong,ž and then I’ll go and fix whatever it was that mismatched.

L4 demonstrated the extent to which compiler errors are integral to the development process,
noting, in the absence of negative feedback from the compiler, łI’m a little troubled because . . . I
expect the compiler to get mad at me right now, and it’s not getting mad at me, and that makes me
nervous.ž P1 echoed this sentiment, noting their discomfort at situations in which the compiler
cannot give negative feedback: łLifting an auxiliary function like that can be fraught, because
sometimes the auxiliary function and the original function have the same type . . . and this is not
necessarily something the type checker can fix for you.ž Participants felt similarly about the use of
wildcards in pattern matching, which silently assign pre-existing behavior to new variants of an
enumeration. P7 mentioned that, in their main codebase, wildcards are completely disallowed for
this reason, even though they make programming more convenient.

Compilers as directive tools. For many participants, error messages from their compiler served as
an auto-updating to-do list, directing their next steps in implementation. One instance of this pattern
is hole-driven development or sketching (discussed further in Section 4.2.3), what P10 described as a
łmore advanced versionž of interacting with the compiler:

If I kinda know what I’m doing in a problem, . . . I [write] the whole thing using my mental model, and

then I will run the compiler, and it will tell me łOh, you forgot to put a join in there,ž and then I will fix

those things . . . The more advanced version is, when I’m not sure what I’m doing, I will put holes in . . . I’ll

be continuously building the program with the compiler at each point telling me what I haven’t yet solved.

Another common and related compiler-directed workflow took the following form: (1) the pro-
grammer expresses their intent to complete a program transformation by modifying a small part
of the program and compiling, then (2) the compiler produces a list of sub-tasks (in the form of

1With thanks to Evan Czaplicki for popularizing the phrase łcompilers as assistantsž: https://elm-lang.org/news/compilers-

as-assistants.
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-- Set (Position, Position)

-- Set (Position, Tile, Maybe Color, Position)

-- Board, Set (Maybe Color, Position)

-- Board

Fig. 2. Following the types. L2 łfollowed the typesž by writing down the types for each step of moving a
board game piece in comments (shown here), then implementing each one sequentially.

error messages) to complete the transformationÐthe programmer can simply follow the errors. P1
described this process for modifying a type:

It broke a lot of stuff, but it was super nice because I made the change, and the type checker told me: łThis

no longer type checks; here’s all the places where it goes wrong.ž And I can just go through and fix all the

type errors, and that essentially is doing the change.

L13 used this strategy extensively while refactoring a type that relied on maintaining a list and an
index into a type that relied on just a zipper.
A source of variation between participants was in what order they completed the sub-tasks set

forth by łfollowing the errors.ž Participants often first performed semantics-preserving refactors
to get their code into a clean, working state before introducing new semanticsÐbut that was not
always the case. For example, when adding a possibly-failing division operation to their calculator,
P8 simultaneously made their function return a Result and implemented new functionality before
refactoring other parts of the function to handle the possible failures. They noted that they did so
because they knew how the error handling would work for division, but not for the other cases.
Similarly, P7 added new semantics to a function first as a lightweight way to make sure their code
transformation would have the desired effect and ergonomics, thus avoiding committing to an
arduous sequence of edits too early.

Hypothesis. When statically-typed functional programmers refactor a type definition, they use the

compiler error messages as a to-do list.

Many participants went so far as to compile for the sole purpose of looking at error messages,
fully aware that the code they wrote was invalid. For example, P3 narrated łI’m going to compile even
though I know it’s not going to workž and later mentioned łI’m expecting to get a type error herež
as they compiled. Similarly, when faced with figuring out an unknown type, P14 mentioned that
they would often łwrite a placeholder function of my own with a deliberately broken type and then
shove that in there, knowing that that can’t be misinterpreted as correct under any circumstances.ž

Furthermore, participants went out of their way to give information to the compiler that would
result in better error messages. For example, when stuck on an error that dealt with a complex,
nested type, P6 added a type signature to a function to get a more specific error message. Similarly,
as P3 grappled with type errors relating to OCaml’s List.fold_left library function, they narrated
łThis thing already knows it wants to be an int, so let me verify my assumptions hereÐthis should
be an exp, this should be an int . . . ž, adding extraneous type signatures to expressions as they
spoke, later removing them once they fixed the errors. As a more complex example, P5 mentioned
that they knew that the Elm compiler infers a type for a case expression based on its first branch,
so they re-ordered code they knew was correctly-typed to be the first branch to get a better type
error message on a more complicated branch.

Hypothesis 2. Statically-typed functional programmers run their compilers on code they know will not

compile.
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4.2.2 Type-Directed Top-Down Decomposition. Participants frequently used types to structure
their top-down decomposition of problems, a strategy many participants referred to as following
the types. As P9 put it:

Usually I will write a type annotation for each function I am trying to implement before I start implementing

the function, which is like the #1 step in implementation, which I definitely use all the time.

L2 exemplified this pattern more granularly by writing down the types of each step of a desired
algorithm, then later filling in their implementations (Figure 2). Similarly, P8 knew they wanted
to use the higher-order library function List.indexedMap but was unsure how to implement its
function argument, so they copied and pasted the type signature from the documentation into their
code and implemented the function top-down from the signature.
P7 stressed the importance of following the types in maintaining their focus:

I find types really help me just organize . . . it’s very important for me to be able to just chunk different

parts of functionality, and . . . once I’ve gotten down the type signature, I can just focus on this function

and not think about really anything outside of it.

P3 highlighted that working top-down from the type lets them think more clearly about sub-tasks:
łJust like, actually typing this out, and sitting here, kinda freed my brain of this outer context.ž

One instance of this pattern was leveraging parametricity. While implementing the string manip-
ulation task, P7 realized they needed to access the last element of a string (represented as a list of
characters). Rather than folding this functionality into the recursion they were already writing,
they implemented a parametric function that, given a list, returns its last element and the remainder
of the list. Extracting a parametric core of this task let P7 focus on exactly how to shuffle around
the list data without regard to what that data was, apparently reducing their mental workload.

These strategies provide insight into why statically-typed functional programmers place so much
emphasis on having their types model their domain as precisely as possible. When types are łon
the nose,ž P10 explains, programmers can often rely on types when they are stuck to essentially
dictate exactly what expression to write outÐa strategy that is augmented by the use of guiding
feedback from the compiler in the presence of typed holes. As P1 noted, leveraging parametricity
and typed holes proves to be a powerful combination:

Often, for nice enough programs, parametricity gets you all the way there, by just, you know: there’s only

three things you can plug into the hole. So that’s another tip that I take pretty seriouslyÐis using typed

holes and is using parametricity to my advantage very strongly.

4.2.3 Sketching. Program sketching (Solar-Lezama et al., 2005) is a practice in which programmers
leave parts of their code unimplemented; typically, low-level details are omitted for the purpose
of focusing on higher-level intent. Program sketches are frequently used as specifications for
program synthesis (Gissurarson, 2018, Lubin et al., 2020, Solar-Lezama et al., 2006, Torlak and Bodik,
2014), but program sketching even without any automated feedback was a valuable pattern for
participants. In tandem with type-directed, top-down decomposition, participants often used some
notion of a well-typed łprogram hole,ž even if it was not explicitly supported by the language. P1
emphasized that typed holes are łpretty much invaluable to [their] development process, to the
point where the fact that OCaml doesn’t have them makes it kinda painful to use sometimes.ž
Participants reported various benefits to sketching, including that it decomposes the problem

into simpler sub-tasks, that it helps structure the overall solution, and that it serves as a reminder
for what to do next, ensuring that the programmer stays focused and does not forget the tasks at
hand. P5 extensively used the names of yet-to-be-defined functions and types as named holes while
working on the task at hand; regarding this general strategy, P11 noted that it is ła good way to
keep track of what is left to do to just have a list of functions that don’t exist and go through and do
them.ž Similarly, both P4 and P5 mentioned that some notion of an incomplete placeholder is useful
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as a way to avoid forgetting other tasks while focusing on the one at hand, such as when working
on a case expression with many branches. P10 took this idea to the extreme, implementing their
tic-tac-toe game by first sketching out all the łdriverž IO code (which contained many holes in the
form of references to yet-to-be-defined functions), then going back and providing type signatures
for each of these functions and implementing them; regarding this tactic, P10 remarked that łYou
might have forgotten that there’s an entire part of your program that needs to be written, basically.
And the only way to expose that fact is by writing, essentially, the top-level driver . . . ž

But not all participants sketched out their top-level program in code; participants often reported
constructing such a sketch mentally. For example, P15 implemented their tic-tac-toe game by first
writing out all the type signatures for the łatomsž of their program, then implementing them, then
combining them all in a top-level driver. While this behavior visually resembled opportunistic
construction of programs (writing down everything possible in an ad hoc or piecemeal way, then
gluing it all together at the end, as in Section 4.3), P15’s reported experience was exactly the
opposite: the driver was simple enough to be completely sketched out in their head, enabling them
to start writing signatures for the atoms immediately, rather than actually writing out the sketch:

When it’s very clear what the high-level loop is or [what] the high-level decomposition is going to be, then

I can start working with the atoms. But if it wasn’t so clearÐand there are many situations where that’s

not clearÐthere, it’s more like there’s this big rock and I just try and hack off smaller bits, and I keep trying

to hack off smaller bits until, okay, it looks like these are the different primitives that I’m gonna need.

P9 reported a similar approach: łWhen I program, I usually have this top-down approach, so I’ll
have a bigger function which will do some big thing, then I’ll decompose it in my head and then
implement the functions for the sub-tasks and then compose them together.ž These examples
indicate that even having access to a granular, textual reconstruction of code as it was written
would not be sufficient for distinguishing certain authoring patterns (such as decomposition by
mental sketching vs. opportunistic conglomeration of atoms).

Hole filling order. As with fixing compiler errors, participants engaged in substantially different
ways of filling these holes. Three general strategies that emerged were breadth-first, depth-first,
and hard-first. In breadth-first hole filling, the programmer sketches out a skeleton of a solution of
the task they are currently working on at a single level of abstraction, then later fills in the missing
details. For example, when talking about writing part of the main IO loop for their tic-tac-toe game
(a function askPlayer), P9 mentioned:

The problem with the parsing is that you have to come up with the format in which the user have to write

the input . . . this is a decision which I did not want to make right now, because it will take some time and

I’ll lose the focus of the askPlayer function.

P13 pointed out that another benefit of breadth-first hole filling is that it defers tedious implementa-
tion details until later in the development process, at which point the program types are more likely
to have stabilized. Specifically, regarding the implementation of low-level details, they note: łI have
to spend time doing that, and then if I want to change it later, it’s like, wow, I just wasted so much
time.ž Lastly, P10 noted that simply leaving parts of a program that they do not yet know how to
implement unfilled for some time (as in breadth-first hole filling) can make the hole easier to fill for
two reasons: first, that łthere might be things that you discover or learn while you’re implementing
the easier code,ž and, second, that łthere’s also just the benefit of time . . . your brain is constantly
thinking of things in the background, and if you spend ten minutes doing something else, then you
might realize during that ten minutes that the approach you had been taking is wrong.ž

On the other hand, in depth-first hole filling, the programmer refers to a variable before defining
it, but very soon thereafter goes to fill the hole, going down a level of abstraction before completing
the current function. P14 notes that it is helpful to leave parts of the program unimplemented to start
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but stresses the importance of getting a program up and running as soon as possibleÐsomething
not typically possible with a partial sketch during breadth-first hole filling. Regarding filling holes,
they noted: łIf it’s not distracting, then I’ll probably write it right away to get it out of the wayž
so that they can get their program running sooner. P12 noted that depth-first hole filling better
matched their cognitive process outside of programming, so it came more naturally to them:

The main reason is I often think in this way on my own anyway. I get some idea and kinda digress and

explore [that] idea . . . and then, kind of, go back to whatever was going on before in my head.

Lastly, P10 pointed out a hybrid between breadth- and depth-first hole filling: hard-first hole
filling, in which the most difficult holes are filled first. They described this as their default strategy
because it reduces their łschedule uncertainty,ž improving their predictions of how long tasks will
take by surfacing the difficult parts and the sub-tasks they entail early in the process. In short, their
justification for this strategy was: łHard problems beget more problems.ž

Hypothesis. When decomposing a task, statically-typed functional programmers commonly construct a

typed sketch either mentally or textually.

4.3 Hierarchical and Opportunistic Programming

Participants primarily engaged in hierarchical programming by łfollowing the typesž (Section 4.2.2).
The opportunistic deviations from this pattern, however, were far more varied. These opportunistic
strategies were not at odds with hierarchical ones, and, in fact often complemented the hierarchical
ones harmoniously, with participants switching frequently and fluidly between the two.

4.3.1 Opportunistic Strategies. Participants employed varied opportunistic strategies, including:

Constructing expressions bottom-up. Participants sometimes constructed expressions by iteratively
wrapping expressions with more complex structures. For example, L1 first implemented a function’s
core logic in a do block, then wrapped the entire expression in a function called loop when it
called for recursion (as did P4 for their calculator). Similarly, after implementing a function’s core
logic, P5 wrapped it in a case expression that handled errors. Participants also used holes when
iteratively constructing code bottom-up;for example, L5 iteratively constructed a function around
an undefined value in Haskell with an explicit type signature, filling it in only after the rest of the
task at hand was completed.

Another commonway for participants to build expressions bottom-up was to iteratively construct
a łpipelinež (i.e., composition) of functions, especially when the types were concrete. For example,
L1 built up a string processing pipeline one function at a time, testing each iteration in the REPL,
finally landing on (approximately) map (strip ◦ head ◦ splitOn ";") $ splitOn "," url.

Using the top level of their file as a notepad. Participants sometimes directly typed what was on
their mind into the top level of their file without regard to syntax; the top level thus became a
textual locus for brainstorming. Regarding this behavior, P13 commented:

I don’t really think of it as łtop-level,ž it’s more like, right now, top-level is the notepad for me, and it’s not

even part of the code. So, at the beginning, I’m not really thinking of this file as something that’s even

runnable. It’s just like note-taking . . . like, I could just do this all in a txt [file], . . . then when I feel ready

I’ll transfer it onto here.

P10 noted the utility of this approach for constructing pipelinesÐłI will realize that I need a pipeline
of things in a function . . . sometimes I literally just start writing out elements of the pipeline in a
syntactically invalid wayžÐbut also stressed that they try to minimize the amount of time their
source file is syntactically invalid because their compiler cannot provide feedback during such times.
P15 demarcated two distinct stages of their program authorship: an ideation stage, in which they
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draft fragments of code at the top level (not treating the file as runnable), then an implementation
phase, in which they actively seek compiler feedback to ensure their code is correct.
Other participants took different approaches to this same general strategy. L1 directly coded

a rough draft of a function at the top level of the file, then used it as a reference for the real
implementation later. P4 reasoned about their calculator function first as just a pattern match at
the top level, then later tidied it into a formal function. L4 took a more lightweight approach, using
a sketch at the top level only to query complicated type information from the compiler.

Performing pattern matching to handle sub-cases independently. Participants often introduced
pattern matches that would be unnecessary with the use of more idiomatic combinators, but which
let them visually examine and handle sub-cases independently. For example, P14 used a match

expression to decompose tic-tac-toe winning conditions, adding and implementing each branch
one-by-one as they thought of different cases until the match was exhaustive. P8 explained that an
explicit case expression is helpful in these cases:

I really prefer the pipeline for readability, but it’s a little bit harder to write because I don’t feel like I have

the streamlined version of how it’s going to look, whereas if I write the case down, it’s telling me, here’s

all the possibilities, just handle themÐlike, start with this and go to the next one.

Hypothesis 3. Statically-typed functional programmers face reduced workload when implementing a

task with explicit pattern matches as compared to with combinators.

4.3.2 Interplay of Hierarchical and Opportunistic Programming. Participants often used opportunis-
tic strategies in concert with hierarchical strategies. P3 described how they do so, writing code that
meets in the middle:

I kind of understand, maybe, what I’ve got, so I can do some bottom-up exploration. And I pretty much know

where I want to beÐwhich is the type signaturesÐand it allows me to do some top-down programming.

And when it’s not clear to me how to connect the two, and . . . I’m not feeling super productive or I feel

stuck trying to think from one end, I just switch to the other to try to glean some more context.

P11 reported a similar harmony between opportunistically writing down everything that came to
mind and hierarchically ordering their program:

For something . . . where I haven’t thought a ton about it up front, I start by writing down a bunch of the

sort of data that I know I need and the primitives on it . . . And then I’m switching over to the łOkay, well, I

know what the data looks like, and I know how to work with the data,ž and now I’m doing the interaction,

and so for the interaction I tend to think of it top-down as, like, łOkay, well, what does the overall structure

of the interaction look like?ž

Relying on both hierarchical and opportunistic strategies also helped participants overcome some
of the indecision that came with deciding how to structure their types. For example, P7 remarked:

Maybe I already spent a lot of time trying to think about how to do it the right way just in my head, and

I’m not getting anywhere. Then, at that point, I’m just going to be like, okay, it’s time to push through and

suppress my perfectionist tendencies of stripping away all redundant things.

Coding as a process of clarification. The urge to łjust push thoughž reflects a larger pattern:
participants saw programming as a process of clarification rather than just a transfer of code from
their mind to their editor. For example, P3 highlighted the importance of planning in their coding
process, but also included pushing through with łexploratoryž code as łplanning.ž P8 mentioned
they often start with many pattern matches (as in Section 4.3.1), then rewrite the code to be more
elegant in a bottom-up fashion once it is functional and its patterns are more easily recognizable.
They noted that once the case expressions are written, łYou can start at the deepest level and
sort of streamline them.ž P10’s breadth-first sketching strategy (Section 4.2.3) exhibits this same
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clarification pattern: they hierarchically decompose a problem with a sketch, then opportunistically
work on the easier sub-tasks to gain information about how to solve the harder sub-tasks.

4.4 Reasoning and Intent

4.4.1 Diversity of Reasoning Approaches: What Feels Natural, Easy, or Right. Approaches to rea-
soning about a problem domain differed significantly from participant to participant and were
often dependent on particular programming contexts. For example, P8 introduced local, argument-
passing state to their calculator in Elm to implement history, but mentioned that they would model
state completely differently in a web app (their primary use for Elm). For the same task, P5 did
not even consider a mutable reference, whereas P1 wanted to use one immediately (but ultimately
settled on explicit state passing). P4 initially conceptualized the calculator history as a specialized
binding context, but decided to use a mutable reference for ease of implementation (which they felt
to be unsatisfactory). P15 described how they try to recast tasks as instances of problems they can
solve using building blocks ingrained in their programming process:

I’m trying to take whatever my giant problem is and . . . I have a particular kind of funnel . . . and I’m trying

to squeeze the problem that I haveÐmold it so that it fits into this particular kind of funnel.

This diversity hints at the trade-off between what feels (1) natural, (2) easy, or (3) right. For
example, mutable references were easy yet felt wrong to P1 and P4 in the previous paragraph, but
were natural to P1 and not to P4. As a final example, P3 was working in a context that required an
integer, but they realized that the computation might fail; their initial reaction was simply to use −1
to signal failure, but they could not bring themself to do so. (It felt natural and easy, but not right.)

Hypothesis. Statically-typed functional programmers have different approaches to reasoning about

problem domains (including what feels natural vs. easy vs. right) even for the same task and language.

Moreover, the same programmer may have different reasoning approaches for a task in different contexts.

4.4.2 Reasoning About Code Essence. Compilers treat programs as formal objects, but participants
often engaged in authoring patterns that demonstrated reasoning about their programs more
intuitively. For example, P10 mentioned that it is important to them to have a łworking program as
soon as possible,ž but, in response to a question about what constitutes a łworking program,ž P10
explained that sometimes programs that are not even runnable can be considered łworkingž: łI
would say that if there’s a hole . . . and I know exactly how to implement it, then . . . from my mental
point of view, it’s working.ž More generally, participants employed programming patterns that did
not rely on or result in valid or desirable code; nonetheless, they were helpful for participants to
concretize and refine their intent about the essence of the code. Such patterns include:

Reasoning purely despite effects. P8 applied List.sum to a Result (rather than using Result.map
first) and L8 used the result of a computation that might fail (encoded with Maybe) in a composition
of operations without handling the Nothing case. L1 and L5 used map to apply a function to a list, but
later realized that the iteration needed to stop early, rewriting the code to handle the łeffectž of early
termination. At the pattern level, L15 matched values of an option type with the patterns None and
Invalid _, later correcting the second pattern to Some (Invalid _). At the type level, L1 reasoned
about an łinfinite [self-]compositionž of a function of type Maybe ETag → IO (ETag, [Pull]),
then later had to translate this intuition to code.

Conflating a value with its image under a function. Multiple participants identified values in their
problem domain with different representations of the same concept, leading to formally invalid
but not implausible code. For example, when checking for a division by zero in their calculator,
P3, P5, and P8 first checked if the right-hand side of the division was equal to the integer literal 0,
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even though it was actually an expression in their calculator grammar (i.e., forgetting to use eval).
Similarly, L1 conflated an HTTP request with its string representation (i.e., forgetting to use show).

Checking only for patterns of interest. Participants often used pattern matching to handle just one
case, using a wildcard to discard all others. For example, when working with pairs of computations
that might fail, both P1 and P5 immediately introduced a pattern match expression and handled
the łsuccessž case first, only adding the error handling afterward by using a wildcard as a catch-all.

Although wildcards reduce the effort of handling error branches, they are in direct tension with
participants’ desire to use compilers as assistants. As mentioned in Section 4.2.1, wildcards prevent
the compiler from statically checking that new variants are handled correctlyÐa fact that P1 noted:

I have some code where I have a bunch of cases, and then I think I’m at the end . . . and then I wildcard the

last pattern . . . then I add a new variant to the type, and then suddenly I compile with no errors, but then

whenever I use that new constructor, it falls off the end of the function.

4.4.3 Signaling Intent. Participants often had high-level patterns in mind that they needed to
translate into executable code. For example, P1 reflected on adding history to their calculator:

I had a pretty good idea of what I was going to do. The main question was just: How do I represent the

state? It seemed pretty clear that the pattern was going to be: thread some state around . . . [then] add a

case to the evaluator where, when you hit this case, you dereference the cell and grab the data.

For this task, P2 noted that the type system made them łthink, at each layer, who needs to have
access to the state and who needs to update it.ž Similarly, L8 initially implemented a key-value
store using argument-passing to model mutable state but later switched this representation to a
reference cell (a long process that started by modifying the program’s types).
Although these high-level plans entailed many low-level edits (e.g., introducing parameters

and updating call sites), participants initially expressed their intent via modifications to types
and signatures. These expressions of intent can be interpreted as signals, with the corresponding
executions of these intents as responses. For example, using yet-to-be-defined functions when
sketching (as in Section 4.2.3) can be viewed as a signal; the response would then be filling in the
holes later. P5 had their editor leverage this signaling behavior: theywould often reference undefined
functions, and their editor would automatically offer to define them with a blank implementation.

Sometimes, though, responses to signals never came. For example, some participants noted that
the type system was not always expressive enough to capture their intent, often when trying to
łmake illegal states unrepresentable.ž2 In such cases, participants signaled their intent that certain
states should be illegal by pattern matching and asserting False, throwing an exception, or printing
an error, but never made type modifications to actually make these cases impossible.

Overall, participants’ textual program edits often telegraphed information about their program
design plan, and a particular subset of these edits signaled their intent to make future, related edits.

Hypothesis 4. Statically-typed functional programmers make certain types of program edits (signals)

that reliably predict particular future program edits (responses).

5 EVALUATION

Having developed a grounded theory of how statically-typed functional programmers write code,
we can now evaluate it by testing its predictions. The purpose of this evaluation is to provide
increased confidence in our theory by approaching the problem with a second methodology; if our
theory is correct, then the outcome of these quantitative experiments should be unsurprising, as
they support conclusions already explained (in more detail and nuance) in the qualitative analysis.

2With thanks to Yaron Minsky for coining this phrase: https://blog.janestreet.com/effective-ml-revisited/.
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We selected four hypotheses to test in quantitative lab experiments based on our subjective
assessment of which would be most actionable for tool and language designers:

H1. When constructing new programs, statically-typed functional programmers iterate between
editing types and editing expressions.

H2. Statically-typed functional programmers run their compilers on code they know will not
compile.

H3. Statically-typed functional programmers face reduced workload when implementing a task
with explicit pattern matches as compared to with combinators.

H4. Statically-typed functional programmers make certain types of program edits (signals) that
reliably predict particular future program edits (responses).

Section 5.1 describes our method of testing these hypotheses, and Section 5.2 describes our results.

5.1 Method

Participants and recruitment. We conducted study sessions with 12 programmers who self-
identified on a screening survey as 1) being comfortable with Haskell and 2) having at least two
years of experience with Haskell. We recruited participants via Twitter and the /r/Haskell subreddit.

Study protocol. Study sessions consisted of one recorded 90-minute Zoom session during which
we asked participants to complete four tasks (all done in the Haskell programming language
to minimize between-language variability): a łworkloadž task aiming to compare the workload
experience in two different programming styles, a łnaturalž task with no investigator interventions
or questions, and two łcompilation beliefž tasks in which participants had to indicate whether or
not they believed their code would successfully compile before using the compiler. We presented
these tasks to participants as łTasks 1ś4ž and always in the order listed above (which was especially
important for ensuring a controlled experience between the two groups for the first task). The
details of each task are described in the following sections alongside the hypotheses they test.

5.2 Results

For our experimental evaluation of our grounded theory, we opt for a conservative, nonparametric
approach so as to avoid relying on assumptions about the measured distributions (e.g., that the
survey scores discussed in Section 5.2.3 are normally distributed). Moreover, in this discussion,
we use łpopulationž to refer to the population of Haskell programmers with at least two years of
experience. Our conclusions about whether our hypotheses are supported are naturally tied to
the tasks we use to test them; while we attempted to make our lab tasks as realistic as possible,
we invite the reader to consider the extent to which these claims may or may not generalize to
real-world statically-typed functional programming practice beyond these specific tasks in Haskell.
Lastly, we take as our significance level 𝛼 = 0.05.

5.2.1 Hypothesis 1: Iterating Between Type and Expression Construction. To operationalize H1, we
analyzed data that we collected from the łnaturalž task, which we here describe in more detail:

Natural Task. Time limit: 30 min.We asked participants to implement the game of Hangman, in which

a player has to guess a secret word letter-by-letter before they run out of guesses. We requested that

participants support features such as randomly selecting a word from a predefined list and an IO loop that

indicates to the user the currently-guessed letters, how many guesses remained, whether they have won

or lost, and if they have already guessed a letter. We informed participants that that they could use any

combination of pattern matching, predefined functions (including those available via installing Haskell core

libraries such as random), or anything else available to them in the language and any external resources.
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Fig. 3. Timeline of observed programming activities. 5/12 (≈ 42%) participants iterated between con-
structing types, then expressions, then types again; 11/12 (≈ 92%) participants iterated between constructing
either types or signatures, then expressions, then either types or signatures again.

At each point in time, we observed which of the following seven categories of activity each
participant was pursuing: 1) creating/modifying type definitions, 2) creating/modifying type signa-
tures, 3) creating/modifying expressions, 4) creating/modifying comments, 5) using the REPL, 6)
using the internet, or 7) reading the task. We depict participant timelines in Figure 3.
A strict interpretation of the notion of an iteration between type and expression editing can be

defined as first editing type definitions, then editing expressions, then again editing type definitions;
the number of such iterations for each participant is labeled on the right-hand vertical axis of
Figure 3 as łtype-expression iterations.ž In a general setting, this definition of iteration would
need to be made more granular to account for programmers editing completely unrelated types at
different points during the program authoring process, but since the Hangman task is relatively
small (and thus results in types that are all closely related), this definition is sufficiently precise.

The proportion of participants who engaged in type-expression iteration was 5/12 (approximately
42%) with a Wilson confidence interval of (19%, 68%) at the 95% confidence level. These results
indicate that there is strong reason to believe that at least 19% of the population would engage in
type-expression iteration, even in the course of just 30 minutes for a Hangman game.

Relaxing the iteration criterion. We may also take a looser definition of łiterating between types
and expressionsž to include type signatures as well as type definitions. We can define a signature-
expression iteration as first editing type signatures, then editing expressions, then again editing
type signatures, a quantity which is also labeled on the right-hand vertical axis of Figure 3. The
proportion of participants who engaged in type- or signature-expression iteration was 11/12
(approximately 92%) with a Wilson confidence interval of (65%, 99%) at the 95% confidence level.
These results indicate that there is strong reason to believe that at least 65% of the population
would engage in type- or signature-expression iteration.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 155. Publication date: October 2021.



How Statically-Typed Functional Programmers Write Code 155:17

0 4 8 12 16 20 24 28 32 36 40

Time (min)

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

P
a
rt
ic
ip
a
n
t

0 “probably will not”
0 “will not”

4 “probably will not”
1 “will not”

0 “probably will not”
1 “will not”

2 “probably will not”
0 “will not”

2 “probably will not”
0 “will not”

8 “probably will not”
16 “will not”

0 “probably will not”
0 “will not”

2 “probably will not”
1 “will not”

2 “probably will not”
1 “will not”

0 “probably will not”
0 “will not”

3 “probably will not”
0 “will not”

0 “probably will not”
2 “will not”

Believe will Believe probably will Believe probably will not Believe will not Compiled before specifying Completed task

Actually compiled Actually did not compile Actually did not compile (due to typed hole)

Fig. 4. Program drafting phase: Will this code compile? For Part 1 (drafting) of the compilation belief
task, these timelines show every time a participant ran the compiler, whether they predicted the code (i) would,
(ii) probably would, (iii) probably would not, or (iv) would not compile. Marks above the timeline indicate
whether the code actually compiled. 6/12 (50%) participants ran their compiler immediately after indicating
they knew their code would not compile.

5.2.2 Hypothesis 2: Expecting the Compiler to Fail. To operationalize H2, we analyzed data that
we collected from the two łcompilation beliefž tasks, which we here describe in more detail:

Compilation Belief Task (Part 1). Time limit: 40 min. In the first part of the compilation belief task,

we asked participants to implement a key-value store where keys and values are both strings. We

required that the store must support a main IO loop of put and get operations, with the twist that

the get operation must take an integer parameter indicating the level of indirection. (For example,

get 2 key should use the value stored in key as a lookup key for an additional lookup; in general,

get (n + 1) key store = get n (lookup key store) store.) We informed participants that, as in

the natural task, they could use anything available to them in the language as well as any external resources.

We also asked participants to tell the investigator which of the following four statements was most

applicable before they compiled (or refreshed their REPL) at any point in the task: (1) You know the code

WILL compile; (2) You believe the code will PROBABLY compile; (3) You believe the code will PROBABLY

NOT compile; (4) You know the code will NOT compile.

Compilation Belief Task (Part 2). Time limit: any time remaining in the 40 min allotted for Part 1 of the

Compilation Belief Task. We asked participants to refactor their key-value store program so that values

were lists of strings rather than just strings. All the Part 1 rules applied, including the requirement that

participants inform the investigator of their compilation belief before each compilation attempt.

Part 1. In Part 1 (Figure 4), the proportion of participants who ran their compiler with the łwill
NOT compilež belief was 6/12 (50%) with a Wilson confidence interval of (25%, 75%) at the 95%
confidence level. These results indicate there is strong reason to believe that at least 25% of the
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Fig. 5. Program refactoring phase: Will this code compile? For Part 2 (refactoring) of the compilation
belief task, these timelines show every time a participant ran the compiler, whether they predicted the code
(i) would, (ii) probably would, (iii) probably would not, or (iv) would not compile. Marks above the timeline
indicate whether the code actually compiled. 6/8 (75%) participants ran their compiler immediately after
indicating they knew their code would not compile.

population would run the compiler knowing their code will not compile, even just working on a
well-defined 40-minute task.

Part 2. In Part 2 (Figure 5), among those who ran their compiler at all, the proportion of partic-
ipants who ran their compiler with the łwill NOT compilež belief was 6/8 (75%) with a Wilson
confidence interval of (41%, 93%) at the 95% confidence level. These results are stronger than
those in Part 1; one plausible reason is that Part 2 involves (approximately) refactoring code with
a Maybe String into code with a List (Maybe (List String))Ða challenging task for many
participants, prompting many to use the compiler for guidance on constructing a well-typed ex-
pression. Overall, these results are consistent with the hypothesis that statically-typed functional
programmers compile even when they believe compilation will fail.

Relaxing the belief criterion. We may also relax our definition of łexpecting the compiler to failž
to include any negative belief about the compilationÐin particular, including not just łwill NOTž
beliefs, but also łwill PROBABLY NOTž beliefs. This change strengthens the statistical results for
Part 1 considerably. (For Part 2, the results are exactly the same because the definitions happen to
include precisely the same set of participants.)

In Part 1, the proportion of participants who ran their compiler with the łwill NOT compilež or
łwill PROBABLY NOTž beliefs (Figure 4) was 9/12 (75%) with a Wilson confidence interval of (47%,
91%) at the 95% confidence level.

5.2.3 Hypothesis 3: Pattern Matching vs. Combinators. To test H3, we analyzed data that we
collected from the łworkloadž task, which we here describe in more detail:
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Fig. 6. NASA-TLX measure of perceived workload. The perceived workload is moderately lower for the
condition in which participants could only use pattern matching vs. the condition in which they could only
use combinators.
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Fig. 7. Time taken on task. The median time for the pattern matching condition is significantly lower than
the median time for the combinator condition; the slowest pattern matching participant completed the task
faster than the fastest combinators participant.

Workload Task. Time limit: 15 min (not including NASA-TLX survey). We randomly assigned participants

to one of two conditions, subject to the constraint that each condition have the same number of participants

and as close to the same distribution of participant years of experience aswas possible. In both conditions, we

asked participants to implement a function firstRight :: Maybe [Either a b] → Either String b

that returned the first Right value in the input list (or specialized errors if the input list was not present or

had no Right values). In one conditionÐCondition P, for pattern matchingÐwe instructed participants

to use only pattern matching and recursion. In the other conditionÐCondition C, for combinatorsÐwe

instructed participants to use only predefined Haskell functions and no recursion (that is, combinator style).

In both conditions, we informed participants that they could use any external resources they wished.

After participants announced that they were satisfied with their solution to the task, we asked them to

complete the weighted NASA-TLX (Task Load Index), a short, empirically-validated survey to measure

their subjective experience of task workload (Hart and Staveland, 1988).

This task was designed to be as fair as possible to both conditions. The pattern matching condition
cannot use functions such as rights :: [Either a b] → [b] that returns all right values in a
list or find : (a → Bool) → [a] → Maybe a that searches a list based on a predicate. On the
other hand, the combinator condition cannot use the opportunistic strategy of listing and handling
each case one-by-one. The distributions of years of experience were approximately the same for
the two conditions: [2, 2, 4, 5, 6, 18] for Condition P and [2, 3, 4, 4, 10, 11] for Condition C.
We plotted participants’ NASA-TLX scores in Figure 6. Although time taken on task is not a

measure of subjective workload, we collected this data to understand differences in time load, which
we plotted in Figure 7. For the purposes of this experiment, we considered participants to have
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Table 4. Actions tracked in the natural task.Weoperationalize following the types by considering the action
Signature to be a signal and GloballyDefine to be a response. We operationalize sketching by considering
ReferBeforeDefine to be a signal and GloballyDefine and LocallyDefine to be responses.

Action Link Short name

Referencing a name before defining it The referenced name ReferBeforeDefine

Creating/modifying a type signature The name to which the signature applies Signature

Defining a global (top-level) name The defined name GloballyDefine

Defining a local name The defined name LocallyDefine

completed a task when they explicitly declared that they were confident in their solution, as would
be typical in their day-to-day programming; in all cases, the first author additionally observed that
participants’ solution did indeed meet the specification.

Compared to other statically-typed functional programming languages, the support for combinator-
style programming in the Haskell standard library is relatively robust. The differences in work-
load between the experimental conditions may therefore be less pronounced than in the general
statically-typed functional programming population.

Analysis of NASA-TLX scores. Descriptively, themedian NASA-TLX score for Condition Pwas 34.8,
and the median NASA-TLX score for Condition C was 60.2. The standard deviation in Condition P
was 2.1, and the standard deviation in Condition Cwas 23.3, suggesting that Condition P participants
perceived the workload to be approximately the same, whereas Condition C participants’ perceived
workloads varied substantially more (however, NASA-TLX scores may not be linearly correlated to
perceived workload, which could affect the difference in standard deviation between the conditions).
Inferentially, let 𝑥𝑃 denote the median NASA-TLX score in the population for Condition P and

𝑥𝐶 for Condition C. We use Mood’s two-tailed median test to test if the medians are the same,
which yields 𝑝 = 0.083 for 𝐻0 : 𝑥𝑃 = 𝑥𝐶 and 𝐻1 : 𝑥𝑃 ≠ 𝑥𝐶 . As 𝑝 > 𝛼 = 0.05, we do not reject 𝐻0;
qualitatively, however, the trend of the data suggests that the pattern matching condition may be
lower-workload than the combinators condition.

Analysis of time taken on task. The difference in time was greater than the difference in TLX
scores. Descriptively, the median time taken on task for Condition P was 3.7 minutes, and the
median time taken on task for Condition C was 10.3 minutes. Moreover, the slowest participant
in Condition P completed their task faster than the fastest participant in Condition C. As with
the NASA-TLX scores, the standard deviation in time taken between the two conditions was
substantially different: 1.0 minutes for Condition P and 3.7 minutes for Condition C.

Inferentially, let 𝑥𝑃 denote the median time taken on task for Condition P and 𝑥𝐶 for Condition C.
We again use Mood’s two-tailed median test to test if the medians are the same, which yields
𝑝 = 0.004 for 𝐻0 : 𝑥𝑃 = 𝑥𝐶 and 𝐻1 : 𝑥𝑃 ≠ 𝑥𝐶 . As 𝑝 ≪ 𝛼 = 0.05, this result provides strong evidence
to reject the null hypothesis, which indicates that completing the task with pattern matching is
faster than completing it with combinators.

Qualitative observations. In addition to our quantitative results, we include two observations:

1. All participants in Condition C used either Hoogle (a tool that looks up Haskell functions by
name or type signature) or the łlookup typež command in the Haskell REPL.

2. Some participants in Condition C first constructed parts of their solution using pattern
matching, then switched over to a combinator style. In particular, one participant wrote their
entire solution using pattern matching, then later transferred it all to a combinator style.
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Fig. 8. Signal and response frequency. Predictivity is the bottom-right cell divided by the sum of the right

column (Following the Types: 41
11+41 ≈ 79%; Sketching: 22

5+22 ≈ 81%). Commonness is the bottom-right cell

divided by the sum of the bottom row (Following the Types: 41
32+41 ≈ 56%; Sketching: 22

124+22 ≈ 15%).

5.2.4 Hypothesis 4: Signaling Future Edits. To assess H4, we analyzed data we collected from the
łnaturalž task, which we described in Section 5.2.1. Specifically, we recorded each time a participant
performed one of the four actions listed in Table 4. Each time a participant performed one of these
actions, we also recorded some additional information in the form of a link, also listed in Table 4.
Note that each link can occur for a given action at most once.
For the purposes of this experiment, we are interested in viewing subsets of these actions

as signals and subsets of these actions as responses. Based on frequencies in our data, we aim
to understand whether signals reliably predict responses and whether signals reliably precede
responses. More specifically, we are interested in estimating:

𝑃 (response with link ℓ occurs | signal with link ℓ occurs) (predictivity)

𝑃 (signal with link ℓ occurs | response with link ℓ occurs) (commonness)

The links are critical. It makes little sense to predict whether programmers will define a global
variable 𝑥 after writing a signature that applies to 𝑦Ðthere is no reason to believe that these will be
meaningfully correlated or will produce actionable predictions for tooling.

We calculated the empirical predictivity and empirical commonness as relative frequencies in our
observed samples as estimators for the corresponding true probabilities for two practices modeled
as signal-response pairs: (i) following the types and (ii) sketching. Figure 8 provides the raw counts
of the actions observed across all 12 participants. We investigated these particular signal-response
pairs because we expected (based on the grounded theory) that they would be highly predictive and
thus useful to tool designers; we speculate that future work using automated analysis of large-scale,
fine-grained program edits could reveal many additional signal-response pairs.

Following the types: Signaling global definitions with type signatures. For this analysis, we take the
set of signals to be {Signature} and the set of actions to be {GloballyDefine}. This setup encodes
the notion of following the types (Section 4.2.2) because, when following the types, programmers
define a type signature first, then let their implementation flow from it; this is idiomatic for
global definitions because these are the definitions that typically require nontrivial type-based
decomposition and planning. In this setup, the empirical predictivity across all participants and
labels was 79% with a Wilson confidence interval of (66%, 88%) at the 95% confidence level, and
the empirical commonness was 56% with a Wilson confidence interval of (45%, 67%) at the 95%
confidence level. These results indicate that creating or modifying a type signature often does
signal that the programmer will soon define a corresponding global name (but not always, because
participants sometimes changed their minds and deleted these signatures), and, perhaps more
interestingly, a new global name definition often is preceded by a linked type signature change.

Sketching: Signaling definitions with undefined references. For this analysis, we take the set of
signals to be {ReferBeforeDefine} and the set of actions to be {GloballyDefine, LocallyDefine}.
This setup operationalizes a restricted notion of sketching (Section 4.2.3) because, when sketching,
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programmers implement a program skeleton with expression holes (commonly undefined refer-
ences) which are later filled (defined). In this setup, the empirical predictivity across all participants
and labels was 81% with a Wilson confidence interval of (63%, 92%) at the 95% confidence level, and
the empirical commonness was 15% with a Wilson confidence interval of (10%, 22%) at the 95%
confidence level. Although 15% is relatively low, it is worth contextualizing this number by noting
that 15% of all names defined in the task were first signaled via sketching. These results indicate that
referring to an undefined name often does signal that the programmer will soon define that name,
but that new definitions are only sometimes preceded by a reference to the yet-to-be-defined name.

6 IMPLICATIONS AND UNRESOLVED QUESTIONS

We now discuss the implications our findings have for tooling and language design, as well as some
further questions that remain unresolved.

6.1 Iterating Between Type and Expression Construction

H1 indicates the need for tools that reduce the viscosity (Green and Petre, 1996)Ðor, resistance to
changeÐof types during development. Moreover, tools should support cyclic changes in programmer
mindset between working at the type level and at the expression level. For example, tools could
leverage the pre-existing pattern of type-expression iteration by using program repair techniques
to provide an interface to 1) modify types and automatically preview corresponding expression
changes or 2) modify expressions and automatically preview corresponding type changes. Such a
tool could support the exploratory type construction phase we observed in this study.

More generally, tool designers should consider viewing types as amenable to change; if a program
does not type check, it may not be the expressions that are at fault, but the types or domain modeling.
Automatically suggesting alternative types in this case could support the iterative type-expression
cycle and help guide users to correct their mental models of the problem domain.

6.2 Expecting the Compiler to Fail

There are three immediate implications of H2. First, statically-typed functional programmers use
their compiler for reasons other than producing a compiled program (some of which are described in
Section 4.2.1). Second, statically-typed functional programmers often want insights from automated
tooling before their programs are compilable, suggesting that automated tooling should do its best
to extract as much information as possible from code that does not compile. And, third, compiler
error messages may not really be caused by programmer łerrorsž at all, but by deliberate behavior
intended to elicit compiler feedback. Thus, while prior work has investigated how compilers should
communicate errors to programmers (Barik et al., 2018, Becker et al., 2018, Nienaltowski et al.,
2008), reimagining compiler feedback as sometimes being directive in nature rather than strictly
corrective could align it more closely to statically-typed functional programmers’ needs.

Unresolved Question. Our test of H2 does not explain why statically-typed functional programmers

run their compilers on code they expect not to compile. What hypotheses do they have before running

their compiler, and exactly what information do they seek to obtain? Section 4.2.1 offers some insight, but

future work could produce a focused exploration of this question.

6.3 Decomposing Tasks with Pattern Matching

Our test of H3 does not explain why statically-typed functional programmers might experience
less mental and temporal workload using pattern matching; it may be that pattern matching offers
an explicit, textual representation of sub-tasks, that it forces programmers to deal with recursion
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explicitly, that it is a uniform interface for dealing with nearly all data structures in the language,
or something else entirely.

Unresolved Question. Why might pattern matching incur reduced workload compared to combinators?

However, ourH3 resultsÐcombinedwith the fact that some statically-typed functional programmers
prefer that their implementation eventually be streamlined to use combinators (Section 4.3.1)Ðdoes
indicate an opportunity for tooling to handle cases where programmers prefer to draft a program
in one style but prefer to maintain a program in a higher-workload style. An example of such a tool
in this domain could take a datatype as input, prompt the programmer to opportunistically fill out
whatever cases they can, then return a pipeline of combinators that are equivalent (or generalize
the provided cases if they are not exhaustive).

We can frame the low-workload code to high-workload code transformation task as a synthesis
problem similar to verified lifting (Kamil et al., 2016): given an opportunistically-constructed
(possibly partial) program 𝑃 and a set of subjectively desirable or streamlined components𝐶 , find a
program 𝑃 ′ equivalent to 𝑃 on its inputs using only components from𝐶 . This perspective hints at a
general strategy for tool need-finding: identify tasks that result in the creation of expressions with
similar semantics but that require different workloads to achieve, then try to automatically transfer
solutions of the easier task to the harder. This opportunity exists in any case where we observe
substitutable styles in which one is lower-workload but another is a more desirable end product.

Unresolved Question. What other common tasks result in programs with similar semantics but exhibit

workload differentials that could be exploited by automated tooling?

This finding also has implications for language designers: it is worthwhile to consider which
language constructs admit low-workload or opportunistic construction, and how such constructs
relate to what a community considers desirable code.

6.4 Signaling Future Edits

To test H4, we analyzed predictivity and commonness of signal-response pairs. But are these
metrics useful? What do they tell us about a tool that leverages a signal-response pair? In short:

• High predictivity indicates that such a tool would anticipate user actions well, since program-
mers often follow the signal with the response.

• High commonness indicates that such a tool will have a plausible audience, since programmers
already use the signal before the response.

Predictive and common signal-response pairs thus offer fertile ground for automated tooling.

Unresolved Question. What predictive and common signal-response editing pairs exist in the statically-

typed functional programming community? We identified two such pairsÐroughly, following the types

and sketchingÐbut a larger-scale study could instrument code editors to automatically detect and cluster

actions into predictive and common signal-response pairs.

The particular signal-response pairs we identified suggest two specific tool categories:

Tools for following the types. Given that (at least in Haskell) statically-typed functional program-
mers often already write type signatures for global definitions in advance, tooling that relies on
having a type signature before implementation will likely not overburden programmers. Tools that
exploit this pattern might, for instance, automate aspects of type-directed decomposition.
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Tools for sketching. A program sketch provides a rich source of information about yet-to-be-
defined functions, such as inferred types and usage patterns. Statically-typed functional program-
mers already 1) write sketches with holes and 2) later fill them; this pattern suggests an opportunity
for tooling that supports or automates either of these processes.

7 LIMITATIONS

A fundamental limitation of the qualitative portion of this work is that asking participants to
design and think aloud (as we did) can overload their working memory (Davies and Castell,
1994). The grounded theory sessions may thus be skewed toward more opportunistic behavior
than is typicalÐalthough such working memory overload may also be common in some working
environments. Participants did not have to think aloud for the experimental portion of this study,
but our experimental setup suffers from the limitation of taking place in a controlled environment;
the tasks were held constant and may or may not be ecologically valid. This same limitation
applies to the development of the grounded theory but is partially mitigated by leaving the tasks
open-ended and including livestreamed programming sessions in the analysis.

8 RELATED WORK

Throughout Section 4, we discussed work that is particularly relevant to our individual findings; in
this section, we survey work that is related to the overall approach and goals of our study.

8.1 Related Methods

To our knowledge, we have conducted the first grounded theory analysis of narrated programming
sessions by expert programmers. However, we are not the first to study programmers via grounded
theory or observation.

8.1.1 Grounded Theory in Software Engineering. The grounded theory approach to data analysis
has become increasingly popular in the software engineering community (Adolph et al., 2012,
Coleman and O’Connor, 2007, Hoda et al., 2013, Jantunen and Gause, 2014, Pang et al., 2020, Zhang
et al., 2020). Researchers have applied GTM to topics ranging from how API designers gather
and interpret user feedback (Zhang et al., 2020) to how DevOps education functions (Pang et al.,
2020). By far the most common approach is to use interviews as the sole data for the grounded
theory. Including programming sessions is much less common, even though interviewees are
often programmers. Sedano et al. (2017) describes a notable exception, a GTM analysis of software
engineering practices, including participant observation in the form of pair programming (not
necessarily including thinking aloud); the authors stress observations were significantly more
informative than interviews alone.

8.1.2 Contextual Inquiry and Observational Research of Programmers. Contextual inquiry is a data
collection research method in which investigators study a group of people by acting as an apprentice
and observing the behavior of participants (the experts) as they go about their day-to-day activities
(Beyer and Holtzblatt, 1997). For example, Ko (2003) observes expert event-based programmers to
understand how they write, test, and debug code, and Samuel (2009) studies how Java programmers
working on mobile applications interact with their IDEs. Most of the observational research in the
programming space is not aimed at building a theory but rather at answering specific, pre-defined
research questions, so their analytic methods (e.g., closed coding) are very different from the
open-ended grounded theory approach we used. Despite the difference in analytic approaches, our
data collection process builds on the methods in this related line of research, turning observations
of programming session into insights about programmer processes.
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8.1.3 Think-Aloud Studies of Programming. To learn more about the mental processes by which
programmers arrive at their authoring decisions, researchers can ask participants to think aloud
as they write code. For example, Whalley and Kasto (2014) and Fisler and Castro (2017) use this
think-aloud technique to understand novice programmers’ authorship strategies. The protocol for
our own think-aloud study is influenced by these works, but these studies focus specifically on
novice programmers and employ narrative analyses (Riessman, 1993) rather GTM.

8.1.4 Theory Evaluation. Evaluating behavioral theories of software engineeringÐe.g., testing
the falsifiable hypotheses they generateÐboth builds confidence in a theory and often produces
actionable insights for tool designers, language designers, and computer science educators. For
example, Ko and Myers (2003) develop and evaluate a theory of programming errors, and Thayer
et al. (2021) do the same for a theory of API knowledge. Although neither of these theories arose
from a grounded theory analysis, our approach to empirical evaluation is similar to theirs.

8.2 Related Goals

As the goal of this study is to understand how statically-typed functional programmers write code,
we now discuss prior work on understanding how various populations of programmers write code.

8.2.1 Psychology of Programming. Among other goals, studies of the psychology of programming
(PoP) aim to understand the cognitive processes behind programmer authoring patterns. Although
our work is concerned more with the authoring patterns than the underlying cognitive processes,
we build on a foundation of related studies in the psychology of programming space.

A long-running line of PoP research investigates the strategies that programmers use to write code.
Early studies (Farrell et al., 1984, Pirolli and Anderson, 1985, Spohrer and Soloway, 1989) found that
novices base new programs on known solutions, tweaking a familiar solution to fit the new problem.
Spohrer and Soloway (1986) find that many novice programming errors arise from plan composition
challenges. Programming plans (Soloway and Ehrlich, 1986) are a cognitively plausible element
of programmer knowledgeÐspecifically, program fragments that together accomplish a common
programming task, such as the running sum loop plan. Novices combining plans struggle with issues
such as letting previously used plans pollute a related plan, cognitive load and working memory
overload, and unexpected boundary cases (Spohrer and Soloway, 1986). Overall, the strategies
literature finds łexperts seem to acquire a collection of strategies for performing programming
tasks, and these may determine success more than does the programmer’s available knowledgež
(Gilmore, 1990). Recent work like LaToza et al. (2020)’s demonstrates the power of PoP work for tool
design, describing a tool that leverages the PoP strategies theory to make programmers objectively
more successful at design and debugging tasks.
As discussed in Section 2, the strategies mentioned above that programmers employ can be

roughly divided into two categories: hierarchical and opportunistic. Jeffries et al. (1981) contributed
the first study of top-down programming strategies, soon followed by Adelson and Soloway (1985),
Anderson et al. (1984), Pirolli (1986) and Pirolli and Anderson (1985). Visser (1987) contributed
the first work studying how programmers shift between top-down and bottom-up strategies,
soon followed by Guindon et al. (1987). Although top-down, hierarchical patterns of program
construction are often considered paradigmatic of expert programmers, Détienne (2002, Chapter 3)
observes łthe hierarchical structure reflects the result of the activity but not the organization of
the activity itselfž and states even experts engage in opportunistic strategies, a pattern we also
observed in our study (Section 4.3.1). More broadly, top-down and bottom-up strategies surface
across many programming tasks, in for example, software comprehension (Roehm et al., 2012) and
understanding software evolution (von Mayrhauser and Vans, 1995).
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Most closely related to our study is Castro and Fisler (2016)’s investigation of the interplay
of hierarchical and opportunistic thinking in novice functional programmers, which found that
students who engaged in on-the-fly hierarchical task decomposition made plan-composition errors.
Similarly, Castro and Fisler (2020) describe how novice functional programmers iterate between
reasoning about task decomposition and code implementation. These works focus on patterns in
novices’ programming practices, but our discussion of programming as a process of clarification
(Section 4.3.2) identifies similar patterns at play in expert programmers.

Aside from the interplay of hierarchical and opportunistic strategies, the most relevant works
from PoP touch on how attention affects programming tasks. Like our observations about focusing
techniques, this line of research identifies patterns in how programmers direct their attention.
Most of this work focuses specifically on debugging (Bednarik and Tukiainen, 2004, Hejmady and
Narayanan, 2012, Lewis, 2012), program comprehension (Bednarik and Tukiainen, 2006, Guéhéneuc,
2006, Letovsky, 1987, Yusuf et al., 2007), and code summarization (Rodeghero et al., 2015, Rodeghero
and McMillan, 2015, Rodeghero et al., 2014) rather than program authoring, but some findings
overlap with our own. Notably, Lewis (2012)’s hypothesis that debugging success relies on the
skill of identifying what elements of program state are important resonates with our participants’
remarks in Section 4.2.2 about the benefit of restricting attention to particular subparts of a program.

8.2.2 Natural Programming. Myers et al. (2004) put forth a research agenda of natural programming,
or łaiming for the language and the environment to work the way nonprogrammers expect.žNatural
programming elicitation studies involve asking non-programmers or novice programmers to express
programs with the concepts and abstractions they find most natural (Myers et al., 2016). Researchers
have used natural programming elicitation to, for example, understand how untrained users specify
boolean queries (Pane andMyers, 2000) or how novice programmers express programming concepts
(Myers et al., 2004), and the natural programming approach more generally to, for example, improve
API learnability (Stylos and Myers, 2008). Our study shares the goal of understanding programmers’
intuitions but differs in its treatment of pre-existing experience; we are concerned with the existing
authoring patterns that programmers deploy when they are already comfortable with statically-
typed functional programming, regardless of the inherent naturalness of these patterns. A natural
programming elicitation study with statically-typed functional programmers would serve as an
interesting comparison of an łidealž world to the world as it is now.

8.2.3 Collections of Program Authorship Patterns. A few lines of prior work compile lists of pro-
grammer authoring patterns. For example, design patterns are reusable high-level program design
templates popularized by the influential Design Patterns compendium Gamma et al. (1995). Al-
though Beck et al. (1996) report on the success of design patterns in industry for promoting clear
communication and reusable code, design patterns offer little insight into how these patterns are
achieved in the first place. In this study, we are concerned not just with patterns in programmers’
final programs, but with the processes by which they achieve those programs.
Collections of automated program transformations ubiquitous in modern development envi-

ronments (such as Introduce Parameter and Move Definition) also offer plausible lists of
programmer behaviors. Thompson (2004) details many such transformations applicable specifically
to statically-typed functional programming languages, but, while these transformations provide
a detailed characterization of some of the semantics-preserving low-level edits programmers
undertake, they do not capture the high-level intent of programmers as they construct code.

8.2.4 Program Authorship Patterns of Statically-Typed Functional Programmers. Lubin and Chugh
(2019) lay out a vision of studying common code authoring patterns of statically-typed functional
programmers, and Lubin (2021) presents early data from the grounded theory presented in Section 4.
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9 CONCLUSION

This study deepens our understanding of how statically-typed functional programmers write
code. Our mixed-methods approach provides both a qualitative account of the statically-typed
functional programming process to capture its nuances as well as a quantitative validation to test
our theory’s predictions. Future work can build on this knowledge to design evidence-based tools
that leverage existing program authoring patterns. Our results suggest that this same methodologyÐ
grounded theory of think-aloud programming sessions with semi-structured interviews, followed
by an experimental validation of the developed theoryÐcould be applied to other programming
populations where we currently lack need-finding analyses, ultimately leading to more accessible
and expressive tooling for understudied communities.
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