Regular, shape-polymorphic, parallel arrays in Haskell

Gabriele Keller

Simon Peyton Jones*

fComputer Science and Engineering
University of New South Wales, Australia

{keller,chak,rl,benl}@cse.unsw.edu.au

Abstract

‘We present a novel approach to regular, multi-dimensional arrays in
Haskell. The main highlights of our approach are that it (1) is purely
functional, (2) supports reuse through shape polymorphism, (3)
avoids unnecessary intermediate structures rather than relying on
subsequent loop fusion, and (4) supports transparent parallelisation.

We show how to embed two forms of shape polymorphism into
Haskell’s type system using type classes and type families. In par-
ticular, we discuss the generalisation of regular array transforma-
tions to arrays of higher rank, and introduce a type-safe specifica-
tion of array slices.

We discuss the runtime performance of our approach for three
standard array algorithms. We achieve absolute performance com-
parable to handwritten C code. At the same time, our implementa-
tion scales well up to 8 processor cores.

1. Introduction

In purely functional form, array algorithms are often more elegant
and easier to comprehend than their imperative, explicitly loop-
based counterparts. The question is, can they also be efficient?

Experience with Clean, OCaml, and Haskell has shown that we
can write efficient code if we sacrifice purity and use an imperative
array interface based on reading and writing individual array ele-
ments, possibly wrapped in uniqueness types or monads [9, 11, 13].
However, using impure features not only obscures clarity, but also
forfeits the transparent exploitation of the data parallelism that is
abundant in array algorithms.

In contrast, using a purely-functional array interface based on
collective operations —such as maps, folds, and permutations—
emphasises an algorithm’s high-level structure and often has an
obvious parallel implementation. This observation was the basis
for previous work on algorithmic skeletons and the use of the Bird-
Meertens Formalism (BMF) for parallel algorithm design [17]. Our
own work on Data Parallel Haskell (DPH) is based on the same
premise, but aims at irregular data parallelism which comes with
its own set of challenges [16]. Other work on high-performance

[Copyright notice will appear here once ’preprint’ option is removed.]

Manuel M. T. Chakravarty'

Roman Leshchinskiy'
Ben Lippmeier!

Microsoft Research Ltd
Cambridge, England

{simonpj}@microsoft.com

byte arrays [7] also aims at abstracting over loop-based low-level
code using a purely-functional combinator library.

We aim higher by supporting multi-dimensional arrays, more
functionality, and transparent parallelism. We present a Haskell
library of regular parallel arrays, which we call Repa' (Regular
Parallel Arrays). While Repa makes use of the Glasgow Haskell
Compiler’s many existing extensions, it is a pure library: it does not
require any compiler support that is specific to its implementation.
The resulting code is not only as fast as when using an imperative
array interface, it approaches the performance of handwritten C
code, and exhibits good parallel scalability on the configurations
that we benchmarked.

In addition to good performance, we achieve a high degree
of reuse by supporting shape polymorphism. For example, map
works over arrays of arbitrary rank, while sum decreases the rank
of an arbitrary array by one — we give more details in Section 4.
The value of shape polymorphism has been demonstrated by the
language Single Assigment C, or SAC [18]. Like us, SAC aims at
purely functional high-performance arrays, but in contrast to our
work, SAC is a specialised array language based on a purpose-
built compiler. We show how to embed shape polymorphism into
Haskell’s type system.

The main contributions of the paper are the following:

e An API for purely-functional, collective operations over dense,
rectangular, multi-dimensional arrays supporting shape poly-
morphism (Section 5).

Support for various forms of constrained shape polymorphism
in a Hindley-Milner type discipline with type classes and type
families (Section 4).

An aggressive loop fusion scheme based on a functional repre-
sentation of delayed arrays (Section 6).

A scheme to transparently parallelise array algorithms based on
our API (Section 7)

e An evaluation of the sequential and parallel performance of
our approach on the basis of widely used array algorithms
(Section 8).

Before diving into the technical details of our contributions, the
next section illustrates our approach to array programming by way
of an example.

2010/4/2

extent : Array sh e -> sh
sum :: (Num e, Elt e)
=> Array (sh :. Int) e -> Array sh e
zipWith :: (Shape sh, Elt el, Elt e2, Elt e3)
=> (el -> e2 -> e3)
-> Array sh el -> Array sh e2
-> Array sh e3
backpermute (Shape sh, Shape sh’, Elt e)

=> sh’ -> (sh’ -> sh)
-> Array sh e -> Array sh’ e

Figure 1. Types of library functions

sum
trr —
1
brrRepl A1
X 4 A
AarrRepl
arr x 2

Figure 2. Matrix-matrix multiplication illustrated

2. Our approach to array programming

A simple operation on two-dimensional matrices is transposition.
With our library we express transposition in terms of a permutation
operation that swaps the row and column indices of a matrix:

transpose2D :: Elt e => Array DIM2 e -> Array DIM2 e
transpose2D arr
= backpermute new_extent swap arr

where
swap (Z :.i :.j) =Z :.j :.1
new_extent = swap (extent arr)

Like Haskell 98 arrays, our array type is parameterised by the
array’s index type, here DIM2, and by its element type e. The index
type gives the rank of the array, which we also call the array’s
dimensionality, or shape.

Consider the type of backpermute, given in Figure 1. The first
argument is the bounds (or extent) of the result array, which we
obtain by swapping the row and column extents of the input array.
For example transposing a 3 X 12 matrix gives a 12 x 3 matrix.’
The backpermute function constructs a new array in terms of an
existing array solely through an index transformation, supplied as
its second argument, swap: given an index into the result matrix,
swap produces the corresponding index into the argument matrix.

A more interesting example is matrix-matrix multiplication:

(Num e, Elt e)
=> Array DIM2 e -> Array DIM2 e
-> Array DIM2 e
mmMult arr brr
= sum (zipWith (*) arrRepl brrRepl)
where
trr = transpose2D brr

mmMult

! Repa means “turnip” in Russian.

2 For now, just read the notation (Z :.i :.j) asif it was the familiar pair
(i,3). The details are in Section 4 where we discuss shape polymorphism.

arrRepl = replicate (Z :.All :.colsB :.All) arr
brrRepl = replicate (Z :.A1l :.A11 :.rowsA) trr

(Z:. colshA:. rowsA) = extent arr
(Z:. colsB:. rowsB) = extent brr

The idea is to expand both rank-two argument arrays into rank-
three arrays by replicating them across a new dimension, or axis,
as illustrated in Figure 2. The front face of the cuboid represents
the array arr, which we replicate as often as brr has columns
(colsB), producing arrRepl. The top face represents trr (the
transposed brr), which we replicate as often as arr has rows
(rowsA), producing brrRepl. As indicated by the figure, the two
replicated arrays have the same extent, which corresponds to the
index space of matrix multiplication:

(AB)i; = Sk=14irBr,;

where ¢ and j correspond to rowsA and colsB in our code. The
summation index k corresponds to the innermost axis of the repli-
cated arrays and to the left-to-right axis in Figure 2. Along this axis
we perform the summation after an elementwise multiplication of
the replicated elements of arr and brr by zipWith (*).

A naive implementation of the operations used in mmMult would
result in very bad space and time performance. In particular, it
would be very inefficient to compute explicit representations of the
replicated matrices arrRepl and brrRepl. Indeed, a key principle
of our design is to avoid generating explicit representations of the
intermediate arrays that can be represented as the original arrays
combined with a transformation of the index space (Section 3.2).
A rigorous application of this principle results in aggressive loop
fusion (Section 6) producing code that is similar to imperative
code. As a consequence, this Haskell code has about the same
performance as handwritten C code for the same computation. Even
more importantly, we measured very good absolute speedup, x7.7
for 8 cores, on multicore hardware — a property that the C code
does not have without considerable additional effort!

3. Representing arrays

The representation of arrays is a central issue in any array library.
Our library uses two devices to achieve good performance:

1. We represent array data as contiguously-allocated ranges of
unboxed values.

2. We delay the construction of intermediate arrays to support
constant-time index transformations and slices, and to combine
these operations with traversals over successive arrays.

We describe these two techniques in the following sections.

3.1 Unboxed arrays

In Haskell 98 arrays are lazy, so that each element of an array is
evaluated only when the array is indexed at that position. Although
convenient, laziness is Very Bad Indeed for array-intensive pro-
grams:

e A lazy array of (say) Float is represented as an array of point-
ers to either heap-allocated thunks, or boxed Float objects, de-
pending on whether they have been forced. This representation
requires at least three times as much storage as a conventional,
contiguous array of unboxed floats. Moreover, when iterating
through the array, the lazy representation imposes higher mem-
ory traffic. This is due to the increased size of the individual
elements, as well as their lower spacial locality.

e In a lazy array, evaluating one element does not mean that the
other elements will be demanded. However, the overwhelm-

2010/4/2

ingly common case is that the programmer intends to demand
the entire array, and wants it evaluated in parallel.

We can solve both of these problems simultaneously using a
Haskell-folklore trick. We define a new data type of arrays, which
we will call UArr, short for “unboxed array”. These arrays are
one-dimensional, indexed by Int, and are slightly stricter than
Haskell 98 arrays: a UArr as a whole is evaluated lazily, but an
attempt to evaluate any element of the array (e.g. by indexing) will
cause evaluation of all the others, in parallel.

For the sake of definiteness we give a bare sketch of how UArr
is implemented. However, this representation is not new; it is well
established in the Haskell folklore, and we use it in Data Parallel
Haskell (DPH) [5, 16], so we do not elaborate the details.

class E1t e where
data UArr e
(1) :: Array e -> Int > e
...more methods...

instance Elt Float where
data UArr Float = UAF Int ByteArray#
(UAF max ba) !
| i < max = F# (indexByteArray ba i)
| otherwise = error "Index error"
...more methods...

.

instance (Elt a, Elt b) => Elt (a :*: b) where
data UArr (a :*: b) = UAP (UArr a) (UArr b)
(UAP a b) ! i = (a'i :x: b'i)
...more methods...

Here we make use of Haskell’s recently added associated data
types [4] to represent an array of Float as a contiguous array of
unboxed floats (the ByteArray#), and an array of pairs as a pair
of arrays. Because the representation of the array depends on the
element type, indexing must vary with the element type too, which
explains why the indexing operation (!) is in a type class E1t.

In addition to an efficient underlying array representation, we
also need the infrastructure to operate on these arrays in parallel,
using multiple processor cores. To that end we reuse part of our
own parallel array library of Data Parallel Haskell. This provides
us with an optimised implementation of UArr and the E1t class,
and with parallel collective operations over UArr. It also requires
us represent pairs using the strict pair constructor (:*:), instead of
Haskell’s conventional (,).

3.2 Delayed arrays

When using Repa, index transformations such as transpose2D
(discussed in Section 2) are ubiquitous. As we expect index
transformations to be cheap, it would be wrong to (say) copy a
100Mbyte array just to transpose it. It is much better to push the
index transformation into the consumer, which can then consume
the original, unmodified array.

We could do this transformation statically, at compile time,
but doing so would rely on the consumer being able to “see” the
index transformation. This could make it hard for the programmer
to predict whether or not the optimisation would take place. In
Repa we instead perform this optimisation dynamically, and offer
a guarantee that index transformations perform no data movement.
The idea is simple and well known: just represent an array by its
indexing function, together with the array bounds”:

data Array sh e = Array sh (sh -> e)

3 NB: this is not our final array representation!

With this representation, functions like backpermute (discussed
in Section 2, with type signature in Figure 1) are quite easy to
implement:

backpermute sh’ fn (Array sh ix1)
= Array sh’ (ix1l . fn)

We can also wrap a UArr as an Array:

wrap :: (Shape sh, Elt e)
=> sh -> UArr e -> DArray sh e
wrap sh uarr = Array sh idx
where idx i = uvarr ! index sh i

When wrapping an DArray over a UArr, we also take the oppor-
tunity to generalise from one-dimensional to multi-dimensional ar-
rays. The index of these multi-dimensional arrays is of type sh,
where the Shape class (to be described in Section 4) includes
the method index :: Shape sh => sh -> sh -> Int. This
method maps the bounds and index of an Array to the correspond-
ing linear Int index in the underlying UArr.

3.3 Combining the two

Unfortunately, there are at least two reasons why it is not always
beneficial to delay an array operation. One is sharing, which we
discuss later in Section 6. Another is data layout. In our mmMult
example from Section 2, we want to delay the two applications
of replicate, but not the application of transpose2D. Why?
We store multi-dimensional arrays in row-major order (the same
layout Haskell 98 uses for standard arrays). Hence, iterating over
the second index of an array of rank 2 is more cache friendly than
iterating over its first index.

It is well known that the order of the loop nest in an imper-
ative implementation of matrix-matrix multiplication has a dra-
matic effect on performance due to these cache effects. By forcing
transpose2D to produce its result as an unboxed array in mem-
ory —we call this a manifest array— instead of leaving it as a de-
layed array, the code will traverse both matrices by iterating over
the second index in the inner loop. Overall, we have the following
implementation

mmMult arr brr

= sum (zipWith (%) arrRepl brrRepl)

where
trr = force (transpose2D brr) -- New! force!
arrRepl = replicate (Z :.Al1l :.colsB :.All) arr
brrRepl = replicate (Z :.A11 :.A11 :.rowsA) trr

(Z:. colsA:. rowsA) = extent arr
(Z:. colsB:. rowsB) = extent brr

We could implement force by having it produce a value of type
UArr and then apply wrap to turn it into a DArray again, providing
the appropriate memory layout for a cache-friendly traversal. This
would work, but we can do better. The function wrap uses array
indexing to access the underlying UArr. In cases where this index-
ing is performed in a tight loop, GHC can optimise the code more
thoroughly when it is able to inline the indexing operator, instead
of calling an anonymous function encapsulated in the data type
DArray. For recursive functions, this also relies on the constructor
specialisation optimisation [15]. However, as explained in Coutts
et al. [6], Section 7.2, to allow this we must make the special case
of a wrapped UArr explicit in the datatype, so the optimiser can see
whether or not it is dealing directly with a manifest array.

Hence, we define regular arrays as follows:

data Array sh e = Manifest sh (UArr e)
| Delayed sh (sh -> e)

2010/4/2

infixl 3 :.
data Z =127
data tail :. head tail :. head

type DIMO = Z

type DIM1 = DIMO:.Int
type DIM2 = DIM1:.Int
type DIM3 = DIM2:.Int

class Shape sh where

rank :: sh -> Int
size :: sh -> Int -- Number of elements
index :: sh -> sh -> Int -- Index into row-major
fromIndex -- representation
:: sh -> Int -> sh -- Inverse of ’index’
<..and so on..>
instance Shape Z where ...

instance Shape sh => Shape (sh:.Int) where ...

Figure 3. Definition of shapes

We can unpack an arbitrary Array into delayed form thus:

delay :: (Shape sh, Elt e)
=> Array sh e -> (sh, sh -> e)
delay (Delayed sh f) = (sh, f)
delay (Manifest sh uarr)
= (sh, \i -> uarr ! index sh i)

This is the basis for a general traverse function that produces a
delayed array after applying a transformation. The transformation
may include index space transformations or other computations:

traverse :: (Shape sh, Shape sh’, Elt e)
=> Array sh e
-> (sh -> sh’)
-> ((sh -> e) -> sh’ -> e’)
-> Array sh’ e’
traverse arr sh_fn elem_fn
= Delayed (sh_fn sh) (elem_fn f)
where (sh, f) = delay arr

We use traverse to implement many of the other operations of
our library — for example, backpermute is implemented as:

backpermute (Shape sh, Shape sh’, Elt e)
=> sh’ -> (sh’ -> sh) -> Array sh e
-> Array sh’ e

backpermute sh pm = traverse (const sh) (. pm)

We discuss the use of traverse in more detail in Sections 5 & 7.

4. Shapes and shape polymorphism

In Figure 1 we gave this type for sum:

sum :: (Shape sh, Num e, Elt e)
=> Array (sh:.Int) e -> Array sh e

As the type suggests, sum is a shape-polymorpic function: it can
sum the rightmost axis of an array of arbitrary rank. In this section
we describe how shape polymorphism works in Repa. We will
see that combination of parametric polymorphism, type classes,
and type families enables us to track the rank of each array in
its type, guaranteeing the absence of rank-related runtime errors.
We can do this even in the presence of operations such as slicing
and replication that change the rank of an array. However, bounds

checks on indices are still performed at runtime — tracking them
requires more sophisticated type system support [20, 24].

4.1 Shapes and indices

Haskell’s tuple notation does not allow us the flexibility we need, so
we introduce our own notation for indices and shapes. As defined
in Figure 3, we use an inductive notation of tuples as heterogenous
snoc lists. On both the type-level and the value-level, we use the in-
fix operator (:.) to represent snoc. The constructor Z corresponds
to a rank zero shape, and we use it to mark the end of the list. Thus,
a three-dimensional index with components x, y and z is written
(Z:.x:.y:.z) and has type (Z:.Int:.Int:.Int). This type is
the shape of the array. Figure 3 gives type synonyms for common
shapes: a singleton array of shape DIMO represents a scalar value;
an array of shape DIM1 is a vector, and so on.

The motivation for using snoc lists, rather than the more con-
ventional cons lists, is this. We store manifest arrays in row-major
order, where the rightmost index is the most rapidly-varying when
traversing linearly over the array in memory. For example, the value
atindex (Z:.3:.8) is stored adjacent to that at (Z:.3:.9). This
is the same convention adopted by Haskell 98 standard arrays.

We draw array indices from Int values only, so the shape of a
rank-n array is:

Z :. Int :. --- :. Int

n times

In principle, we could be more general and allow non-Int indices,
like Haskell’s index type class Ix. However, this would complicate
the library and the presentation, and is orthogonal to the contri-
butions of this paper; so we will not consider it here. Nevertheless,
shape types, such as DIM2 etc, explicitly mention the Int type. This
is for two reasons: firstly, it simplifies the transition to using the Ix
class if that is desired; and secondly, in Section 4.4 we discuss more
elaborate shape constraints that require an explicit index type.
The extent of an array is a value of the shape type:

extent :: Array sh e -> sh

The corresponding Haskell 98 function, bounds, returns an upper
and lower bound, whereas extent returns only the upper bound.
Repa uses zero-indexed arrays only, so the lower bound is always
zero. For example, the extent (Z:.4:.5) characterises a 4 X 5
array of rank two containing 20 elements. The extent along each
axis must be at least one.

The shape type of an array also types its indices, which range
between zero and one less than the extent along the same axis. In
other words, given an array with shape (Z:.ni:.---:.m,y,), its
index range is from (Z:.0:.---:.0) to (Z: .ny—1:. -+ 1.y, —
1). As indicated in Figure 3, the methods of the Shape type class
determine properties of shapes and indices, very like Haskell’s Ix
class. These methods are used to allocate arrays, index into their
row-major in-memory representations, to traverse index spaces,
and are entirely as expected, so we omit the details.

4.2 Shape polymorphism

We call functions that operate on a variety of shapes shape poly-
morphic. Some such functions work on arrays of any shape at all.
For example, here is the type of map:

map :: (Shape sh, Elt a, Elt b)
=> (a => b)
-> Array sh a -> Array sh b

The function map applies its functional argument to all elements of
an array without any concern for the shape of the array. The type
class constraint Shape sh merely asserts that the type variable sh

2010/4/2

ought to be a shape. It does not constrain the shape of that shape in
any way.

4.3 At-least constraints and rank generalisation

With indices as snoc lists, we can impose a lower bound on the
rank of an array by fixing a specific number of lower dimensions,
but keeping the tail of the resulting snoc list variable. For example,
here is the type of sum:

sum :: (Shape sh, Num e, Elt e)
=> Array (sh:.Int) e -> Array sh e

This says that sum takes an array of any rank n > 1 and returns an
array of rank n — 1. For a rank-1 array (a vector), sum adds up the
vector to return a scalar. But what about a rank-2 array? In this case,
sum adds up all the rows of the matrix in parallel, returning a vector
of the sums. Similarly, given a three-dimensional array sum adds up
each row of the array in parallel, returning a two-dimensional array
of sums.

Functions like sum impose a lower bound on the rank of an
array. We call such constraints shape polymorphic at-least con-
straints. Every shape-polymorphic function with an at-least con-
straint is implicitly also a data-parallel map over the unspecified
dimensions. This is a major source of parallelism in Repa. We call
the process of generalising the code defined for the minimum rank
to higher rank rank generalisation.

The function sum only applies to the rightmost index of an array.
What if we want to reduce the array across a different dimension?
In that case we simply perform an index permutation, which is
guaranteed cheap, to bring the desired dimension to the rightmost
position:

sum2 :: (Shape sh, Elt e, Num e)
=> Array (sh:.Int:.Int) e -> Array (sh:.Int) e
sum2 a = sum (backpermute new_extent swap a)
where
new_extent = swap (extent a)
swap (is :.i2 :.i1) = is :.il :.i2

In our examples so far, we have sometimes returned arrays of a dif-
ferent rank than the input, but their extent in any one dimension
has always been unchanged. However, shape-polymorphic func-
tions can also change the extent:

selEven :: (Shape sh, Elt e)
=> Array (sh:.Int) e -> Array (sh:.Int) e
selEven arr = backpermute new_extent expand arr
where
(ns :.n) = extent arr
new_extent =ns :.(n ‘div‘ 2)
expand (is :.i) = is :.(i * 2)

As we can see from the calculation of new_extent, the array re-
turned by selEven is half as big as the input array, in the rightmost
dimension. The index calculation goes in the opposite direction,
selecting every alternate element from the input array.

Note carefully that the extent of the new array is calculated from
on the extent of the old array, but not from the data in the array.
That guarantees that we can do rank generalisation and still have a
rectangular array. To see the difference, consider:

filter :: Elt e => (e -> Bool)
-> Array DIM1 e -> Array DIM1 e

The filter function is not, and cannot be, shape-polymorphic.
If you filter each row of a matrix, based on the element values,
each new row might have a different length, so there would be
no guarantee that the resulting matrix was rectangular. We have
carefully chosen our shape-polymorphic primitives to guarantee
that this cannot happen.

data All
data Any sh

A1l
Any

class Slice ss where

type FullShape ss

type SliceShape ss

replicate :: Elt e
=> ss

-> Array (SliceShape ss) e

-> Array (FullShape ss) e
slice :: Elt e

=> Array (FullShape ss) e

-> ss

-> Array (SliceShape ss) e

instance Slice Z where
type FullShape Z = Z
type SliceShape Z = Z
<..definition of replicate and slice omitted..>

instance Slice (Any sh) where
type FullShape (Any sh) = sh
type SliceShape (Any sh) = sh
replicate Any a = a
slice a Any = a

instance (Shape (FullShape sl), Shape (SliceShape sl),

Slice sl) => Slice (sl:.Int) where
type FullShape (sl:.Int) = FullShape sl :. Int
type SliceShape (sl:.Int) = SliceShape sl

replicate (sl:.i) arr
= backpermute (ex:.i) drop arr2
where
ex extent arr2
arr2 = replicate sl arr
drop (is:._) = is

slice arr (sl:.i) = slice arr2 sl

where
arr2 = backpermute ex add arr
(ex:._) = extent arr
add is = is:.i

instance Slice ss => Slice (ss:.All) where
type FullShape (ss:.Al1l) = FullShape ss :. Int
type SliceShape (ss:.All) SliceShape ss :. Int
<..definition of replicate and slice omitted..>

Figure 4. Definition of slices

4.4 Slices and slice constraints

Shape types characterise a single shape. However, some collective
array operations require a relationship between pairs of shapes.
One such operation is replicate, which we used in mmMult. The
function replicate takes an array of any rank and replicates it
along one or more additional dimensions. We cannot uniquely de-
termine the behaviour of replicate from the shape of the original
and resulting array alone. For example, suppose that we want to
use replicate to expand a rank-2 array into a rank-3 array. There are
three ways of doing so, depending on which dimension of the result
array is the duplicated one. Indeed, the two calls to replicate in
mmMult performed replication along two different dimensions, cor-
responding to different sides of the cuboid in Figure 2.

2010/4/2

It should be clear that replicate needs an additional argument,
a slice specifier, that expresses exactly how the shape of the result
array depends on the shape of the argument array. A slice specifier
has the same format as an array index, but some index positions
may use the value A11 instead of a numeric index.

data All = All

In mmMult, we use replicate (Z:.All:.colsB:.All) arrto
indicate that we replicate arr across the second innermost axis,
colsB times. We use replicate (Z:.A11l:.All:.rowsA) trr
to specify that we replicate trr across the innermost axis, rowsA
times.

The type of the slice specifier (Z :.A11 :.colsB :.All)
is (Z :.A11 :.Int :.A11). This type is sufficiently expressive
to determine the shape of both the original array, before it gets
replicated, and of the replicated array. More precisely, both of these
types are a function of the slice specifier type. In fact, we derive
these shapes using associated type families, a recent extension to
the Haskell type system [3, 19], using the definition for the Slice
type class shown in Figure 4.

Unsurprisingly, replicate is a method of the S1ice class, as is
a closely-related function slice, which extracts a slice along mul-
tiple axes of an array. Their full types appear in Figure 4. We chose
their argument order to match that used for lists: replicate is a
generalisation of Data.List.replicate, while slice is a general-
isation of Data.List. (!!). The implementations of replicate
and slice in the various instances of Slice are straightforward
uses of backpermute, so we only give them for one of the in-
stances.

Finally, to enable rank generalisation for replicate and
slice, we add a last slice specifier, namely Any, which is also
defined in Figure 4. It is used in the tail position of a slice, just like
Z, but gives a shape variable for rank generalisation. With its aid we
can write repN which replicates an arbitrary array n times, with the
replicating being on the rightmost dimension of the result array:

repN :: Int -> Array sh e -> Array sh e
repN n a = replicate (Any:.n) a

5. Rectangular arrays, purely functional

As mentioned in Section 3, the type class E1t determines the
set of types that can be used as array elements; we adopt this
class from the library of unboxed one-dimensional arrays in Data
Parallel Haskell. With this library, array elements can be of the
basic numeric types, Bool, and pairs formed from the strict pair
constructor:

data a :*: b = la :*x: !b

We also extended this to support index types, formed from Z and
(:.) as array elements. Although it would be straightforward to al-
low other product and enumeration types as well, support for gen-
eral sum types appears impractical in a framework based on regular
arrays. Adding this would require irregular arrays and nested data
parallelism [16].

Table 1 summarises the central functions of our library Repa.
They are grouped according to the structure of the implemented
array operations. We discuss the groups and their members in the
following sections.

5.1 Structure-preserving operations

The simplest group of array operations are those that apply a trans-
formation on individual elements without changing the shape, array
size, or order of the elements. We have the plain map function, zip
for element-wise pairing, and a family of zipWith functions that
apply workers of different arity over multiple arrays in lockstep. In

the case of zip and zipWith, we determine the shape value of the
result by intersecting the shapes of the arguments — that is, we take
the minimum extent along every axis. This behaviour is the same
as Haskell’s zip functions when applied to lists.

The function map is implemented as follows:

map :: (a -> b) -> Array sh a -> Array sh b
map f = traverse id (f .)

The various zip functions are implemented in a similar manner,
although they also use a method of the Shape type class to compute
the intersection shape of the arguments.

5.2 Reductions

Our library, Repa, provides two kinds of reductions: (1) generic
reductions, such as foldl, and (2) specialised reductions, such as
sum. In a purely sequential implementation, the latter would be
implemented in terms of the former. However, in the parallel case
we must be careful.

Reductions of an n element array can be computed with par-
allel tree reduction, providing logn asymptotic step complexity,
but only if the reduction operator is associative. Unfortunately,
Haskell’s type system does not provide a way to express this side
condition on the first argument of foldl. Hence, the generic reduc-
tion functions need to retain their sequential semantics to remain
deterministic. In contrast, for specialised reductions such as sum,
when we know that the operators they use meet the associativity
requirement, we can use parallel tree reduction.

As outlined in Section 4.3, all reduction functions are defined
with a shape polymorphic at-least constraint and admit rank gener-
alisation. Therefore, even generic reductions, with their sequential
semantics, are highly parallel if used with rank generalisation.

Rank generalisation also affects specialised reductions, as they
can be implemented in one of the following two ways. If we want
to maximise parallelism, we can use a segmented tree reduction
that conceptually performs multiple parallel tree reductions con-
currently. Alternatively, we can simply use the same scheme as for
general reductions, and perform all rank one reductions in paral-
lel. We follow the latter approach and sacrifice some parallelism,
as tree reductions come with some sequential overhead.

In summary, when applied to an array of rank one, generic re-
ductions (foldl etc.) execute purely sequentially with an asymp-
totic step complexity of n, whereas specialised reductions (sum
etc.) execute in parallel using a tree reduction with an asymptotic
step complexity of log n. In contrast, when applied to an array of
rank strictly greater than one, both generic and specialised reduc-
tions use rank generalisation to execute many sequential reductions
on one-dimensional subarrays concurrently.

5.3 Index space transformations

The structure-preserving operations and the reductions transform
array elements, where index space transformation only alter the in-
dex at which an element is placed — i.e., they rearrange and pos-
sibly drop elements. A prime example of this group of operations
is reshape. It imposes a new shape on the elements of an array.
A precondition of reshape is that the size of the extent of the old
and new array is the same — i.e., the number of elements stays the
same:

reshape :: Shape sh
=> sh -> Array sh’ e -> Array sh e
reshape sh’ (Manifest sh ua)
= assert (size sh == size sh’) §
Manifest sh’ ua
reshape sh’ (Delayed sh f)
= assert (size sh == size sh’) $

Delayed sh’ (f . fromIndex sh . index sh’)

2010/4/2

Structure-preserving operations

map :: (Shape sh, Elt a, Elt b)
=> (a -> b) -> Array sh a -> Array sh b
zip :: (Shape sh, Elt a, Elt b)

=> Array sh a -> Array sh b -> Array sh (a :*:

zipWith :: (Shape sh, Elt a, Elt b, Elt c)

=> (a => b -> ¢) -> Array sh a -> Array sh b -> Array sh c

(Other map-like operations: zipWith3, zipWith4, and so on)

Apply function to every array element

Elementwise pairing
b)
Apply a function elementwise to two arrays
(result shape value by shape intersection)

Reductions

foldl :: (Shape sh, Elt a, Elt b)
=> (a => b -> a) -> a -> Array (sh:.Int) b

Left fold

-> Array sh a

(Other reduction schemes: foldr, foldl1, foldrl, scanl, scanr, scanll & scanrl)

sum :: (Shape sh, Elt e, Num e) => Array (sh:.Int) e -> Array sh a

Sum an array along its innermost axis

(Other specific reductions: product, maximum, minimum, and & or)

Index space transformations

reshape : Shape sh => sh -> Array sh’ e -> Array sh e Impose a new shape on the same elements
replicate :: (Slice sl, Elt e) Extend an array along new dimensions
=> sl -> Array (SliceShape sl) e -> Array (FullShape sl) e
slice (Slice sl, Elt e) Extract a subarray according to the slice
=> Array (FullShape sl) e -> sl -> Array (SliceShape sl) e specification s1
(+:4) :: Shape sh => Array sh e -> Array sh e -> Array sh e Append the second array at the first
backpermute (Shape sh, Shape sh’) Backwards permutation
=> sh’ -> (sh’ -> sh) -> Array sh e -> Array sh’ e
backpermuteDft (Shape sh, Shape sh’) Default backwards permutation
=> Array sh’ e -> (sh’ -> Maybe sh) -> Array sh e
-> Array sh’ e
unit i e > Array Z e Wrap a scalar into a singleton array
[GRD) :: (Shape sh, Elt e) => Array sh e -> sh -> e Extract an element at a specific index
General traversal
traverse :: (Shape sh, Shape sh’, Elt e) Unstructured traversal
=> Array sh e -> (sh -> sh’) -> ((sh -> e) -> sh’ -> e’)
-> Array sh’ e’
force :: (Shape sh, Elt e) => Array sh e -> Array sh e Force a delayed array into manifest form
extent :: Array sh e -> sh Obtain size in all dimensions of an array

Table 1. Summary of array operations

The functions index and fromIndex are methods of the class
Shape from Figure 3.

The functions replicate and slice were already discussed in
Section 4.4, and unit and (!:) are defined as follows:

unit :: e -> Array Z e
unit = Delayed Z . const

(':) :: (Shape sh, Elt e) => Array sh e -> sh —>
arr !: ix = snd (delay arr) ix

The implementation of these two functions clearly shows that they
do not depend on any methods of the Shape and E1t classes.

A simple operator to rearrange elements is the function (+:+);
it appends its second argument to the first and can be implemented
with traverse by adjusting shapes and indexing.

In contrast, general shuffles operations, such as backwards per-
mutation, require the detailed mapping of target to source indices.
We have seen this in the example transpose2D in Section 2. An-
other example is the following function that extract the diagonal of
a square matrix:

diagonal :: Elt e => Array DIM2 e -> Array DIM1 e
diagonal arr = assert (n == m) $

backpermute n (\x -> (x, x)) arr
where
(n, m) = extent arr

Code that uses backpermute appears more like element-based
array processing. However, it is still a collective operation with a
clear parallel interpretation.

Backwards permutation is defined in terms of the general
traverse as follows:

backpermute sh’ -> (sh’ -> sh) -> Array sh e
-> Array sh’ e

backpermute sh perm = traverse (const sh) (. perm)

The variant backpermuteDft, known as default backwards per-
mutation, operates in a similar manner, except that the target
index is partial. When the target index maps to Nothing, the
corresponding element from the default array is used. Overall,
backpermuteDft can be interpreted as a means to bulk update
the contents of an array. As we are operating on purely functional,
immutable arrays, the original array is stil available and the re-
peated use of backpermuteDft is only efficient if large part of the
array are updated on each use.

2010/4/2

5.4 General traversal

The most general form of array traversal is traverse, which sup-
ports an arbitrary change of shape and array contents. Nevertheless,
it is still represented as a delayed computation as detailed in Sec-
tion 3.3. Although for efficiency reasons it is better to use specific
functions such as map or backpermute, it is always possible to fall
back on traverse if a custom computational structure is required.

For example, traverse can be used to implement stencil-based
relaxation methods, such as the following update function to solve
the Laplace equation in a two dimensional grid [14]:

(i, 5) = (u(i—1,5) +u(i+1,5) +u(i,j— 1) +uli,j+1))/4
To implement this stencil, we use traverse as follows:

stencil :: Array DIM2 Double -> Array DIM2 Double
stencil arr
= traverse id update arr
where
_ :. height :. width = extent arr
update get d@(sh :. i :. j)
= if isBoundary i j
then get d
else (get (sh :. (i-1) :. j)
+ get (sh :. i .o (3-1)
+ get (sh :. (i+1) :. j)
+ get (sh :. i o (G /4

isBoundary i j
= (1i==0)
[==0

As the shape of the result array is the same as the input, the first
argument to traverse is id. The second argument is the update
function that implements the stencil, while taking the grid boundary
into account. The function get, passed as the first argument to
update, is the lookup function for the input array.

To solve the Laplace equation we would set boundary condi-
tions along the edges of the grid and then iterate stencil until the
inner elements converge to their final values. However, for bench-
marking purposes we simply iterate it a fixed number of times:

(i >= width - 1)
(j >= height - 1)

laplace :: Int
-> Array DIM2 Double -> Array DIM2 Double
laplace steps arr = go steps arr
where
go s arr
| s == = arr
| otherwise = go (s-1) (force $ stencil arr)

The use of force after each recursion is important, as it ensures
that all updates are applied and that we produce a manifest array.
Without it, we would accumulate a long chain of delayed compu-
tations with a rather non-local memory access pattern. In Repa, the
function force triggers all computation, and as we will discuss in
Section 7, the size of forced array determines the amount of paral-
lelism in an algorithm.

6. Delayed arrays and loop fusion

We motivated the use of delayed arrays in Section 3.2 by the
desire to avoid superfluous copying of array elements during index
space transformation, such as in the definition of backpermute.
However, another major benefit of delayed arrays is that it gives by-
default automatic loop fusion. Recall the implementation of map:

map :: (a -> b) -> Array sh a -> Array sh b
map f = traverse id (f.)

and imagine evaluating (map f (map g a)). If you consult the
definition of traverse (Section 3.3) it should be clear that the
two maps simply build a delayed array whose indexing function
first indexes a, then applies g, and then applies £. No intermediate
arrays are allocated and, in effect, the two loops have been fused.
Moreover, this fusion does not require some sophisticated compiler
transformation, nor does it even require the two calls of map to be
statically juxtaposed; fusion is a property of the data representation.

Guaranteed, automatic fusion sounds too good to be true —
and so it is. The trouble is that we cannot always use the delayed
representation for arrays. One reason not to delay arrays is data
layout, as we discussed in Section 3.3. Another is parallelism:
force triggers data-parallel execution (Section 7). But the most
immediately pressing problem with the delayed representation is
sharing. Consider the following:

let b =map f a
in mmMult b b

Every access to an element of b will apply the (arbitrarily-expensive)
function £ to the corresponding element of a. It follows that these
arbitrarily-expensive computations will be done at least twice, once
for each argument of mmMult, quite contrary to the programmer’s
intent. Indeed, if mmMult itself consumes elements of its arguments
in a non-linear way, accessing them more than once, the computa-
tion of £ will be performed each time. If instead we say

let b = force (map f a)
in mmMult b b

then the now-manifest array b ensures that £ is called only once
for each element of a. In effect, a manifest array is simply a memo
table for a delayed array. Here is how we see the situation:

e In most array libraries, every array is manifest by default, so
that sharing is guaranteed. However, loop fusion is difficult, and
must often be done manually, doing considerable violence to
the structure of the program.

e In Repa every array is delayed by default, so that fusion is
guaranteed. However, sharing may be lost; it can be restored
manually by adding calls to force. These calls do not affect
the structure of the program.

Using force Repa allows the programmer tight control over some
crucial aspects of the program: sharing, data layout, and paral-
lelism. The cost is, of course, that the programmer must exercise
that control to get good performance. Ignoring the issue altogether
can be disastrous, becuase it can lead to arbitrary loss of sharing. In
further work, beyond the scope of this paper, we are developing a
compromise approach that offers guaranteed sharing with aggres-
sive (but not guaranteed) fusion.

7. Parallelism

As described in Section 3.1, all elements of a Repa array are
demanded simultaneously. This is the source of all parallelism
in the library. In particular, an application of the function force
triggers the parallel evaluation of a delayed array, producing a
manifest one. Assuming that the array has n elements and that
we have P parallel processing elements (PEs) available to perform
the work, each PE is responsible for computing n/ P consecutive
elements in the row-major layout of the manifest array. In other
words, the structure of parallelism is always determined by the
layout and partitioning of a forced array.

Let us re-consider the function mmMult from Section 3.3 and
Figure 2 in this light. We assume that arr is a manifest array, and
know that trr is manifest because of the explicit use of force. The
rank-2 array produced by the rank-generalised application of sum

2010/4/2

corresponds to the right face of the cuboid from Figure 2. Hence, if
we force the result of mmMult, the degree of available parallelism
is proportional to the number of elements of the resulting array — 8
in the figure. As long as the hardware provides a sufficient number
of PEs, each of these elements may be computed in parallel. Each
involves the element-wise multiplication of a row from arr with a
row from trr and the summation of these products. If the hardware
provides fewer PEs, which is usually the case, the evaluation is
evenly distributed over the available PEs.

Let’s now turn to a more sophisticated parallel algorithm, the
three-dimensional fast Fourier transform (FFT). Three-dimensional
FFT works on one axis at a time: we apply the one dimensional FFT
to all vectors along one axis, then the second and then the third.
Instead of writing a separate transform for each dimension, we
implement one-dimensional FFT as a shape polymorphic function
that operates on the innermost axis. We combine it with a three-
dimensional rotation, rotate3D, which allows us to cover all three
axes one after another:

ftt3D :: Array DIM3 Complex
-> Array DIM3 Complex
-> Array DIM3 Complex

-- roots of unity
-- data to transform

fft3d rofu = fftTrans . fftTrans . fftTrans
where
fftTrans = rotate3D . fftlD rofu

The first argument, rofu, is an array of complex roots of unity,
which are constants that we wish to avoid recomputing for each
call. The second is the three-dimensional array to transform, and
we require both arrays to have the same shape. We also require
each dimension to have a size which is a power of 2.

If the result of ££t3D is forced, evaluation by P PEs is again
on P consecutive segments of length n® /P of the row-major lay-
out of the transformed cube, where n is the side length of the cube.
However, the work that needs to be performed for each of the el-
ements is harder to characterise than for mmMult, as the computa-
tions of the individual elements of the result are not independent
and as ££t1D uses force internally.

Three-dimensional rotation is easily defined based on the func-
tion backpermute which we discussed previously:

rotate3D :: Array DIM3 Complex
-> Array DIM3 Complex
rotate3D arr = backpermute (Z:.m:.k:.1l) f
where

(Z:.k:.1:.m) = extent arr

f (Z:.m:.k:.1) = (Z:.k:.1:.m)

The one-dimensional fast Fourier transform is significantly more
involved: it requires us to recursively split the input vector in
half and to apply the transform to the split vectors. To facilitate
the splitting, we first define a function halve that drops half the
elements of a vector, where the elements to pick of the original are
determined by a selector function sel.

halve :: (sh:.Int -> sh:.Int)
-> Array (sh:.Int) Complex
-> Array (sh:.Int) Complex
halve sel arr =
backpermute (sh :.
where
sh:.n = extent arr

n ‘div‘ 2) sel arr

By virtue of rank generalisation, this shape polymorphic function
will split all rows of a three-dimensional cube at once and in the
same manner.

The following two convenience functions use halve to extract
all elements in even and odd positions, respectively.

evenHalf, oddHalf :: Array (sh:.Int) Complex
-> Array (sh:.Int) Complex
evenHalf = halve (\(ix:.i) -> ix :. 2%i)

oddHalf = halve (\(ix:.i) -> ix :. 2#%i+1)

Now, the definition of the one-dimensional transform is a direct
encoding of the Cooley-Tukey algorithm:

fft1D :: Array (sh:.Int) Complex
-> Array (sh:.Int) Complex
-> Array (sh:.Int) Complex
f£ft1D rofu v
| n>2 = (left +° right) :+: (left -~ right)
| n == = traverse id swivel v
where
swivel f (ix:.0) = f (ix:.0) + f (ix:.1)
swivel f (ix:.1) = f (ix:.0) - f (ix:.1)

rofu’ = evenHalf rofu

left = force . (*~ rofu) . fftiD rofu’ . evenHalf $§ v
right = force . fft1D rofu’ . oddHalf § v
(+7) = zipWith (+)

(-") = zipWith (-)

(*7) = zipWith (%)

All index space transformations implemented in terms of
backpermute and also the elementwise arithmetic based on
zipWith produce delayed arrays. It is only the use of force in
the definition of 1eft and right that triggers the parallel evalua-
tion of subcomputations. In particular, as we force the recursive
calls in the definition of 1eft and right separately, the recursive
calls are performed in sequence. The rank-generalised input vec-
tor v is halved with each recursive call, and hence, the amount of
available parallelism decreases.

However, keep in mind that —by virtue of rank generalisation—
we perform the one-dimensional transform in parallel on all vectors
of a cuboid. That is, if we apply ££t3D to a 64 x 64 X 64 cube,
then ££t1D still operates on 64 * 64 * 2 = 8192 complex numbers
in one parallel step at the base case, where n = 2.

8. Benchmarks

In this section, we discuss the performance of three programs pre-
sented in this paper: matrix-matrix multiplication from Section 3.3,
the Laplace solver from Section 5.4 and the fast Fourier transform
from Section 7. We ran the benchmarks on two different machines:

e a 2x Quad-Core 3GHz Xeon server and
¢ 1.4GHz UltraSPARC T2.

The first machine is a typical x86-based server with good single-
core performance but frequent bandwidth problems in memory-
intensive applications. The bus architecture directly affects the scal-
ability of some of our benchmarks, e.g., the Laplace solver, which
cannot utilise multiple cores well due to bandwidth limitations.

The SPARC-based machine is much more interesting, as the
T2 processor has 8 cores and supports up to 8 hardware threads
per core which allows it to effectively hide memory latency in
massively multithreaded programs. Thus, despite a significantly
worse single-core performance than the Xeon it exhibits much
better scalability which is clearly visible in our benchmarks.

8.1 Absolute performance

Before discussing the parallel behaviour of our benchmarks, let us
investigate how Repa programs compare to hand-written C code
when executed with only one thread. Figure 5 shows the results for
the Laplace solver and the matrix multiplication together with the
fastest running times obtained through parallel execution (we do

2010/4/2

Repa
C 1 thread | fastest
parallel
Laplace 400400 10.3s 15.8s 6.6s
Matrix mult 1024 x 1024 7.8s 8.2s 1.1s
FFT 128 x 128 x 128 9.3s 2.3s
Figure 5. Performance on the Xeon
Repa
C 1 thread | fastest
parallel
Laplace 300300 6.1s 24.9s 3.2s
Matrix mult 512x512 3.1s 10.2s 0.4s
FFT 64x64x64 9.8s 1.2s

Figure 6. Performance on the SPARC

not have a C version of FFT but provide the running times of the
Repa program). On the Xeon, Repa is slower than C when executed
sequentially but not by much.

The picture changes dramatically on the SPARC, however (Fig-
ure 6). Unfortunately, GHC generates very poor code for SPARC
architectures, making the performance difference between Repa
programs and the corresponding C versions significanlty worse
than on the Xeon. This is a temporary problem, however, as we ex-
pect the new LLVM backend [10, 21] to produce much faster code.
Unfortunately, it has not been ported to the SPARC yet and some-
times generates incorrect code even on x86. We have only been able
to use it for the Laplace benchmark on the Xeon machine but fully
expect this situation to improve in the near future. In any case, when
run on multiple threads the benchmarks are still able to achieve bet-
ter performance than the sequential C programs.

We also compared the performance of the Laplace solver to an
alternative, purely sequential Haskell implementation based on un-
boxed, mutable arrays running in the IO Monad (I0UArray). This
version was about two times slower than the Repa program, prob-
ably due to the overhead introduced by bounds checking, which is
currently not supported by our library. Note, however, that bounds
checking is unnecessary for many collective operations such as map
and sum, so even after we introduce it in Repa we still expect to
see better performance than a low-level, imperative implementa-
tion based on mutable arrays.

8.2 Parallel behaviour

The parallel performance of matrix multiplication is show in Fig-
ure 7. Here, we get excellent scalability on both machines. On the
Xeon, where we achieve 7.7 with 8 threads the program is able
to avoid bandwidth problems, probably by utilising the cache effi-
ciently. On the SPARC, it scales with up to 31 threads with a peak
speedup of 22.9.

Figure 8 shows the relative speedups for the Laplace solver.
The program achieves good scalability on the SPARC, reaching a
speedup of 7.8 with 15 threads but performs much worse on the
Xeon, stagnating at a speedup of 2.6. As the benchmark is memory
bound, we attribute this behaviour to the insufficient bandwidth of
the Xeon machine.

Finally, the parallel behaviour of the FFT implementation is
shown in Figure 9. This program scales well on both machines,
achieving a relative speedup of 4 on with 8 threads on the Xeon
and 8.3 on 16 threads on the SPARC. Compared to the Laplace
solver, the scalability is much better on the former but practically
unchanged on the latter. As this benchmark is less memory inten-
sive, this supports our conclusion that the Laplace solver suffers

Speedup of mmMult on 1.4GHz UltraSPARC T2

30
225
o
3
8 15
o
N
75
O |||||||||||||||||||||||||||||||||||

135 7 91113151719212325272931
No of threads (on 8 PEs)
— Relative speedup, size 512x512

Speedup of mmMult on 2x Quad-Core 3GHz Xeon

No of threads
— Relative speedup, size 1024x1024

Figure 7. Matrix-matrix multiplication

from bandwidth problems on the Xeon machine while the SPARC
is able to execute the two program equally well by utilising its very
fast hardware threads.

9. Related Work

Array programming is a highly active research area so the amount
of related work is quite significant. In this section, we have to
restrict ourselves to discussing only a few most closely related
approaches.

9.1 Haskell array libraries

Haskell 98 already defines an array type as part of its prelude
which, in fact, even provides a certain degree of shape polymor-
phism. These arrays can be indexed by arbitrary types as long as
they are instances of Ix, a type class which plays a similar role to
our Shape. This allows for fully shape-polymorphic functions such
as map. However, standard Haskell arrays do not support at-least
constraints and rank generalisation which are crucial for imple-
menting highly expressive operations such as sum from Section 4.3.
This inflexibility precludes many advanced uses of shape polymor-

2010/4/2

Speedup of Laplace on 1.4GHz UltraSPARC T2
7

5.25

3.5

Speedup

1.75

0

123 456 7 8 910111213141516
No of threads on 8 PEs

O Relative speedup, matrix size 300x300, 1000 iterations

Speedup of Laplace on 2x Quad-Core 3GHz Xeon
3

2.25

15

Speedup

0 I n n n n n n 1
1 2 3 4 5 6 7 8

No of threads
Z Relative speedup, matrix size 400 x 400, 5000 iterations

Figure 8. Laplace solver

phism described in this paper and makes even unboxed arrays based
on the same interface a bad choice for a parallel implementation.

Partly motivated by the shortcomings of standard arrays, nu-
merous Haskell array libraries have been proposed in recent years.
These range from highly specialised ones such as ByteString [7] to
full-fledged DSLs for programming GPUs [12]. However, these li-
braries do not provide the same degree of flexibility and efficiency
for manipulating regular arrays if they support them at all. Our own
work on Data Parallel Haskell is of particular relevance in this con-
text as the work presented in this paper shares many of its ideas and
large parts of its implementation with that project. Indeed, Repa can
be seen as complementary to DPH. Both provide a way of writing
high-performance parallel programs but DPH supports irregular,
arbitrarily nested parallelism which requires it to sacrifice perfor-
mance when it comes to purely regular computations. One of the
goals of this paper is to plug that hole. Eventually, we intend to in-
tegrate Repa into DPH, providing efficient support for both regular
and irregular arrays in one powerful framework.

9.2 C++ Array Libraries

Due to its powerful type system and its wide-spread use in high-
performance computing, C++ has a significant number of array li-
braries that are both fast and generic. In particular, Blitz++ [23] and
Boost.MultiArray [1] feature multidimensional arrays with a re-
stricted form of shape polymorphism. However, our library is much

Speedup of FFT3D on 1.4GHz UltraSPARC T2
9

6.75

4.5

Speedup

2.25

1 3 5 7 9 11 13 15 17 19
No of threads on 8 PEs
— Relative speedup, size 64x64x64

Speedup of FFT3D on 2x Quad-Core 3GHz Xeon
5

3.75
2.5

1.25

-
N
w
~
o b
[e2)
~
(o]

— Relative speedup, size 128x128x128

Figure 9. Fast Fourier transform

more flexible in this regard and also has the advantage of a natural
parallel implementation which neither of the two C++ libraries pro-
vide. Moreover, these approaches are inherently imperative while
we provide a purely functional interface which allows programs to
be written at a much higher level of abstraction.

9.3 Array Languages

In addition to libraries, there exist a number of special-purpose
array programming languages. Of these, Single Assignment C
(SACQ) [18] has exerted the most influence on our work and is the
closest in spirit as it is purely functional and strongly typed. SAC
provides many of the same benefits as Repa: high-performance
arrays with shape polymorphism, expressive collective operations
and extensive optimisation. In addition to a rich standard library, the
basic building blocks of SAC programs are with-loops, a special-
purpose language construct for constructing, traversing and reduc-
ing arrays. With-loops allow array programs to be written at a high
level of abstraction and are also amenable to aggressive loop fusion
which is crucial for achieving good performance.

While providing a similar level of expressiveness and perfor-
mance, Repa also has the significant advantage of being integrated
into a mainstream functional language and not requiring specific

2010/4/2

compiler support. This allows Repa programs to utilise the rich
Haskell infrastructure and to drop down to a very low level of ab-
straction if required in specific cases. This, along with strong typing
and purity, are also the advantages Repa has over other array lan-
guages such as APL, J and Matlab [2, 8, 22].

Acknowledgements. We are grateful to Arvind for explaining the
importance of delaying index space transformations and thank Si-
mon Winwood for comments on a draft. This research was funded
in part by the Australian Research Council under grant number
LP0989507.

References

[1] The Boost Multidimensional Array Library, April 2010. URL
http://www.boost.org/doc/libs/1_42_0/1libs/multi_
array/doc/user.html.

[2] C. Burke. J and APL. Iverson Software Inc., 1996.

[3] M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. In ICFP ’05: Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming, pages 241—
253, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-064-7.
doi: http://doi.acm.org/10.1145/1086365.1086397.

[4] M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow.
Associated types with class. In POPL ’05: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Sysposium on Principles of Programming
Languages, pages 1-13. ACM Press, 2005. ISBN 1-58113-830-X.
doi: http://doi.acm.org/10.1145/1040305.1040306.

[5] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller,
and S. Marlow. Data Parallel Haskell: a status report. In DAMP 2007:
Workshop on Declarative Aspects of Multicore Programming. ACM
Press, 2007.

[6] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: From lists
to streams to nothing at all. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP 2007).
ACM Press, 2007.

[7] D. Coutts, D. Stewart, and R. Leshchinskiy. Rewriting haskell strings.
In Practical Aspects of Declarative Languages 8th International Sym-
posium, PADL 2007, pages 50-64. Springer-Verlag, Jan. 2007.

[8] A. Gilat. MATLAB: An Introduction with Applications 2nd Edition.
John Wiley & Sons, 2004. ISBN 978-0-471-69420-5.

[9] J. H. v. Groningen. The implementation and efficiency of arrays in
Clean 1.1. In W. Kluge, editor, Proceedings of Implementation of
Functional Languages, 8th International Workshop, IFL "96, Selected
Papers, number 1268 in LNCS, pages 105-124. Springer-Verlag,
1997.

[10] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[11] J. Launchbury and S. Peyton Jones. Lazy functional state threads. In
Proceedings of Programming Language Design and Implementation
(PLDI 1994), pages 24-35, New York, NY, USA, 1994. ACM.

[12] S. Lee, M. M. T. Chakravarty, V. Grover, and G. Keller. GPU kernels
as data-parallel array computations in haskell. In EPAHM 2009:

Workshop on Exploiting Parallelism using GPUs and other Hardware-
Assisted Methods, 2009.

[13] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Ob-
jective Caml system, release 3.11, documentation and user’s manual.
Technical report, INRIA, 2008.

[14] J. Mathews and K. Fink. Numerical Methods using MATLAB, 3rd
edition. Prentice Hall, 1999.

[15] S. Peyton Jones. Call-pattern specialisation for Haskell programs. In
Proceedings of the International Conference on Functional Program-
ming (ICFP 2007), pages 327 =337, 1997.

[16] S.Peyton Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty.
Harnessing the multicores: Nested data parallelism in Haskell. In

R. Hariharan, M. Mukund, and V. Vinay, editors, IJARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2008), Dagstuhl, Germany, 2008. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. URL http:
//drops.dagstuhl.de/opus/volltexte/2008/1769.

[17] E. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for
Parallel and Distributed Computing. Springer-Verlag, 2003.

[18] S.-B. Scholz. Single assignment C — efficient support for high-level
array operations in a functional setting. Journal of Functional Pro-
gramming, 13(6):1005-1059, 2003.

[19] T. Schrijvers, S. Peyton-Jones, M. M. T. Chakravarty, and M. Sulz-
mann. Type checking with open type functions. In Proceedings of
ICFP 2008 : The 13th ACM SIGPLAN International Conference on
Functional Programming, pages 51-62. ACM Press, 2008.

[20] W. Swierstra and T. Altenkirch. Dependent types for distributed
arrays. In Trends in Functional Programming, volume 9, 2008.

[21] D. A. Terei. Low Level Virtual Machine for the Glasgow Haskell
Compiler, 2009.

[22] The International Standards Organisation. Programming Language
APL. 1SO standard 8485, 1989.

[23] T. L. Veldhuizen. Arrays in Blitz++. In Proceedings of the 2nd In-
ternational Scientific Computing in Object Oriented Parallel Environ-
ments (ISCOPE’98). Springer-Verlag, 1998. ISBN 978-3-540-65387-
5.

[24] H. Xi. Dependent ML: an approach to practical programming with
dependent types. Journal of Functional Programming, 17(2):215-286,
2007.

2010/4/2

