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In this paper, we describe lazy threads, a new approach for
implementing multithreaded execution models on conventional
machines. We show how they can implement a parallel call at
nearly the efficiency of a sequential call. The central idea is to
specialize the representation of a parallel call so that it can
execute as a parallel-ready sequential call. This allows excess
parallelism to degrade into sequential calls with the attendant
efficient stack management and direct transfer of control and
data, yet a call that truly needs to execute in parallel, gets its
own thread of control. The efficiency of lazy threads is achieved
through a careful attention to storage management and a code
generation strategy that allows us to represent potential parallel
work with no overhead. 01996 Academic Press, Inc.

1. INTRODUCTION

Many modern parallel languages provide methods for
dynamically creating multiple independent threads of con-
trol, such as forks, parallel calls, object methods, and non-
strict evaluation of argument expressions. These threads
describe the logical parallelism in the program. The lan-
guage implementation maps the dynamic collection of
threads onto a set of physical processors executing the
program, either by providing its own language-specific
scheduling mechanisms or by using a general threads pack-
age. These languages stand in contrast to languages with
a single logical thread of control, such as High Performance
Fortran [22], or a fixed set of threads, such as Split-C [8]
or MPI [12]. There are many reasons to have the logical
parallelism of the program exceed the physical parallelism
of the machine, including ease of expression and better
resource utilization in the presence of synchronization de-
lays, load imbalance, and long communication latency [26,
39]. Moreover, the semantics of the language or the syn-
chronization primitives may allow dependencies to be ex-
pressed in such a way that progress can be made only by
interleaving multiple threads, effectively running them in
parallel even on a single processor [28].

Regardless of how the dynamic logical parallelism is
expressed at the language level, the underlying execution
model has two key features. First, the control model sup-
ports the dynamic creation of multiple threads with inde-
pendent lifetimes. Second, each thread may require an
unbounded stack. Thus the storage model is a tree of

stacks, called a cactus stack. Unfortunately, a parallel call
or thread fork is fundamentally more expensive than a
sequential call because of the thread and storage manage-
ment, data transfer, scheduling, and synchronization in-
volved. Previous work has sought to reduce this cost by
using a combination of compiler techniques and clever run-
time representations [9, 21, 26, 29, 30, 33, 35, 37, 39], and
by supporting fine-grained parallel execution directly in
hardware [3, 19, 31]. In many cases, the cost of the fork is
reduced by severely restricting what can be done in a
thread. These approaches, among others, have been used
in implementing parallel programming languages such as
ABCL [40], CC++ [6], Charm [20], Cid [29], Cik [4],
Concert [21], 1d90 [9, 30], Mul-T [23], and Olden [5]. Still,
a fork remains substantially more expensive than a simple
sequential call.

Our goal is to support an unrestricted parallel thread
model and yet bring the cost of thread creation, termina-
tion, and switching down to essentially the cost of a sequen-
tial call. We observe that fine-grained parallel languages
promote the use of small threads that are often short
lived—sometimes on the order of a single function call.
Fortunately, logically parallel calls can often be run as
sequential calls. For example, once all the processors are
busy, there may be no need to spawn additional work, and
in the vast majority of cases the logic of the program per-
mits the child to run to completion while the parent is
suspended. Thus a parallel call should be viewed as a poten-
tially parallel call. Tt is the point in the computation where
an independent thread may be, but is not necessarily re-
quired to be created. This property has previously been
exploited through load-based inlining and Lazy Task Cre-
ation (LTC), which attempt to execute parallel calls se-
quentially when parallelism is not required [26]. In this
paper, we go much further, performing a potentially paral-
lel call almost exactly like a stack-based sequential call. Our
code generation strategy avoids creating task descriptors,
initializing synchronization variables, or even explicitly en-
queuing tasks. Through careful attention to the program
representation, we pay almost nothing for the ability to
elevate a sequential call into a full thread on demand. We
call this overall approach Lazy Threads.

The fundamental idea behind lazy threads is to imple-
ment the potentially parallel call as a parallel-ready sequen-
tial call. The call allocates the child frame on the stack of
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the parent, like a sequential call. Control is transferred
directly to the child (suspending the parent), arguments
are transferred in registers, and, if the child returns without
suspending, results are transferred in registers when con-
trol is returned to the parent; just like a sequential call.
Moreover, even if the child suspends, the parent is resumed
and can continue to execute without needing to copy the
stack. Instead, the suspending child assumes control of the
parent’s stack and further children called by the parent
are executed on stacks of their own. In other words, the
suspending child steals the parent’s thread. Additionally,
if work is needed by another processor, the parent can be
resumed to spawn children on that processor. The advan-
tage of lazy threads is that when they run sequentially (i.e.,
when they run to completion without suspending) they
have the same efficiency as a sequential call. Yet, the cost
of elevating a lazy thread into an independent thread of
control is close to that of executing it in parallel outright.
This contrasts with previous approaches to lazy parallelism
based on continuation stealing in which the parent contin-
ues in its own thread forcing stack copies and migration.

In the rest of the paper, we present the run-time data
structures and compilation techniques necessary to reduce
the overhead for thread creation and manipulation suffi-
ciently to allow unfettered use of multiple threads, as in
fine-grained parallel languages.

In Section 2, we describe the three main aspects of a
parallel call: how the child is invoked, how it returns, and
how it is scheduled. Invocation has three independent ac-
tions: transferring arguments, initiating the child, and sus-
pending the parent. These are combined in a sequential
call. There are also three independent actions that occur
when a child returns to its parent: storing the results, updat-
ing the parent’s synchronization state, and finally determin-
ing the continuation in the parent. Most of the complexity
in creating a low-overhead parallel-ready sequential call
occurs in trying to combine these three actions into one,
as in the sequential case. We develop a control hierarchy,
a hierarchy of representations for the call with varying cost
and generality, allowing the compiler to select the most
appropriate and least expensive representation. We are
able to achieve most of the sequential efficiency in both
the call and return mechanisms because we rely on the
invariants created by following the sequential scheduling
order. We finish Section 2 with examples of how the context
of the call site affects which representation is chosen for
the parallel call.

Given this general understanding of the parallel-ready
sequential call, we proceed to explain how the underlying
storage model and control model are implemented. First,
in Section 3, we address storage allocation. Since threads
can fork other threads and each requires a stack, a tree of
stacks or cactus stack is required. We realize this cactus
stack using stacklets (see Fig. 1), which allow activation
frames to be allocated by adjusting the stack pointer. Allo-
cation of a new stacklet occurs when a new thread is created
or when a stacklet overflows. Stacklets alone provides a

FIG. 1. How individual activation frames of a cactus stack are
mapped onto stacklets. Only parallel calls of stacklet overflows require
allocation of a new stacklet. (The arrows point back to the parent. In
the above example, A calls B and H in parallel.)

naive parallel language implementation with conventional
local and remote eager forks, i.e., where every fork realizes
a new thread.

In Section 4, we develop the control mechanisms needed
for the parallel-ready sequential call. We begin by intro-
ducing a lazy thread fork, which addresses control and data
transfer when a thread is forked on the local processor.
Next, we reduce the overhead in returning to the parent
by combining two of the three independent return actions
(storing the results and finding the parent’s continuation
address) using parent controlled return continuations. Fi-
nally, we combine all three return actions into one using
synchronizers.

In Section 5, we develop the remaining portions of the
control hierarchy. Using the invariants inherent in the par-
allel-ready sequential call, we show how these representa-
tions can be used to find additional parallel work on de-
mand, in response to a work-stealing request from another
processor. We then examine the costs of the different call
representations.

In Section 6, we present empirical data to show that
these concepts can be combined to efficiently implement
dynamic logical parallelism. Our experimental study fo-
cuses on two prototype implementations on the CM-5: a
direct implementation in C and a compiler for the fine-
grained parallel language 1d90. The C implementation
shows that these primitives introduce little or no overhead
over sequential programs. The 1d90 implementation shows
that for complete programs we achieve a substantial im-
provement over previous work. Our techniques can be
applied to other programming languages [6, 40], thread
packages [11], and multithreaded execution models. In Sec-
tion 7, we discuss related work.

Our work, Lazy Threads, relies extensively on compiler
optimizations and cannot simply be implemented with
function calls to a user-level threads library without sub-
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stantial loss of efficiency. Underlying our optimizations is
the observation that in modern microprocessors, a substan-
tial cost is paid for memory references and branches,
whereas register operations are essentially free. Since a
stacklet is managed like a sequential stack, arguments and
results can be passed in registers, even in the potentially
parallel case. By manipulating the existing indirect return
jump, conditional tests for synchronization and special
cases can be avoided.

2. THE POTENTIALLY PARALLEL CALL

This section describes a spectrum of representations for
potentially parallel calls. In short, the compiler chooses
for every fork the least expensive implementation that
meets the semantic requirements of that particular call. In
this work a thread is a locus of control on a processor (or
in an operating system process) which can perform calls
to arbitrary nesting depth, suspend at any point, and fork
additional threads. Threads are scheduled independently
and are nonpreemptive.! We associate with each thread
its own logically unbounded stack. Each thread is initiated
by a fork, i.e., a potentially parallel call, and synchronizes
with a join in its parent.

Before considering the parallel call, observe that the
efficiency of a sequential call derives from two cooperating
factors. First, the parent is suspended upon call and all of
its descendants have completed on return. Second, data
and control are transferred together on call and return.
The first condition implies that storage allocation for the
activation frames involves only adjusting the stack pointer.
The second condition means that arguments and return
values can be passed in registers and that no explicit syn-
chronization is required.

In an idealized parallel execution model, every fork is
executed in its own processor, in other words, each fork
is executed eagerly. Where this logical parallelism is not
required, it is advantageous to execute collections of
threads sequentially on the local processor. However, in
general one cannot decide at compile time which threads
need to run in parallel. We must therefore represent the
fork such that it can run in parallel if necessary. Our goal
is to minimize the overhead of this representation without
reducing the amount of parallelism available to the appli-
cation.

A previous approach, load-based inlining, provides both
an eager parallel call and a sequential call for each fork.
When a potentially parallel call is encountered the load
characteristics of the parallel machine are used to decide
whether to execute it sequentially (inline it) or execute it
in parallel [23]. Unfortunately, these decisions introduce

! This is similar to what is provided in many kernel threads packages.
Our threads, however, are stronger than those in TAM [9] and in some
user-level threads packages, e.g., Chorus [34], which require that the
maximum stack size be specified upon thread creation so that memory
can be preallocated.

overhead and are irrevocable, which can lead to serious
load imbalances or deadlock.

Another approach, taken by Lazy Task Creation, is to
perform the fork like a sequential call, but record the point
of execution after the fork (i.e., the continuation) in the
parent. If the child suspends or if more parallelism is re-
quired to keep processors busy, the continuation is stolen
and a copy is made of the parent’s stack and the parent’s
thread is resumed or migrated to the copy. This requires
bookkeeping at every fork and the ability to migrate stack
frames to new threads, potentially across processors. In
order to perform such migration, one must forbid pointers
into stack frames. This is particularly onerous on distrib-
uted memory machines since it restricts such latency hiding
operations as pipelining remote memory operations. Addi-
tionally, in distributed memory machines local heap
pointers are not valid when moved to other processors. In
many cases migrating an already created frame, can lead
to poor data locality. For example, if the parent is migrated
after it has started execution any data structures created
by it or its children then cause remote accesses.

Observe that if after a child suspends and the parent is
resumed forward progress is made by spawning off addi-
tional threads then migration is not required. To prepare
the parent to continue without requiring migration, we can
create representations for the remaining forks in the parent
which can later be instantiated either sequentially or in
parallel. When a child suspends or a remote work request
arrives we can instantiate the representation as a full
fledged thread. These representations of the remaining
forks are nascent threads, or, if run sequentially, nascent
activation frames. Moreover, we do not really have to
build a descriptor for a nascent thread, because all the
information that would be put into the descriptor is already
in the stack frame of the parent. All we really need is a
means of locating and invoking the code in the parent
that performs the fork. Because the cost of creating these
representations is nominal (or even free), they allow us
to produce parallelism on demand without the overhead
normally associated with parallel calls.

2.1. Requirements of Return

A potentially parallel call must provide the semantics
of a parallel call even if it is run like a sequential call in the
same thread as its parent. We identify three independent
actions that occur when a parallel call returns. First, the
child must be able to return results to the parent so that
the parent can use them in the future. We call the code
that stores the results an inlet. Second, the parent must
update the synchronization status when the call is issued
and then when it returns. Finally, a continuation address
must be maintained in the parent to indicate what actions
need to be performed after the call has completed.

For a sequential call, these three actions are not indepen-
dent and all occur at the return address of the function.
This is because sequential calls only return to the parent



8 GOLDSTEIN, SCHAUSER, AND CULLER

when they have completed. The return address points to
the inlet. No synchronization state is needed since the
parent only resumes when the child has completed. Follow-
ing the inlet code is the code for the rest of the function,
in other words, the return address is also the continua-
tion address.

To reduce the overhead of a fork to that of a sequential
call when the logical parallelism represented by the fork is
not needed, we must combine the above three independent
actions such that we can still elevate a sequentially invoked
fork into its own thread. Suppose there are n consecutive
forks followed by a join. The main difficulty is that at the
point of invoking any but the last fork the continuation
address can not point to the join, but must point to the
fork that follows the one being invoked. Indeed, if the fork
executes sequentially the return address can work as does
the sequential call. However, if the child suspends, or some
other fork is started while the child is still running (e.g.,
some other processor steals work), the child must now
have an independent inlet address and the continuation
address in the parent has to be updated.

The above argument shows that we cannot use a sequen-
tial call to represent a potentially parallel call. One can
think of many ways to begin a fork as a sequential call
and then if necessary convert it into a parallel call. All the
methods will have to create a new thread (for either the
suspended call or its parent) and turn the original return
address into both an inlet address and a continuation ad-
dress, update the synchronization state of the parent, and
finally modify the parent to account for the fact that its
child is now a parallel task. This general method can be
used both for children that suspend and children that are
migrated to another processor.

2.2. Scheduling Frames

Before describing the variety of representations for the
potentially parallel call we need to define how frames are

Activated
by parent

Child returned or
Selected by scheduler

Created by
parent

scheduled. Every potentially parallel call is considered to
start a logically independent thread. There is no preemp-
tion. Fairness is not an issue because in order for the entire
application to finish all the tasks will need to run to com-
pletion.

Each task is identified by its activation frame (or frame),
analogous to a stack frame in a sequential language. A
frame can be in one of four states: running, ready, idle,
and nascent. There is exactly one running frame per proces-
sor. A ready frame is a one that the scheduler may run
when the currently running frame becomes idle. An idle
frame is waiting on some event to become ready. A nascent
frame is not truly a frame, but some representation of the
task that is able to become a frame. The state transitions
for a frame are shown in Fig. 2.

Frames give up the processor in one of three ways: they
call a potentially parallel child, they suspend, or they return
to their parent. For the first and last of these we mimic
the way in which control is transferred in sequential stack-
based languages, because it allows us to use registers for
transferring arguments between parent and child, and for
transferring results between the child and the parent. Fur-
thermore, if a fork executes sequentially we expect to get
the same performance from the fork as we would from a
sequential call. Thus, when a frame invokes a child it is
logically making the state transition from “‘running” to
“ready,” but instead of putting the parent on an explicit
ready queue, we use the activation frames in the cactus
stack as an implicit ready queue.

When a frame suspends there are four possible choices
for the next frame to run: its parent frame, a frame from
the ready queue, a nascent frame, or an explicitly selected
frame. The choice of which frame to run has a significant
impact on the overall performance of the system and the
amount of resources consumed by the application. The
default action is to follow the sequential scheduling order
and run the parent. Thus, the cactus stack is used as an
implicit scheduling queue of ready frames. If the child

Returned to

Enabled by inlet

FIG. 2. The legal state transitions for a task.
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chooses to run a frame other than its parent, it must put
its parent on an explicit ready queue.

The transition from “‘nascent’ to “running’’ occurs when
a nascent frame is activated, or in other words, when the
representation for the nascent frame is instantiated as a
real frame. The transition from “ready’ to “‘running” oc-
curs when a child returns or suspends and transfers control
to its parent, or when the system scheduler picks a frame
from the ready queue. The transition from “‘running” to
“idle”” happens when a frame suspends. Finally, the transi-
tion from ““idle” to “ready’’ occurs when an inlet runs and
enables the frame, enqueueing it onto an explicit ready
queue.

We also impose an implied scheduling order to consecu-
tive forks. Forks are spawned off (with whatever represen-
tation is chosen for them) in the order they appear lexically.
Thus, if they do run sequentially, the first starts, then it
returns, followed by the second starting, etc. They follow
this order even if a child suspends. Thus, when the ith
child suspends (or returns) the i + 1st child will be invoked
next. If the ith child chooses not to return to the parent,
then it must enqueue the parent on an explicit queue so
that the i + 1st (and all the rest) of the children can
be called.

At this point we have identified two ready queues: one
implicit and one explicit. The implicit queue is embedded
in the cactus stack and is composed of the parents that
are “ready” and the nascent frames. The explicit queue
contains those frames that suspended and were later explic-
itly enqueued by inlets. As we shall see shortly, we will
need one more explicit queue used for nascent frames,
which is called the seed queue.

2.3. The Representations

The hierarchy of representations of potentially parallel
calls spans the spectrum from the eager parallel call to
parallel-ready sequential call. In between these two ex-
tremes we have, full closures, explicit seeds, and implicit
seeds, described below in decreasing cost and generality
(see Fig. 3). At compile time the cheapest representation
is chosen that is sufficient given the context of the fork.

A full closure is the most general representation of po-
tentially parallel work. It is used when the locations con-
taining the arguments to the fork may be changed by the
parent before the closure is activated. Any data that can
be potentially modified is extracted from the frame and
stored in the closure along with a continuation into the
parent which points to a code fragment that uses the clo-
sure to execute the fork. The closure is then enqueued on
the seed queue.

When the arguments to the fork cannot change between
the creation of the representation and the time it is instanti-
ated, we do not need a full closure. Observe that all the
arguments are in the activation frame already, so we can
represent the fork without creating a full closure. An ex-
plicit seed is a specialized closure that contains only an

instruction pointer. It is stored in the frame of the function
that contains the fork being represented. A pointer to the
frame location is put on the seed queue. The instruction
pointer points to the code fragment generated by the com-
piler for the fork. This code fragment is generated by the
compiler for the sole purpose of scheduling the fork on
either another processor or a separate thread. It also man-
ages the parent’s synchronization state. Since the code
executes in the context of the parent of the fork we do
not need to store any of the arguments explicitly. Of course,
this representation can only be used when the parent does
not change the arguments between the creation of the
explicit seed and the last possible point when it could be
executed. In short, the compiler generates both the code
for the user program and additional code to handle sched-
uling.

By using the frame storage model and the scheduling
implied by sequential calls we can eliminate the need to
enqueue the seed. We call these implicit seeds. First, we
observe that if a fork is executed as a parallel-ready sequen-
tial call we can rely on the fact that it will return to its
parent when it has completed. We also guarantee that if
the child suspends it will return to the parent. An implicit
seed is just the return address of the child.

The implicit seed may only be used for a fork that imme-
diately follows another fork. This constraint arises because
we use the return address of the preceding call as the
implicit seed. In other words, we extend the concept of
the return address to include a pointer to the compiler
generated code fragment which can start the second fork.

2.4. Patterns of Parallel Calls

For each call site appearing in the program, the compiler
selects the best representation of the call based on the
context in which it appears. Here we describe the represen-
tations that would be used for four basic patterns of fork
usage: n consecutive forks, two consecutive forks, one fork
followed by sequential code, and finally a parallel loop;
which cover the most important cases occurring in practice.

The canonical pattern for task parallelism is n consecu-
tive forks followed by a join. This pattern can be compiled

Imp|ici|t Seed

Parallel-Ready
Sequential Call

Sequential Call

Generality

Eager fork
Eager fork  Closure
\/ Closure
Explicit Seed Explicilt Seed
Implicit Seed

Parallel-Ready
Sequential Call

Sequential Call

Cost

FIG. 3. The hierarchies of costs and generality for potentially parallel
call implementations. The overhead is based on the assumption that the
call could have executed sequentially.
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using a parallel-ready sequential call for the first fork and
one seed (either implicit or explicit) for the following n —
1 forks. Each time a seed is instantiated one seed is used
to represent the remaining forks. We do not need to use
a closure for the subsequent forks because the seed will
only be executed in the context of the parent; which already
has storage for the arguments in the frame. The choice of
an implicit or explicit seed affects the ease of performing
work stealing. On a single processor system, an implicit
seed would be sufficient. In the special case when n = 2,
we may further reduce the cost for explicit synchronization
as described in Section 4.3.

The more difficult case is when a single fork is followed
by sequential code and then a join. In this case, if we used
a parallel-ready sequential call to represent the fork, we
would lose the parallelism between the forked child and
the parent’s sequential code. We lose the parallelism be-
cause both the child and the parent are executed on the
same processor and migration is not allowed. If we allowed
migration, we could exploit the parallelism even under a
parallel-ready sequential call.> However, it seems that this
pattern is used mostly when the code following the fork
is to execute on some local data. If migration were used,
the fork would be executed locally and the local code
would be executed remotely. Instead, we represent the
first fork as either an explicit seed, or if the arguments to
the fork are possibly modified by the following code, as a
full closure. We enqueue the seed (or closure) and start
executing the following code. If no other processor stole
the seed (or closure), then when the join is reached the
parent suspends and the fork is executed.

The last pattern is the parallel loop. For this pattern, an
explicit seed is enqueued that points to a compiler gener-
ated code fragment which schedules iterations of the loop.

2.5. Discussion

In this section, we define the requirements of the poten-
tially parallel call. We introduce a control hierarchy of
representations for nascent threads which frees our model
from the necessity of migrating activation frames. We dis-
cuss how the return and scheduling mechanisms effect the
cost of executing parallel-ready sequential calls and the
implementation of the representations. Finally, we give
examples of when the representations would be used. In
the rest of the paper we explain how these concepts are
actually implemented.

3. STORAGE MANAGEMENT: STACKLETS

Analogous to the hierarchy of representations of the
fork, we introduce a hierarchy of frame stores. Frames can
be stored either on a stack, a stacklet, or a heap; depending
upon the type of call and the requirements of the child. This

2 Another approach would have the compiler package up the following
code as a separate function and use the 2-way fork pattern. However,
this suffers from the same problems as migration.

free

space

sp, top N

Frame
Area

% Stub

running
frame

Address to enter stub routine ... fp
Storage for TOP ~q....

. a frame

Storage for parent’s stack pointer ... : —5
Storage for parent’s return address -

FIG. 4. The basic form of a stacklet.

hierarchy of frame stores allows the compiler to choose the
least expensive storage mechanism for the activation
frame.

The least versatile and least expensive method is to use
a stack. This is only available for purely sequential calls,
i.e., for calls that can never suspend. The most expensive
method is to store each frame in a heap-allocated memory
segment. Using a heap-allocated frame store requires links
to be created from child to parent, which is implicit when
using a stack.

Between these two extremes, we use stacklets for frames
that are allocated for forks. A stacklet combines the effi-
ciency of a stack and the flexibility of heap-allocated frames
for those frames that are or may become independent
threads of control. This method allows us to assign to each
thread its own logically unbounded stack without having
to manage multiple stacks or require garbage collection.
Our compilation strategy allows us to use a sequential
stack for sequential calls, stacklets for small to moderate
sized forks, and the heap for large forks.

In the rest of this section, we described the mechanics
of stacklets and discuss their advantages over other meth-
ods of storing activation frames.

3.1. Stacklets

A stacklet is a memory management primitive which
efficiently supports cactus stacks. Each stacklet can be
managed like a sequential stack. It is a region of contiguous
memory on a single processor that can store several activa-
tion frames (see Fig. 4). Each stacklet is divided into two
regions, the stub and the frame area. The stub contains
data that maintains the global cactus stack by linking the
individual stacklets to each other. The frame area contains
the activation frames.® In addition to a traditional stack
pointer (sp) and frame pointer (f p), our model defines a
top pointer (t op) which—for reasons presented in the next
section—points to the top of the currently used portion
of the stacklet, or, in other words, to the next free location
in the stacklet. These three pointers are kept in registers.

We recognize three kinds of calls—sequential call, fork,
and remote fork—each of which maps onto a different
kind of allocation request. A sequential allocation is one
that requests space on the same stack as the caller. The

3 Frames that are larger than a single stacklet are stored on the heap.
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\\ N free
N free sp, top space .
space child
sp,top AN fp
—>
arent . t
P sequential paren
fp - call
a frame a frame
Stub Stub
FIG. 5. The result of a sequential call which does not overflow the

stacklet.

child performs the allocation. Therefore it determines
whether its frame can fit on the same stacklet. If so, sp,

fp, and t op are updated appropriately (see Fig. 5). If
not, a new stacklet is allocated and the child frame is
allocated on the new stacklet (see Fig. 6). This also happens
for an eager fork, which causes a new stacklet to be created
on the local processor. We can either run the child in the
new stacklet immediately or schedule the child for later
execution. In the former case, f p, sp, andt op point to
the child stacklet (see Fig. 6). In the latter case, they remain
unchanged after the allocation. For a remote fork there
are no stacklet operations on the local processor. Instead,
a message is sent to a remote processor with the child
routine’s address and arguments (see Fig. 7).

The overhead in checking for stacklet overflow in a se-
quential call is two register-based instructions (an AND
of the new sp and a compare to the old) and a branch
(which will usually be successfully predicted). If the
stacklet overflows, a new stacklet is allocated from the
heap. This cost is amortized over the many invocations
that will run in the stacklet.

3.2. Stacklet Stubs

Stub handlers allow us to use the sequential return mech-
anism even though we are operating on a cactus stack. The
stacklet stub stores all the data needed for the bottom
frame to return to its parent. When a new stacklet is allo-
cated, the parent’s return address and frame pointer are
saved in the stub and a return address to the stub handler
is given to the child. When the bottom frame in a stacklet
executes a return, it does not return to its caller. Instead
it returns to the stub handler. The stub handler performs

free
space
sp, top A\ fork
parent or
——
fp sequential call
a frame with overflow
Stub

Stub [

stacklet deallocation and, using the data in the stacklet
stub, carries out the necessary actions to return control to
the parent (restoring t op, and making sp and f p point
to the parent).

In the case of a remote fork, the stub handler uses indi-
rect active messages [38] to return data and control to the
parent’s message handler, which in turn is responsible for
integrating the data into the parent frame and indicating
to the parent that its child has returned.

3.3. Compilation

To reduce the cost of frame allocation even further, we
construct a call graph which enables us to determine for
all but the recursive calls whether an overflow check is
needed [15]. Each function has two entry points, one that
checks stacklet overflow and another that does not. If the
compiler can determine that no check is needed, it uses the
latter entry point. This analysis inserts preventive stacklet
allocation to guarantee that future children will not need
to perform any overflow checks.

3.4. Discussion

Stacklets provide efficient storage management for par-
allel execution. In the next section, we will see that poten-
tially parallel calls can use the same efficient mechanism
as regular sequential calls, because each stacklet preserves
the invariants of a stack. Specifically, the same call and
return mechanisms are used, so arguments and results can
be passed in registers. These benefits are obtained at a
small increase to the cost of sequential calls made in the
stacklet, namely checking whether a new stacklet needs to
be allocated in the case of an overflow or parallel call. The
extra cost amounts to a test and branch along with the use
of an additional register. This overhead is required only
when the compiler cannot statically determine that no
check is needed. Stubs eliminate the need to check for
underflows. This contrasts with previous approaches which
always require some memory references or a garbage col-
lector.

We can further reduce the cost of using stacklets by
utilizing all three levels of our frame store hierarchy. Purely
sequential calls, i.e., a call to a child which is guaranteed
not to suspend in itself or in any of its descendants, can
be executed on a sequential stack which has no overhead.
Parallel-ready sequential calls and sequential calls that can-
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FIG. 6. The result of a fork or of a sequential call which overflows the stacklet.
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FIG. 7. A remote fork leaves the current stacklet unchanged and allocates a new stacklet on another processor.

not be proven not to suspend are made on stacklets. Using
this paradigm, we use one register (a sequential stack
pointer) for the sequential stack and two for the cactus
stack (a stacklet stack pointer and a stacklet top pointer).

The main disadvantage in using stacklets is that if a
frame is at the top of a stacklet, each of its children will
have to be allocated on a new stacklet. This boundary case
is similar to the overflow case when using register windows.
We can reduce the probability that this happens by increas-
ing the size of each stacklet so that it happens rarely. Also,
the compiler optimization mentioned above can eliminate
many of the places where this could happen.

4. A FAST THREAD FORK

In this section, we show how to maintain the efficiency
and invariants of a sequential invocation with the flexibility
of a parallel one. First, we describe the call mechanism.
Then we show how to combine two of the three indepen-
dent requirements for return. Finally, we describe a
method that allows us to combine all three.

4.1. The Parallel-Ready Sequential Call

Our goal is to make a fork as fast as a sequential call
when the forked child executes sequentially. Using
stacklets as the underlying frame-storage allocation mecha-
nism gives us a choice of where to run the new thread
invoked by the fork. The obvious approach is to explicitly
fork the new thread using the parallel allocation explained
in the previous section. However, if the child is expected
to complete without suspending, i.e., if it behaves like a
sequential call, we would rather treat it like a sequential
call and invoke the child on the current stacklet.

This section defines the parallel-ready sequential call
(pr scal |') which behaves like a sequential call unless it
suspends, in which case, in order to support the logical
parallelism implied by the fork it represents, it directly
resumes the parent and behaves like an eagerly forked
thread. prscal | behaves like a sequential call in that it
transfers control (and its arguments) directly to the new
thread. Furthermore, if the new thread completes without
suspending, it returns control (and results) directly to its
parent.

If the child suspends, it must resume its parent in order
to notify its parent that the prscal | really required its
own thread of control. Thus, the child must be able to
return to its parent at either of two different addresses,
one for normal return and one for suspension. Instead of
passing the child two return addresses, the parent calls the
child with a single address from which it can derive both
addresses. At the implementation level, this use of multiple
return addresses can be thought of as an extended version
of continuation passing [2], where the child is passed two
different continuations, one for normal return and one for
suspension. The compiler ensures that the suspension entry
point precedes the normal return entry point by a fixed
number of instructions. In the case of suspension, the com-
piler uses simple address arithmetic to calculate the suspen-
sion entry point.

If the child suspends, the parent will not be the topmost
frame in the stacklet; i.e., sp will not equal t op (the situa-
tion shown in Fig. 8). To maintain the sequential stack
invariant, we do not allocate future children of the parent
on the current stacklet. Instead, while there is a suspended
child above the parent in the current stacklet, we allocate
future children, sequential or parallel, on their own
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FIG. 8. A parallel call creates a new stacklet.
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stacklets. As aresult, the translation for a fork which imme-
diately follows another fork must first compare sp and
top. If they are equal, the call occurs on the current
stacklet (as in Fig. 8). As a result, regardless of the chil-
dren’s return order, no stacklet will ever contain free space
between allocated frames, thus simplifying memory man-
agement.

In summary, prscal | allows a potentially parallel
thread to be executed sequentially and still have the ability
to suspend and obtain its own thread of control. A child
that needs its own thread of control takes over its parent
thread, causing its parent to allocate subsequent children
on other stacklets. Using stacklets and compiler support
we have created a multithreaded environment in a single
address space which gives each thread a logically un-
bounded stack.

4.2. Parent Controlled Return Continuations

In this section, we show how we reduce the overheads
that arise from a child returning to its parent. As described
in Section 2.1, there are three independent actions that
must be carried out on return: the inlet must be executed,
the synchronization state updated, and finally control must
be transferred to the continuation address. Here we show
how we can eliminate the need to update the synchroniza-
tion state on every return and how we can combine the
continuation address with the inlet.

We begin by observing that if a child suspends, we can
no longer use the originally supplied return address when
the child is resumed. Once the child has suspended, the
child and parent are truly separate threads, and the parent
may have already carried out the work immediately follow-
ing the fork that created the child. Thus, we need some
way to modify the child’s return address so that the child
will return to a location of the parent’s choosing. Since we
are using stacklets, both the parent and the child know
where the child’s return address is located in the stack. If
the parent is given permission to change the return address,
it can change it to reflect the new state of the parent’s
computation. The new return address will return the child
to the point in the parent function that reflects that the
child, and any work initiated after the child suspended,
have been carried out. We call this mechanism parent con-
trolled return continuations (PCRCs).

As described in the previous section, every child is given
two addresses, one for normal return and one for suspen-
sion. If the child returns without ever having suspended the
normal return address points to an inlet which immediately
follows the fork of the child in the parent, just like a
sequential call. As long as none of the children suspend
we do not update any synchronization counters, nor do
we store a continuation address.

When a child suspends, the code at the suspension ad-
dress performs three tasks. First, it updates the synchroni-
zation counter, as it would have before an eager parallel
call. Next, using PCRC:s, it changes the child’s return ad-

dress to point to a suspended-inlet (described below). Fi-
nally, it transfers control to the statement following the
original fork.

For every prscal | the compiler creates two sets of
inlets: one set for normal return and the suspended-inlet
set, used for a child that has at one time suspended. The
code at the suspend address for a suspended-inlet does
nothing but suspend the parent. The code at the return
address for the suspended-inlet stores the results, updates
the synchronization counter to indicate that the child has
completed, and then jumps directly to the join following
the forks.

The join following the forks checks if any children are
outstanding. If they are, it suspends the parent, otherwise
it continues execution in the parent. Thus, before the first
fork is executed, we must reset the synchronization counter
to indicate no calls are outstanding. Instead of always
touching the synchronization counter twice for each fork
(once before execution and once on completion), we only
have to reset it before any of the forks have executed and
update it for forks that suspend.

By using PCRCs and by duplicating the inlet code (which
is normally a single store), we are able to eliminate almost
all the overhead usually associated with parallel calls.
When a child does suspend, the extra cost of transforming
it into its own independent thread is no more than if we
had executed it as an independent thread in the first place.

4.3. Efficient Synchronization: Synchronizers

We minimize the synchronization cost due to joins by
extending the use of PCRCs with judicious code duplica-
tion and by exploiting the flexibility of the indirect jump
in the return instruction. The basic idea is to change the
return continuation of a child to reflect the synchronization
state of the parent. In this way, neither extra synchroniza-
tion variables nor tests are needed. The amount of code
duplicated is small since we need to copy only the inlet
code fragments. This allows us to combine the return with
synchronization at no additional run-time cost. Here we
describe the synchronizer transformations for two forks
followed by a join.*

In the previous section, we showed how we were able
to encode the inlet address and continuation address in
the return continuation. The return continuation for a child
was changed at most once by the parent if the child sus-
pended. Here we extend the encoding to include the syn-
chronization state of the parent. If none of the children
suspend, then each will return and the parent will call the
next child until the last child returns and the parent exe-
cutes the code following the join.

If any child suspends, then not only does the inlet for
that child have to change to reflect a new continuation
address, but each following fork must be supplied a return

4 Although the transformation is general enough to be applied to n
forks, it does not seem cost effective.
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continuation that indicates that there is an outstanding
child. Furthermore, when a child that previously suspended
returns, it must update the return continuations for each of
the outstanding children to reflect the new synchronization
state. In the worse case this can require O(n?) stores for
n forks. For this reason we only apply the synchronizer
transformation when n = 2.

In the case where two forks are followed by a join, the
transformation is straightforward and cost effective. As
shown in Fig. 9, the synchronization transformation gener-
ates five inlets for two forks: the first two (in the middle
of the figure) are used when no suspension occurs and
the last three (to the right of the figure) are used when
suspension does occur.

There are three cases to consider for the first fork. First,
if it returns without suspending, it returns to an inlet (inlet
1A) that starts the second fork. Second and third, if it has
suspended, then when it returns either the second call will
have been completed, or it will still be executing. In the
former case its inlet (inlet 1B) should continue with the
code after the join. In the latter, it should suspend the
parent (inlet 1C).

There are two cases to consider for the second fork.
Either the first call is completed when it returns, or the
first call is outstanding. If the first call is completed, then
the inlet (inlet 2A) continues with the code after the join.
If the first call is still outstanding, then the inlet (inlet 2B)
changes the pcrc for the first call to inlet 1B and suspends
the parent.

When no suspensions occur, inlets 1A and 2A are exe-
cuted, and the runtime cost of synchronization is zero. If
the first fork suspends, it starts the second fork with inlet
2B and sets its own inlet to 1C. If call 1 (2) returns next,
it will set the inlet for call 2 (1) to inlet 2A (1B). This
allows the last call that returns to immediately execute the
code after the join without performing any tests. In this
case, the runtime synchronization cost is two stores, which
is less than the cost of explicit synchronization.

pcre (X)4—inletla

Call X

inletlA.susp:
pcrc(X)é—inletlC
pcrc(Y) ¢—inlet2B

Fork X ) Fork Y
Fork Y inletlA.ret:
Join

continue after join
Call v

inlet2A.susp:
suspend() ;
inlet2A.ret:

done:

continue after join

Main program text

Inlets which handle return
and suspension.

5. REPRESENTING POTENTIALLY PARALLEL WORK

So far, we have shown how to reduce the overhead of
potential parallelism when it actually unfolds sequentially
on the local processor. Here we extend these ideas to
show how to represent potentially parallel work for remote
processors. In doing so, we describe the remaining repre-
sentations for the potentially parallel call: thread seeds and
the full closure. These representations allow us to reduce
the overhead of the potentially parallel call without re-
stricting the logical parallelism available in the program.
In other words, they allow us to represent the potential
work in the system so that it may be distributed efficiently
among multiple processors. Our goal is to allow work to
be distributed remotely but to pay the cost only when there
is an actual need to do so.

5.1. Thread Seeds

Thread seeds are a direct extension of the multiple return
addresses we introduced in Section 4.1 to handle the sus-
pension of children invoked by a parallel-ready sequential
call. As shown in Fig. 10, a thread seed is a code fragment
with three points: one for child return, one for child suspen-
sion, and one for an external work-stealing request. When
the compiler determines that there is work that could be
run in parallel, it creates a thread seed which represents
the work. For example, with two successive forks, the fork
for the first thread will be associated with a thread seed
representing the fork of the second thread.

We combine seed generation and fork into a single prim-
itive, pcal | X, Sy, where Y is the function to call and
S, is a thread seed that will, when executed in the context
of the parent, cause the function Y to be invoked. Upon
execution of the pcal | , a seed is created and control is
transferred to X, making the current (parent) frame inac-
tive. The newly created seed remains dormant until one
of three things happens: the child returns (the seed is as-

inletlB.susp:
suspend() ;

inletlB.ret:
goto done;

inletlC.susp:
suspend () ;

inletlC.ret:
pcre(Y)é—inlet2A
suspend() ;

perc (Y)é—inlet2A

inlet2B.susp:
suspend () ;

inlet2B.ret:
pcrc(X)¢é—inletlB
suspend() ;

Auxiliary inlets which
handle synchronization.

FIG. 9. An example of applying the synchronizer transformation to two forks followed by a join. Each inlet, i, is represented by two labels, a
suspension label (i.susp) and a return label (i.ret). In the pseudocode, we expose the operations that set a child’s return address; pcrc(X) denotes

the return address for the child X.
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PCALL X, Sy

The Seed: Sy

All seeds are a fixed number of
instructions.

stealing:
change X's return continuation
goto invokeYremotely;
suspension:
change X's return continuation
goto invokeY;
assumption:
popSeed() ;

pushSeed ( Sy) ;

call X();
return address is by convention assumption

FIG. 10. How pcal | and thread seeds are implemented.

sumed), the child suspends (the seed is activated), or a
remote processor requests work (the seed is stolen). All
three cases require the intervention by the parent. If the
child returns, the parent picks up the seed and inlines the
new thread of control into its own; i.e., Y executes on the
parent’s stacklet, just as if it had been called sequentially.
If the child suspends, the parent activates the seed by
spawning Y off on its own new stacklet. The seed becomes
a new thread concurrent with the first thread, but on the
same processor. If a remote processor requests work, the
parent executes a remote call of Y, which becomes a new
thread running concurrently with the current thread but
on another processor.

When a remote work request is received, the run-time
system must somehow find the thread seed (the third con-
tinuation) to initiate the creation of remote work. Here,
we consider two approaches to finding such work: an im-
plicit seed model and an explicit seed model.

In the implicit seed model, the remote work request
interrupts the child, which then continues execution at the
work-stealing entry point of its parent. If there is no work,
the entry point contains a code fragment to jump to the
parents ancestor on the stack. The search continues until
either work is generated or no work is found because no
excess parallelism is present. For the implicit model, the
pushSeed and popSeed macros in Fig. 10 turn into no-
ops and the planting of a seed is an abstract operation.
The advantage of this model is that when a pcal | is made
no bookkeeping is required. Instead, the stack frames
themselves form the data structure needed to find work.
The disadvantage is that finding work is more complex.

In the explicit seed model, when a seed is planted a
special continuation is pushed onto the top of a seed queue.
The continuation is a pointer to the return address in the
frame. The calling convention is such that the return from
the child defaults to the assumption point. If a child sus-
pends, it saves the top pointer in the stacklet stub, pops
the top seed off the queue, sets the sp as indicated by the
seed, and jumps into the suspension entry point of the seed.

The explicit queueing of seeds allows us to find work with
just a few instructions. For instance, if a child suspends, it
can find its ancestor, which has more work to perform,

merely by popping off the top seed. More importantly, if
a remote processor requests work, we can determine if
there is work by simply comparing the top and bottom
pointers to the seed queue. We can also spawn off that
work by jumping through the work-stealing entry point of
the seed at the bottom of the queue. The parent, invoked
through the seed, will execute the work-stealing routine,
placing any appropriate seed on the bottom of the queue.
The drawback of this scheme is that even when a seed is
inlined into the current thread (the sequential case) there is
an extra cost of two memory references over the previously
described implicit scheme.

5.2. Costs

We define the overhead cost of a representation as the
extra cost it introduces above that of a sequential call.
Since any of these calls may end up executing in parallel
we define a secondary cost, the transformation cost, as the
cost of converting the call to run in parallel versus executing
it in parallel ab initio. As we shall see, most of these repre-
sentations have very small transformation costs, while their
basic cost varies from zero to the cost of an explicit parallel
call (minus the base cost of a sequential call).

There are three aspects that make up the cost of a repre-
sentation: creation, linkage, and instantiation. Creation
cost refers to the cost of creating the nascent form of the
call which can later be instantiated into an executing call.
Linkages refers to the cost of enqueueing the representa-
tion so that it can later be found and executed. The instanti-
ation cost represents the cost of turning the representation
into an executing call. Clearly the eager explicit parallel
call and the sequential call have no creation or linkage
costs. For these two representations the instantiation phase
is the cost of either creating a new thread or a new sequen-
tial child. These costs depend on the underlying run-time
structures used to represent threads, stacks, etc.

The transformation cost has two components: direct and
indirect. The direct part is the cost of converting a sequen-
tial call into a parallel call. The indirect component is the
cost that the conversion adds to the parent of the call being
converted (and the parent’s future children).
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5.2.1. The Parallel-Ready Sequential Call. The parallel-
ready sequential call has minimal overhead cost. It is the
cheapest method that can be used to implement a fork
without additional knowledge.’ Like the sequential call,
this implementation has no creation or linkage cost. As
described in Section 4.3, the best case execution overhead
is also zero. In the worst case, synchronization overhead
will add 3/n memory references, a compare, and branch
where 7 is the number of forks in the forkset.

The direct transformation cost is zero; it costs the same
to suspend a parallel thread as a parallel-ready sequential
call. The indirect cost depends on the frame storage
method. If the child was implemented in a heap based
frame, it is zero. Since the suspended child steals the par-
ent’s frame, if it is allocated on a stacklet, it will cause all
future children in the forkset to be allocated on a separate
stacklet, even though they may run sequentially.

5.2.2. The Implicit Seed. Both the creation and linkage
costs of the implicit seed are zero, as it is created implicitly
by the return address of a parallel-ready sequential call.
Implicit seeds work very well in handling the problem of
suspension. When a sequentially called fork suspends, it
uses the return address it has to locate and execute the
implicit seed. However, if a remote processor wants to
steal work it will have to (in the general case) do a tree
walk of all outstanding frames to find an implicit seed. Its
direct transformation cost is zero when a parallel-ready
sequentially called child suspends and O(number of
frames) when a remote processor wants work.

5.2.3. The Explicit Seed. Like the implicit seed the cre-
ation cost of the explicit seed is zero, as the seed is imple-
mented by a compiler generated code fragment. However,
instead of using the preceding call’s return address for
linkage, it is pushed onto a queue. Thus it costs nothing
to create, but it incurs a small linkage cost, that of en-
queueing it and later removing it if the fork it represents
ends up executing sequentially. However, the direct trans-
formation cost is that of a dequeue independent of the
reason.

5.2.4. The Full Closure. The closure’s creation cost is
proportional to the number of arguments to the fork. Like
the explicit seed it must be enqueued and has a linkage
cost of one enqueue and one dequeue. The transformation
cost is also nonzero since if it were initially executed in
parallel, we would not have needed to create the closure.
However, the overhead cost is low compared to an eagerly
executed parallel call that could have been executed se-
quentially.

6. EXPERIMENTAL RESULTS

In this section, we present preliminary performance
results for our techniques on both uni- and multipro-

51t should be noted that in some rarely occurring cases an eager fork
can be cheaper than a parallel-ready sequential call.

TABLE I
Comparing Runtimes of fib 31 on a SparcStation 10
Runtime
Compilation method (s)
gee -O4 fib.c 2.29
Assembly version of Fib 1.22
Fib with stacklets, lazy threads, and synchronizers 1.50
Fib as above with explicit seeds 1.86

cessors. Our uniprocessor data were collected on a Sparc-
Station 10. Our multiprocessor data were collected on a
CM-5.

We have produced a parallel version of C for the CM-
5 which incorporates the techniques presented in this pa-
per. To evaluate these techniques we begin by comparing
the performance of four different implementations of the
doubly recursive Fibonacci function; which does essentially
nothing but function invocation. As shown in Table I, the
C version is significantly slower than either the synchro-
nizer or the seed version. The reason is that our stacklet
management code does not use register windows, which
introduce a high overhead on the Sparc. For a fair compari-
son we wrote an assembly version of Fib that also does
not use register windows. This highly optimized assembly
version runs only 18% faster than the synchronizer version,
which incorporates all the mechanisms for multithread-
ing support.

Next, we look at the efficiency of work-stealing com-
bined with seeds on a parallel machine by examining the
performance of the synthetic benchmark proposed in [26]
and also used in [39]. Grain is a doubly recursive program
that computes a sum, where each leaf executes a loop of
g instructions, thus allowing us to control the granularity
of the leaf nodes. We compare its efficiency to that of
sequential C code compiled by gcc. As shown in Fig. 11,
using stacklets we achieve over 90% efficiency when the
grain size is as little as 400 cycles. Compare this to the
grain size of an invocation of fib, which is approximately
30 cycles. Most of the inefficiency comes from the need to
poll the CM-5 network. The speed-up curve in Fig. 11
shows that even for very fine-grained programs, the thread
seeds successfully exploit the entire machine.

Further evidence that lazy threads are efficient is pre-
sented in Table II, where we compare our lazy thread
model with TAM for some larger programs on the Sparc.
At this time our Id90 compiler uses a primitive version of
explicit seed creation. In addition to the primitives de-
scribed so far, the compiler uses strands, a mechanism to
support fine-grained parallelism within a thread [14].
We see a performance improvement ranging from 1.1
times faster for coarse-grained programs, such as blocked
matrix multiply (MMT), to 2.7 times faster for more finely-
grained programs. We expect an additional benefit of up
to 30% when the compiler generates code using synchron-
izers.



LAZY THREADS 17

Efficiency
o o o (=]
N S » @ -

o

0 1000 2000 3000 4000

Grain size (cycles)

FIG. 11.
benchmark Grain [26, 39].

7. RELATED WORK

Attempts to accommodate logical parallelism include
thread packages [11, 34, 7, 16], compiler techniques and
clever run-time representations [9, 30, 26, 39, 37, 33, 17],
and direct hardware support for fine-grained parallel exe-
cution [19, 3]. These approaches have been used to imple-
ment many parallel languages, e.g., Mul-T [23], 1d90 [9,
30], CC++ [6], Charm [20], Opus [25], Cilk [4], Olden [5],
and Cid [29]. The common goal is to reduce the overhead
associated with managing the logical parallelism. While
much of this work overlaps ours, none has combined the
techniques described in this paper into an integrated whole.
More importantly, none has started from the premise that
all calls, parallel or sequential, can be initiated in the exact
same manner.

Our work grew out of previous efforts to implement the
nonstrict functional language 1d90 for commodity parallel
machines. Our earlier work developed a Threaded Abstract
Machine (TAM) which serves as an intermediate compila-
tion target [9]. The two key differences between this work
and TAM are that under TAM calls are always parallel,
and due to TAM’s scheduling hierarchy, calling another
function does not immediately transfer control.

Our lazy thread fork allows all calls to begin in the same
way and creates only the required amount of concurrency.
Many other researchers have proposed schemes which deal
lazily with excess parallelism. One of the simplest schemes

TABLE II
Dynamic Run-Time in Seconds on a SparcStation 10 for the
1d90 Benchmark Programs under the TAM Model and Lazy
Threads with Multiple Strands Using Explicit Seeds

Input Lazy
Program Short description size TAM threads
Gamteb  Monte Carlo neutron transport 40,000 220.8  139.0
Paraffins Enumerate isomers of paraffins 19 6.6 24
Simple Hydrodynamics and heat 11100 5.0 33
conduction
MMT Matrix multiply test 500 705 66.5

Note. The programs are described in [9].
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Efficiency of lazy threads on the CM-5 compared to the sequential C implementation as a function of granularity. We use the synthetic

is load based inlining, which uses load characteristics of
the parallel machine to decide at the time a potentially
parallel call is encountered whether to execute it sequen-
tially (inline it) or execute it in parallel [23]. This has the
advantage of dynamically increasing the granularity of the
program. However, these decisions are irrevocable, which
can lead to serious load imbalances or deadlock. Our ap-
proach builds an lazy task creation (LTC) which maintains
a data structure to record previously encountered parallel
calls [26]. When a processor runs out of work, dynamic
load balancing can be effected by stealing previously cre-
ated lazy tasks from other processors. These ideas were
studied for Mul-T running on shared-memory machines.
The primary difference is that LTC always performs extra
work for parallel calls, whether they execute locally or
remotely. Even the lazy tasks that are never raised to full
fledged tasks are ‘““spawned off” in the sense that they
require extra bookkeeping. Since work-stealing causes the
parent to migrate to a new thread, LTC depends on the
ability of the system to migrate activation frames. This
either requires shared-memory hardware capabilities or
restricts the kind of pointers allowed in the language. Our
implementation works on both distributed- and shared-
memory systems. Finally, LTC also depends on a garbage
collector, which hides many of the costs of stack man-
agement.

Another proposed technique for improving LTC is leap-
frogging [39]. Unlike the techniques we use, it restricts the
behavior of the program in an attempt to reduce the cost
of futures. Leapfrogging has been implemented using
Cthreads, a lightweight thread package. Another interest-
ing approach, based on SML/NJ, represents threads by
simple continuations [27], which in turn can be represented
efficiently. Since continuations are supported by the lan-
guage model, important aspects of the thread system, such
as scheduling and synchronization, can be described in the
language itself. This system can be used to implement user-
level thread packages directly within the ML language.

We use stacklets for efficient stack-based frame alloca-
tion in parallel programs. Previous work in [17] describes
similar ideas for handling continuations efficiently. Olden
[5] uses a “spaghetti stack.” In both systems, the allocation
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of a new stack frame always requires memory references
and a garbage collector. Olden’s thread model is more
powerful than ours, since in Olden threads can migrate.
The idea is that a thread computation which is following
references to unstructured heap-allocated data might in-
crease locality if migration occurs [32]. On the other hand,
this model requires migrating the current call frame as well
as disallowing local pointers to other frames on the stack.

StackThreads [35] uses both a stack and the heap for
storing activation frames in an attempt to reduce overhead
for fine-grained programs running on a single processor.
Activation frames are initially placed on the stack and
if they block, they are moved onto the heap. Since the
sequential call invariants are not enforced StackThreads
does not take advantage of passing control and data at the
same time, reducing register usage and increasing synchro-
nization overhead. They take a diametrically opposing
point of view in that all calls, sequential or parallel, use
the same representation. This triples the direct function
call/return overhead and prevents the use of registers.

A much simpler thread model is advocated in Shared
Filaments [10] and Distributed Filaments [13]. A filament
is a very lightweight thread which does not have a stack
associated with it. This works well when a thread does not
fork other threads. More general threads are supported
with a single stack because language restrictions make it
impossible for a parent to be scheduled when any of its
children are waiting for a synchronization event. Distrib-
uted filaments are combined with a distributed shared
memory system. In the case of a remote page fault, commu-
nication can be overlapped with computation because each
processor runs multiple scheduling threads.

The way thread seeds encode future work builds on the
use of multiple offsets from a single return address to
handle special cases. This technique was used in SOAR
[36]. It was also applied to Self, which uses parent con-
trolled return continuations to handle debugging [18]. We
extend these two ideas to form synchronizers.

Finally, many lightweight thread packages have been
developed. Cthreads is a run-time library which provides
multiple threads of control and synchronization primitives
for parallel programming at the level of the C language
[7]. Scheduler activations reduce the overhead by moving
fine-grained threads completely to the user level and rely-
ing on the kernel only for infrequent cases [1]. Synthesis
is an operating systems kernel for a parallel and distributed
computational environment which is interesting in our con-
text because it integrates dynamic load balancing capabili-
ties and applies dynamic compilation techniques [24].
Chant [16] is a lightweight threads package which is used
in the implementation of an HPF extension called Opus
[25]. Chant provides an interface for lightweight, user-level
threads which have the capability of communication and
synchronization across separate address spaces. While
user-level thread packages eliminate much of the overhead
encountered in traditional operating systems thread pack-
ages, they are still not as lightweight as many of the systems

mentioned above which use special run-time representa-
tions supported by the compiler. Since the primitives of
thread packages are exposed at the library level, compiler
optimizations presented in this paper are not possible for
such systems.

8. SUMMARY

We have shown that by integrating a set of innovative
techniques for call frame management, call/return linkage,
and thread generation we can provide a fast parallel call
which obtains nearly the full efficiency of a sequential
call when the child thread executes locally and runs to
completion without suspension. This occurs frequently
with aggressively parallel languages such as 1d90, as well as
more conservative languages such as C with parallel calls.

The central idea is to pay for what is used. Thus, a local
fork is performed essentially as a sequential call, with the
attendant efficient stack management and direct transfer
of control and data. The only preparation for parallelism
is the use of bounded-size stacklets and the provision of
multiple return entry points in the parent. If the child
actually suspends before completion, control is returned to
the parent so that it can take appropriate action. Similarly,
remote work is generated lazily. When a thread has work
that can be performed remotely, it exposes an entry point,
called a thread seed, that will produce the remote work
on demand. If the work ends up being performed locally,
it is simply inlined into the local thread of control as a
sequential call. We exploit the one bit of flexibility in the
sequential call, the indirect jump on return, to provide
very fast synchronization and to avoid explicit checking
for special cases, such as stacklet underflow.

Empirical studies with a parallel extension to C show
that these techniques offer very good parallel performance
and support fine-grained parallelism even on a distributed
memory machine. Integrating these methods into a proto-
type compiler for 1d90, depending on the frequency of
parallel calls in the program, results in an improvement of
nearly a factor of two over previous approaches.
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