
PBINT, a logic for modelling search problems involving
arithmetic

Shahab Tasharrofi and Eugenia Ternovska

Simon Fraser University, Canada
{sta44,ter}@cs.sfu.ca

Abstract. Motivated by computer science challenges, Grädel and Gurevich [13]
suggested to extend the approach and methods of finite model theory beyond fi-
nite structures, an approach they called Metafinite Model Theory. We develop this
direction further, in application to constraint specification/modelling languages.
Following [27], we use a framework based on embedded model theory, but with a
different background structure, the structure of arithmetic which contains at least
(N; 0, 1, +,×, <, || ||), where ||x|| returns the size of the binary encoding of x.
We prove that on these structures, we can unconditionally capture NP using a
variant of a guarded logic. This improves the result of [27] (and thus indirectly
[13]) by eliminating the small cost condition on input structures.

As a consequence, our logic (an idealized specification language) allows one to
represent common arithmetical problems such as integer factorization or disjoint
scheduling naturally, with built-in arithmetic, as opposed to using a binary en-
coding. Thus, this result gives a remedy to a problem with practical specification
languages, namely that there are common arithmetical problems that can be de-
cided in NP but cannot be axiomatized naturally in current modelling languages.
We give some examples of such axiomatizations in PBINT and explain how our
result applies to constraint specification/modelling languages.

1 Introduction

This paper shows an application of descriptive complexity [17, 12] to developing foun-
dations of constraint specification/modelling languages, a sub-area of AI. Such lan-
guages are developed in several communities, have associated solvers, and are intended
as universal languages for search problems in some complexity classes, usually NP (e.g.
scheduling, planning, etc.). Examples include languages and systems of Answer Set
Programming [25, 10], modelling languages from the CP community such as ESSENCE
[9], or the language of the IDP system1 [29]. These languages do not closely correspond
to FO logic – they often contain inductive definitions and built-in arithmetic. Designers
usually focus on the convenience of the language, and rarely pay attention to the ex-
pressiveness. For each language, several tasks can be studied – satisfiability and model
checking are among them. Here, since we are interested in search problems, we focus
on the task of model expansion (MX), the logical task of expanding a given structure

1 A language and system based on FO(ID), an extension of first-order logic with inductive defi-
nitions under well-founded semantics, see [7].

with new relations. The user axiomatizes their problem in some logic L (a specifica-
tion/modelling language). The task of model expansion for L (abbreviated L-MX), is:

Model Expansion for logic L
Given: 1. An L-formula φ with vocabulary σ ∪ ε

2. A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

Thus, we expand the structure A with relations and functions to interpret ε, obtain-
ing a model B of φ. The complexity of this task obviously lies in-between that of model
checking (the entire structure is given) and satisfiability (no part of a structure is given).
In the combined setting an instance consists of a structure together with a formula. We
focus here on data complexity, where the formula is fixed and the input consists of an
instance structure only. We call σ, the vocabulary of A, the instance vocabulary, and
ε := vocab(φ) \ σ the expansion vocabulary.

Remark 1. Since FO MX can specify exactly the problems that ∃SO can, one might
ask why we don’t stick with the standard notion of ∃SO model checking. Primarily it
is because we rarely use pure FO, and because for each language L, MX is just one
among several tasks of interest.

Descriptive complexity [17] and metafinite model theory [13, 12] can find applica-
tions in constraint modelling languages. The authors of [21] emphasized the importance
of the property of capturing NP and other complexity classes for such languages. The
capturing property is of fundamental importance as it shows that, for a given language:

(a) we can express all of NP – giving the user an assurance of universality of the
language for a given complexity class,
(b) no more than NP can be expressed – thus solving can be achieved by means of
constructing a universal polytime reduction to an NP complete problem such as SAT
or CSP. This reduction is called propositionalization or grounding.

The authors proposed to take the capturing property as a fundamental guarding prin-
ciple in the development and study of declarative programming for search problems in
this complexity class, and started careful development of foundations of modelling lan-
guages of search problems based on extensions and fragments of first-order (FO) logic.
While the current focus is on the complexity class NP, by no means, do we suggest
that the expressive power of the languages for search problems should be limited to NP.
Our goal is to design languages for non-specialist users who may have no knowledge of
complexity classes. The users will be given a simple syntax within which they are safe,
and they would be encouraged to express their problems in that syntax.

The classic Fagin’s theorem [8], relating ∃SO and NP, states that parameterized
(formula is fixed) FO MX captures NP. However, FO lacks many features needed for
practical specification languages such as a built-in support for arithmetic. Fagin’s the-
orem allows one to represent all problems in NP, however, there is no direct way to
deal with numbers and operations on them since in logic we have abstract domain ele-
ments. Therefore, problems involving numbers have to encode their inputs and outputs
using elements of the domain. A usable logic for these problems would use standard
arithmetic, as in all realistic modelling languages.

A solution, inspired by a previous proposal [13], was given in [27]. There, MX
ideas were extended to embedded MX to provide mathematical foundation for dealing
with infinite arithmetic structure with ×, +, <, etc., and aggregate functions (min,
sum etc.), operations that are considered “built-in”. The authors needed a method for
handling operations with outputs outside of the input domain, as is common in practical
languages. They also desired universal quantification over integers since it is convenient
and is used in practice. Access to the arithmetical structure through weight terms as in
[13] was not sufficient. They defined two new logics, GGFk and DGGFk. The former is
an extension of the k-guarded fragment of FO (or FO(ID)), in which instance predicates
are used as guards of quantifiers and expansion predicates (here, GG stands for double-
guarded, not for [13]). DGGFk, is an extension of GGFk in which definable guards
are allowed, provided they are polysize in the domain size. The extension allows for
quantifying over variables whose values fall outside of the input domain. It was proven
that, under a small-cost condition, NP is captured for both fragments. That is, (a) for
every problem in NP (represented by a class of logical structures) there is a specification
in the logic such that an instance (a structure) is in the class iff there is an expansion of
that structure that satisfies the specification; and (b) for every specification in the logic,
the task of MX is in NP. The small cost condition says that values of the input numbers
cannot be bigger than 2poly(n), where poly(n) is some polynomial in the size n of the
domain.

The two fragments provide natural axiomatizations (that do not involve binary en-
codings) but have two limitations:
(1) Poly-size guards are too limiting. Suppose we want to output the total weight of all
items in a Knapsack (an expansion predicate). A natural axiom would be:
∃x (G(x) ∧ Output(x) ∧ x = Σy(Weight(y) : Knapsack(y)). We cannot use a
polysize guard G: there are up to 2n distinct sums, where n is the size of the domain.
(2) Small cost condition cannot be satisfied in natural axiomatizations of some com-
mon problems in NP such as integer factorization or a quadratic programming problem:
given m, a, c find x such that x2 = a (modm) ∧ x > c.
The values of the given integers, m and a, are, in general, unlimited in the size of the
input domain, which is 3.

As we show in [26], several practical modelling languages, including the system
languages of ASP and IDP, meet the same challenges regarding the small cost condition.
Both these languages capture NP over small cost arithmetical structures and, also, none
of these languages can axiomatize factorization or the quadratic residue problem (two
prominent non-small cost problems) using their built-in arithmetic. Although we did
not discuss it in [26], the same analysis applies to some other system languages such as
NP-SPEC [3] to show that their built-in arithmetic has limited expressibility.

Here, we introduce a new logic, PBINT, which is suitable for modelling problems
that involve arithmetic as it eliminates the small cost condition and captures NP for
all problems involving arithmetic. The logic can be viewed as an idealized specifica-
tion/modelling language. PBINT uses a different background structure than that of [27],
namely the structure containing at least (N; 0, 1,+,×, <, || ||), among other polytime
relations. PBINT eliminates the two drawbacks above while retaining three important
features:

– Natural logic. All problems with arithmetical operations can be axiomatized natu-
rally (without e.g. binary encodings and with quantifiers over numbers).

– Capturing NP. The result is due to a new kind of existential and upper guards, and
a slightly different set of allowable arithmetic operations.

– Polytime Grounding. The grounding time is polynomial in the size of the binary
encoding of the input structure (not necessarily in the domain size).

2 Background: MX with Arithmetic

Throughout the paper, we use := for “denotes”,⇒ for material implication, and ∃x̄ for
∃x1 . . . ∃xn, similarly for ∀x̄.

Embedded MX Embedded finite model theory (see [19]), the study of finite structures
whose domain is drawn from some infinite structure, was introduced to study databases
that contain numbers and numerical constraints. Rather than think of a database as a
finite structure, we take it to be a set of finite relations over an infinite domain.

Definition 1. A structure A is embedded in an infinite background (or secondary)
structure M = (U ; M̄) if it is a structure A = (U ; R̄) with a finite set R̄ of finite
relations and functions, where M̄ ∩ R̄ = ∅. The set of elements of U that occur in some
relation of A is the active domain of A, denoted adomA.

Example 1. Consider a company database with a table containing employee numbers,
salaries and pension plans. This database is a finite structure embedded in the infinite
background structure of the natural numbers with the standard arithmetic operations.
Queries over embedded databases may use the database relations and the arithmetical
operations whose interpretation is provided by the infinite background structure. E.g.
the following query (a FO formula with free variable x) returns people whose total
salary and pension plan contribution is above $100,000: ∃s∃p (empl(x, s, p)∧ s+ p ≥
$100, 000).

In database research, embedded structures are used with logics for expressing queries.
Here, we use them similarly, with logics for MX specifications. Throughout, we use
the following conventions: σ denotes the vocabulary of the embedded structure A =
(U ; R̄), which is the instance structure; ν denotes the vocabulary of an infinite back-
ground structureM = (U ; M̄); ε is an expansion vocabulary; R̄ and M̄ always denote
the interpretations of σ and ν, respectively. We treat R̄ and M̄ as tuples or as sets, de-
pending on the context. A formula φ over σ ∪ ν ∪ ε constitutes an MX specification.
The model expansion task remains the same: expand a (now embedded) σ-structure to
satisfy φ.

A Logic for Embedded MX: Double-guarded logic Just as [27], we use a guarded
logic in an embedded setting, which allows us to quantify over elements of the back-
ground structure (unlike, e.g. [13]). Again, we use an adaptation of the guarded frag-
ment GFk of FO [11]. In formulas of GFk, a conjunction of up to k atoms acts as a
guard for each quantified variable.

Definition 2. The k-guarded fragment GFk of FO (with respect to σ) is the smallest set
of formulas that:
1. contains all atomic formulas;
2. is closed under Boolean operations;
3. contains ∃x̄ (G1∧ . . .∧Gm∧φ), provided theGi are atomic formulas of σ,m ≤ k,
φ ∈ GFk, and each free variable of φ appears in some Gi.

4. contains ∀x̄ (G1∧. . .∧Gm ⊃ φ) provided theGi are atomic formulas of σ,m ≤ k,
φ ∈ GFk, and each free variable of φ appears in some Gi.
For a formula ψ := ∃x̄ (G1∧. . .∧Gm∧φ), conjunctionG1∧. . .∧Gm is called the
existential guard of the tuple of quantifiers ∃x̄; universal guard is defined similarly.

Example 2. Let ε be {E1, E2}. The following formula is not guarded: ∀x∀y (E1(x, y) ⊃
E2(x, y)). It is guarded when E1 is replaced by P which is not in ε. The following for-
mula is the standard encoding of the temporal formula Until(P1, P2): ∃v2 (R(v1, v2)∧
P2(v2) ∧ ∀v3 (R(v1, v3) ∧ R(v3, v2) ⊃ P1(v3))). The formula is 2-guarded, i.e., is in
GF2, but it is not 1-guarded.

The guards of GFk are used to restrict the range of quantifiers. We also use “upper
guard” axioms, which restrict the elements in expansion relations to those occurring in
the interpretation of guard atoms. To formalize this, we introduce the following restric-
tion of FO, denoted GGFk(ε).

Definition 3. The double-guarded fragment GGFk(ε) of FO, for a given vocabulary ε,
is the set of formulas of the form φ∧ψ, with ε ⊂ vocab(φ∧ψ), where φ is a formula of
GFk, and ψ is a conjunction of upper guard axioms, one for each symbol of ε occurring
in ψ, of the form ∀x̄ (E(x̄) ⊃ G1(x̄1) ∧ · · · ∧Gm(x̄m)), where m ≤ k, and the union
of free variables in the Gi is precisely x̄.

We call the guards of GFk, that restrict the range of quantifiers, lower guards, and the
guards from Def. 3 upper guards. Upper guards on expansion functions are discussed
later. In GGFk, all upper and lower guards are from the instance vocabulary σ, so ranges
of quantifiers and expansion predicates are explicitly limited to adomA. In DGGFk,
this restriction is relaxed, adding a mechanism for “user-defined” guard relations that
may contain elements outside adomA. The authors assume that the instance vocabulary
always contains the predicate symbol adomA, which always denotes the active domain.
Then adomA(x) can be used as a guard atom (upper or lower)2. Guards provide a
logical formalization of some aspects of the type systems of some existing constraint
modelling languages [22]. Lower guards correspond to declaring the types of variables,
and upper guards to declaring the types of expansion predicates.

So far, we explained how formulas are constructed. To finish definition of the logic,
we need to define well-formed terms. This definition depends in the vocabulary of the
background structure. The authors of [27] used arithmetical structures, same as [13].

2 The relation which corresponds to the active domain is definable with respect to each instance
structure, but the defining FO formula requires disjunctions, thus cannot be used as a guard
and the predicate symbol adomA(x) is necessary.

Arithmetical Structure In addition to standard arithmetical operators, it has a collec-
tion of multiset operations, including max, min, sum and product.

Definition 4. An Arithmetical structure is a structureN containing at least (N; 0, 1, χ,<
,+, ·,min,max,Σ,Π), with domain N, the natural numbers, and where min, max,
Σ, and Π are multiset operations and χ[φ](x̄) is the characteristic function. Other
functions, predicates, and multiset operations may be included, provided every function
and relation of N is polytime computable.

Well-formed terms are defined over ν ∪σ∪ ε by induction, as usual. The details are
not important here. The authors of [27] proved that, using operations mentioned above,
the MX task for logics GGFk and DGGFk and for structures embedded in arithmetical
structures captures NP under small cost condition.

3 Logic PBINT

The first step towards eliminating the limitations of the previous logics is to use a dif-
ferent background structure.

Definition 5. A Compact Arithmetical structure is a structure N c containing at least
(N; 0, 1,+,×, <, || ||) with domain N, the natural numbers, where 0, 1, +, × and <
have their usual meaning and ||x|| returns the size of binary encoding of number x, i.e.,
||x|| = 1 + blog2(x+ 1)c. Other functions, predicates, and multi-set operations (min,
max etc.) may be included, provided every function and relation of N c is polytime
computable.

Our capturing results in Section 4 remain valid even when the background structure’s
domain changes from N to Z (although a more detailed proof would be needed).

Requirements on σ As before, we consider embedded MX, but the embedding is
into the compact arithmetical structure. We make some assumptions about the instance
vocabulary σ. It contains predicate adomA and a constant SIZE. The constant SIZE
is equal to |adomA|×S where |adomA| is the number of elements in the active domain
and S is the size of binary encoding of the maximum element of the active domain. In
other words, SIZE upper-bounds the number of bits needed to encode (in binary)
the input structure A embedded in N c. We also need a constant default denoting a
particular default value needed in upper guards on functions. Its meaning is specified
by the user.

Logic PBINT We introduce a new logic, PBINT, standing for Polynomially Bounded
Integers. This logic is a variant of the double-guarded logic except we use compact
arithmetical structures and allow functions in σ and ε, or new kinds of guards, with
more freedom in existential and upper guards on the outputs of expansion functions.
The three forms of guards in PBINT are as follows:
1. Instance Guards are instance predicates (including adomA) interpreted by the

instance structure A . Note that, although we do not require it to be so, all specifi-
cations can be rewritten to only use adomA as a guard.

2. Polynomial Range Guards are relations of the form p(SIZE) ≤ x ≤ p′(SIZE)
with p and p′ two polynomials.

3. PBINT Guards are relations of the form ||x|| ≤ poly(SIZE) where poly(SIZE)
is a polynomial depending only on the constant SIZE.
Instance guards and polynomial range guards define ranges of size at most polyno-

mial in the binary encoding size of structure. However, PBINT guards can define ranges
with exponentially many different integers. For example, condition ||x|| ≤ SIZE is
equivalent to x ≤ 2SIZE−1 − 1, exponential the in value of SIZE. Also note that
guards definable by stratifiable inductive definitions with (1), (2) as the base cases can
be added without changing our results.

Definition 6 (logic PBINT). We define our logic as follows.
Background Structure: the compact arithmetical structure.
Terms are constructed as usual over ν ∪ σ ∪ ε.
Formulas:

(a) Upper Guards
i. Expansion relations are upper-guarded by instance or polynomial range guards.

ii. An expansion function f has an upper guard axiom of the form ∀x̄∀y (f(x̄) =
y ⇒ (G(x̄, y) ∨ y = default)) where G(x̄, y) is a conjunction of guards
jointly guarding variables x̄ and y so that x̄ is upper-guarded by instance or
polynomial range guards and y is upper-guarded by any of the three types of
guards.

(b) Lower Guards
i. Existential guards: any of the three types of guards.

ii.Universal guards: instance or polynomial range guards.

The upper guards on expansion functions need the y = default disjunct to keep the up-
per guard meaningful. Otherwise, any expansion function would have its input restricted
by a guard G(x̄, y) which is in contradiction to the totality of functions (therefore mak-
ing the specification outright false).

A similar problem happens when instance functions are allowed: the usual defini-
tion of active domain becomes meaningless because a function is total and thus defined
on all the integers making the active domain equal to N. While it is possible to disallow
the instance functions, it is certainly not desirable for any nice practical logic. There-
fore, we choose to allow instance functions, but to require them to have upper guards
and the “default” value for inputs outside of the intended range, just as for expansion
functions. Active domain now contains all elements of the universe contained in all in-
stance relations, together with all elements in the ranges of the instance functions. This
trick also enables us to ensure that both instance and expansion functions have finite
(also polynomial size) representation.

Example 3 (Disjoint Scheduling). Given a set of Tasks, t1, · · · , tn and a set of con-
straints, find a schedule that satisfies all the constraints. Each task ti has an earliest
starting time EST (ti), a latest ending time LET (ti) and a length L(ti). There are also
two predicates P (ti, tj), that says task ti should end before task tj starts, and D(ti, tj),
which means that the two tasks ti and tj cannot overlap. We are asked to find two
functions start(ti) and end(ti) satisfying the given conditions.

In PBINT, we axiomatize this problem as follows: Instance vocabulary σ consists
of symbols EST , LET , L, Task, P and D. Expansion vocabulary consists of two
functions start and end which are upper-guarded as follows:

∀t∀s (start(t) = s⇒
(Task(t) ∧ ||s|| ≤ SIZE) ∨ s = default),

∀t∀e (end(t) = e⇒
(Task(t) ∧ ||e|| ≤ SIZE) ∨ e = default).

The following sentences axiomatize the problem statement:

∀ti (Task(ti)⇒ start(ti) ≥ EST (ti)),
∀ti (Task(ti)⇒ end(ti) ≤ LET (ti)),
∀ti (Task(ti)⇒ start(ti) + L(ti) = end(ti)),
∀ti∀tj (P (ti, tj)⇒ end(ti) ≤ start(tj)),
∀ti∀tj (D(ti, tj)⇒

end(ti) ≤ start(tj) ∨ end(tj) ≤ start(ti)).

In a practical language, usually upper and lower guards are defined by types and
need not be given explicitly. For example, here, the predicate Task is a type and func-
tions start and end are functions from the type Task to integer type. So, predicate
Task disappears from the above sentences.

Now, let us compare how this problem is axiomatized under small cost condition.
Note that this class of structures dissatisfies the small cost condition because values in
a structure, e.g. LET (ti), are not related to the domain size, i.e., the number of tasks.
So, another class of structures is needed here. One general choice would be to encode
all numbers in binary. For example, instead of function EST , there will be predicate
EST ′(ti, j) for which, EST (t) = n iff n = Σk(2k : EST ′(t, k)). To simplify, let
us also assume that there is a unary relation B defining the set of bit indices, e.g. all
values appearing in the second position of a tuple in EST ′ are in B. Also, assume that
0 is the minimum value in B and that if p > 0 is in B, so is p − 1. Now that we are
no longer working on “built-in” numbers, numerical operations have to be axiomatized.
For example, formula start(ti) ≤ EST (ti) is replaced by: (all quantified variables
below are lower-guarded by B)

E(0) ∨ ∃k (¬start′(ti, k) ∧ EST ′(ti, k) ∧ E(k + 1)),
E(k) := ∀k′ (k′ ≥ k ⇒ (start′(ti, k)⇔ EST ′(ti, k))).

Other inequalities in the above axioms are replaced by similar formulas. The addition
operator in start(ti) + L(ti) = end(ti) is axiomatized as follows: (all quantifiers are
lower-guarded by B and operator ⊕ stands for logical xor)

∀k (start(ti, k)⊕ L(ti, k)⊕ C(k)⇔ end(ti, k)),
C(k) :=
∃k′ (L(ti, k′) ∧ start(ti, k′) ∧ k′ < k ∧ CF (k, k′)),

CF (k, k′) :=
∀k′′ (k′ < k < k′′ ⇒ L(ti, k′′) ∨ start(ti, k′′)).

The first axiomatization is incomparably more natural.

Example 4 (Factorization). You are given a number n and asked to find some nontrivial
factorization for n. Here, σ only has constant n and ε only has constants p and q which
are upper-guarded as follows ||p|| ≤ SIZE and ||q|| ≤ SIZE where ||c|| ≤ SIZE
abbreviates ∀m (c = m ⇒ ||m|| ≤ SIZE) in case of zero-ary (constant) expansion
functions. Now, the axiomatization is:

p > 1 ∧ p < n ∧ q > 1 ∧ q < n ∧ p× q = n.

Example 5 (Quadratic Residues). You are given numbers r, n and c and asked to find
a number x such that x2 ≡ r (mod n) and x < c. Here, instance vocabulary consists
of constants n, r and c and expansion vocabulary only has constant x upper-guarded by
sentence ||x|| ≤ SIZE. The axiomatization consists of two sentences 0 ≤ x ∧ x ≤
c ∧ x < n and ∃q (||q|| ≤ SIZE ∧ x× x = q × n+ r).

Both Factorization and Quadratic Residue problems would have to be axiomatized in
binary in the logics of [27].

4 Capturing NP

Theorem 1. Let K be an isomorphism-closed class of compact arithmetical embedded
structures over vocabulary σ. Then the following are equivalent:
1. K ∈ NP ,
2. there is a PBINT sentence φ of a vocabulary τ = σ ∪ ν ∪ ε, such that
A ∈ K iff there exists an expansion B of A with B |= φ.

The proof for the two different directions of this theorem are given in separate sub-
sections. But, first, we introduce a characterization for PTIME due to Bellantoni and
Cook [1] which is needed for our proof of (1)⇒ (2).

4.1 Bellantoni-Cook Characterization of PTIME

We briefly describe a functional language introduced by Bellantoni and Cook [1] which
captures polytime functions. It has originally been defined to work on strings in {0, 1}∗.
But, as such strings encode numbers, we have reformulated the operations in numerical
terms.

Functions in Bellantoni-Cook form have two sets of parameters separated by a semi-
colon. Parameters to the left of semicolon are called “normal” inputs and those to its
right are “safe” inputs. This separation disables the possibility of introducing recursions
whose depth depend on the result of other recursions. This property is essential to prove
that such functions are poly-time computable. Here are the constructs:
1. Zero: Z(;) = 0.
2. Projections πn,m

j (x1, · · · , xn;xn+1, · · · , xn+m) = xj .
3. Successors S0(; a) = 2× a, S1(; a) = 2× a+ 1.
4. Modulo 2: M(; a) = amod 2.
5. Predecessor: P (; a) = ba

2 c.
6. Conditional: C(; a, b, c) = if 2|a then b else c.

7. Safe recursion that defines n+ 1-ary function f based on n-ary function g and the
n+ 2-ary functions h0 and h1:

f(0, x; y) = g(x; y),
f(2a, x; y) = h0(a, x; y, f(a, x; y)),
f(2a+ 1, x; y) = h1(a, x; y, f(a, x; y)).

8. Safe composition that defines function f based on functions r0, · · · , rk+k′ :

f(x̄; ȳ) =
r0(r1(x̄;), ..., rk(x̄;); rk+1(x̄; ȳ), ..., rk+k′(x̄; ȳ)).

This language interests us as it is a purely syntactic characterization of PTIME
which is based on numbers. Furthermore, the language is free of any unnatural functions
for bounding growth of numbers.

Bellantoni-Cook’s theorem says that any function defined in this form is PTIME
and that for any PTIME computable function f(a), there is a function f ′(w; a) such
that f(a) = f ′(w; a) for all a’s and for all w’s satisfying ||w|| ≥ pf (||a||) (where ||x||
is the binary encoding size of x and pf is a polynomial depending on f and constructible
based on Bellantoni-Cook’s proof).

4.2 NP ⊆ PBINT MX

Proof. Let us first review our proof structure for (1)⇒ (2).
1. We know NP problems have PTIME verifiers.
2. By Bellantoni and Cook’s theorem, every such polytime verifier can be given in

their syntax.
3. So, it remains to show that, verifier V in Bellantoni-Cook form, can be turned

into axiomatization φ in PBINT so that for σ-structure A, φ is satisfiable by an
expansion of A iff there is a polysize certificate for A accepted by V .
As this proof is so detailed, we only include the proof idea here. The full proof is in

the Appendix.
The proof constructs PBINT specification φ based on verifier V . In φ, expansion

vocabulary ε consists of:
1. B : N × N to map start times to functions, e.g., B(5, cf) means that, at time 5,

function f has started running (cf is a constant used to refer to function f).
2. E : N × N which, similarly, maps start times to end times, e.g., E(5, 10) means

that the function that had started running at time 5 ended running at time 10, and
together with B(5, cf), it means that function f started at time 5 and ended at time
10.

3. r : N → N is used to store result of function executions. It is needed only when
execution of a function terminates. For instance, continuing example above, having
r(10) = 2 means that result of computing function f is 2 (because it was f that
ended at time 10).

4. arg : N×N→ N is used for storing function arguments. Semantically, arg(n,m) =
k means that the mth argument of function starting at time n is k. For example,
having arg(5, 1) = 7 together with examples listed in items (1) to (3), means that

function f started running and at time 5 on argument 7, and it finished at time 10
and gave result 2, so f(7) = 2.

This expansion vocabulary enables us to simulate the behavior of a program in
Bellantoni-Cook form. We will have axioms saying what each function does. For ex-
ample, for base function Z we have that it finishes immediately and gives zero as result.
This is axiomatized as below:

∀n (T (n) ∧B(n, cZ)⇒ E(n, n+ 1)),
∀n (T (n) ∧B(n, cZ)⇒ r(n+ 1) = 0).

where T (n) is a lower guard which bounds the time needed for simulating verifier V (a
polynomial in the size of binary encoding of structure).

All other base functions have similarly simple axiomatizations. Functions defined in
terms of other functions (using safe recursion or safe composition) need more complex
(but still straightforward) axiomatizations. All these details can be found in the full
proof.

There are some more subtle issues that have to be addressed in order to give a correct
proof, e.g. encoding structures as numbers. All these subtleties are dealt with in the full
proof given in the Appendix (which did not fit here, please see the online version).

4.3 PBINT MX⊆ NP

Proof. Here, the proof goes as follows:

1. We first show that, given an MX specification φ in PBINT, you can find equivalent
ψ in ∃SO by using binary encodings of numbers.

2. Next, we show that structure A for φ is convertible to structure A′ for ψ (in poly-
time) so that satisfying expansion B of A exists iff satisfying expansion B′ of A′
exists.

3. Then, by Fagin’s theorem, PBINT MX⊆NP.

To obtain ψ, we first create a specification in which all existentially quantified vari-
ables with PBINT guardG are replaced by skolemized PBINT functions upper-guarded
by G. Then, this specification is converted to ψ by replacing PBINT functions with re-
lations that encode value of the function in binary. For example, for PBINT function
f(x1, · · · , xn), relation Qf (x1, x2, · · · , xn, k) is introduced with k being guarded by
new relation R. The idea is that Qf (x1, · · · , xn, k) holds iff the k-th bit of binary en-
coding of f(x1, · · · , xn) is one.

We know that all numbers in a PBINT specification are guarded. Hence, there is
a polynomial p(n) such that 2p(SIZE) is greater than all numbers generated in φ. So,
assuming that we have a relationR containing all numbers 0, · · · , p(SIZE), describing
operations of background structure is easy. For example, assuming that x, y and z are
encoded by unary predicatesQx,Qy andQz , the relation x = y+z can be axiomatized

as follows:

∀k (R(k)⇒
(Carry(k)⇔ (Qx(k)⇔ (Qy(k)⇔ ¬Qz(k))))),

Carry(k) :=
∃k′ (R(k′) ∧ k′ < k ∧Qy(k′) ∧Qz(k′) ∧ CF (k, k′)),

CF (k, k′) :=
∀k′′ (R(k′′) ∧ k′ < k′′ < k ⇒ Qy(k′′) ∨Qz(k′′)).

Although cumbersome, all other background operations can be similarly axiomatized.
Now, structureA′ is obtained fromA by adding unary relation R toA and convert-

ing all numbers inA to their binary representation. These tasks can be done in polytime
and so obtaining A′ from A is polytime achievable.

So, as ψ is in ∃SO, the task of model expansion for ψ is in NP. Also, asA is polytime
convertible toA′ and existence of a satisfying expansion forA is equivalent to existence
of a satisfying expansion for A′, model expansion for φ will also be in NP.

5 Related Work

Research in databases over infinite structures can be traced back to the seminal paper by
Chandra and Harel [4]. There are several follow-up papers with developments in several
directions including [28, 24, 13], and more recent [12]. Topor [28] studies the relative
expressive power of several query languages in the presence of arithmetical operations.
He also investigates domain independence and genericity in such frameworks.

Another line of database-motivated work over infinite background structures is em-
bedded model theory (See [19, 20]). Work in this area generally reduces questions on
embedded finite models to questions on normal finite models. An important result in this
area is the natural-domain-active-domain collapse for ∃SO for embedded finite models,
as well as other deep expressiveness results. The work also describes a notion of safety
(through e.g. range-restriction) to achieve safety with many background structures, and
connections between safety and decidability. The active domain quantifiers are similar
to our proposal of lower guards, however our goal was to reflect what is used in prac-
tical languages, namely the so-called domain predicates of Answer Set Programming
and type information from other languages. We’ve done it through the use of upper and
lower guards. In general, research in database theory is mostly focused around com-
putability and the expressive power of query languages, while our interest, following
[12] is in capturing complexity classes, but in connection with specification/modelling
languages. We plan, however, to investigate the applicability of domain-independence,
range-restrictedness and other notions from embedded model theory to practical mod-
elling languages.

Grädel and Gurevich [13] studied logics over infinite background structures in a
more general computer science context. They characterized NP for arithmetical struc-
tures under some small weight property, generalized to the small cost condition in [27]
(see [27] for a more detailed discussion). While this condition corresponds to existing
practical languages such as ASP and IDP system (see our paper [26] for more details),

our work here gives an unconditional result for capturing NP in the presence of arith-
metical structures, and thus is a step forward in the development of such languages.
Instead of controlling access to the background structure through the use of weight
terms [13], we rely on guarded fragments, which is much closer to practical specifica-
tion languages.

The work we mentioned so far is the closest to our proposal, and was the most inspi-
rational. The research on descriptive complexity in the embedded setting also includes
the work of Grädel and Meer [15], as well as Grädel and Kreutzer [14]. Another line
(Cook, Kolokolova and others [6]) establishes connections between bounded arithmetic
and finite model theory, in particular by relying on Grädel’s characterization of PTIME.
While this work is less relevant here, we still plan to provide more detail in the journal
version of the paper.

Another direction on capturing complexity classes is bounded arithmetic, including
[2, 23, 1]. However, the characterization of complexity classes there is in terms of prov-
ability in systems with a limited collection of non-logical symbols, and is not applicable
here.

There are many different characterizations of PTIME such as Leivant’s [18], Im-
merman’s [16], Cobham’s [5] and Bellantoni-Cook characterization [1]. Leivant’s char-
acterization says that PTIME functions are exactly those that are provable in a logic
called L2(QF+). Immerman’s logic is a fix-point logic with least fix-point operator and
≤ which works on structures with abstract domain elements. The two other character-
izations of Cobham’s and Bellantoni-Cook have the property of characterizing PTIME
as a set of functions working on numbers and so better suited for our purpose of charac-
terizing search problems over arithmetical structures. Also, the safe recursion and safe
composition operators in the Cook-Bellantoni characterization give us a more natural
way of guaranteeing that the result of the simulation we need in our proof falls within
some bounds. Therefore, we choose the Bellantoni-Cook characterization [1] over Cob-
ham’s as the basis of our proof.

Built-in arithmetic is implemented in many modelling languages, e.g. the MX-based
IDP system [29] and LPARSE [25]. However, as we showed in a parallel work in [26],
such languages have limited expressiveness in the presence of arithmetic constraints.
For example, we showed in [26] that the two problems of integer factorization and
quadratic residues are not expressible in ASP and IDP systems using their built-in arith-
metic. Also, in many cases, allowing arithmetic constraints without careful restrictions
provides the language with very high expressiveness, as is shown for ESSENCE [22].

6 Conclusion

In modelling languages, you are frequently faced with the problem of having a frame-
work to support both a natural specification of problems, and reasoning about those
problems. In this paper, we took our measure of naturality to be being able to use
“built-in” arithmetic, and our measure of reasoning to be being in NP. We showed some
examples of problems of practical importance and argued that our fragment of logic
is able to represent them naturally. We proved that embedded (in N c) MX for PBINT
captures exactly NP. This result guarantees universality of our logic for this complexity

class and also settles our reasoning abilities by showing that all PBINT axiomatizations
can be efficiently (in polytime) grounded to any state of the art solver of NP problems.
Our work is a significant step forward from the previous proposal since it overcomes a
number of limitations.

The language we proposed is natural because it is essentially FO logic, where
guards can be made “invisible” through “hiding” them in a type system. Solving can
be achieved through grounding to SAT, a work which is being performed in our group,
but falls outside the scope of this paper.

In summary, our work has shown a new application of descriptive complexity and
metafinite model theory, and contributed to those areas by improving a previous result
of capturing NP for arithmetical structures. Future directions include (a) analysis of
existing languages in connection with our results here, similar to what was done for
ESSENCE with respect to the previous proposal [22]; (b) design of logics with dif-
ferent background structures, (c) extending the framework to deal with combination
of languages, interacting in a modular system, (d) continue with our implementation
development.
Acknowledgement. This work is generously funded by NSERC, MITACS and D-
Wave. We also express our gratitude towards the anonymous referees for their useful
comments.

References

1. S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime func-
tions (extended abstract). In STOC ’92: Proceedings of the twenty-fourth annual ACM sym-
posium on Theory of computing, pages 283–293, 1992.

2. S. R. Buss. Bounded arithmetic. PhD thesis, Princeton University, 1985.
3. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. Np-spec: An executable specification

language for solving all problems in np. In PADL ’99: Proceedings of the First International
Workshop on Practical Aspects of Declarative Languages, pages 16–30, London, UK, 1998.
Springer-Verlag.

4. A. Chandra and D. Harel. Computable queries for relational databases. Journal of Computer
and System Sciences, 21:156–178, 1980.

5. A. Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel ed., Proc.
of the 1964 International Congress for Logic, Methodology, and the Philosophy of Science,
pages 24–30, 1964.

6. S. Cook and A. Kolokolova. A second-order system for polytime reasoning based on grädel’s
theorem. In Proceedings of Sixteenth Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS ’01), pages 177–186, 2001.

7. M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions. TOCL,
9(2):1–51, 2008.

8. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. Complexity
of computation, SIAM-AMC proceedings, 7:43–73, 1974.

9. A. M. Frisch, M. Grum, C. Jefferson, B. M. Hernandez, and I. Miguel. The essence of
essence: A constraint language for specifying combinatorial problems. In Proc. of the Fourth
International Workshop on Modelling and Reformulating Constraint Satisfaction Problems,
pages 73–88, 2005.

10. M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer set programming.
In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the Ninth International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483
of Lecture Notes in Artificial Intelligence, pages 266–271. Springer-Verlag, 2007.

11. G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game theoretic and
logical characterizations of hypertree width. In PODS ’01, 2001.

12. E. Grädel. Finite Model Theory and Descriptive Complexity, pages 125–230. Springer, 2007.
13. E. Grädel and Y. Gurevich. Metafinite model theory. Inf. Comput., 140(1):26–81, 1998.
14. E. Grädel and S. Kreutzer. Descriptive complexity theory for constraint databases. In Pro-

ceedings of the Annual Conference of the European Association for Computer Science Logic,
CSL ‘99, Madrid, volume 1683 of LNCS, pages 67–81. Springer, 1999.

15. E. Grädel and K. Meer. Descriptive complexity theory over the real numbers. Mathematics
of Numerical Analysis: Real Number Algorithms, 32:381–403, 1996.

16. N. Immerman. Relational queries computable in polynomial time. In STOC ’82: Proceedings
of the 14th Annual ACM Symposium on Theory of Computing, pages 147–152, 1982.

17. N. Immerman. Descriptive complexity. 1999.
18. D. Leivant. A foundational delineation of computational feasibility. In LICS ’91: Proceed-

ings of the sixth Annual IEEE Symposium on Logic in Computer Science, pages 2–11, 1991.
19. L. Libkin. Elements of Finite Model Theory. 2004.
20. L. Libkin. Embedded Finite Models and Constraint Databases, pages 257–338. Springer,

2007.
21. D. G. Mitchell and E. Ternovska. A framework for representing and solving NP search

problems. In Proc. AAAI’05, 2005.
22. D. G. Mitchell and E. Ternovska. Expressiveness and abstraction in ESSENCE. Constraints,

13(2):343–384, 2008.
23. A. Skelley. Theories and Proof Systems for PSPACE and the EXP-Time Hierarchy. PhD

thesis, University of Toronto, 2005.
24. D. Suciu. Domain-independent queries on databases with external functions. Theor. Comput.

Sci., 190(2):279–315, 1998.
25. T. Syrjänen. Lparse 1.0 User’s Manual, 2000.

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.
26. S. Tasharrofi and E. Ternovska. Built-in arithmetic in knowledge representation languages.

In Proc. of Logic and Search (LaSh) 2010, 2010.
27. E. Ternovska and D. G. Mitchell. Declarative programming of search problems with built-in

arithmetic. In Proc. of 21st International Joint Conference on Artificial Intelligence (IJCAI-
09), pages 942–947, 2009.

28. R. Topor. Safe database queries with arithmetic relations. In Proc. 14th Australian Computer
Science Conf, pages 1–13, 1991.

29. J. Wittocx and M. Marien. The IDP System. KU Leuven,
www.cs.kuleuven.be/˜dtai/krr/software/idpmanual.pdf, June 2008.

