
A Semantic Account for Modularity in Multi-language
Modelling of Search Problems

S. Tasharrofi and E. Ternovska

Simon Fraser University, Canada
{sta44,ter}@cs.sfu.ca

Abstract. Motivated by the need to combine systems and logics, we develop a
modular approach to the model expansion (MX) problem, a task which is com-
mon in applications such as planning, scheduling, computational biology, formal
verification. We develop a modular framework where parts of a modular system
can be written in different languages. We start our development from a previ-
ous work, [14], but modify and extend that framework significantly. In particular,
we use a model-theoretic setting and introduce a feedback (loop) operator on
modules. We study the expressive power of our framework and demonstrate that
adding the feedback operator increases the expressive power considerably. We
prove that, even with individual modules being polytime solvable, the framework
is expressive enough to capture all of NP, a property which does not hold without
loop. Moreover, we demonstrate that, using monotonicity and anti-monotonicity
of modules, one can significantly reduce the search space of a solution to a mod-
ular system.

1 Introduction

Formulating AI tasks as model finding has recently become very promising due to the
overwhelming success of SAT solvers and related technology such as SMT. In our re-
search direction we focus on a particular kind of model finding which we call model
expansion. The task of model expansion underlies all search problems where for an
instance of a problem, which we represent as a logical structure, one needs to find a
certificate (solution) satisfying certain specification. For example, given a graph, we are
looking for its 3-colouring in a classic NP-search problem. Such search problems occur
broadly in applications; they include planning, scheduling, problems in formal verifi-
cation (where we are looking for a path to a bug), computational biology, and so on.
In addition to being quite common, the task of model expansion is generally simpler
than satisfiability from the computational point of view. Indeed, for a given logic L, we
have, in terms of computational complexity,

MC(L) ≤ MX(L) ≤ Satisfiability(L),

where MC(L) stands for model checking (structure for the entire vocabulary of the for-
mula in logic L is given), MX(L) stands for model expansion (structure interpreting a
part of the vocabulary is given) and Satisfiability(L) stands for satisfiability task (where
we are looking for a structure satisfying the formula). A comparison of the complexity

of the three tasks for several logics of practical interest is given in [15]. Satisfiability
problem has been studied for many logics of practical interest, however model expan-
sion problem has not been studied. In particular, issues related to combining specialized
formalisms have been investigated, to a large degree, for satisfiability problem but not
at all for model expansion. As we develop our framework, we aim at understanding the
expressive power of the operations we add. Knowing the expressiveness of a framework
is essential in particular to understanding the complexity of solution finding.

Our contributions are as follows:

– We develop a semantics-based formalism which abstractly represents combinations
of modules. Our model-theoretic view allows us to study modular systems indepen-
dently from the logical languages in which each module is axiomatized.

– In [14], the authors define a modular constraint-based framework where different
modelling languages such as ASP, CP and SAT can be combined. We considerably
extend their work mostly due to to the introduction of loops and results that follow.

– Unlike [14], we represent modules as sets of structures, each such set corresponding
to a model expansion task solved by a module. This model-theoretic view is essen-
tial (1) to study the expressiveness of the framework itself, and its expressiveness
as a function of the expressiveness of the languages of individual modules; (2) to
connect to descriptive complexity (capturing complexity classes). In both cases, the
constraint-based approach [14] is not suitable – one needs to talk about formulas
being true in a structure, thus the model-theoretic view.

– We formulate an algebra on our modules (module expansion tasks). Several alge-
braic operations have already been used in [14], although in a constraint setting. An
essential contribution here is the addition of a loop (or feedback) operator. Loops
are present in all non-trivial computer programs and systems, including those con-
sisting of multiple modules. In all the results in this paper, the loop operator is
essential.

– We then investigate the expressive power of modular systems. We set apart and
study the expressive power which is added purely by the algebraic operations.
Among the operations, the loop operator is the most interesting. Adding loops gives
a jump from P to NP: we prove that NP is captured even with all modules being
polytime, due to the loop operator. In fact, adding it gives a jump in the polynomial
time hierarchy. The operators introduced in [14] do not add additional expressive
power, while the loop operator does.

– A crucial question is how to compute solution to the modular system under the
assumption that we can compute solutions of individual modules. We begin our
investigation of this question. We study some cases where solution to a modular
system can be approximated in polynomial time by relying on the construction
used in the well-founded semantics of logic programs.

– In many cases, we can view modules as operators. We consider monotonicity and
antimonotonocity properties of modules viewed as operators. These are important
properties because they allow us to derive some knowledge about solutions to the
entire modular system.

2 Background: Model Expansion Task

In [17], the authors formalize combinatorial search problems as the task of model ex-
pansion (MX), the logical task of expanding a given (mathematical) structure with new
relations. Formally, the user axiomatizes their problem in some logic L. This axiomati-
zation relates an instance of the problem (a finite structure, i.e., a universe together with
some relations and functions), and its solutions (certain expansions of that structure
with new relations or functions). Logic L corresponds to a specification/modelling lan-
guage. It could be an extension of first-order logic such as FO(ID), or an ASP language,
or a modelling language from the CP community such as ESSENCE [12]. MX task un-
derlies many practical approaches to declarative problem solving, which motivates us
to investigate modularity in the context of the MX task.

Recall that a vocabulary is a set of non-logical (predicate and function) symbols. An
interpretation for a vocabulary is provided by a structure, which consists of a set, called
the domain or universe and denoted by dom(.), together with a collection of relations
and (total) functions over the universe. A structure can be viewed as an assignment to
the elements of the vocabulary. An expansion of a structure A is a structure B with the
same universe, and which has all the relations and functions ofA, plus some additional
relations or functions. The task of model expansion for an arbitrary logic L (abbreviated
L-MX), is:

Model Expansion for logic L
Given: (1) An L-formula φ with vocabulary σ ∪ ε and (2) A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

We call σ, the vocabulary of A, the instance vocabulary, and ε := vocab(φ) \ σ the
expansion vocabulary1.

Example 1. The following formula φ of first order logic constitutes an MX specification
for Graph 3-colouring:

∀x [(R(x) ∨B(x) ∨G(x))
∧¬((R(x) ∧B(x)) ∨ (R(x) ∧G(x)) ∨ (B(x) ∧G(x)))]

∧ ∀x∀y [E(x, y) ⊃ (¬(R(x) ∧R(y))
∧¬(B(x) ∧B(y)) ∧ ¬(G(x) ∧G(y)))].

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E).
The task is to find an interpretation for the symbols of the expansion vocabulary ε =
{R,B,G} such that the expansion of A with these is a model of φ:

A︷ ︸︸ ︷
(V ;EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are exactly the proper 3-
colourings of G.

Given a specification, we can talk about a set (class) of σ∪ε-structures which satisfy
the specification. Alternatively, we can simply talk about a set (class) of σ∪ε-structures
as an MX-task, without mentioning a particular specification the structures satisfy.

1 By “:=” we mean “is by definition” or “denotes”.

3 Modular Systems

Definition 1 (Module). A moduleM is an MX task, i.e., a set (class) of σ∪ε-structures.

Characterizing a module using a set of structures does not assume anything about how
it is specified, which makes our study language-independent. A modular system is for-
mally described as a set of primitive modules (individual MX tasks) combined using
the operations of: (1) Projection(πτ (M)) which restricts the vocabulary of a mod-
ule, (2) Composition(M1 BM2) which connects outputs of M1 to inputs of M2, (3)
Union(M1 ∪M2) and (4) Feedback(M [R = S]). Operations (1)-(3) were introduced in
[14], in a constraint setting. Here, we use a model-theoretic setting. The feedback oper-
ation is new here, and it is essential since all non-trivial systems use loops. Moreover,
adding this operation increases the expressive power of modular systems.

Definition 2 (Composable, Independent [14]). Modules M1 and M2 are composable
if εM1

∩ εM2
= ∅ (no output interference). Module M1 is independent from M2 if

σM1
∩ εM2

= ∅ (no cyclic module dependencies).

Definition 3 (Modular Systems). Modular systems are built inductively from con-
straint modules using projection, composition, union and feedback operators:
1. A module is a modular system.
2. For modular system M and τ ⊆ σM ∪ εM , modular system πτ (M) is defined such
that (a) σπτ (M) = σM ∩ τ , (b) επτ (M) = εM ∩ τ , and (c) B ∈ πτ (M) iff there is a
structure B′ ∈M with B′|τ = B.
3. For composable modular systems M and M ′ (no output interference) with M inde-
pendent from M ′ (no cyclic module dependencies), M BM ′ is a modular system such
that (a) σMBM ′ = σM ∪ (σM ′ \ εM), (b) εMBM ′ = εM ∪ εM ′ , and (c) B ∈ (M BM ′)
iff B|vocab(M) ∈M and B|vocab(M ′) ∈M ′.
4. For modular systems M1 and M2 with σM1

∩σM2
= σM1

∩ εM2
= εM1

∩σM2
= ∅,

the expression M1 ∪ M2 defines a modular system such that (a) σM1∪M2
= σM1

∪
σM2 , (b) εM1∪M2 = εM1 ∪ εM2 , and (c) B ∈ (M1 ∪M2) iff B|vocab(M1) ∈ M1 or
B|vocab(M2) ∈M2.
5. For modular system M and R ∈ σM and S ∈ εM being two symbols of similar type
(i.e., either both function symbols or both predicate symbols) and of the same arities;
expression M [R = S] is a modular system such that (a) σM [R=S] = σM \ {R}, (b)
εM [R=S] = εM ∪ {R}, and (c) B ∈M [R = S] iff B ∈M and RB = SB.

Further operators for combining modules can be defined as combinations of basic
operators above. For instance, [14] introduced M1 IM2 (composition with projection
operator) as πσM1

∪εM2
(M1BM2). Also, M1 ∩M2 is defined to be equivalent to M1B

M2 (or M2 BM1) when σM1
∩ εM2

= σM2
∩ εM1

= εM1
∩ εM2

= ∅. Here is an
example of a modular system M combined from modules M1, M2, M3, M4 and M5:

M := πE,H1
[([M1 B (M2 ∩M3)]BM4) [H1 = H5]BM5] .

One can look at M as an algebraic formula where, for example, sub-formulas M1 B
(M2 ∩M3) and M2 both represent modules that appear in M . We call modules M1,
M2, M3, M4 and M5 primitive in M because they do not contain any operations.

Proposition 1. A modular system constructed using composition, projection, feedback
and union is a module.

Proposition 2 (Law of Substitution). Let M1 be a modular system, M ′ an arbitrary
(not necessarily primitive) module that appears inM1, and letM ′′ be a modular system
such that M ′ = M ′′ (equality of two sets (classes) of structures). If we replace M ′ in
M1 by M ′′, then for the resulting compound system M2, we have M1 =M2.

Definition 4 (Models, Solutions). For a modular system M , a σM -structure A and a
(σM ∪εM)-structure B, we say B is a model ofM if B ∈M . We also say B is a solution
to A in M if B ∈M and B expands A.

Comparison with [14] The framework [14] is based on a set of variables X each
x ∈ X having a domain D(x). An assignment over a subset of variables X ⊆ X is a
function B : X → ∪x∈XD(x), which maps variables in X to values in their domains.
A constraint C over a set of variablesX is characterized by a set C of assignments over
X , called the satisfying assignments. The variables of [14] are represented here by the
elements of the combined σ ∪ ε vocabulary. Assignments are structures here, and we
use symbols of various vocabularies instead of variables. It is essential to reformulate
this notion using structures since we want to go back and forth between modules and
logics in which modules are represented. In addition, we streamline most definitions.
We eliminated input and output vocabularies, which can be defined, if needed, as subsets
of instance and expansion vocabularies using projections. The main difference is the
addition of loops, which are essential in all the results here.

SAT

ILP

L

F
A R

M

L’

Fig. 1. Modular
System Rep-
resenting an
SMT Solver for
the Theory of
Integer Linear
Arithmetic

Example 2 (SMT Solvers). Consider Figure 1: It shows two boxes with solid lines
which correspond to primitive MX modules and a box with dotted borders which de-
picts our module of interest. The vocabulary here consists of all symbols A, R, L, L′,
M and F where symbols A, R and L′ are internal to the module, while others form the
module’s interface. Also, there is a line connecting L to L′ which depicts a feedback.

Overall, this modular system describes a simple SMT solver for the theory of Inte-
ger Linear Arithmetic (TILA). Our two MX modules are SAT and ILP. They work on
different parts of a specification. The ILP module takes a setL′ of literals and a mapping
M from atoms to linear arithmetic formulas. It returns two sets R and A. Semantically,
R represents a set of subsets of L′ so that TILA ∪M |r is unsatisfiable for all subsets
r ∈ R. Set A represents a set of propagated literals together with their justifications,
i.e., a set of pairs (l, Q) where l is an unassigned literal (i.e., neither l ∈ L′ nor ¬l ∈ L′)
andQ is a set of assigned literals asserting l ∈ L′, i.e.,Q ⊆ L′ and TILA∪M |Q |=M |l

(the ILA formula M |l is a logical consequence of ILA formulas M |Q). The SAT mod-
ule takes R and A and a propositional formula F and returns set L of literals such that:
(1) L makes F true, (2) L is not a superset of any r ∈ R and, (3) L respects all propa-
gations (l, Q) in A, i.e., if Q ⊆ L then l ∈ L. Using these modules and our operators,
module SMT is defined as below to represent our simple SMT solver:

SMT := π{F,M,L}((ILP B SAT)[L = L′]). (1)

The combined module SMT is correct because, semantically, L satisfies F and all mod-
els in it should haveR = ∅, i.e., TILA∪M |L is satisfiable. This is because ILP contains
structures for which if r ∈ R, then r ⊆ L′ = L. Also, for structures in SAT, if r ∈ R
then r 6⊆ L. Thus, to satisfy both these conditions, R has to be empty. Also, one can
easily see that all sets L which satisfy F and make TILA ∪M |L satisfiable are solu-
tions to this modular system (set A = R = ∅ and L′ = L). So, there is a one-to-one
correspondence between models of the modular system above and SMT’s solutions to
the propositional part.

Example 3 (Hamiltonian Path). In this example, we describe the Hamiltonian path
problem through a combination of basic modules M1, M2, M3, M4 and M5. We start
by an informal description of each of these modules.

Module M1 takes binary relations E and H1 and outputs their intersection H2.
Modules M2 and M3 take H2 as their input and, respectively, output binary relations
H3 and H4 so that (1) they both are subsets of H2, (2) all tuples in H3 are unique with
respect to the element in their first positions, and (3) all tuples in H4 are unique with
respect to the element in their second positions. Next, relationsH3 andH4 are passed to
module M4 which outputs their intersection as the binary relation H5. Now, H5 is fed
back into moduleM1 to create a loop. Finally,M5 takesH5 and accepts it iff undirected
transitive closure of H5 is V 2 (V being the domain). More formally, modular system
M for Hamiltonian path problem is defined as:

M := πE,H1 [([M1 B (M2 ∩M3)]BM4) [H1 = H5]BM5] .

Using our definitions for operations on modules, we have that σM = {E} and εM =
{H1}. We claim that model expansion task for M finds a Hamiltonian path in a graph:
letA = (V ;EA) be a graph and B = (V ;EA, HB1) be any expansion ofA to σM ∪εM .
We know that B ∈ M iff there is expansion B′ of B to {E,H1, H2, H3, H4, H5} such
that B′|{E,H1,H2} ∈ M1, B′|{H2,H3} ∈ M2, B′|{H2,H4} ∈ M3, B′|{H3,H4,H5} ∈ M4,
B′|{H5} ∈M5 and HB

′

1 = HB
′

5 .
Module M describes the Hamiltonian path problem because, first, any model B′ as

above has to give common interpretations to all relations H1 to H5. This is because
H5 ⊆ H3 ∩H4 ⊆ H2 ⊆ H1 ⊆ H5. So, the common interpretationR to these symbols
should be (1) the graph of a partial function (by definition of M2), (2) one-to-one (by
definition of M3), and, (3) a subset of the edges (by definition of M1). So, R is a
collection of vertex disjoint paths and cycles in the input graph A. Thus, as M5 asserts
that all vertices should be reachable to each other via R, then R is either a cycle or a
simple path passing all vertices, i.e., either a Hamiltonian cycle or a Hamiltonian path.

4 Expressive Power

The authors of [17] emphasized the importance of capturing NP and other complexity
classes. The capturing property, say for NP, is of fundamental importance as it shows
that, for a given language:

(a) we can express all of NP – which gives the user an assurance of universality of the
language for the given complexity class,
(b) no more than NP can be expressed – thus solving can be achieved by means of con-
structing a universal polytime reduction (called grounding) to an NP-complete prob-
lem such as SAT or CSP.

In the context of modular systems, we also want to investigate the expressive power
of the defined language. This section defines model-theoretic properties that a module
may satisfy such as totality, determinacy, polytime chability/solvability, monotonicity,
anti-monotonicity. We then capture NP in a modular setting with modules satisfying
some of those properties. While the focus of this result is on NP, by no means is the
expressive power of the modular framework limited to NP.

Definition 5 (Extension). For τ -structures A and A′, we say A′ extends A, and write
A v A′, if we have: (a) dom(A) = dom(A′), (b) for predicate symbol R ∈ τ we have
RA ⊆ RA′

.

We sometimes abuse the notation and, for interpretations S1 and S2 of symbol S
in two structures with the same domain, write (1) S1 v S2 to say S2 extends S1, (2)
S1uS2 (resp. S1tS2) to denote S1∩S2 (resp. S1∪S2) for predicate symbol S. We also
use @ and A to denote proper extension, i.e., similar to v and w but without equality.

Modular Systems as Operators

Definition 6 (Total Modular Systems). For modular system M and vocabulary τ , we
say M is τ -total w.r.t. C (C being a class of structures) if all τ -structures in C are
τ -restrictions of some structure in M .

Our definition of totality is conceptually similar to [14] but more general because, here,
τ is not neccessarily a subset of σ (instance vocabulary). We might omit writing C
in Definition 6 either if it is obvious from the context or if it is not important, i.e.,
discussion holds for all classes of structures.

Definition 7 (Deterministic Modular Systems). For modular system M and sets of
symbols τ and τ ′, we say M is τ -τ ′-deterministic if for all structures B and B′ in M ,
we have if B|τ = B′|τ then B|τ ′ = B′|τ ′ .

A module M that is both τ -τ ′-deterministic and τ -total can be viewed as a map-
ping from τ -structures to τ ′-structures, i.e., for all τ -structures A, there is a unique
τ ′-structure A′ so that for all structures B ∈ M if B|τ = A then B|τ ′ = A′. Note
that existence and uniqueness of A′ are guaranteed by τ -totality and τ -τ ′-determinacy
of M . For such M , we write Mτ,τ ′(A) to denote the unique structure A′ that M as-
sociates to A. We might omit τ and τ ′ and just write M(A) if they are clear from the
context.

Proposition 3. For τ -τ ′-deterministic modular system M :
1. If τ ′′ ⊇ τ , then M is also τ ′′-τ ′-deterministic.
2. If τ ′′ ⊆ τ ′, then M is also τ -τ ′′-deterministic.

Proposition 4. If M is both τ1-τ2-deterministic and τ ′1-τ ′2-deterministic, M is also
(τ1 ∪ τ ′1)-(τ2 ∪ τ ′2)-deterministic.

Definition 8 (Monotonicity and Anti-Monotonicity). For modular system M and
sets of symbols τ1, τ2 and τ3, we say M is τ1-τ2-τ3-monotone (resp. τ1-τ2-τ3-anti-
monotone) if for all structures B and B′ in M , we have:

if B|τ1 v B′|τ1 and B|τ2 = B′|τ2 then
B|τ3 v B′|τ3(resp. B′|τ3 v B|τ3).

Proposition 5. Let M be a τ1-τ2-τ3-monotone or a τ1-τ2-τ3-anti-monotone module.
Then M is (τ1 ∪ τ2)-τ3-deterministic.

Proof. We prove this for the monotone case. The other case is similar. Let B,B′ ∈ M
be such that B|τ1∪τ2 = B′|τ1∪τ2 . Then, (1) B|τ2 = B′|τ2 , (2) B′|τ1 v B|τ1 , and, (3)
B|τ! v B′|τ1 . Thus, by (1) and (2), we know B′|τ3 v B|τ3 and, by (1) and (3), we have
B|τ3 v B′|τ3 . Thus, B|τ3 = B′|τ3 .

Expressive Power We introduced several properties that a modular system may have,
i.e., totality, determinacy, monotonicity and anti-monotonicity. We also proved that de-
terminacy is a consequence of monotonicity or anti-monotonicity. Hence, it may look
like the systems composed of only total (anti-)monotone modules are of very restricted
computational power. However, as Theorem 1 shows, due to the presence of loops (feed-
backs), the modular framework expresses all of NP although all individual modules are
polytime solvable. One can extend Theorem 1 to prove that the feedback operator causes
a jump from one level of the polynomial hierarchy to the next, i.e., with modules from
∆P
k (level k of the polynomial hiearchy), and in the presence of feedbacks, modular

framework expresses all of ΣP
k+1.

Definition 9 (Polytime Checkability, Polytime Solvability). Let M be a module with
instance vocabulary σ and expansion vocabulary ε. M is polytime checkable if there
is a polytime program V which, given a (σ ∪ ε)-structure B, accepts B if and only
if B ∈ M . Also, M is polytime solvable if there is a partial function F computable
in polytime such that for all structures A: (1) F (A) is defined if and only if there is
structure B ∈ M expanding A, and (2) if F (A) is defined then F (A) ∈ M and F (A)
is the only structure in M which expands A.

Note that polytime solvability implies determinism. In theoretical computing science,
a problem is a subset of {0, 1}∗. However, in descriptive complexity, the equivalent
definition of a problem being a set of structures is adopted. The following theorem
gives a capturing result for NP:

Theorem 1 (Capturing NP over Finite Structures). Let K be a problem over the
class of finite structures closed under isomorphism. Then, the following are equivalent:

1. K is in NP,
2. K is the models of a modular system where all primitive modules M are σM -εM -

deterministic, σM -total, σM -vocab(K)-εM -anti-monotone, and polytime solvable,
3. K is the models of a modular system with polytime checkable primitive modules.

Proof. (1)⇒ (2): To prove this direction, we give a modular systemM ′ which contains
only one primitive module M . Primitive module M given in the proof satisfies all con-
ditions of totality, determinacy, anti-monotonicity and polytime solvability as required
by the theorem statement. Module M ′ feeds M ’s output to part of its input and projects
out some auxiliary vocabulary required by M .

The proof in this direction follows the fact that, when allowing auxiliary vocabu-
lary, ASP programs can express first order sentences (via Lloyd-Topor transformation).
Thus, as FO MX captures NP over the class of finite structures, so do ASP programs
(modulo the auxiliary vocabulary).

Now, consider a problem K in NP with vocabulary σ, i.e., an isomorphism-closed
set of finite σ-structures. By the above argument, there is an ASP program P with in-
stance vocabulary σ and expansion vocabulary εP which (when restricted to σ) accepts
exactly those structures in K. We now introduce a module M with σM := σ ∪ εP and
εM := ε′P (where ε′P consists of new predicate symbols R′ for each predicate sym-
bol R ∈ εP). Given an instance structure A, module M works by first computing the
ground program P ′ of P w.r.t. dom(A). Then, M computes the reduct of P ′ under A,
denoted as P ′A. Finally, M takes the deductive closure of P ′A and gives it as output.

Obviously, M is σM -εM -deterministic, σM -total and polytime computable. Also,
M is σM -σ-εM -anti-monotone because, for a fixed interpretation to σP , an increment
in εP makes P ′A, and thus the deductive closure, smaller. Now, we define module
M ′ := πσ(M [εP = ε′P]). Observe that models of M ′ are exactly those accepted by P .

(2)⇒ (3): This direction is trivial because if a modular system uses only polytime
solvable primitive modules then it also uses only polytime checkable primitive modules.

(3)⇒ (1): Let M be a modular system whose models coincide with K and whose
primitive modules are polytime checkable. Then, K is in NP because one can nondeter-
ministically guess all the interpretations of expansion symbols of M (the set of these
symbols is equal to the union of the expansion vocabularies of all M ’s primitive mod-
ules) and then use polytime checkability of M ’s primitive modules to check if this is a
good guess (according to the modules, and thus according to the system itself).

Theorem 1 demonstrates the additional power that the feedback operator has brought
to us. Its proof assumes that modules are described in languages with the ability to ma-
nipulate input programs and sets of atoms, and to compute fixpoints. Examples of such
languages are those that capture P in the presence of ordering relation over domain el-
ements, or the like. However, note that, in our model-theoretic view, the language that
modules are described in is not important at all.

Note that Theorem 1 shows that when basic modules are restricted to polytime
checkable modules, the modular system’s expressive power is limited to NP. Without
this restriction, the modular framework can represent Turing-complete problems. As an
example, one can encode Turing machines as finite structures and have modules that
accept a finite structure if and only if it corresponds to a halting Turing machine.

Theorem 1 shows that the feedback operator causes a jump in expressive power
from P to NP (or, more generally, from ∆P

k to ΣP
k+1). The proof uses a translation

from ASP programs to deterministic, total, anti-monotone and polytime modules. The
following running example elaborates more in this direction.

Example 4 (Stable Model Semantics). Let P be a normal logic program. We know S is
a stable model for P iff S = Dcl(PS) where PS is the reduct of P under set S of atoms
(a positive program) andDcl computes the deductive closure of a positive program, i.e.,
the smallest set of atoms satisfying it. Now, let M1(S, P,Q) be the module that given a
set of atoms S and ASP program P computes the reduct Q of P under S. Observe that
M1 is {S}-total and {S}-{P}-{Q}-anti-monotone, and polytime solvable. Also, let
M2(Q,S

′) be a module that, given a positive logic program Q, returns the smallest set
of atoms S′ satisfying Q. Again, M2 is {Q}-total, {Q}-{}-{S′}-monotone and poly-
time solvable. However, M := π{P,S}((M1 BM2)[S = S′]) is a module which, given
ground ASP program P , returns all and only the stable models of P . Therefore, the
NP-complete problem of finding a stable model for a normal logic program is defined
by combining total, deterministic, polytime solvable, and monotone or anti-monotone
modules.

Example 4 shows that the computational power of stable models is included in the
modular framework. As we will see later, this phenomenon is not accidental but is
a consequence of anti-monotone loops (feedbacks). Moreover, we already know that
the modular framework does not impose minimality constraint on the solution to its
modules (while stable model semantics does). Thus, this framework can define sets of
structures that cannot be defined in ASP.

5 Approximating Solutions

Until now, we introduced modular systems and talked about their expressive power.
However, an important question associated with every modeling language is how one
can find a solution to a specification in such a language. While we will address this
question in a future work, here, we give some results on how to intelligently reduce the
space we have to search in order to find a solution. We call this space the candidate
solution space. To do so, we start with simple properties about extending monotonicity
and anti-monotonicity to complex modules. We prove that, in the presence of loops
and monotone or anti-monotone primitive modules, the combined systems satisfy many
interesting properties such as existence of smallest solutions or minimality of solutions.
We then develop methods for intelligently reducing the candidate solution space.

Proposition 6. Let M be a τ1-τ2-τ3-monotone (resp. anti-monotone) module. Then:
1. If τ ′ ⊆ τ1 then M is also a τ ′-(τ2 ∪ (τ1\τ ′))-τ3-monotone (resp. anti-monotone)

module.
2. For a set ν of symbols such that τ3 ∩ ν = ∅, we have M is also (τ1 ∪ ν)-τ2-τ3-

monotone (resp. anti-monotone).
3. For a set ν of symbols, we have that M is also τ1-(τ2 ∪ ν)-τ3-monotone (resp.

anti-monotone).

4. If τ ′ ⊆ τ3 then M is also a τ1-τ2-τ ′-monotone (resp. anti-monotone) module.

Proposition 7. LetM be a module that is both τ1-τ2-τ3-monotone and τ ′1-τ ′2-τ ′3-monotone
(resp. τ1-τ2-τ3-anti-monotone and τ ′1-τ ′2-τ ′3-anti-monotone) such that (τ1 ∪ τ ′1)∩ (τ3 ∪
τ ′3) = ∅. Then, M is also (τ1 ∪ τ ′1)-(τ2 ∪ τ ′2)-(τ3 ∪ τ ′3)-monotone (resp. (τ1 ∩ τ ′1)-
(τ2 ∪ τ ′2)-(τ3 ∪ τ ′3)-anti-monotone).

Proposition 8 ((Anti-)Monotonicity Preservation). For τ1-τ2-τ3-monotone (resp. anti-
monotone) modular system M and general modular system M ′, we have:
1. M BM ′ is τ1-τ2-τ3-monotone (resp. anti-monotone).
2. M ′ BM is τ1-τ2-τ3-monotone (resp. anti-monotone).
3. If M ′ is ν-τ2-deterministic for some ν, then M ′ BM is τ1-ν-τ3-monotone (resp.

anti-monotone).
4. If τ1 ∪ τ2 ⊆ ν then ΠνM is τ1-τ2-(ν ∩ τ3)-monotone (resp. anti-monotone).
5. M [S1 = S2] is τ1-τ2-τ3-monotone (resp. anti-monotone)

Proposition 9 (Monotonicity under Composition). For modular systems M and M ′

and vocabularies τ1, τ ′1, τ2, τ ′2, τ3 and τ ′3 such that τ ′1 ⊆ τ3:
1. If M is τ1-τ2-τ3-monotone and M ′ is τ ′1-τ ′2-τ ′3-monotone, M BM ′ is τ1-(τ2 ∪ τ ′2)-
τ ′3-monotone.

2. If M is τ1-τ2-τ3-anti-monotone and M ′ is τ ′1-τ ′2-τ ′3-monotone, M BM ′ is τ1-(τ2∪
τ ′2)-τ

′
3-anti-monotone.

3. If M is τ1-τ2-τ3-monotone and M ′ is τ ′1-τ ′2-τ ′3-anti-monotone, M BM ′ is τ1-(τ2∪
τ ′2)-τ

′
3-anti-monotone.

4. If M is τ1-τ2-τ3-anti-monotone and M ′ is τ ′1-τ ′2-τ ′3-anti-monotone, M B M ′ is
τ1-(τ2 ∪ τ ′2)-τ ′3-monotone.

Proof. We prove the first case. The rest is similar. For P := M BM ′, let B,B′ ∈ P
be such that B|τ2∪τ ′

2
= B′|τ2∪τ ′

2
and B|τ1 v B′|τ1 . By monotonicity of M , we have

B|τ3 v B′|τ3 . So, as τ ′1 ⊆ τ3, we also have B|τ ′
1
v B′|τ ′

1
. Hence, by monotonicity of

M ′, we have B|τ ′
3
v B′|τ ′

3
.

These properties give us ways of deriving that a complex modular system is mono-
tone or anti-monotone by looking at similar properties of basic constraint modules. For
instance, for our two previous examples, we have:

Example 5 (Composition in Hamiltonian Path). Modules M1, M2, M3 and M4 in Ex-
ample 3 are respectively {H1, E}-{}-{H2}-monotone, {H2}-{}-{H3}-monotone, {H2}-
{}-{H4}-monotone and {H3, H4}-{}-{H5}-monotone. So, by Proposition 9, M ′ :=
M1B(M2∩M3) is both {H1, E}-{}-{H3}-monotone and {H1, E}-{}-{H4}-monotone.
Thus, Proposition 7 asserts M ′ is also {H1, E}-{}-{H3, H4}-monotone. Thus, M ′′ :=
M ′ BM4 has to be {H1, E}-{}-{H5}-monotone (by Proposition 9).

Example 6 (Composition in ASP Programs). Modules M1 and M2 in Example 4 are
respectively {S}-{P}-{Q}-anti-monotone and {Q}-{}-{S′}-monotone. So, by Propo-
sition 9, M ′ :=M1 BM2 is {S}-{P}-{S′}-anti-monotone.

The rest of this section considers the important case of monotone or anti-monotone
loops, i.e., monotone or anti-monotone modules under the feedback operator. Note that,

although our theorems concern modules feeding their outputs back to their inputs, these
modules are usually not primitive modules, but composite modules whose monotonicity
or anti-monotonicity is derived by our previous propositions.

Theorem 2 (Smallest Solution). LetM be a (τ∪{S})-total and {S}-τ -{R}-monotone
modular system and M ′ := M [S = R]. Then, for a fixed interpretation to τ , M ′ has
exactly one smallest solution with respect to predicate symbol R.

Proof. Standard Tarski proof.

Theorem 2 relates smallest solutions of monotone loops in modular systems to least
fixpoints of monotone operators. Therefore, many natural problems such as transitivity
or connectivity are smallest solutions of some monotone modules under feedbacks.
However, Theorem 2 only states that a smallest solution exists and is unique but it does
not limit the models to it. The smallest solution is used to prune the candidate solution
space by discarding all candidate solutions that do not extend the smallest solution.

Proposition 10 (Anti-Monotonicity and Minimality). For {S}-τ -{R}-anti-monotone
modular systemM and for modular systemM ′ :=M [S = R], we have that when inter-
pretation to τ is fixed, all models of M ′ are minimal with respect to the interpretations
of R.

Proof. Let B1,B2 ∈ M ′ be such that B1|τ = B2|τ and RB1 v RB2 . So, because, in
M ′, R is fed back to S, we have SB1 v SB2 . Hence, by {S}-τ -{R}-anti-monotonicity
of M , we have that RB1 w RB2 . Thus, RB1 = RB2 and B1|τ∪{R} = B2|τ∪{R}, i.e.,
there does not exist any two structures in M ′ which agree on the interpretation to τ but,
in one of them, interpretation of R properly extends R’s interpretation in the other one.

The minimality of solutions to anti-monotone loops means that these loops may not
have a smallest solution. Nevertheless, we are still able to prune the candidate solution
space by finding lower and upper bounds for all the solutions to such a loop. Consider
the following process for a (τ ∪ {S})-total and {S}-τ -{R}-anti-monotone modular
system M where S and R are relational symbols of arity n:

L0 = ∅, U0 = [dom(A)]n,
Li+1 = RM(A || Ui), Ui+1 = RM(A || Li),

where dom(Li) = dom(Ui) = dom(A), SLi = Li, SUi = Ui and, for two structures
A1 and A2 over the same domain but distinct vocabularies, A1||A2 is defined to be the
structure over the same domain asA1 andA2 and with the same interpretation as them.

Theorem 3 (Bounds on Solutions to Anti-Monotone Loops). For (τ ∪ {S})-total
and {S}-τ -{R}-anti-monotone modular system M (where S ∈ σM and R ∈ εM are
symbols of arity n), and for modular system M ′ := M [S = R] and τ -structure A, the
approximation process above has a fixpoint (L∗A, U

∗
A) such that for all B ∈ M ′ with

B|τ = A, we have L∗A v RB and RB v U∗A.

Proof. We prove this for relational symbols. Extending it to function symbols is straight-
forward. Given τ -structure A, consider the set S = {B ∈ M ′ | B|τ = A}. We
first prove (by induction on i) that, for all i, we have: Li v Li+1, Ui w Ui+1,
Li v

d
B∈S R

B, and Ui w
⊔
B∈S R

B.
The base case is easy because L0 is the empty set and U0 contains all possible

tuples. For the inductive case:
1. By induction hypothesis, Ui w Ui+1. So, by anti-monotonicity of M , we have:
Li+1 = LM(A || Ui) v LM(A || Ui+1) = Li+2. Similarly, Ui+1 w Ui+2.

2. Again, by induction hypothesis, Ui w
⊔
B∈S R

B. So, for all structures B ∈ S, we
have: Ui w RB. Therefore, Li+1 = LM(A || Ui) v RB. Thus, Li+1 v

d
B∈S R

B.
Similarly, we also have Ui+1 w

⊔
B∈S R

B.
So, as

d
B∈S R

B v
⊔
B∈S R

B, we have that, for all i, Li v Ui. Thus, there exists
ordinal α where (Lα, Uα) is the fixpoint of the sequence of pairs (Li, Ui). Denote this
pair by (L∗A, U

∗
A). Observe that, by above properties, L∗A v RB and RB v U∗A for all

B ∈ S (as required).

Similar to Theorem 2, Theorem 3 also prunes the search space by limiting the can-
didate solutions to only those that are both supersets of the lower bound obtained by the
process and subsets of the upper bound obtained by it.

Example 7 (Well-Founded Models). As discussed in Example 6, the module M ′ :=
M1 BM2 is {S}-{P}-{S′}-anti-monotone. Thus, by Proposition 10, the module M
defined in Example 4 can only have minimal solutions with respect to symbol S for a
fixed input P . Moreover, by Proposition 3, we can find lower and upper bounds to all
the solutions of module M for a fixed P . Unsurprisingly, these bounds coincide with
the well-founded model of the logic program P .

6 Related Work

The work that has motivated our current paper is [14]. There, the authors define a
framework in which different modelling languages such as ASP, CP and SAT can be
combined on equal terms. We considerably extend their work mostly due to to the in-
troduction of loops and results that follow. Detailed comparison is in Section 3.

An early work on adding modularity to logic programs is [7]. The authors derive
a semantics for modular logic programs by viewing a logic program as a generalized
quantifier. One generalization considers the concept of modules in declarative program-
ming [18]. The authors introduce the concept of modular equivalence in normal logic
programs under the stable model semantics. Their work is motivated by the fact that
weak equivalence in logic programs fails to give a congruence relation and strong equiv-
alence is not fully appropriate either. They define a weaker form of equivalence which
gives rise to a congruence relation which they call modular equivalence. This work, in
turn, is extended to define modularity in disjunctive programs in [13]. These two works
focus on bringing the concept of modular programming into the context of logic pro-
grams and dealing with difficulties that arise there. On the other hand, our work focuses
on the abstract notion of a module and what can be inferred about a modular system
based on what is known about modules and how they are combined. There are several

other approaches to adding modularity to ASP languages and ID-Logic as those de-
scribed in [3, 1, 6]. These works also put an emphasis on extending a specific language
with the modularity concept. However, in our work, we are mostly concerned with mix-
ing several knowledge representation languages. In addition, modular programming en-
ables ASP languages to be extended by constraints or other external relations. This view
is explored in [8, 9, 20, 4, 16]. While this view is advantageous in its own right, our work
is different because we use a completely model-theoretic approach. Some practical
modelling languages incorporate other modelling languages. For example, X-ASP [19]
and ASP-PROLOG [10] extend prolog with ASP. Also ESRA [11], ESSENCE [12] and
Zinc [2] are CP languages extended with features from other languages. However, these
approaches give priority to the host language while our approach gives equal weight to
all modelling languages that are involved. Yet another direction is the multi-context
systems. In [5], the authors introduced non-monotonic bridge rules to the contextual
reasoning and originated an interesting and active line of research followed by many
others for solving or inconsistency explanation in non-monotonic multi-context sys-
tems. In this field, motivation comes from distributed knowledge (such as interacting
agents) or partial knowledge (where trust or privacy issues are important).

7 Conclusion and Future Work

In this paper, we presented our first steps towards developing a modular approach to
solving model expansion task, a task which is very common in applications, and is gen-
erally easier than satisfiability for the same logic. We described an algebra of modular
systems, which includes a new operation of feedback (loop). We have shown that the
loop operation adds a significant expressive power – even when all compound modules
are polytime, one can can express all (and only) problems in NP. This property does not
hold without the loop operation. We have also shown that the solution space of modular
systems can be reduced under a natural condition on the individual modules.

In this paper, we talked about structures in general. However, in computing science,
on one hand, we are interested in only the finitely representable structures and, on the
other hand, most practical problems have numeric parts without any explicit bound on
how big the numbers are. Therefore, for us, another interesting direction is to focus on
finitely representable structures, and on structures embedded into a background struc-
ture with an infinite domain, and to understand how the framework should be modified
in this setting.

Our semantics-based formalism is the first step towards developing a logic of mod-
ular systems. The logic will have a counterpart of our algebraic operations on the syn-
tactic level. The main goal of the logic would be to address the issue of how a modular
system can be “solved” – a formula would describe the system, and its models would
be abstract representations of solutions to the entire system, as a function of solutions
to individual modules.

Another direction is to model the task of searching for a solution to a modular
system such as SMT and similar systems, while focusing on model expansion task.
We plan to develop an algorithm that finds a solution through accumulating a set of
constraints that a model has to satisfy. One of the interesting consequences of this work

would be to equip that algorithm with the results obtained here so that it can search
the solution space more effectively. We believe that this direction may contribute to
practical solvers design for declarative modelling languages.
Acknowledgement. This work is generously funded by NSERC, MITACS and D-Wave
Systems. We also express our gratitude towards the anonymous referees for their useful
comments.

References

1. Balduccini, M.: Modules and signature declarations for a-prolog: Progress report. In: SEA.
pp. 41–55 (2007)

2. de la Banda, M., Marriott, K., Rafeh, R., Wallace, M.: The modelling language zinc. Princi-
ples and Practice of Constraint Programming-CP 2006 pp. 700–705

3. Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of ensembles in modular
answer set programming. In: Proc. ICLP’06, LNCS. pp. 376–390

4. Baselice, S., Bonatti, P.A., Gelfond, M.: Towards an integration of answer set and constraint
solving. In: Proc. ICLP’05, LNCS. pp. 52–66

5. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proc. AAAI’07. pp. 385–390

6. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. ToCL 9(2),
1–51 (2008)

7. Eiter, T., Gottlob, G., Veith, H.: Modular logic programming and generalized quantifiers. In:
Proc. LPNMR ’97. pp. 290–309. Springer-Verlag (1997)

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: Proc. IJCAI’05. pp. 90–96

9. Elkabani, I., Pontelli, E., Son, T.C.: Smodels a – a system for computing answer sets of logic
programs with aggregates. pp. 427–431

10. Elkhatib, O., Pontelli, E., Son, T.: Asp- prolog: A system for reasoning about answer set
programs in prolog. In: Proc. PADL’04. pp. 148–162

11. Flener, P., Pearson, J., Ågren, M.: Introducing esra, a relational language for modelling
combinatorial problems. Logic Based Program Synthesis and Transformation pp. 214–232
(2004)

12. Frisch, A., Harvey, W., Jefferson, C., Martı́nez-Hernández, B., Miguel, I.: Essence: A con-
straint language for specifying combinatorial problems. Constraints 13, 268–306 (2008)

13. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive sta-
ble models. In: Proc. LPNMR’07. pp. 175–187. LNAI

14. Järvisalo, M., Oikarinen, E., Janhunen, T., Niemelä, I.: A module-based framework for multi-
language constraint modeling. In: Proc. LPNMR’09. LNCS, vol. 5753, pp. 155–168

15. Kolokolova, A., Liu, Y., Mitchell, D., Ternovska, E.: On the complexity of model expansion.
In: Proc. of LPAR-17. LNCS, vol. 6397, pp. 447–458 (2010)

16. Mellarkod, V., Gelfond, M., Zhang, Y.: Integrating answer set programming and constraint
logic programming. AMAI 53(1), 251–287 (2008)

17. Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search prob-
lems. In: Proc. AAAI’05

18. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In: Proc.
NMR’06. pp. 10–18

19. Swift, T., Warren, D.S.: The XSB System (2009), http://xsb.sourceforge.net/
20. Tari, L., Baral, C., Anwar, S.: A language for modular answer set programming: Application

to acc tournament scheduling. In: Proc. ASP’05. pp. 277–292. CEUR-WS

