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ABSTRACT: The quadcode is a hierarchical data 
structure for describing digital images. It has the following 
properties: (1) straightfonoard representation of dimension, 
size, and the relationship between an image and its subsets; 
(2) explicit description of geometric properties, such as 
location, distance, and adjacency; and (3) ease of conversion 
from and to raster representation. The quadcode has 
applications to computer graphics and image processing 
because of its ability to focus on selected subsets of the data 
and to allow utilization of multiple resolutions in different 
parts of the image. A related approach is the quadtree. 
Samet recently presented a thorough survey of the literature 
in that field [7]. Gargantini [2] and Abel and Smith [Z] 
presented linear quadtrees and linear locational keys that 
are efficient labeling techniques for quadtrees. In those 
papers the geometric concepts of the image are discussed by 
using the tree as an interpretive medium, and the 
approaches and procedures are based on traversal of the 
nodes in the tree. In this paper we present the quadcode 
system, which is a direct description of the image, and 
discuss the geometric concepts in terms of the coded images 
themselves. 

1. QUADCODE 
The quadcode is a quaternary (base-J) code. A quad- 
code of length n is of the form 

Q = qlqz, . . . , qn, 

where qi = 0, 1, 2, 3 for i = 1, 2, . . . , n. 
When the quadcode is used in describing an image, 

each character represents one operation of subdividing 
the image or its subimage into quadrants, as shown and 
labeled in Figure 1. 

In many applications (e.g., smoothing, edge detection, 
shape description) an image is usually subdivided into 
much smaller units, so the subdividing operation can 
be repeated recursively many times, until there is no 
further subdividing needed. Figure 2, on next page, 
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shows the subdividing process and the corresponding 
quadcodes. A particular quadrant is represented by one 
of 0, 1, 2, or 3, concatenated to the quadcode of its 
predecessor, and after each subdividing operation, the 
length of the quadcode increases by one. As shown in 
the figure, the quadcode length signifies how many 
subdividing operations have been done. 

1.1 Properties of the Quadcode 

Property 1 (qc length). The quadcode length of individ- 
ual pixels in a z”-by-Z” image is n. 

Property 2 (dimension). The side length of a subimage 
with quadcode length m in a z”-by-z” image is 2 “-*. 

Property 3 (area). The area of a subimage with quad- 
code length m in an image of area A0 is 4-“Ao. 

Property 4 (subdividing). Adding one character to a 
given quadcode subdivides the given subimage into its 
quadrants (see Figure 3, on next page). 

Property 5 (merging). If four quadcodes of length i have 
the first i - 1 positions the same, they represent the 
four quadrants of the same subimage, which is repre- 
sented by the (i - I)-position quadcode (Figure 3). 

Property 6 (locating). A subimage can be located in an 
image according to each position of its quadcode, which 
is equivalent to subdivision of the initial image (see 
Figure 4, p. 623). 
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FIGURE 1. Quadcodes and Quadrants 
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Property 7 (conversion). Write the quadcode and array 
labels i and j of a pixel in a 2”-by-2” image (i and j are 
supposed to be from 0 to 2” - 1) into binary form; it can 
be proved [3] that 

9142, . ..f q. = iljli2j2, . . . , injn (1) 

or 

i= i (qkDIV2)x2”-k 
k=l 

@I 
j = kE, (qk MOD 2) x 2”-k 

Q = k$, (2ik + jk] x 4"-k. (3) 

h-r Eqs. (l)-(3), qk, ik, and jk (k = 1, . . . , n) represent the 
kth position of the quadcode and the array labels i and 
j, respectively. The equations show that the array labels 
i and j are the same as the two binary numbers that 
compose the odd and even bits of the quadcode when 
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TABLE I. Quadcodes in Binay (iljli2j2) 
and Quaternary (qlq2) Forms 

iljii2j2 

9x92 
. . 

I?12 

ili2 00 01 10 11 

00 0000 0001 0100 0101 
00 01 10 11 

01 
0010 0011 0110 0111 

02 03 12 13 

10 
1000 1001 1100 1101 

20 21 30 31 

11 
1010 1011 1110 1111 

22 23 32 33 

written in binary. This is represented in Table I where 
the two axes are array labels (or coordinates) i and j; 
the entries give the corresponding quadcodes in both 
binary and quaternary forms. 
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t-H 22 23 

q,....,qi 

F-l 

1 

3 

FIGURE 2. Subdividing and Quadcode Representation 

Subdividing 
> qi,...,q,o q1.. . . , qi1 

Bl 
qr,...,qi2 qr,...,q;3 

FIGURE 3. Subdiiiding and Merging 
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FIGURE 4. Locating a Subimage Using Quadcode 

2. ANALYSIS OF ELEMENTARY SQUARES 

2.1 Elementary Squares 
When a quadcode can represent a subset of an image, 
we call the subset an elementary square. For example, 
in Figure 5 there are two elementary squares, and their 
quadcodes are A = 12 and B = 221. In general, an ele- 
mentary square in a z”-by-2” image can be represented 
by q,, ...I q,, where m 5 n. 

The size of an elementary square with quadcode 
length m is z”+ by Znmrn. For instance, in Figure 5 the 

l4TF-m 

FIGURE 5. Location and Separation as shown in Figure 5. 

size of elementary square A is 23-2 by 23-2 (i.e., 2 by 2) 
and the size of B is 23-3 by 23-3 (i.e., 1 by 1). 

2.2 Location 
If we know the size of a given elementary square, we 
can locate it by the coordinates of one of the character- 
istic points in the square. We choose the upper left 
corner point as the characteristic point. Then, from 
eq. (2), we derive the following: 

x=: (qkMOD2)x2”-k ‘I k=, .- 

y = k;l (qk DIV 2) x 2"-k. 

(4) 

For example, the locations of the squares A = 12 and 
B = 221 in Figure 5 are 

x(A) = ; (qAk MOD 2) X 23-k = 4 
k=l 

y(A) = i: (q,z,k DIV 2) X 23-k = 2 
k=l 

and 

x(B) = ; (qak MOD 2) X Z3-’ = 1 
k=l 

y(B) = 5: (qak DIV 2) X 23-k = 6. 
k=l 

2.3 Separation 
The separation between two elementary squares A and 
B is composed of the smallest distances between any 
points on the boundaries of the two elementary squares 
in both the horizontal and vertical directions, and they 
are calculated by 

DAA, Bl = Ix(B) - x(A)1 - SL 

(5) 
D&L B) = ly(B) - y(A)1 - Su- 

where SL is the horizontal side length of the leftmost of 
the two elementary squares A and B, and Su is the 
vertical side length of the uppermost of the elementary 
square. Because the quadcodes of A and B give their 
dimensions and their horizontal and vertical locations, 
both SL and So can be obtained from their quadcodes. 

For example, in Figure 5, A = 12 and B = 221; the 
leftmost elementary square is B, and the uppermost 
is A. Then, 2 

x(A) = 4 y(A) = 2 

x(B) = 1 Y(B) = 6 

sL = se = 23-3 = 1 SlJ = sA = 23-3 = 2, 

Hence, the distance between A and B is 

D,(A, B) = 11 - 4 1 - 1 = 2 

D,(A, B) = 16 - 2 1 - 2 = 2 Y 
, 
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2.4 Adjacency 
The detection of connectivity is a basic and important 
subject in image analysis. 

THEOREM 1. The general condition of adjacency for ele- 

mentary squares is the following: 

D,(A, B) x D,,(A, B) = 0 

D,(A, B) + D,(A, B) 5 0 
(6) 

PROOF. If D,(A, B) = 0, then D,(A, B) 5 0. 
According to the first part of eq. (5) D,(A, B) = 0 

means that the right side of the far left square is col- 
linear with the left side of the far right square. And, 
according to the second part of (5) D,(A, B) zz 0 means 
that either the upper left corner of the far right square 
is on the right side of the far left square (see “a” of 
Figure 6), or the upper right corner of the far left square 
is on the left side of the far right square (see “b” of 
Figure 6). If D,(A, B) = 0, then D,(A, B) 5 0, and the 
proof is the same. 0 

In Figure 7 there are three elementary squares A = 1, 
B = 221, and C = 310. According to eq. (5), the separa- 
tions among them are 

D,(A, B) = 2 D,(A, C) = -2 D,(B, C) = 4 

D,(A, B) = 2 D,(A, C) = 0 D,(B, Cl = 1, 

so 

IMA, Bl x D,(A, Bl = 4, D,(B, C) x D,(B, C) = 4 

and 

D&4, C) x &(A, C) = 0, D,(A, C) + D,(A, C) = -2. 

In view of eq. (6). we observe that elementary squares 
A and C are adjacent, but A and B and B and C are not, 
as shown in Figure 7. 

Equation (6) is the general adjacency condition for 
elementary squares of any size. For the connectivity 
detection of pixels, SL = So = 1, the separation equation 
(eq. (5)) becomes 

MPI, PZ) = I NPZ) - x(p11 I - 1 

&(PI, PZ) = I Y(PZ) - Y(PI) I - 1 
(71 

FIGURE 6. Examples for the Definition of 
Separation as Expressed in Equation (5) 

C 

B 

FIGURE 7. Examples for the Definition of 
Adjacency as Expressed in Equation (6) 

and adjacency condition (eq. (6)) becomes 

n-4 I I - x(P~) I3 I Y(Pz) - Y(P~) I1 = 1 
(8) 

or I X(Pz) - X(Pl) I + I Y(P2) - Y(P1) I = 1. 

Equations (5) and (6) can be extended to detect the 
connectivity of elongated regions, if we know their lo- 
cations (still represented by the coordinates of their 
upper left corner points) and the lengths of their sides. 

3. REGION REPRESENTATION AND ANALYSIS 

3.1 Region Representation 
In quadcode representation, a region is represented as a 
set of quadcodes 

R = IQnl n=l,...,N, (9) 

where each element represents an elementary square 
in region R, and N is the total number of those elemen- 
tary squares in region R. 

For example, the region in Figure 8 can be repre- 
sented as 

R = 103, 120, 121, 21, 230, 231, 300, 301, 320, 321). 

FIGURE 6. Quadcode Set of a Region 
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3.2 Set Arithmetic for Quadcodes 
Suppose A and B are the quadcodes of two elementary 
squares 

A= al, . . . . ak 

and k 5 m. 

B = bl, . . . . b, 

THEOREM 2. The intersection of two such quadcodes is 
either empty or the longer quadcode: 

al, . . . , ak fl b,,...,b, 
krm 

b 1, . . . . = b, if a, ,..., ak=bj ,..., bk 
0 otherwise. WI 

PROOF. 

(1) a1 ,..., ak=bl ,..., bk 
B = b,, . . . , b, = al, . . . , akbk+l, . . , b, C al, . . . , 

ak = A 
(2) a,, . . . . ak#bl, . . . . bk 

According to the definition of the quadcode, 

al, . . . , ak n b,, . . . , bk = 0 
and b,, . . . , b, C bl, . . . , bk 0 

THEOREM 3. The union of two such quadcodes is either 
their concatenation or the shorter quadcode: 

aly...pak if Ill ,... vUk=bl,..., bk = 
ia,, . . . , ak, b,, . . . , b,) othenuise. 

PROOF. The proof is the same as for Theorem 2. Cl 

The laws of set arithmetic are true for quadcode sets 
too, and they include the commutative, associative, and 
distributive laws, as well as de Morgan’s law. 

3.3 Union and Intersection 

Definition. The union of two regions is represented by 
the union of the sets of the two regions. 

For example, in Figure 9 there are two regions: 

A= (12,211, 3) and B = {03,1,21,310). 

The union of A and B, according to eq. (lo), is 

A U B = (12, 211, 31 U (03, 1, 21, 310) 

= (03, 1 u 12, 21 u 211, 3 u 310) 

= (03, 1, 21, 31. 

Definition. The intersection of two regions is repre- 
sented by the intersection of the sets of the two regions. 

According to eq. (9), 

A f-l B = 112, 211, 3) I-l (03, 1, 21, 3101 

= {I n 12, 21 n 211, 3 n 310) 

= 112, 211, 3101, 

as shown in Figure 9. 

El 0 
A B 

FIGURE 9. Union and Intersection 

4. CONCLUSIONS 
In this paper we introduced the quadcode system, dis- 
cussed its geometric properties, analyzed the geometric 
concepts of elementary squares, and presented the 
quadcode set representation of regions. From our dis- 
cussion we see that the information-compact and in- 
trinsic hierarchical characteristics of the quadcode 
benefit the representations and analysis by making 
them more intuitive and computable. The quadcode 
can also be used in a tree-structured representation. In 
earlier work [4, 51 we discussed the quadcode-labeled 
tree (the qc-tree), storage efficiency [5], and applica- 
tions of the qc-tree, such as boundary search [4]. 
Instead of using a tree as the interpretive medium- 
transferring an image into the tree, performing the 
processing by traverse and search of the tree, and then 
transferring back to the image-this paper discussed 
opportunities and methods for analysis directly on the 
coded image. In a companion paper [6], we discuss adja- 
cency detection and perform all the computations in 
terms of quadcodes. 

The properties and the results presented here for 
two-dimensional images can be extended to three- 
dimensional images, where the octcode combines the 
coordinates of three dimensions into one code. In bi- 
nary form, each position of the octcode is composed of, 
respectively, z, y, and x coordinate 

Oi = ZiyiXi. 

The so-constructed octcode is also an intrinsically hier- 
archical coding system. 
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