
A Short Cut to DeforestationAndrew Gill John Launchbury Simon L Peyton JonesDepartment of Computing Science, University of Glasgow G12 8QQfandy,jl,simonpjg@dcs.glasgow.ac.ukThis paper is to appear in FPCA 1993.AbstractLists are often used as \glue" to connect separate parts ofa program together. We propose an automatic techniquefor improving the e�ciency of such programs, by removingmany of these intermediate lists, based on a single, simple,local transformation. We have implemented the method inthe Glasgow Haskell compiler.1 IntroductionFunctional programs are often constructed by combining to-gether smaller programs, using an intermediate list to com-municate between the pieces. For example, the functionall, which tests whether all the elements of a list xs sat-isfy a given predicate p may be de�ned as follows (we usethe language Haskell throughout this paper (Hudak et al.[1992])): all p xs = and (map p xs)Here, p is applied to all the elements of the list xs, pro-ducing an intermediate list of booleans. These booleans are\anded" together by the function and, producing a singleboolean result. The intermediate list is discarded, and even-tually recovered by the garbage collector.This compositional style of programming is one reason whylists tend to be so pervasive, despite the availability of user-de�ned types. Functional languages support this tendencyby supplying a large library of pre-de�ned list-manipulatingfunctions, and by supporting special syntax for lists, such aslist comprehensions. Then, because so many functions arealready available to manipulate lists, it is easy to de�ne newfunctions which work on lists, and so on.Unfortunately, all these intermediate lists give rise to an e�-ciency problem. Each of their cons cells has to be allocated,�lled, taken apart, and �nally deallocated, all of which con-sumes resources. There are more e�cient versions of all

which do not use intermediate lists. For example, it can bere-written like this:all' p xs = h xswhere h [] = Trueh (x:xs) = p x && h xsNow no intermediate list is used, but this has been achievedat the cost of clarity and conciseness compared with theoriginal de�nition.We want to eat our cake and have it too. That is, we wouldlike to write our programs in the style of all, but have thecompiler automatically transform this into the more e�cientversion all'.One example of just such a transformation is deforestation(Wadler [1990]). Deforestation removes arbitrary intermedi-ate data structures (including lists), but su�ers from somemajor drawbacks (Section 2). As a result, apart from aprototype incorporated into a local version of the ChalmersLML compiler (Davis [1987]), we know of no mature com-piler that uses deforestation as part of its regular optimisa-tions.In this paper we present a cheap and easy way of eliminat-ing many intermediate lists that does not su�er from thesedrawbacks. Our optimisation scheme is based on a single,simple, local transformation, and is practical for inclusionin a real compiler. It has the following characteristics:� The technique applies to most of the standard list pro-cessing functions. Examples are functions that con-sume lists, such as and and sum, expressions that cre-ate lists, such as [x..y], and functions that both con-sume and create lists, such as map, filter, ++ and thelike. In general, the technique handles any composi-tional list-consuming function, that is, one which canbe written using foldr.� The technique extends straightforwardly to improvethe state of the art in compiling list comprehensions(Section 4). Standard compilation techniques for listcomprehensions build an intermediate list in expres-sions such as[f x | x <- map g xs, odd x]Our technique automatically transforms this expres-sion to a form that uses no intermediate lists. Fur-thermore, we are able to use the same technology to

avoid intermediate lists in Haskell's array comprehen-sions (Section 5).� Like standard deforestation, our method can be ap-plied to other data structures, such as trees and othermore complicated datatypes, though we have not im-plemented this generalisation so far.The e�ects can be startling. For example, in one programwhich makes heavy use of list comprehensions (the 8-queensprogram), we have measured a three-fold speedup as a resultof applying our technique. While this is probably an upperbound on the expected improvement in larger programs, thetechnique is very cheap to implement, so it provides reason-able gains at very low cost.2 DeforestationThe core ofWadler's deforestation algorithm consists of seventransformation rules, four of which focus on terms built us-ing the case construct. Of these, apart from the rule unfold-ing function calls, the only rule which actually removes com-putation is the case-on-constructor rule. Using this rule, theterm, case (C2 t1 t2 t3) ofC1 x1 x2 -> e1C2 x1 x2 x3 -> e2C3 x1 -> e3is translated tolet x1 = t1x2 = t2x3 = t3ine2The heap object represented by the constructor C2 is neverbuilt nor examined, so saving computation. Indeed, thistransformation is precisely where the intermediate data str-ucture is eliminated, and the purpose of all the other trans-formation rules is to provide opportunities for applying thiskey one.There is a complication, however. When recursive functionsare involved there is a risk of performing in�nite transfor-mation by repeatedly unfolding the function de�nition. Toalleviate this, the algorithm has to keep track of which func-tion calls have occurred previously, and so generate a suit-able recursive de�nition when a repeat occurs. This is a foldstep in Burstall and Darlington's sense (Burstall & Darling-ton [1977]). Keeping track of these function calls and con-stantly checking for repeats introduces substantial cost andcomplexity into the algorithm. What is worse, in general it isnot foolproof. Given arbitrary programs, it is possible thatthe patterns of function calls never repeat themselves. Thisleads to in�nite unfolding, and consequent non-terminationof the compiler.Turchin addressed this problem in his supercompiler (whichperformed a deforestation-like transformation) by using ageneralisation phase (Turchin [1988]). Function calls aresqueezed into fairly restricted patterns which the user hasto decide beforehand.

foldr k z [] = zfoldr k z (x:xs) = k x (foldr k z xs)and xs = foldr (&&) True xssum xs = foldr (+) 0 xselem x xs = foldr (\ a b -> a == x || b)False xsmap f xs = foldr (\ a b -> f a : b) [] xsfilter f xs = foldr (\ a b -> if f athen a:belse b)[] xsxs ++ ys = foldr (:) ys xsconcat xs = foldr (++) [] xsfoldl f z xs = foldr (\ b g a -> g (f a b))id xs zFigure 1: Examples of functions using foldrWadler's solution is di�erent. He attacks the problem bylimiting the form of the input program to compositions offunctions in so-called treeless form. This is a particularly re-strictive form of function de�nition which severely limits thegeneral applicability of the algorithm. Not only is it �rst-order, but all variables must be used linearly, and no internaldata structures are permitted. These restrictions did how-ever allow two theorems to be proved: �rst that the resultwas also in treeless form (guaranteeing that no intermediatestructures were built), and secondly that the algorithm doesalways terminate (Ferguson & Wadler [1988]).There have been various attempts to lift some of Wadler's re-strictions (Chin [1990]; Marlow & Wadler [1993]), but manyproblems remain.3 TransformationThe approach we take here is less purist, but more practical.We do not guarantee to remove all intermediate structures(and indeed in a general program we could not hope to doso), but we do allow all legal programs as input. Further-more, like Wadler, we do guarantee termination.In Wadler's case, proving termination was far from trivial,as recursive functions were frequently unfolded. In our case,a termination proof is trivial as we do not explicitly unfoldrecursive functions. Rather, we obtain a similar e�ect byperforming algebraic transformations on pre-de�ned func-tions.As an example of how this may occur, here is a possiblealgebraic transformation which eliminates an intermediatelist: map f (map g xs) = map (f.g) xsUnfortunately, we would need a huge set of rules to accountfor all possible pairs of functions. Our approach reduces thisset to a single rule, by standardising the way in which listsare consumed (Section 3.1), and standardising the way inwhich they are produced (Section 3.2).3.1 Consuming Lists

A function which consumes a list in a uniform fashion canalways be expressed by replacing the conses in the list witha given function �, and replacing the nil at the end of thelist by a given value z. This operation is encapsulated bythe higher-order function foldr, which can be informallyde�ned like this:foldr (�) z [x1; x2; : : : ; xn] = x1 � (x2 � (� � � (xn � z)))The Haskell de�nition of foldr is given in Figure 1. Verymany list-consuming functions are \uniform" in this sense,and can be expressed directly in terms of foldr, and someof these are also given in Figure 1. The �rst three functions,and, sum and elem, are purely list consumers (elem is a list-membership test). The next few both consume and producelists. Finally, even foldl, which consumes a list in a left-associative way, can be de�ned in terms of foldr.One tempting method of exploiting this regularity is to ex-press programs using foldr, and then use a small set oftransformation rules on foldr. However this scheme failsbecause there is no general rule to transform a compositionof foldr with itself. For example consider:and (map f xs)We can begin by unfolding and and map to their foldr equiv-alents: foldr (&&) True (foldr ((:).f) [] xs)But now we are stuck because of the lack of foldr/foldrrule. foldr k1 z1 (foldr k2 z2 e) = ???It is certainly possible to invent a more specialised transfor-mation, such as this one:foldr k1 z1 (foldr ((:).k2) [] e) = foldr (k1.k2) z1 eThis will successfully transform our example to:foldr ((&&).f) True xsBut now we have run straight back into the problem of anexplosion in the number of rules. How do we know when wehave \enough" rules? How can we be sure we do not have\redundant" rules?The reason that there is no foldr/foldr rule is becausethe outer foldr has no \handle" on the way in which theinner foldr is producing its output list. We need a wayof identifying exactly where in a term the cons cells of anoutput list are being produced: in e�ect, we need the dualto foldr.3.2 Producing ListsThe e�ect of the application foldr k z xs is to replace eachcons in the list xs with k and to replace the nil in xs withz. So if we abstract list-producing functions with respect tocons and nil , we can obtain the e�ect of the foldr merelyby applying the abstracted list-producing function to k andz. Equivalently, if we de�ne a function build like this:build g = g (:) []then we may hope that, for all g; k and z,foldr k z (build g) = g k z

We call this equivalence the foldr/build rule. To ensureits validity we need to impose some restrictions on g, but wewill address that later (Section 3.4).To take an example, consider the from function which whenapplied to two numbers produces a list of numbers, startingfrom the �rst and counting up to the second. Originally wemay have de�ned from byfrom a b = if a>bthen []else a : from (a+1) bbut abstracting the de�nition over cons and nil gives,from' a b = \ c n -> if a>bthen nelse c a (from' (a+1) b c n)The original from can be obtained thus:from a b = build (from' a b)We can now deforest uses of this new version of from so longas its list is consumed using foldr. For example,sum (from a b)= foldr (+) 0 (build (from' a b))= from' a b (+) 0(We annotate instances of the foldr/build rule in all ourexamples using foldr � � � build to make the reductionexplicit.) Now no intermediate list is produced. Deforesta-tion has been successful.In short, provided we build lists using build and consumethem using foldr, the foldr/build rule alone su�ces todeforest compositions of such functions. Figure 2 gives thede�nitions of a number of list-producing functions in termsof build. The de�nitions of functions which consume a listas well as producing one involve foldr as well as build.Functions which simply consume a list are de�ned solely interms of foldr, as in Figure 1, and are not repeated here.3.3 An example: unlinesAs a slightly larger example of the foldr/build rule in ac-tion, consider the function unlines, taken from the Haskellprelude.unlines ls = concat (map (\l -> l ++ ['\n']) ls)This function takes a list of strings, and joins them together,inserting a newline character after each one. An intermedi-ate version of the list of strings is created, together withan intermediate version of each string (when the newlinecharacter is appended).To deforest this de�nition, we �rst unfold the standard func-tions concat, map and ++, using the de�nitions in Figure 2,to give:unlines ls = build(\c0 n0 -> foldr (\xs b -> foldr c0 b xs) n0 (build(\c1 n1 -> foldr (\l t -> c1 (build(\c2 n2 -> foldr c2 (foldr c2 n2 (build(\c3 n3 -> c3 '\n' n3))) l)) t) n1 ls)))

map f xs = build (\ c n -> foldr (\ a b -> c (f a) b) n xs)filter f xs = build (\ c n -> foldr (\ a b -> if f a then c a b else b) n xs)xs ++ ys = build (\ c n -> foldr c (foldr c n ys) xs)concat xs = build (\ c n -> foldr (\ x y -> foldr c y x) n xs)repeat x = build (\ c n -> let r = c x r in r)zip xs ys = build (\ c n -> let zip' (x:xs) (y:ys) = c (x,y) (zip' xs ys)zip' _ _ = nin zip' xs ys)[] = build (\ c n -> n)x:xs = build (\ c n -> c x (foldr c n xs))Figure 2: De�nitions of standard functions using foldr and buildNow we apply the foldr/build rule in the two places thatare marked, to give:unlines ls = build(\c0 n0 ->(\c1 n1 -> foldr (\l t -> c1 (build(\c2 n2 -> foldr c2 ((\c3 n3 -> c3 '\n' n3) c2 n2) l)) t) n1 ls)(\xs b -> foldr c0 b xs) n0)Performing three �-reductions gives:unlines ls = build(\ c0 n0 -> foldr (\l t -> foldr c0 t(build(\c2 n2 -> foldr c2 (c2 '\n' n2) l))) n0 ls)This in turn exposes a new opportunity to use the foldr/ build rule. After using it, and performing some more�-reductions we get:unlines ls = build(\c0 n0 -> foldr (\l b -> foldr c0 (c0 '\n' b) l) n ls)Now no more applications of the transformation are possible.We may choose to leave the de�nition in this form, so thatany calls of unlines may also be deforested. Alternatively,we may now inline build, revealing the (:)'s and []. Aftersimpli�cation we get,unlines ls= foldr (\l b -> foldr (:) ('\n' : b) l) [] lsIf we also inline foldr we get,unlines ls = h lswhere h [] = []h (l:ls) = g lwhere g [] = '\n' : h lsg (x:xs) = x : g xsThis is as e�cient a coding of unlines as we may reasonablyhope for.The example also makes it clearer how the technique works:the foldr at the input end of a list-consuming function \can-cels out" the build at the output end of a list-producingone. This cancellation may in turn bring together a fur-

ther foldr/build pair, and so on. A pipeline (composition)of list-transforming functions gives rise to a composition offoldrs and builds which can crudely be pictured like this:: : : foldr] [build foldr] [build : : :(The square brackets indicate the related origin of the pair.)But now, by simply rebracketing we get the composition: : : [foldr build] [foldr build] : : :and the inner foldr/build pairs now \cancel".3.4 CorrectnessThere appears to be a serious problem with the approachwe have described: the foldr/build rule is patently false!For example,foldr k z (build (\c n -> [True]))6�(\c n -> [True]) k zUsing the de�nitions of foldr and build we can see thatthe left-hand side is k True z, while the right hand side isjust [True]. These two values do not even necessarily havethe same type!In this counter-example the trouble is that the functionpassed to build constructs its result list without using cand n. The time we can guarantee that the foldr/buildrule does hold is when g truly is a list which has been \uni-formly" abstracted over all its conses and nil .It turns out that we can guarantee this property simply byrestricting g's type! Suppose that g has the typeg : 8�:(A! � ! �)! � ! �for some �xed type A. Then, informally, we can argue asfollows. Because g is polymorphic in �, it can only manufac-ture its result (which has type �) by using its two arguments,k and z. Furthermore, the types of k and z mean that theycan only be composed into an expression of the form(k e1 (k e2 : : : (k en z) : : :))which is exactly the form we require.This arm waving is obviously unsatisfactory. Rather delight-fully, the theorem we want turns out to be a direct conse-quence of the \free theorem" for g's type (Reynolds [1983];Wadler [1989]).

TheoremIf for some �xed A we haveg : 8�:(A! � ! �)! � ! �then foldr k z (build g) = g k zProofThe \free theorem" associated with g's type is that, for alltypes B and B0, and functions f : A ! B ! B, f 0 : A !B0 ! B0, and (a strict) h : B ! B0 the following implicationholds: (8a : A: 8b : B: h (f a b) = f 0 a (h b))) (8b : B: h (gB f b) = gB0 f 0 (h b))where gB and gB0 are the instances of g at B and B0 respec-tively. (From now on we will drop the subscripts from g aslanguages like Haskell have silent type instantiation).We now instantiate this result. Let h = foldr k z, f = (:),and f 0 = k. Now the theorem says,(8a : A: 8b : B: foldr k z (a : b) = k a (foldr k z b))) (8b : B: foldr k z (g (:) b) = g k (foldr k z b))The left hand side is a consequence of the de�nition of foldr,so the right hand side follows. That is,8b : B: foldr k z (g (:) b) = g k (foldr k z b)Now let b = []. By de�nition, foldr k z [] = z, so �nallywe obtain, foldr k z (g (:) []) = g k zwhich, given the de�nition of build, is exactly what we re-quire. 2The impact of this result is signi�cant: so long as build isonly applied to functions of the appropriate type, the defor-estation transformations may proceed via the foldr/buildrule with complete security. Furthermore, since all our pro-gram transformations preserve types, it is only necessary tocheck that the original introductions of build (in Figure 2)are correct.The ideal way to proceed would be to de�ne build with thetype:build : 8�: (8�: (�! � ! �)! � ! �)! List �and then have the compiler's type-checker con�rm that allapplications of build are well-typed. Unfortunately, Hask-ell's type system is based on the Hindley-Milner system (Mil-ner [1978]), which does not allow local quanti�cation; thatis, the 8's must all be at the top level of a type. (A more gen-eral type system, such as that of Ponder (Fairbairn [1985])or Quest (Cardelli & Longo [1991]) would allow this type forbuild, but they lack the type-inference property.)We sidestep this by building into the compiler trusted def-initions of all the standard functions (map, filter, concatand so on) in terms of build and foldr. Since the pro-grammer cannot introduce new builds, security is assured.It is also straightforward to introduce a special typing ruleinto the type checker to allow build to be written by theprogrammer.

4 List ComprehensionsList comprehensions are a particularly powerful form of syn-tactic sugar, and have become quite widespread in functionalprogramming languages. For example, given two lists ofpairs r1 and r2, each of which is intended to represent arelation, the relational join of the second �eld of r1 with the�rst �eld of r2 can be expressed like this:[(x,z) | (x,y1) <- r1, (y2,z) <- r2, y1==y2]This can be read as \the list of all pairs (x,z), where (x,y1)is drawn from r1, (y2,z) is drawn from r2, and y1 is equalto y2".There are well established techniques for translating (or\desugaring") list comprehensions into a form which guar-antees to construct only one cons cell for each element ofthe result (Augustsson [1987]; Wadler [1987]).However these techniques view each list comprehension inisolation. Very commonly, a list comprehension is fed di-rectly into a list-consuming function | for example, it maybe appended to some other list. It is also very common forthe generators in a comprehension to be simple list produc-ers. For example:[f x | x <- map g xs, odd x]Clearly we would like to ensure that list comprehensionsare translated in a way which allows the intermediate listsbetween them and their producers or consumer to be elim-inated. It turns out not only can we do this, but it ac-tually makes the translation rules simpler than before, be-cause some of the work usually done in the desugaring oflist comprehensions is now done by the later foldr/buildtransformation.Figure 3 gives the revised desugaring rules. The T E schemetranslates expressions in a rich syntax including list compre-hensions into a much simpler functional language. (Only therules which concern us here from the T E scheme are given.)The �rst two rules deal with explicitly-speci�ed lists, such as[a,b,c] and enumerations, such as [1..4]. The third ruledeals with list comprehensions, by invoking the T F scheme.Notice that in each case a build is used, ready to cancelwith the foldr from any list consumer.The T F scheme is used only for list comprehensions, andhas the following de�ning property:T F [][E][] c n = foldr c n EThe T F scheme has three cases: either the quali�ers afterthe \j" are empty, or they begin with a guard B, or theybegin with a generator P L (in general P can be a pat-tern, not just a simple variable). Notice, crucially, that inthis third case, the list L is consumed by a foldr, so anybuild at the top of L will cancel with the foldr.4.1 An exampleConsider again the example given above:[f x | x <- map g xs, odd x]

T E :: Expr ! CoreExprT E [][[E1,E2; : : : ; En]][] = build (\c n -> c T E[][E1][] (c T E[][E2][] � � � (c T E [][En][] n)))T E [][[E1..E2]][] = build (\c n -> from' T E [][E1][] T E [][E2][] c n)T E[][[E j Q]][] = build (\c n ->(T F[][[E j Q]][] c n))T F :: Expr ! CoreExpr ! CoreExpr ! CoreExprT F[][[E j]][] c n = c T E [][E][] nT F[][[E j B ; Q]][] c n = if T E[][B][] then T F[][[E j Q]][] c n else nT F[][[E j P L; Q]][] c n = foldr f n T E[][L][]where f P b = T F[][[E j Q]][] c bf b = bFigure 3: List and List Comprehension Compilation RulesThe standard technology would construct an intermediatelist for the result of the map. Using the rules in Figure 3instead, desugaring the list comprehension will give:build (\ c0 n0 ->foldr h n0 (map g xs)whereh x b = if odd x then c0 (f x) b else b)Unfolding map gives:build (\ c0 n0 ->foldr h n0 (build(\ c1 n1 -> foldr (c1.g) n1 xs))whereh x b = if odd x then c0 (f x) b else b)Now we can apply the foldr/build rule, giving:build (\ c0 n0 ->(\ c1 n1 -> foldr (c1.g) n1 xs) h n0whereh x b = if odd x then c0 (f x) b else b)Now some �-reductions can be done:build (\ c0 n0 -> foldr (h.g) n0 xswhereh x b = if odd x then c0 (f x) b else b)Lastly, foldr and build can be unfolded, and after furthersimpli�cation, we get the e�cient expression:h' xswhere h' [] = []h' (x:xs) = if odd x'then f x' : h' xselse h' xswhere x' = g x5 Array ComprehensionsThe Haskell language includes an array data type, in whichan array is speci�ed \all at once" in an array comprehen-

sion. (This contrasts with imperative languages, which usu-ally modify arrays incrementally.) An example of an arraycomprehension is:arr :: Array Int Intarr = array (1,10) [n := n * n | n <- [1..10]]This de�nes an array arr with 10 elements of type Int, in-dexed with the Ints 1 to 10, in which each element containsthe square of its index value. The part between the squarebrackets is just an ordinary list comprehension, which pro-duces a list of index-value pairs (the operator (:=) is an in�xpairing constructor). The function array takes the boundsof array, and the list of index-value pairs, and constructs anarray from them. There is no requirement to use a list com-prehension in an application of array; the second argumentof array could equally well be constructed with any otherlist-producing function.Clearly we would like to eliminate the intermediate list ofindex-value pairs altogether. After all, it is no sooner con-structed by the list comprehension than it is taken apart byarray. However, we can only use our foldr/build defor-estation technique if array consumes the list of index-valuepairs with foldr. So long as array is opaque we cannoteliminate the intermediate list.So how can array be expressed? Presumably it must al-locate a suitably sized array, and then �ll in the elementsof this array one by one, by working down the list of index-value pairs. In other words, we have to build Haskell's mono-lithic immutable arrays on top of incrementally updateablearrays. We have done exactly this in our compiler, as wenow describe brie
y.5.1 Monads for mutable arraysOur approach to mutable arrays is based on monads (Moggi[1989]; Wadler [1990]).1 We de�ne an (abstract) type AT a b,which we think of as the type of \array transformers" for ar-rays with indices of type a, and values of type b. That is,1The approach we describe here is not the only way to implementarrays | for example it has the disadvantage of being rather sequen-tial. The important point is that any implementation of array com-prehensions must consume the list of index{value pairs. If (and onlyif) it does so with a compiler-visible foldr, then our transformationwill eliminate the intermediate list.

a value of type AT a b is an array transformer which, whenapplied to a particular array, will transform that array insome way.We de�ne the following functions to manipulate array trans-formers:createAT :: (a,a) -> AT a b -> Array a bwriteAT :: a -> b -> AT a bseqAT :: AT a b -> AT a b -> AT a bdoneAT :: AT a bThe function createAT takes the bounds of an array, and anarray transformer, allocates a suitably sized array, appliesthe array transformer to it, and returns the resulting ar-ray. The combinator seqAT combines two array transformersin sequence, while doneAT is the identity transformer. Fi-nally, writeAT is a primitive array transformer which writesa given value into the array. Array transformers can be com-piled to e�cient code; for example, writeAT can be compiledto a single assignment statement of the formA[i] = v;(Our compiler generates C as its target code.) For details,the interested reader is referred to Peyton Jones & Wadler[1993].Using these four functions we de�ne array as follows:array bounds iv_pairs = createAT bounds actionwhereaction = foldr assign doneAT iv_pairsassign (a := b) n = writeAT a b `seqAT` nNotice that the list of index-value pairs is now consumedby an explicit foldr, so that the list can be deforested if ithappens to be produced by a build.5.2 Deforesting an array comprehensionTo illustrate the deforestation of array comprehensions, con-sider the example with which we began:arr = array (1,10) [x := x * x | x <- [1..10]]We can now use our de�nition of array and the desugaringrules of Figure 3 to transform this to:arr = createAT (1,10) actionwhereaction = foldr assign doneAT (build(\ c n -> foldr h n (build(\c1 n1 -> g 1whereg x = if x > 10then n1else c1 x (g (x+1))))whereh x b = c (x := x * x) b))assign (a := b) n = writeAT a b `seqAT` nNow we can use the foldr/build rule, and the usual �-reductions, to give:

arr = createAT (1,10) actionwhere action = g 1g x = if x > 10then doneATelse writeAT x (x * x) `seqAT` g (x+1)This �nal form uses no intermediate list of pairs, and �llsup the array with an e�cient, tail-recursive function, g.To summarise, our explicit, monadic formulation of arrayinteracts very nicely with the foldr/build deforestationtechnique, so that intermediate lists in array comprehensionscan be eliminated without requiring any new machinery.6 Traversing a List Once Rather Than TwiceThere are many examples of lists getting consumed twice.In his thesis, Hughes noticed that such functions can havepoor space behaviour in sequential implementations. Forexample, the average function de�ned by,average xs = sum xs / length xstraverses the list xs twice. In a sequential implementation,the list xs cannot be consumed and discarded lazily, but atsome point will exist in its entirety. Hughes solution was topropose a parallel construct to allow the computations to beinterleaved (Hughes [1983]).The method of this paper has an interesting bearing here.Re-expressing both functions in terms of foldr gives:average xs = foldr (+) 0 xs / foldr inc 0 xswhere inc x n = n+1Now we have two foldr traversals of the same list. It is aneasy (and generally applicable) transformation to combinethese into a single traversal as follows.average xs = p / qwhere (p,q) = foldr f (0,0) xsf x ~(p,q) = (x+p, q+1)Now the list is traversed once, and may be consumed anddiscarded lazily. Furthermore, before the transformation thelist will certainly be built, because it is used twice (the com-piler would not usually substitute for xs if it occurs twice).After the transformation xs occurs only once, so its de�ni-tion may be inlined, and hence may perhaps never be builtat all!Even if the consuming foldr cannot be paired with a build,the program can be more e�cent. As another example con-sider qsort:qsort [] = []qsort (x:xs) = qsort [a | a <- xs , a < x]++ [x] ++qsort [a | a <- xs , a >= x]Clearly xs is traversed twice. But, after translating the listcomprehension into foldr, we can use the method above toobtain a single traversal.

7 Implementation and preliminary measurementsWe have implemented the ideas explained above in the Glas-gow Haskell compiler (Peyton Jones [1993]). The compilerpasses which are a�ected by deforestation are as follows:1. After typechecking, the program is desugared. Thispass is now slightly simpler than before, as discussedin Section 4.2. A sophisticated transformation pass, which we call the\simpli�er", is now applied to the program. Amongother things, it replaces some variables by their values(inlining) and performs �-reduction. The de�nitionsof the standard list-processing functions in Figure 2are made known to the simpli�er so that it will inlinethem. The main change to the simpli�er was to addthe foldr/build transformation. Of course, at thisstage, we do not inline foldr and build!3. We now run the simplifer again, this time unfoldingthe de�nition of build and foldr. The simpli�er canalso perform any reductions which are thereby madepossible. One important and common simpli�cation isto reduce foldr (:) [] xs to xs.7.1 Initial ResultsTo get an idea of the upper bound for the improvementwhich can be gained by our approach, we examine the wellknown 8-queens program, adapted from (Bird & Wadler[1988]). Simply printing the results would mean that I/Otakes up most of the time, so instead we force evaluationby the simple expedient of adding up the result. The tradi-tional 8-queens ran too fast on our benchmarking machineto obtain reliable timings, so we use 10-queens:main = (print.sum.concat.queens) 10wherequeens :: Int -> [[Int]]queens 0 = [[]]queens m = [p ++ [n] | p <- queens (m-1),n <- [1..10],safe p n]safe :: [Int] -> Int -> Boolsafe p n = and [(j /= n) && (i + j /= m + n)&& (i - j /= m - n)| (i,j) <- zip [1..] p]where m = length p + 1This example has several intermediate lists, and looks idealfor our scheme to optimise. The heart of the algorithm ischecking a list of booleans (built using a list comprehension),just like the function all in Section 1. Because of this weexpect queens to give a feel for an upper bound of what ouroptimisation can do.The original program run without our optimisation, and av-eraged over several runs took 24.4 seconds and consumed179 megabytes of heap. The transformed program underthe same conditions ran about three times faster (8.8 sec-onds) and allocated only 20% as much heap (36 megabytes).Similar measurements for more realistic programs is still on-

going, but our preliminary results suggest (unsurprisingly)that the speedups are much more modest.8 Further WorkThere are several directions in which this work can be de-veloped.8.1 Extending the scope of the transformationAt present we can only use build in the de�nitions of \built-in" standard list-processing functions. There are two waysin which this may be improved. The �rst is to make buildavailable to programmers. This would necessitate extendingthe type checker to ensure that its calls are valid, but thatposes no particular di�culty.More challenging is for the compiler to spot functions whichmay be de�ned in terms of build and foldr and rede�nethem accordingly. This is likely to be quite feasible, so longas the compiler is only expected to notice the more obviousexamples. This has the bene�t that the programmer needknow nothing about optimisations internal to the compiler,and may write programs in whatever style is most appropri-ate for the application.Another current limitation is that we do not attempt toperform deforestation across function boundaries. That is,if a function f has a list as its result, and the transformationsystem does not inline the function at its call site(s), then nodeforestation will occur between f and its callers. Indeed,it seems impossible to do so without changing the type ofthe result of f. Nonetheless, it is interesting to speculatewhether some systematic transformation to build-like formof such list-returning functions would be possible.Experiments with inter-function optimisations have beendone by hand with encouraging performance results. For ex-ample 10-queens showed a further signi�cant speedup wheninter-function optimisations were used in conjunction withthe foldr/build rule. However the e�ects of transformingall list producing functions in this way may be detrimentalto the overall performance, because not all lists are con-sumed using a foldr based function. Some sort of analysistechnique could help here, but some code duplication looksinevitable.Another obvious extension is to generalise the idea to arbi-trary algebraic data types. Both foldr and build generalisevery naturally to these other types, and corresponding trans-formations apply. The categorical properties of these oper-ators (the so-called catamorphisms) have been well studied.For example, Fokkinga et al. [1991] show that any attributegrammar may be expressed by a single catamorphism.8.2 Dynamic deforestationThe transformation we describe works only for statically-visible compositions of foldr and build. Would it be possi-ble also to spot such compositions at run time? What wouldbe required would be an extra constructor in the list datatype, like this:

data List a= Nil| Cons a (List a)| Build ((a -> b -> b) -> b -> b)The new Build constructor has exactly the type of buildgiven earlier, namely:Build : 8�:(8�:(�! � ! �)! � ! �)! List �Now, the function foldr can be de�ned as follows:foldr k z Nil = zfoldr k z (Cons x xs) = k x (foldr k z xs)foldr k z (Build g) = g k zIf foldr k z is applied to a list which happens to have beenbuilt with Build, then it applies the function inside theBuild to k and z. If any function which expects to a listto be either a Cons or Nil �nds a Build instead, it just ap-plies the function inside the Build to Cons and Nil, and theresult now really will be a Cons/Nil list.Among other things, this turns out to implement \bone idleappend", which is part of the folk lore (Sleep & Holmstrom[1982]). It is well known that left-bracketed associations ofappend, such as (xs++ys)++zs, are very ine�cient to exe-cute, because xs gets traversed twice. It has often been sug-gested that ++ should at runtime take a look at its �rst argu-ment to see if it looks like another application of ++, and if sosimply rearrange itself to the more e�cient xs++(ys++zs).A closely related trick is the \top-level append optimisa-tion". When outputting a list of characters to a �le, if theoutput mechanism recognises that it is being asked to out-put (xs++ys), then it does not actually need to append xsand ys; rather it can simply output them one after the other.This, too, is subsumed by our dynamic deforestation tech-nique, provided that the list is consumed by a foldr, whichis the case for our monadic form of I/O2 (Peyton Jones &Wadler [1993]).9 LimitationsA crop of limitations arises when we consider functions suchas tail and foldr1. Neither of these functions treat allthe cons cells in their inputs identically. In particular, tailtreats the �rst cons specially, and foldr1 the last. To tryto adapt the foldr/build transformation to cases such asthese seems to add so much complication that the originalsimplicity is lost. It seems reasonable that functions whichdo not have regular recursive patterns really need full scaledeforestation using fold/unfold transformations, and thatwe should not expect to �nd short cuts in these cases. Ofcourse, from an engineering point of view, such traversalmay be su�ciently infrequent to mean that it is simply notworth while going to any e�ort to remove such intermediatelists.A more serious limitation involves zip. Although consider-ing zip as a list producer is straightward, there seems tobe no easy way to extend the technique here so that bothinput lists to zip may be deforested. Note that it is easyto ensure that one or other of the input lists is available for2More commonly, the mechanism which consumes the list of char-acters to be printed is part of the runtime system.

deforestation as zip may be de�ned in terms of foldr asfollows. zip xs ys = foldr f (\ _ -> []) xs yswhere f x g [] = []f x g (y:ys) = (x,y) : g ysThe foldr traverses xs constructing a function which takesys and builds the zipped list. The list xs may disappearusing the foldr/build transformation, but ys never will.10 Related WorkThis concept of parameterising over a list has been con-sidered before. Parameterising over the nil of a list hasbeen proposed as a possible optimisation over traditionallists (Hughes [1984]). In particular, this leads to constant-time append operations.This idea of optimising append using parameterisation overnil was taken one step further by Wadler [1987], who de-scribed a global transformation which removes many ap-pends from a program using this improved representation oflists.After completing this paper we were introduced to an aston-ishing paper by Burge [1977]. Despite the early date of thispaper, Burge presents many of the essential ideas we havedescribed, including the key step of parameterising over consand nil . However, he requires individual rules for each listproducing expression, therefore stopping just short of givingthe foldr/build rule, and of course his work predates listand array comprehensions.It is interesting to note that the compositional style of pro-gramming is not restricted to lazy functional languages. Wa-ters introduces a data type called series into imperative lan-guages (Pascal and LISP), which behave exactly like lazylists except that they are removed by compile time trans-formation, so never appear in the �nal object code (Waters[1991]). A number of fairly stringent conditions are imposedwhich guarantee the complete compile-time removal of se-ries. Were we to apply the same restrictions to lists, we toocould guarantee a \list-less" �nal program using the tech-niques here.Anderson & Hudak [1989] discuss the compilation of Haskellarray comprehensions, but their main focus is on the data-dependence analysis required to compile recursive array def-initions into strict computations. The important thing fortheir work is that the computation of an array element mustdepend only on elements which have already been computed.This question is quite orthogonal to our work.AcknowledgementsThe implementation of the Glasgow Haskell compiler is ateam project. Apart from ourselves, the main participantshave been Will Partain, Cordy Hall, Patrick Sansom andAndr�e Santos. In particular, the simpli�er we modi�ed waswritten by Andr�e, we would like to thank him for directingus around it. Thanks, also, to Phil Wadler for help with the\free theorem" for build.This work was done as part of the SERC GRASP project.

It was also supported by the SERC studentship, number91308622.BibliographyS Anderson & P Hudak [March 1989], \E�cient compilationof Haskell array comprehensions," Dept Comp Sci,Yale University.L Augustsson [1987], \Compiling lazy functional languages,part II," PhD thesis, Dept Comp Sci, ChalmersUniversity, Sweden.R Bird & PL Wadler [1988], Introduction to Functional Pro-gramming, Prentice Hall.WH Burge [Oct 1977], \Examples of program optimization,"RC 6351, IBM Thomas J Watson Research Centre.RM Burstall & John Darlington [Jan 1977], \A transfor-mation system for developing recursive programs,"JACM 24, 44{67.L Cardelli & G Longo [Oct 1991], \A semantic basisfor Quest," Journal of Functional Programming 1,417{458.WN Chin [March 1990], \Automatic methods for programtransformation," PhD thesis, Imperial College,London.K Davis [Sept 1987], \Deforestation: Transformation of func-tional programs to eliminate intermed-ate trees,"MSc Thesis, Programming Research Group, Ox-ford University.J Fairbairn [May 1985], \Design and implementation of asimple typed language based on the lambda calcu-lus," TR 75, Computer Lab, Cambridge.AB Ferguson & PL Wadler [1988], \When will deforesationstop?," in Functional Programming, Glasgow 1988.MM Fokkinga, E Meijer, J Jeuring, L Meertens [1992],\FRATS: a parallel reduction strategy for sharedmemory," The Squiggolist 2, 20{26, KG Langen-doen & WG Vree.P Hudak, SL Peyton Jones, PL Wadler, Arvind, B Boutel,J Fairbairn, J Fasel, M Guzman, K Hammond, JHughes, T Johnsson, R Kieburtz, RS Nikhil, WPartain & J Peterson [May 1992], \Report on thefunctional programming language Haskell, Version1.2," SIGPLAN Notices 27.RJM Hughes [July 1983], \The design and implementationof programming languages," PhD thesis, Program-ming Research Group, Oxford.RJM Hughes [Oct 1984], \A novel representation of lists andits application to the function 'Reverse'," PMG-38,Programming Methodology Group, Chalmers Inst,Sweden.

S Marlow & PL Wadler [1993], \Deforestation for higher-order functions," in Functional Programming,Glasgow 1992, J Launchbury, ed., Workshops inComputing, Springer Verlag.R Milner [Dec 1978], \A theory of type polymorphism inprogramming," JCSS 13.E Moggi [June 1989], \Computational lambda calculus andmonads," in Logic in Computer Science, California,IEEE.SL Peyton Jones [1993], \The Glasgow Haskell compiler: atechnical overview," in Joint Framework for Infor-mation Technology Technical Conference, Keele.SL Peyton Jones & PL Wadler [Jan 1993], \Imperative func-tional programming," in 20th ACM Symposium onPrinciples of Programming Languages, Charleston,ACM.JC Reynolds [1983], \Types, abstraction and paramet-ric polymorphism," in Information Processing 83,REA Mason, ed., North-Holland, 513{523.MR Sleep & S Holmstrom [May 1982], \A short note con-cerning lazy reduction rules of APPEND," Univer-sity of East Anglia.VF Turchin [1988], \The algorithm of generalization inthe supercompiler," in Partial Evaluation andMixed Computation, Bj�rner, Ershov & Jones,eds., North-Holland.PL Wadler [1987], \List Comprehensions," in The Imple-mentation of Functional Programming Languages,SL Peyton Jones, ed., Prentice Hall, 127{138.PL Wadler [1989], \Theorems for free!," in Fourth Interna-tional Conference on Functional Programming andComputer Architecture, London, MacQueen, ed.,Addison Wesley.PL Wadler [1990], \Deforestation: transforming programs toeliminate trees," Theoretical Computer Science 73,231{248.PL Wadler [Dec 1987], \The concatenate vanishes," Dept ofComputer Science, Glasgow University.PL Wadler [June 1990], \Comprehending monads," in ProcACM Conference on Lisp and Functional Program-ming, Nice, ACM.R Waters [Jan 1991], \Automatic Transformation of SeriesExpressions into Loops," ACM TOPLAS 13, 52{98.

