
Multicore Garbage Collection with Local Heaps

Simon Marlow
Microsoft Research, Cambridge, U.K.

simonmar@microsoft.com

Simon Peyton Jones
Microsoft Research, Cambridge, U.K.

simonpj@microsoft.com

Abstract
In a parallel, shared-memory, language with a garbage collected
heap, it is desirable for each processor to perform minor garbage
collections independently. Although obvious, it is difficult to make
this idea pay off in practice, especially in languages where muta-
tion is common. We present several techniques that substantially
improve the state of the art. We describe these techniques in the
context of a full-scale implementation of Haskell, and demonstrate
that our local-heap collector substantially improves scaling, peak
performance, and robustness.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Languages, Performance

1. Introduction
In a garbage collected environment, multithreaded programs can
run into an “allocation wall” (Zhao et al. 2009), in which perfor-
mance is limited by the rate at which newly allocated data can be
written to main memory, and adding more cores does not improve
performance once the limit is reached. One way to avoid the alloca-
tion wall is to use a generational collector with per-thread nurseries
each smaller than the size of the L2 cache, so that most memory
accesses hit the cache rather than main memory. However, such a
small nursery size entails very frequent collections, and with a stop-
the-world collector this requires frequent synchronisation across
processors, which also hurts performance as the number of pro-
cessors increases. Moreover, performance becomes more fragile at
scale, because latency in a single core can halt the whole system
— and that is exactly what happens if the operating system de-
schedules the language runtime in favour of another process run-
ning on that core.

To avoid the synchronisation inherent in stop-the-world collec-
tion, one might turn to concurrent GC. However, running the col-
lector on a separate core from the mutator is also suboptimal from
a cache perspective. Concurrent GC is therefore not likely to solve
the problem of scaling nursery allocation, but is more appropri-
ate for collecting a large old generation. In this work we focus on
throughput rather than latency and pause-times, and hence we do
not consider concurrent GC further.

To address the cost of frequent stop-the-world synchronisation
while still maintaining locality, there have been several attempts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’11, June 4–5, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0263-0/11/06. . . $10.00

to design collectors in which each processor has a private heap
that can be collected independently without synchronising with
the other processors; there is also a global heap for shared data.
Some of the existing designs are based on static analyses to iden-
tify objects whose references never escape the current thread and
can therefore be allocated in the local heap (Jones and King 2005;
Steensgaard 2000), while others employ a dynamic approach in
which objects are allocated in the local heap, but may subsequently
be moved to the global heap if necessary (Anderson 2010; Doligez
and Leroy 1993; Domani et al. 2002). In this paper we present
a new garbage collector of the latter kind, with some novel tech-
niques that improve on the existing designs. Specifically, our con-
tributions are as follows:

• We present data quantifying the principal shortcoming of ex-
isting techniques, namely the costs associated with writing to
global heap objects (Section 3).
Handling mutation (writes) well is important: Java-like lan-
guages make heavy use of explicit mutation in the form of
writes to object fields, but even in a pure language (Haskell
in our case) there is a great deal of implicit mutation of heap
objects due to lazy evaluation.

• We present two new ideas that together help alleviate the
penalty for mutation in a local-heap collector (Section 4):

Our heap structure allows pointers from the global heap to
the local heap, protected by a read barrier. This technique
reduces the cost of the write barrier by avoiding premature
promotion of mutable objects into the global heap.

We use a combination of moving and non-moving collection
in the local heap, which allows both mutable and immutable
objects to be allocated in the local heap, while retaining the
efficiency of bump-pointer allocation in the common case.

• Our new design gives rise to a family of policy decisions,
concerning exactly when and how much to promote from the
local heap to the global heap. We explore these designs, and
shed some light on where the most effective solutions probably
lie (Section 6.3).

• We have implemented our collector in the Glasgow Haskell
Compiler (a state-of-the-art optimising compiler for Haskell),
and we demonstrate that our new collector yields improved
scaling and peak throughput on a substantial collection of paral-
lel Haskell benchmarks, on average improving performance by
15% at 24 cores, compared to the baseline parallel generational
copying collector (Section 6.2). Moreover, the performance is
less sensitive to having exclusive access to a fixed number of
cores; performance drops less sharply when cores are removed
compared with the stop-the-world collector (Section 6.2.3).

While our work is motivated by a desire to make parallel
Haskell programs go faster, throughout the paper we delimit the
parts of our design that are specific to Haskell and the GHC com-
piler, and those that should apply in other settings. In particular, we
believe that our main results related to mutation should also apply
in settings such as .NET and Java.

2. Garbage collection with processor-local heaps
The overall memory architecture is this. Each processor has its
own local heap, in which it allocates, and which (crucially) it can
garbage-collect independently of other processors. In addition there
is a shared global heap which is visible to all processors, and which
is only collected when all processors synchronise and cooperate
in a (parallel) global garbage collection. We call this a local heap
collector. Other terms have been used in the literature, notably
private nursery, thread-local or thread-specific heap, and on-the-
fly collection.

There are two established approaches to organising the heap in
a local-heap collector:

• In the Doligez and Leroy (1993) design, and the later Anderson
(2010) design, the local heap is collected with a copying col-
lector. The global and local parts of the heap are segregated by
address.

• In the Domani et al. (2002) design, the local heap is collected
with a non-moving algorithm (mark-sweep). This allows ob-
jects to be relocated from the local heap to the global heap with-
out physically copying them; a separate bitmap indicates which
objects in the local heap are global. Local and global objects are
therefore intermingled in the address space.

In both of these designs, the key invariant is that the processor
that owns the local heap has exclusive access to its contents. The
owning processor is therefore free to do local garbage collection
without disturbing objects that are being read or modified by other
processors.

The invariant is maintained by banning pointers from the global
heap to the local heap, because one of these would allow a mutator
to follow a pointer into a foreign local heap. To maintain the
invariant, whenever a local-heap pointer is written into a global-
heap object, or is communicated to another processor, a write
barrier must detect the potential breakage, and somehow fix it up.

The existing designs take different approaches to this write bar-
rier. In the original Doligez-Leroy design, before writing a local-
heap pointer into a global mutable object we first globalise the
local-heap object by copying it from the local heap to the global
heap. Since it may contain further local-heap pointers, they too
must be globalised, so the net effect is to globalise the transitive
closure of the local heap pointer. (Globalisation is a bit like the pro-
motion of generational GC, but its timing and purpose are different,
so a different term is useful.)

Mutable objects complicate globalisation. Since mutable ob-
jects have identity and cannot be copied1, mutable objects are al-
ways allocated directly in the global heap. Hence mutable objects
and mutation are likely to be costly; the setting for this design was
a strict functional language in which mutation was rare, which ex-
plains the choices made here.

In the Anderson variant of Doligez-Leroy, the write barrier
triggers a local collection, with a refinement to catch some common
cases where the full local GC is not necessary. This design allows
mutable objects to be allocated in the local heap, but at a substantial
cost: the write barrier may trigger a complete local GC, which in

1 without using a replicating write barrier or suchlike

turn will tend to cause global GC to happen more frequently than it
would otherwise have.

The Manticore system (Fluet et al. 2008), implements a variant
of the Doligez-Leroy design in which each local heap is a sepa-
rate Appel-style generational collector. Manticore does not provide
mutation in any form to the programmer, however.

The Domani et. al. design is similar to Doligez-Leroy in that
objects in the transitive closure of the local heap pointer are made
global, but since the collector is non-moving, these objects are
simply marked as being global and left in place. Again, this design
allows mutable objects to be allocated in the local heap, which was
important in this case because the setting was Java in which all
heap objects are potentially mutable. A disadvantage is that the
local heap must be collected with mark-sweep, which is known to
have an impact on allocation performance (Blackburn et al. 2004).

3. The problem of mutation
Although the collectors described in the previous section allow
mutation in the heap, a problem common to all of the existing
designs is that a mutable object in the global heap has considerable
cost: every mutation of that object causes retention of the entire
transitive closure of the pointer written, until the next global GC.
What is particularly annoying is that

1. Mutable objects are often repeatedly mutated. The write barrier
preserves the transitive closure of every single value written into
a global mutable object until the next global GC, even though
these values may be overwritten almost immediately.

2. The effect is viral. If the value written into a global mutable ob-
ject M1 contains (transitively) a currently-local, mutable object
M2, then M2 must be globalised. Hence M2 is subject to the
write barrier, and anything written to it must be globalised, and
so on.

The first effect is unavoidable: if the value is written into a global
mutable location, another processor might read it before it is over-
written, so the value must be preserved2. The trick is to stop the
mutable object becoming global in the first place — but the viral
consequences of transitive promotion make that hard.

Intuitively, these effects seem likely to lead to a great deal of
ultimately-fruitless globalisation, reducing locality, and triggering
expensive global GC more often than necessary. We set out to quan-
tify this effect in the context of Haskell. In Haskell, explicitly mu-
table objects are usually far less common than immutable objects.
Nevertheless, implicit mutation of heap objects is rife at runtime,
thanks to the implementation of lazy evaluation3. A lazy computa-
tion is represented by a thunk: a closure of the code to compute the
value together with its free variables. When the value of a thunk is
demanded, its value is computed and then the thunk is overwritten
with an indirection to the value. This write operation is called an
update, and is a frequent source of mutation in the Haskell heap.

3.1 Quantifying the effect of transitive globalisation
We measured the cost of transitive globalisation by modifying
a conventional, single-threaded, two-generation collector. Table 1
shows the performance of several single-threaded benchmarks with
three different configurations for the old-generation write barrier
(there is no barrier for writes to the young generation):

2 This is worse than the promotion semantics of most generational collec-
tors, which only retain the data of the last update preceding a minor collec-
tion. However “snapshot-at-the-beginning” concurrent collectors (Pirinen
1998) also have the property that they retain all values written until the next
GC cycle.
3 which, we admit, is somewhat ironic.

Program % change in wall-clock time
promote promote

transitive immutable
circsim +43.9 +3.7
constraints +124.0 +2.0
fibheaps +46.7 -0.6
fulsom +49.6 +6.6
gc bench -63.0 -64.4
happy +10.9 -0.1
lcss +82.0 -0.3
mutstore1 -2.1 -2.4
mutstore2 +0.0 +0.2
power +7.8 +15.7
spellcheck +218.8 -0.8
Min -63.0 -64.4
Max +218.8 +15.7
Geometric Mean +29.9 -7.1

Table 1. Comparison of write barrier promotion policies

• The baseline: standard generational collection, where writes to
the old-generation are recorded in a remembered set.

• “Promote transitive”: a write to the old generation immediately
promotes the transitive closure of the pointer written. This mod-
els the invariant of Doligez-Leroy and Domani et al.

• “Promote immutable”: a write to the old generation promotes
the object it points to recursively, but avoids promoting mutable
objects (in our case, thunks). Mutable objects are left in the
young generation and an entry in the remembered set is created
for the pointer.

The “promote transitive” policy incurs a significant overhead:
29.9% on average, while “promote immutable” provides similar
performance to the baseline (with one outlier that performs signif-
icantly better with eager promotion, gc_bench, which we discuss
below). This suggests that the premature promotion caused by ef-
fect (2) above, and its knock-on effects, have a significant impact
on performance.

In gc_bench, promoting writes eagerly has a huge benefit,
because performing the promotion avoids having to extend the
remembered set. This is a GC microbenchmark and we would be
unlikely to see the effect on this scale in a real program.

The bottom line is this: the viral globalisation of mutable objects
into the global heap carries a significant cost. These costs are
almost certainly under-stated in Table 1, which is derived from
modifying a single-threaded generational collector. Our real goal
is to allow independent local-heap garbage collection in a parallel
machine.

4. Our design: improving support for mutation
Our design has two main novelties, both focussed on improving the
performance of mutation in a local heap collector.

• Allow pointers from the global heap to a local heap, pro-
tected by a read barrier. We replace the invariant that objects
in the global heap may not point to objects in the local heap,
with a read barrier that checks for global-to-local pointers. Such
pointers may only be followed directly by the processor that
owns the appropriate local heap. Other processors that attempt
to read the pointer are required to communicate with the own-
ing processor to request that the data be moved into the global
heap.

Local Heaps

Global Heap

Remembered
Sets

0 1

PROXY(0)

Figure 1. Heap architecture showing a proxy indirection

Admitting pointers from the global heap to the local heap allows
us to avoid globalising the transitive closure of every write
into the global heap, and thus avoid the performance penalty
measured in the previous section.

• The sticky heap: no read barrier. We divide the local heap
into two parts4. The first is a traditional nursery in which objects
are allocated using bump-pointer allocation and memory is
reclaimed using copying GC, as in typical generational-copying
designs. A separate part of the local heap, that we call the
sticky heap, is where we allocate objects that lack a read barrier,
and hence must be immovable (Section 4.4), including mutable
objects and objects with identity. The sticky heap is collected
using mark-sweep GC.
This aspect of our design is a combination of the Doligez-
Leroy design (immutable objects with copying GC), with the
Domani et. al. approach (mutable objects with mark-sweep
GC). It allows us to retain fast allocation and collection in
the common case, while allowing both mutable and immutable
objects to be allocated and reclaimed in the local heap.

To summarise, the read-barrier allows us to globalise fewer ob-
jects, while the sticky heap allows us to selectively choose to omit
the read barrier for some objects while mostly retaining efficient
bump-pointer allocation. These are the two key aspects of our de-
sign; the following sections discusses the implementation of these
ideas.

4.1 Implementing the read barrier: proxy indirections
The read barrier must perform the following operations when deref-
erencing any pointer stored in a global heap object:

• If the pointer points to a local heap, and it is not the local heap
of the current processor, then send a message to the owning
processor requesting that the pointer’s referent be moved to
the global heap. Block the current thread until a response is
received.

In GHC5, every pointer dereference already has a read-barrier,
because an object could be represented by an unevaluated thunk.
Whenever a pointer is dereferenced, we test tag bits in the pointer
to determine whether the pointer points to a value or not; if not,
then the caller jumps to the code for the object, which is expected
to perform whatever computation is necessary and eventually return
the value.

The existing read barrier identifies a property of the object
pointed to, whereas in our local-heap implementation we need to

4 In fact, there is also a large-object area (Section 5.6)
5 The Glasgow Haskel Compiler, http://www.haskell.org/ghc/

http://www.haskell.org/ghc/

distinguish pointers into the global heap from pointers into a local
heap. Nevertheless, we would like to use the same read barrier,
so as to avoid adding new overhead to every pointer dereference.
The technique we use is to represent global-to-local pointers by a
new kind of heap object in the global heap that we call a proxy
indirection, or just proxy. A proxy has two fields: the pointer to
the local object, and an integer identifying the processor that owns
that local heap. Figure 1 shows a diagram of our heap architecture
including a proxy indirection.

Pointers from the global heap to the local heap are always
represented by proxies. To the existing read barrier, a proxy looks
like a thunk, so the caller will jump to its code, which in the case of
a proxy implements the rest of the read barrier for global-to-local
pointers:

• If the owner of the proxy is the current processor, continue;
otherwise

• Send a message to the owner containing the addresses of the
proxy and the current thread, and block the current thread until
a reply is received. The details of the message communication
between processors is described later in Section 5.7.

In GHC the read barrier on global-to-local pointers therefore
carries no additional overhead, except that we need to create proxy
objects as necessary. In other systems, a suitable read barrier would
need to be used, and that would necessarily impose some overhead.
It has been shown that with careful optimisation a read barrier in
Java can be implemented with only 4-10% overhead (Bacon et al.
2003); this compares favourably with the 30% overhead we found
for promoting mutable objects too early (previous section).

4.2 The write barrier
As in other local heap designs, our collector requires a write barrier.
Fortunately the write barrier can be piggy-backed on the existing
generational write barrier, since it only applies to writes to objects
in the old generation (i.e. the global heap). The write barrier main-
tains the following invariant:

• There are no pointers from the global heap to the local heap,
except for proxy indirections.

The write barrier must track the proxy indirections so that they can
be treated as roots and updated by local GC. Our implementation
uses remembered sets, one per processor, each containing the set of
proxy indirections pointing to that processor’s local heap.

The write barrier must catch a write of a local pointer into a
global object. When this action occurs, the write barrier is free to
implement a range of policies, provided it establishes the invariant.
We have implemented the following policies:

• Create a single new proxy indirection in the global heap, con-
taining the local pointer.

• Globalise some or all of the data referred to by the local pointer
into the global heap. At any point we can elect to stop globalis-
ing and create a proxy indirection.

We present measurements comparing these policies in Section 6.3.

4.3 Globalising an object
Making a local object global is called globalising it. Exactly how
we globalise an object depends on the kind of object:

• Immutable objects (constructors and functions) reside in the
movable portion of the local heap, and are copied into the global
heap to globalise them. There may be other pointers to the
local copy, so we overwrite the header of the local copy with

a forwarding pointer to the global object, so that the local copy
will be collected at the next local collection.
The object header is used mainly by the garbage collector, and
is seldom read by the mutator (Marlow et al. 2007). However,
if the mutator does need to read the object header, it must be
careful to dereference a forwarding pointer.

• Mutable objects, such as mutable variables and arrays, cannot
be copied, and so (following Domani et al. (2002)) we allocate
them in immovable storage: the sticky heap (we describe the
sticky heap below, Section 4.4).

• Thunks are objects that represent an unevaluated computation
(and are thus specific to lazy evaluation). A thunk is a closure
over an expression, and therefore contains pointers to the free
variables of the expression. After evaluation, the thunk is over-
written with an indirection to its value: this is a one-time mu-
tation, replacing the fields pointing to the free variables with a
single field pointing to the value.
Strictly speaking, thunks are mutable objects, but we treat them
specially because they come with a built-in read barrier. When
the value of an object is required, the mutator already has to
check whether the object has been evaluated or not; if it is not a
value, then it has to be evaluated, and that is achieved by jump-
ing to the object’s code. Normally the object is a thunk, and
jumping to its code causes its evaluation. However, an object
may also be an indirection to another object, and evaluating an
indirection is equivalent to evaluating the object it points to.
Hence, we can allocate thunks in the movable nursery, and to
globalise a thunk, we can move the thunk to the global heap,
replacing it in the local heap with an indirection to its new
location in the global heap.

4.4 The sticky heap
The sticky heap is a part of the local heap used to store objects
that cannot move. Most objects are movable: immutable objects
can be copied, and thunks have a read-barrier than enables them
to be replaced by indirections. The remaining class of objects,
mutable objects, could only be made movable by adding a new
read-barrier to their operations, and to do so would add overhead
and complexity. Since these objects tend to be in the minority in
Haskell, we opted for an alternative approach: mutable objects are
immovable while in the local heap.

As we argued earlier, generally we would like to avoid globalis-
ing mutable objects if possible. However sometimes it is unavoid-
able: if a mutable object is really shared between multiple proces-
sors, it must be globalised.

Each processor therefore has its own sticky heap, where it allo-
cates mutable objects. Objects in the sticky heap are born local, and
can be reclaimed by local GC. However, if necessary they can be
globalised without changing their address, by flipping a global bit
attached to each sticky object (details in Section 5.5). Once a sticky
object is thus globalised it becomes part of the global heap, and can
only be recovered by global GC.

Note that the lack of read barriers on sticky objects means
that whenever we encounter one during globalisation we have no
option but to globalise it. This seems counter to our policy of not
globalising mutable objects, and indeed it is – although in our
setting it is far more important that the policy applies to thunks
than to these explicitly-mutable objects.

Strictly speaking the sticky heap is an optional part of our
design. The alternative is to use a read barrier consistently; whether
this is the right choice depends on the particular costs involved. One
should think of the design space as continuous, with the Domani
et al. (2002) design at one end in which the entire heap is sticky,

and at the other end there is no sticky heap but a read barrier is used
consistently. In between are points in the design space in which
heap objects are divided into those with a read barrier and those
that are sticky. We contend that the read barrier is necessary to
avoid the effects described in Section 3.1, and therefore the read
barrier should be used for the majority of objects; however it may
also make sense to omit the read barrier for certain objects and
store them in a sticky heap instead. We cannot speculate on what
the appropriate tradeoff for a different language might be, but if a
read barrier is being added then it would make sense to measure
the impact of that first, before deciding whether to reduce the read
barrier costs by classifying certain objects as sticky.

4.5 Managing the parallel work queues
To provide load-balancing in the Parallel Haskell implementation,
each processor has a spark pool: a circular array of pointers to
heap objects supporting lock-free work-stealing (Marlow et al.
2009). Each processor may put work items in its spark pool, and
processors may take work items from the local spark pool or steal
them from other processors’ spark pools.

This approach works nicely in a completely shared heap, be-
cause adding an entry to the spark pool is a straightforward write
into the circular buffer. However, in the local-heap setting we must
treat the spark pool as a global object where writes are subject to
the write barrier, because other processors may steal from it, and
they may only steal global pointers.

As with other writes to the global heap, we have to decide how
much data to globalise for each write (see Section 4.2). In the case
of a spark pool write, globalising more data would make stealing
cheaper at the expense of greater overhead when adding sparks to
the pool. Conventional wisdom is to load costs onto the steal rather
than the spark, but doing so uncritically risks increasing startup
latency, because a stealing processor must first ask the originating
processor to globalise the spark before it can get to work. If we
can arrange to have relatively few large-granularity sparks – using
lazy tree-splitting, for example (Bergstrom et al. 2010) – eager
globalisation of sparked work might be a better policy.

In our system, by changing the write barrier policy, we can
simulate a range of alternatives, from an approach in which sparks
are cheap but every steal incurs a message exchange, to a system
which has completely asynchronous steals but where sparks are
relatively expensive because they have to copy data to the global
heap. We present some measurements in Section 6.3.2 to compare
these approaches.

5. Implementation Details
In this section we describe our implementation in greater detail.

5.1 The block layer
The lowest layer of the GHC garbage collector is the block alloca-
tor (Marlow et al. 2008). The block allocator’s API allows memory
blocks to be allocated and freed, where each block is a multiple
of 4Kbytes in size. Internally the block allocator requests memory
from the OS in large units (typically a megabyte), and uses an effi-
cient free-list of blocks in which most operations are O(1).

Every area of memory that the garbage collector manages, in-
cluding the nursery, is represented as a linked list of (possibly dis-
contiguous) blocks. Hence, the garbage collector is completely in-
sensitive to address-space layout, which is good for portability, and
it can easily manage multiple regions (for different generations,
say) whose size varies over time.

Each block has a small amount of metadata associated with it,
called the block descriptor. A simple calculation maps an arbitrary
memory address to its block descriptor. The block descriptor con-
tains a link field for chaining blocks together, other information

such as which generation the block belongs to, and some flags. Our
sticky heap, for example, is represented by a chain of blocks that
each have the STICKY flag set in the block descriptor.

5.2 Virtual processors
The runtime system uses a number of virtual processors that we
call HECs (Haskell Execution Context). The number of HECs is
chosen at startup time, and cannot currently be changed during the
run of a program. Typically the number of HECs is chosen to be
the same as the number of hardware cores; the reader should think
of a HEC as being approximately equivalent to a processor.

Each HEC is “animated” by an OS thread. In fact there may
be many such OS threads for a single HEC, because our runtime
creates extra OS threads on demand, to handle blocking system
calls (Marlow et al. 2004). However, the scheduler allows only one
OS thread per HEC to run at any one time. The OS threads (and
hence the HEC) can be pinned to hardware cores using the OS’s
affinity APIs, although we find in practice that this makes little
difference to performance and in some cases actually degrades it.

Each HEC runs its own scheduler, and has its own queue of
runnable Haskell threads, and its own local heap. A HEC may
create new Haskell threads to run parallel sparks stolen from other
HECs.

5.3 Local heap collections
Our collector supports aging in the local heap: objects have to
survive at least one garbage collection in the local heap before
being moved to the global heap. We found that aging objects at
least one GC cycle was important for performance, because we
avoid some premature promotion, but aging more than one GC
cycle is a pessimisation due to the extra copying entailed. Aging
is implemented by grouping objects by age: all live objects in the
nursery are copied to a separate area containing objects that have
survived one GC, and live objects in this area are copied to the
global heap.

The sticky heap has to be collected using mark-sweep: we can-
not move any of the global objects in it, because other processors
may be accessing them concurrently. However, we could move lo-
cal objects in the sticky heap to reduce fragmentation; currently our
implementation does not do this (though the Domani et al. (2002)
collector does).

Our sweeping reclamation algorithm is based on the Immix
mark-region strategy (Blackburn and McKinley 2008), in which
memory is reclaimed at a granularity larger than a single object
in order to speed up sweeping and allocation. GHC’s block-based
memory allocation scheme (Section 5.1) is a perfect fit: when mark-
sweep finds a complete block with no live objects, it can simply
return it to the block allocator. The granularity at which we can free
memory is somewhat larger than that used by Immix, which may
lead to fragmentation. However, in our case this is not a serious
problem, since at the next global GC we will compact the sticky
heap anyway, and fragmentation will simply cause the global GC
to happen a bit sooner. The sweeping algorithm therefore classifies
blocks in the sticky heap as

• Free: the block has no live objects at all, and can be immedi-
ately reclaimed.

• Global: a block that contains at least one global object is
marked global, and never swept again. We do not attempt to re-
claim unused memory in these blocks until the next global GC,
when live objects in the block will be copied out and the block
can be re-used. We found that this optimisation was particu-
larly important for programs that make heavy use of mutable
objects, otherwise each local collection sweeps an ever-growing
immovable region.

• Local: the block has live local objects in it; we aggregate free
space in the block into extents, in order to speed up future
sweeps, but otherwise do not attempt to re-use it.

We cannot age objects in the sticky heap, because the aging
implementation relies on copying in order to group objects by
age. A variety of policies are possible but our current policy is
this: sticky objects are never promoted by local GC but are always
promoted by global GC. So after global GC all the sticky heaps are
empty.

5.4 Global heap collections
The global heap is collected with stop-the-world parallel collection,
exactly as described in Marlow et al. (2008). In the default configu-
ration, the global heap is collected when it has doubled in size since
the last global collection, with a minimum of 1MB. This provides a
reasonable tradeoff between collection frequency and memory us-
age. However, for the purposes of comparative measurements be-
tween collectors in Section 6, we use a fixed heap size configuration
and collect the global heap when the total heap size has grown to
half of this size (to allow for copying).

5.5 Where to store the “global” bit in the sticky heap
Each object in the sticky heap needs to have an associated flag to
indicate whether it belongs to the local or the global heap. The
approach we chose is to allocate an extra word before each object
in the sticky heap, which is zero if the object is local and non-zero
otherwise. We considered two alternative approaches:

• Store the global bit in the object itself: either a bit in the object’s
header, or a bit in the object’s metadata (which is pointed to by
the header). This would be more complex than the approach
we took: we would either need to modify code that inspects
object headers to mask out the bit, or we would need to change
an object’s metadata when we globalise it, which would be
dependent on the kind of object being globalised.

• Store the global bit in a separate bitmap. This is the approach
taken in Domani et al. (2002). This would be slower than the
approach we took, although it would waste less memory. We
considered this to be an appropriate tradeoff, given that in our
setting we expect objects in the sticky heap to be in the minority.
The wasted memory in our case only applies while the object
is in the sticky heap; there are no extra words once a global
collection has taken place and the objects are moved to the
global heap proper.

5.6 Large objects
Objects larger than a certain threshold (currently about 3KB) are
classed as “large objects” and are never copied by the GC. Instead
they are allocated in a contiguous region of blocks, and stored in a
linked list associated with the heap to which they belong. Moving
a large object from the local heap to the global heap therefore
consists of removing it from the linked list in the local heap, and
adding it to the global heap’s list.

The fact that large objects are immovable is useful, because it
means that a large mutable object (such as an array) does not need
to be allocated in the sticky heap, and it can be managed in the same
way as other large objects.

5.7 Requesting private data from another processor
When one processor encounters a proxy indirection that belongs
to another processor, it sends a message to the other processor
to request globalisation of the data referred to by the proxy. The
(Haskell) thread making the request is placed into a blocked state

until the other processor replies; meanwhile the HEC runs some
other thread.

On receipt of the message, the owner of the proxy globalises
the data. Just as for the write barrier in Section 4.2, there is a policy
decision to make about how far to globalise, but in this case the
owner must globalise at least some of the data because it is required
by the other processor.

Having globalised the data, the owner then overwrites the proxy
with a plain indirection to the now-global object, and sends a reply
to wake up the blocked thread on the original processor.

As a special case, if the other processor is idle, then the proces-
sor that encountered the proxy can simply take control of the other
processor’s local heap temporarily in order to perform the globali-
sation without the need to incur the cost of the message exchange
and waking up the idle OS thread. This is quite an important opti-
misation: we found that in some of our benchmarks it was common
for a processor to run out of work and become idle while hold-
ing data in the local heap needed by other processors. We experi-
mented with having idle processors do a local GC before sleeping,
but found that this lead to a large number of local GCs and thrash-
ing in some cases.

6. Measurements
Our measurements were made on a 24-core machine consisting of
4 Intel Xeon E7450 processors (2.4GHz), running Windows Server
2008. We compiled our benchmarks to 32-bit code. The results for
64-bit code are broadly similar, but differences in performance tend
to be amplified at 64 bits due to the greater stress put on the memory
system.

As our baseline for comparison we use GHC HEAD as of 21
January 2011, and our implementation of the local-heap GC is
based directly on this GHC version.

6.1 Benchmarks
Our benchmarks are a collection of parallel Haskell programs.
They are all deterministically parallel, and use the internal spark
mechanism for parallelism, rather than explicit threads.

• blackscholes: An implementation of the Black-Scholes algo-
rithm for modelling financial contracts.

• coins: computes the list of ways in which a set of coins can be
combined to make an amount of money.

• gray: a ray-tracer with an interpretive mini-language for spec-
ifying the scene. Only the rendering part of the computation is
parallelised, so we do not expect to achieve full speedup here.

• mandel: a mandelbrot set renderer.
• matmult: matrix multiplication (unoptimised; using a list-of-

lists representation for the matrices).
• minimax: a program to find the best move in a game of 4×4

noughts-and-crosses, using alpha-beta searching of the game
tree to a depth of 7 moves.

• nbody: calculate the forces due to gravity between a collection
of bodies in 3-dimensional space.

• parfib: the standard nfib microbenchmark in which the tree
of recursive calls is evaluated in parallel down to a fixed depth,
beyond which the calls are evaluated sequentially.

• partree: build a tree in which each node contains an expensive
computation, and evaluate it in parallel.

• prsa: perform an RSA encoding in parallel.
• queens: calculate the number of solutions to the N-queens

problem for 14 queens on a 14x14 board.

Program Allocated Rate (MB/s) Heap size
(MB) 24-core (MB)

blackscholes 4014 919 700
coins 2509 2669 500
gray 1937 1655 48
mandel 6510 3720 64
matmult 95 61 90
minimax 28465 6859 64
nbody 11777 12267 48
parfib 287 251 32
partree 2106 2106 512
prsa 2754 2899 32
queens 1794 1602 128
ray 6721 2721 32
sumeuler 4642 3439 32
transclos 4304 5448 32

Table 2. Memory usage of benchmark programs

• ray: a basic ray-tracer with a very fine granularity (each pixel
is a separate spark). This benchmark is included mainly to test
how well the system copes with fine-grained parallelism; it is
not expected to achieve optimal performance for a ray tracer.

• sumeuler: compute the sum of the value of Euler’s function
applied to each integer up to a given bound.

• transclos: computes the transitive closure of a relation over
an initial set of values.

The programs vary in size with the smallest being 18 lines of
non-comment code (parfib) and the largest 1738 lines (gray);
most are around 100 non-comment lines.

In two cases (blackscholes and nbody) the benchmark code is
taken from the suite of examples that comes with the Haskell CnC
distribution6, and adapted to use the standard Parallel Haskell API
instead of Haskell CnC. The code differences are minimal, but our
versions of the benchmarks perform slightly better than the Haskell
CnC originals7. In the case of nbody, we deliberately de-optimised
the program because in its fully optimised form it does no alloca-
tion in its inner loop and hence virtually no GC, which made it a
poor benchmark for our purposes (we already have a benchmark
like this: parfib). To de-optimise the program we avoided using
some specialised versions of overloaded numerical functions in the
inner loop, which lead to some temporary allocation being required,
which in turn exercises the young-generation GC.

Table 2 summarises the memory requirements of these bench-
marks. These figures reflect the memory requirements on a 32-bit
platform; requirements when compiled for a 64-bit platform are ap-
proximately double.

The first column shows the total amount of memory allocated
over the benchmark run; these results hardly change when running
in parallel, so we give only the 1-core figures. Some of our bench-
marks allocate relatively little (parfib, matmult, queens), while
others allocate over 10GB during the run (mandel, minimax, ray).

The second column of Table 2 gives the allocation rate that the
benchmarks achieve, using our local heap collector on 24 cores.
The main memory write bandwidth on this machine for sequential
writes is approximately 1.5GB/s, and yet we see that many of
these benchmarks are exceeding that, in one case by a factor of 8
(nbody). This indicates that our collector is successfully avoiding

6 http://hackage.haskell.org/package/haskell-cnc
7 the Haskell CnC versions of these algorithms are competitive with the C++
implementations

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

128KB 256KB 512KB 1MB 2MB 4MB 8MB

local heaps, 24 cores

3

3
3

3

3

3

33
local heaps, 1 core

+
+ + + +

+ +

+
stop-the-world, 24 cores

2

2

2

2

2

2

2
2

stop-the-world, 1 core

× × × × ×

× ×

×

Figure 2. Comparison of nursery sizes

the “allocation wall” of the main memory bandwidth by making
effective use of the caches.

The final column shows the heap size we used for each bench-
mark. Our collector normally runs with a variable heap size, but
for the purposes of obtaining a like-for-like comparison we ran
both collectors with a fixed heap size. The heap size in each case
was chosen to be approximately 3-4 times the maximum residency,
plus additional space for 24 nurseries at 1MB (24MB). This gives
enough space for each program not to encounter slowdowns due to
memory starvation and excessive collection of the global heap. In
practice the memory requirements of our local heap collector are
very similar to those of our baseline stop-the-world collector.

Many of these programs use lazy streams to run in constant
heap space, while generating large output files, and hence do not
have large residencies. So for the most part our measurements are
not significantly dependent on the performance of the global GC;
the one notable exception being coins which generates a large
list of results in memory (we included this benchmark deliberately
because it had a large residency). The use of parallelism does cause
an increase in residency, but in most cases it is not significant, and
in one case (coins) the residency is actually decreased; we believe
this is merely an accident due to the timing of global collections.

6.1.1 Choosing the nursery size
In order to determine the fixed nursery size that would give the
best performance on average for our benchmarks, we measured the
relative performance of the benchmark suite with different nursery
sizes (Figure 2). We plotted geometric means of normalised run-
times across all benchmarks, for combinations of stop-the-world
and local heaps with 1 and 24 cores. For each configuration we
arbitrarily normalised against the 1MB result set.

Note that these results are averaged over all benchmarks, and as
such should not be considered to be representative of the behaviour
for any one benchmark. Nevertheless, we do find that on average
there is a local minimum around 1MB on this hardware. The dip
is more pronounced when running on multiple cores, as we might
expect: staying within the cache becomes more beneficial as con-
tention for main memory increases. Interestingly, the results for the
local heap collector show that it favours slightly smaller nurseries
than the stop-the-world collector, indicating perhaps that it is able
to benefit from the greater locality.

Our results contradict those of Zhao et al. (2009), which
found no local maximum in the performance of different young-
generation sizes for multithreaded Java programs. Accounting for
this discrepancy is beyond the scope of this paper, but we conjec-
ture that it may be due to a different lifetime distribution.

http://hackage.haskell.org/package/haskell-cnc

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28

24 cores

blackscholes

 0

 1

 2

 3

 4

 5

 6

 0 4 8 12 16 20 24 28

24 cores

coins

 0

 1

 2

 3

 4

 5

 6

 0 4 8 12 16 20 24 28

24 cores

gray

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 4 8 12 16 20 24 28

24 cores

mandel

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 4 8 12 16 20 24 28

24 cores

matmult

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 4 8 12 16 20 24 28

24 cores

minimax

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 4 8 12 16 20 24 28

24 cores

nbody

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28

24 cores

parfib

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 4 8 12 16 20 24 28

24 cores

partree

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 4 8 12 16 20 24 28

24 cores

prsa

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28

24 cores

queens

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 4 8 12 16 20 24 28

24 cores

ray

 0

 5

 10

 15

 20

 25

 0 4 8 12 16 20 24 28

24 cores

sumeuler

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 4 8 12 16 20 24 28

24 cores

transclos

stop-the-world
local heaps

Key

Figure 3. Speedup results on 24 cores (Y axis is speedup, X axis is number of OS threads)

6.2 Scaling
Figure 3 shows the scaling results for our benchmarks on the 24-
core 32-bit hardware, comparing GHC’s existing stop-the-world
parallel collector against the new local heap implementation. The 1-
core baseline in all cases was the stock GHC compiling for single-
threaded execution. We measured the wall-clock elapsed time to
run each benchmark, averaged over 5 runs. Error bars are shown at
one standard deviation.

Note that although our machine has 24 cores, we took measure-
ments up to 28 OS threads. Normally the runtime system would
be configured to use no more OS threads than there are hardware
threads, but here we wanted to simulate the behaviour of the system
when hardware resources are being shared with other processes on
the machine (we discuss the 28-core results below in Section 6.2.3).

6.2.1 Analysis of scaling results
At 24 cores, the local heap collector delivers better performance
in 10 out of 14 benchmarks. The median improvement across all
benchmarks was 15%.

We expect performance differences between the two collectors
to be attributable to some combination of the following effects:

1. Synchronisation. The local heap collector does not have to
synchronise all processors to perform a local collection.

2. Locality. Although the stop-the-world collector achieves good
locality by not load-balancing during young-generation collec-
tions (Marlow et al. 2009), there may be benefits to managing
explicit processor-local heaps.

3. Single-threaded copying. Local GC can use a single-threaded
algorithm with no atomic memory instructions, unlike the par-
allel collector which must use atomic instructions to avoid du-
plicating objects. However, our base parallel collector already
forgoes atomic copying for immutable objects, so we expect
the difference here to be small.

4. Fewer young-generation collections. A local GC is only per-
formed when the local nursery is full, whereas the stop-the-
world collector performs a young-generation collection when-
ever any nursery is full. The latter policy could cause premature
promotion and extra copying, particularly if different proces-
sors are allocating at different rates.

5. Sharing requires copying. The local heap collector is required
to copy data into the global heap whenever it is shared between
processors, and to maintain the global-heap invariant. This will
cause the local-heap collector to copy more data in general.

We collected additional metrics to provide some insight into the
extent to which each of the above factors affect the results. Unfortu-
nately it is not possible to measure the proportion of the wall-clock
elapsed time of the benchmark spent in local heap collections, be-
cause local collections are overlapped with mutator activity. More-
over, the local heap collector performs globalisation on demand, so
mutator activity is interleaved with GC at a fine granularity. How-
ever, the metrics that we can measure are summarised below.

6.2.1.1 Number of collections. We used the same fixed nursery
size in both collectors (1MB), and a fixed total heap size. Table 3
shows the number of young-generation collections performed by
each collector at 1 and 24 cores, with the 1-core stop-the-world
results as the baseline.

At 1-core the local-heap collector performs almost exactly the
same number of young-generation collections as the stop-the-world
collector, as we expect; this is a good sanity-check that the local-
heap collector has similar allocation behaviour.

The stop-the-world collector performs 87% more young-gen-
eration collections than it does at 1 core, due to effect (4) above.

Program stop-the-world local heaps
1 core 24 cores 1 core 24 cores

blackscholes 3758 +78.8 +0.0 +0.3
coins 2506 +64.7 +0.0 +0.5
gray 1950 +347.7 +0.0 -0.7
mandel 6519 +108.0 +0.0 +0.7
matmult 96 +1100.0 +0.0 +18.8
minimax 28499 -0.6 -0.0 -2.8
nbody 11789 +9.0 +0.0 -0.1
parfib 281 +17.8 +0.0 -67.3
partree 2033 +44.2 +0.0 -0.2
prsa 2789 +30.1 +0.1 -15.0
queens 1800 +22.4 +0.0 +8.3
ray 6741 +136.1 -0.0 -6.8
sumeuler 4660 +15.7 +0.0 -0.8
transclos 4284 +159.3 +0.0 +0.8
Min -0.6 -0.0 -67.3
Max +1100.0 +0.1 +18.8
Geometric Mean +87.9 +0.0 -7.7

Table 3. Number of young-generation collections

Program stop-the-world local heaps
24 cores 24 cores

blackscholes 0.16 -6.4
coins 0.15 +36.5
gray 1.61 -8.8
mandel 0.92 -31.8
matmult 0.22 +25.0
minimax 3.38 +126.6
nbody 0.28 +121.8
parfib 0.00 +0.0
partree 2.59 +126.5
prsa 0.94 +90.4
queens 0.52 -80.9
ray 0.55 +166.7
sumeuler 0.07 +136.4
transclos 0.36 -54.9
Min -80.9
Max +166.7
Geometric Mean +19.2

Table 4. Wall-clock time spent in old-generation collections

The local-heap collector, however, actually performed 8% fewer on
average. The reduction is because a global collection collects the
local heaps too, so depending on the timing of global collections
we may need fewer local collections.

The number of old-generation collections is too small to gain
any useful insight from (single figures in most cases). Table 4 shows
the difference in wall-clock time spent in old-generation collections
between the stop-the-world and local-heap collectors. The time
spent in old-generation collections increased by 19% on average
with the local-heap collector, although the variability across the
benchmark set was very high and this may not be a robust effect.

6.2.1.2 Amount of data copied by GC The amount of data
copied by GC is a reasonable proxy for the cost of GC, and hence
GC time. We expect there to be less copying due to there being
fewer young-generation collections, but balanced against that is the
need to do more copying to globalise data that is shared between
processors, and to maintain the global-heap invariant.

Program stop-the-world local heaps
1 core 24 cores 1 core 24 cores

blackscholes 1997188 +85.7 +9.1 +48.6
coins 402911340 +0.2 +0.0 +0.1
gray 53900792 +38.0 +0.0 +31.8
mandel 50358496 -25.8 +0.3 -25.3
matmult 32577184 -28.1 +0.1 +1.4
minimax 2288432768 -19.6 +0.3 -9.2
nbody 2389432 +701.1 +10.7 +1694.8
parfib 58752 +1046.4 -0.4 +378602.4
partree 301763736 +6.4 +0.1 +17.6
prsa 26268076 +5.9 +0.8 +52.4
queens 53848299 +11.8 +24.0 +28.3
ray 145387572 -57.7 +16.7 +21.5
sumeuler 2077124 +1.3 +0.1 +209.4
transclos 9043744 +23.9 +0.9 +3.2
Min -57.7 -0.4 -25.3
Max +1046.4 +24.0 +378602.4
Geometric Mean +35.1 +4.2 +164.4

Table 5. Total data copied by GC (bytes)

Table 5 shows the total amount of data copied by each collector
(including globalisation in the local-heap collector) at 1 and 24
cores, with the 1-core stop-the-world results as the baseline.

The amount of data copied increased in the local-heap col-
lector compared with stop-the-world. Discounting two outliers:
parfib, where the amount of copying increased by 32, 000%, and
sumeuler, where the amount of copying was small but highly vari-
able, the average over the rest of the benchmarks was a 23% in-
crease (ranging from -20% to +187%).

6.2.1.3 Summary To summarise these results, it seems that
although the local heap collector performs many fewer young-
generation collections and fewer synchronisations, the benefits are
offset to some extent by the extra work being done by the col-
lector to maintain the global-heap invariant. These results are by
no means conclusive; in future work we plan to gain further in-
sights into the performance differences between the two collectors
by measuring additional metrics. For example, measuring the time
spent at synchronisation barriers would give some insight into ef-
fect (1), measuring cache misses would quantify effect (2), and
effect (3) could be measured by turning on atomic copying in the
local-heap collector.

6.2.2 Individual benchmarks
Some benchmarks exhibit worse performance with the local-heap
collector. We examined these with our ThreadScope profiling tool,
and found:

• nbody incurs a message-passing overhead when the main
thread requests results from the other processors. In contrast,
the stop-the-world collector just shares the data directly.

• partree develops some threads with deep stacks. Migrating a
thread from one processor to another in the local-heap collec-
tor takes time proportional to the depth of the stack, because
the thread’s local data must first be globalised, whereas in the
stop-the-world collector migration was a constant-time opera-
tion. The scheduler’s load-balancing heuristics are currently not
sophisticated enough to avoid expensive migration. We can im-
prove performance on partree by disabling automatic migra-
tion, but we felt it was important to highlight the issue and raise
it as a topic for future work.

• prsa appears to be slower with the local-heap collector due
to imperfect load-balancing, perhaps related to communication
overhead as with nbody.

• parfib incurs overhead in the local heap collector due to the
requirement to globalise data when creating sparks in the spark
pool.

6.2.3 Robustness to processor unavailability
In a shared computing environment such as a modern desktop OS,
it is highly unlikely that a program will have uninterrupted access
to all the processors cores during its runtime. A parallel program
should degrade gracefully when the OS deschedules one or more
of its threads so as to run other processes.

With a stop-the-world collector, the cost of synchronisation im-
poses a severe performance penalty when one or more of the HECs
is descheduled by the OS, because when all the other HECs want to
garbage collect they stall until the sleeping HEC is reawakened by
the OS. We expect that processor-independent GC should amelio-
rate this effect considerably, by reducing the frequency of synchro-
nisation. We modelled this by running 28 HECs on 24 hardware
cores, where it is certain that four will be descheduled at any one
moment.

Our results in Figure 3 show that in all cases our local-heap
collector outperforms the stop-the-world collector when using 28
threads on the 24-core machine. The median improvement was
73%.

All benchmarks incur some dropoff in performance with 28
HECs even with the local heap collector, and we believe this is
accounted for largely by cache and OS scheduling effects.

6.3 Globalisation policies
A key decision is the globalisation policy: when globalising a
pointer, how much of the transitive closure should we globalise?
There are a range of possibilities, including:

1. Globalise nothing; just create a new proxy indirection for each
write (optimising the case where the pointer written is to a
global object).

2. Globalise recursively, but do not globalise mutable objects -
leave proxy indirections instead.

Program Elapsed time (∆%)
globalise globalise
nothing transitive

blackscholes -0.8 +0.1
coins -1.6 -1.0
gray +2.0 +415.9
mandel -0.9 +158.3
matmult +5.1 +2.3
minimax -0.2 +93.9
nbody -0.4 -6.8
parfib -1.8 -0.4
partree +34.4 +127.6
prsa +0.3 +536.7
queens +0.3 +10.7
ray +21.1 +283.1
sumeuler -0.2 -4.8
transclos +4.9 +576.9
Min -1.8 -6.8
Max +34.4 +576.9
Geometric Mean +4.0 +92.6

Table 6. Comparison of write barrier promotion policies on 8 cores

3. Globalise recursively, up to a maximum amount of data. Since
globalisation is naturally breadth-first (as with copying GC),
appling a cut-off to the amount of data copied is similar to
a depth-bound. Once the limit has been reached, new proxies
would be created for any remaining unglobalised references.
(To date we have not implemented this strategy, but mention it
here for completeness.)

4. Globalise the full transitive closure.

We can make an independent choice for different write barriers; for
example, updating a thunk could use a different policy than writes
to a mutable array.

The tradeoff is not straightforward. From our measurements in
Section 3 we know that promoting the full transitive closure incurs
a significant overhead for single-threaded programs. However, in
a parallel program there is a countervailing effect: when data is
needed by multiple processors, it is important that it is moved to the
global heap quickly, to avoid latency and excessive communication.

6.3.1 Thunk updates
We measured the effect of modifying the globalisation policy for
thunk updates at 8 cores; Table 6 gives the results. To summarise
the table:

• Globalising only immutable data was the best (the baseline in
the table).

• Globalising nothing at all was on average 4% slower.
• Globalising the entire transitive closure was on average 93%

slower, and results ranged from 7% faster to 577% slower.

These results mirror those that we found for single-threaded
programs in Section 3, but we find that the negative effect of pro-
moting mutable objects is more extreme when running in parallel.

6.3.2 Spark pool writes
Recall from Section 4.5 that the spark pool (our parallel work
queue) is a global heap object and is subject to a globalisation
policy in the same way as other writes to the global heap.

We measured the difference between the three different glob-
alisation policies for spark pool writes, and to our surprise there
was very little difference. Globalising the full transitive closure was

very slightly better on average, but the difference was less than 2%
and hence difficult to measure accurately.

Why should there be so little difference, while we see a signifi-
cant difference in the policies for thunk updates? We believe this is
due to several reasons:

• spark pool writes are much less frequent than thunk updates;
• sparks are by their nature unevaluated computations, so glob-

alising thunks referred to by a spark is likely to be the right
choice;

• spark pool writes tend to be more persistent: the spark pool
entry will typically remain live until it is evaluated; the only
way a spark pool entry could become garbage is if the spark was
speculative, and our benchmarks here do not use speculation for
the most part (minimax has a little);

• reducing communication latency is worthwhile, so globalising
early is a good idea.

7. Conclusion
A garbage collector with local per-processor heaps can outperform
a stop-the-world parallel garbage collector in raw parallel through-
put, and exhibits more robust performance through having fewer
all-core synchronisations. Our collector performs best with a small
(1MB) nursery size, and does not suffer from the “allocation wall”
imposed by main-memory bandwidth.

Our scaling results are not as dramatic as we had hoped when
embarking on this line of research, and if we consider parallel
throughput alone, it is not clear whether the improvements are
worth the (substantial) increase in complexity imposed by the local-
heap collector over a stop-the-world implementation. However, the
reduction in synchronisation frequency leads to a more significant
improvement when the machine is being shared with other pro-
cesses. Furthermore, although we have not measured pause times
here, we believe that the local heap collector together with an incre-
mental or concurrent old-generation collector could be an effective
way to control pause times.

Throughout the paper we have identified the aspects of the
design that are specific to our particular setting, although it remains
unclear whether similar results could be obtained in, say, Java.
We firmly believe that a read barrier is necessary for local heap
collection in a mutation-rich environment. The sticky-heap aspect
of our design is strictly speaking optional, but allows the read
barrier to be omitted for some objects, in exchange for not moving
them between global collections. A Java implementation could
choose to use a read barrier consistently and no sticky heap, or it
could identify a class of objects (e.g. arrays) that it is not important
to move between global collections and would benefit from having
no read barrier.

In future work, we would like to generalise the heap structure to
allow multiple generations both local and global.

Acknowledgements
We would like to thank John Reppy and Mike Rainey for several
useful discussions about the GC architectures of Manticore and
GHC, and we thank the anonymous reviewers of earlier versions
of this paper for many helpful insights.

References
Todd A. Anderson. Optimizations in a private nursery-based garbage col-

lector. In ISMM ’10: Proceedings of the 2010 international symposium
on Memory management, pages 21–30. ACM, 2010.

David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In Proceedings of the

30th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’03, pages 285–298, 2003.

Lars Bergstrom, Mike Rainey, John Reppy, Adam Shaw, and Matthew
Fluet. Lazy tree splitting. In Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming, ICFP ’10, pages
93–104, 2010.

Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region
garbage collector with space efficiency, fast collection, and mutator
performance. In Proceedings of the 2008 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’08, pages
22–32, 2008.

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Myths and
realities: the performance impact of garbage collection. In Proceedings
of the joint international conference on Measurement and modeling of
computer systems, SIGMETRICS ’04/Performance ’04, pages 25–36.
ACM, 2004.

Damien Doligez and Xavier Leroy. A concurrent, generational garbage
collector for a multithreaded implementation of ML. In POPL ’93: Pro-
ceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 113–123, 1993.

Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis, Erez Pe-
trank, and Dafna Sheinwald. Thread-local heaps for java. In ISMM ’02:
Proceedings of the 3rd international symposium on Memory manage-
ment, pages 76–87. ACM, 2002.

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-
threaded parallelism in manticore. In Proceeding of the 13th ACM
SIGPLAN international conference on Functional programming, ICFP
’08, pages 119–130, 2008.

Richard Jones and Andy C. King. A fast analysis for thread-local garbage
collection with dynamic class loading. In Proceedings of the Fifth IEEE
International Workshop on Source Code Analysis and Manipulation,
pages 129–138, Washington, DC, USA, 2005. IEEE Computer Society.

Simon Marlow, Simon Peyton Jones, and Wolfgang Thaller. Extending the
haskell foreign function interface with concurrency. In Proceedings of
the 2004 ACM SIGPLAN workshop on Haskell, Haskell ’04, pages 22–
32, 2004.

Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones.
Faster laziness using dynamic pointer tagging. In Proceedings of the
12th ACM SIGPLAN international conference on Functional program-
ming, ICFP ’07, pages 277–288, 2007.

Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton Jones.
Parallel generational-copying garbage collection with a block-structured
heap. In Proceedings of the 7th international symposium on Memory
management, ISMM ’08, pages 11–20. ACM, 2008.

Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime sup-
port for multicore haskell. In Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming, ICFP ’09, pages
65–78, 2009.

Pekka P. Pirinen. Barrier techniques for incremental tracing. In Proceedings
of the 1st international symposium on Memory management, ISMM ’98,
pages 20–25. ACM, 1998.

Bjarne Steensgaard. Thread-specific heaps for multi-threaded programs. In
ISMM ’00: Proceedings of the 2nd international symposium on Memory
management, pages 18–24. ACM, 2000.

Yi Zhao, Jin Shi, Kai Zheng, Haichuan Wang, Haibo Lin, and Ling Shao.
Allocation wall: a limiting factor of java applications on emerging multi-
core platforms. In Proceeding of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications,
OOPSLA ’09, pages 361–376, 2009.

	Introduction
	Garbage collection with processor-local heaps
	The problem of mutation
	Quantifying the effect of transitive globalisation

	Our design: improving support for mutation
	Implementing the read barrier: proxy indirections
	The write barrier
	Globalising an object
	The sticky heap
	Managing the parallel work queues

	Implementation Details
	The block layer
	Virtual processors
	Local heap collections
	Global heap collections
	Where to store the ``global'' bit in the sticky heap
	Large objects
	Requesting private data from another processor

	Measurements
	Benchmarks
	Choosing the nursery size

	Scaling
	Analysis of scaling results
	Individual benchmarks
	Robustness to processor unavailability

	Globalisation policies
	Thunk updates
	Spark pool writes

	Conclusion

