Simple Unification-based Type Inference for GADTs

Simon Peyton Jones
Microsoft Research, Cambridge

Abstract

Generalized algebraic data types (GADTS), sometimes known as
“guarded recursive data types” or “first-class phantom types”, are a
simple but powerful generalization of the data types of Haskell and
ML. Recent works have given compelling examples of the utility
of GADTSs, although type inference is known to be difficult. Our
contribution is to show how to exploit programmer-supplied type
annotations to make the type inference task almost embarrassingly
easy. Our main technical innovation is wobbly types, which express
in a declarative way the uncertainty caused by the incremental
nature of typical type-inference algorithms.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—abstract data
types, polymorphism

General Terms Languages, Theory

Keywords generalized algebraic data types, type inference

1. Introduction

Generalized algebraic data types (GADTS) are a simple but potent
generalization of the recursive data types that play a central role
in ML and Haskell. In recent years they have appeared in the
programming language literature with a variety of names (guarded
recursive data types [25], first-class phantom types [5], equality-
qualified types [18], and so on), although they have a much longer
history in the dependent types community. Any feature with so
many names must be useful—and indeed these papers and others
give many compelling examples.

It is time to turn GADTSs from a specialized hobby into a main-
stream programming technique, by incorporating them as a con-
servative extension of Haskell (a similar design would work for
ML). The main challenge is integrating GADTs with type inference,
a dominant feature of Haskell and ML.

Rather than seeking a super-sophisticated inference algorithm,
an increasingly popular approach is to guide type inference using
programmer-supplied type annotations. With this in mind, our cen-
tral focus is this: we seek a declarative type system for a language
that includes both GADTs and programmer-supplied type annota-
tions, which has the property that type inference is straightforward.
Our goal is a type system that is predictable enough to be used by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’06 September 16-21, 2006, Portland, Oregon, USA.
Copyright © 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

50

Dimitrios Vytiniotis Stephanie Weirich
Geoffrey Washburn

University of Pennsylvania

ordinary programmers; and simple enough to be implemented with-
out heroic efforts. We make the following specific contributions:

e We specify a programming language that supports GADTs and
programmer-supplied type annotations (Section 4). The key in-
novation in the type system is the notion of a wobbly type (Sec-
tion 3), which models the places where an inference algorithm
would “guess”. The idea is that type refinements induced by
GADTs never refine wobbly types, and hence type inference is
insensitive to the order in which the algorithm traverses the ab-
stract syntax tree.

Like any system making heavy use of type annotations, we offer
support for lexically scoped type variables that can be bound
by both polymorphic type signatures and signatures on patterns
(Section 4.5 and 5.5). There is no rocket science here, but we
think our design is particularly simple and easy to specify,
certainly compared to our earlier efforts.

We explore a number of extensions to the basic system, includ-
ing improved type checking rules for patterns and case expres-
sion scrutinees, and nested patterns (Section 5).

We prove that our type system is sound, and that it is a con-
servative extension of a standard Hindley-Milner type system
(Section 6). Moreover our language can express all programs
that an explicitly-typed language could express.

We sketch a type inference algorithm for our type system that is
a modest variant of the standard algorithm for Hindley-Milner
type inference. We prove that this algorithm is sound and com-
plete (Section 6.3).

Space restrictions prohibit a complete presentation of these con-
tributions. The details of the algorithm and related technical mate-
rial are given in a companion technical report [23]".

We have implemented type inference for GADTSs, using wobbly
types, in the Glasgow Haskell Compiler (GHC). GHC’s type checker
is already very large; not only does it support Haskell’s type classes,
but also numerous extensions, such as functional dependencies,
implicit parameters, arbitrary-rank types, and more besides. An
extension that required all this to be re-engineered would be a non-
starter, and it is here that the simplicity of our GADT inference
algorithm pays off. In particular, we have successfully extended
GHC to support both GADTs and impredicative polymorphism
(described in a companion paper in this volume [22]), without
undesirable interactions with each other, or with existing features.

Our implementation has already received heavy use. The re-
leased implementation in GHC uses a more complicated scheme
than that described here, originally given in an earlier version of
this paper (see Section 7). We are in the midst of re-engineering the
implementation to match what we describe in this revised, simpler
version.

'www.cis.upenn.edu/~dimitriv/dimitriv-inference.html

2. Background

By way of background, we use a standard example to remind the
reader of the usefulness of GADTs. Here is a declaration of a Term
data type for a simply-typed language:

data Term a where

Lit :: Int -> Term Int

Inc :: Term Int -> Term Int

IsZ : Term Int -> Term Bool

If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)

Fst : Term (a,b) -> Term a

Snd :: Term (a,b) -> Term b

Term has a type parameter a that indicates the type of the term it
represents, and the declaration enumerates the constructors, giving
each an explicit type signature. We note that the type parameter a is
a “dummy” parameter used only to indicate the kind of Term, and
does not scope over the types of the constructors. All type variables
in the types of constructors are implicitly universally quantified.
We adopt this convention for the examples appearing in the rest of
this paper. Equivalently one could write

data Term :: * -> * where ...

The type signatures of the constructors only allow
one to construct well-typed terms; for example, the term
(Inc (IsZ (Lit 0))) is rejected as ill-typed, because
(IsZ (Lit 0)) has type Term Bool and that is incompatible
with the argument type of Inc.

An evaluator for terms is stunningly direct:

eval :: Term a -> a

eval (Lit i) =1

eval (Inc t) =eval t + 1

eval (IsZ t) = eval t ==

eval (If bt e) = if eval b then eval t else eval e
eval (Pair a b) = (eval a, eval b)

eval (Fst t) = fst (eval t)

eval (Snd t) = snd (eval t)

It is worth studying this definition. Note that the right hand

side of the first equation patently has type Int, not a. But, if
the argument to eval is a Lit, then the type parameter a must
be Int (because the Lit constructor only produces terms of type
Term Int), and so the right hand side has type a also. Similarly,
the right hand side of the third equation has type Bool, but in a
context in which a must be Bool. And so on.

The key ideas of the semantics for GADTS are these:

e A generalized data type is declared by enumerating its construc-
tors, giving an explicit type signature for each. In conventional
data types in Haskell or ML, bthe result type of a data construc-
tor must be the type constructor applied to all of the type pa-
rameters of the data constructor. In a generalized data type, the
result type must still be an application of the type constructor,
but the argument types are arbitrary. For example Lit mentions
no type variables, Pair has a result type with structure (a,b),
and Fst mentions some, but not all, of its universally-quantified
type variables.

The data constructors are functions with ordinary polymorphic
types. There is nothing special about how they are used to
construct terms, apart from their unusual types.

All the excitement lies in pattern matching. Matching against a
constructor may induce a type refinement in the case alternative.
For example, in the Lit branch of eval, we can refine a to Int.

The dynamic semantics is unchanged. Pattern-matching is done
on data constructors only and there is no run-time type passing.

The eval function is a somewhat specialized example, but earlier
papers have given many other applications of GADTs, including

51

generic programming, modeling programming languages, main-
taining invariants in data structures (e.g. red-black trees), express-
ing constraints in domain-specific embedded languages (e.g. secu-
rity constraints), and modeling objects [8, 25, 5, 18, 16, 17]. The
interested reader should consult these works; meanwhile, for this
paper we simply take it for granted that GADTs are useful.

3. The key idea

Our goal is to combine the flexibility of Hindley-Milner type infer-
ence with the expressiveness of GADTs, by using the programmer’s
annotations to guide type inference. Furthermore, we seek a system
that gives as much freedom as possible to the inference algorithm.
For example, we would like to retro-fit GADT inference to existing
compilers, as well as use it in new ones.

The difficulty with type inference for GADTs is well illustrated
by the eval example of Section 2. In the absence of the type
signature for eval, a type inference engine would have to anti-
refine the Int result type for the first two equations, and the Bool
result type of the third (etc.), to guess that the overall result should
be of type a. Such a system would certainly lack principal types.
Furthermore, polymorphic recursion is required: for example, the
recursive call to eval in the second equation is at type Int, not a.
All of these problems go away when the programmer supplies the
type of eval.

Furthermore, the complete type of a function that uses GADTs
is required, because, even if the return type is clear, type inference
may still be challenging. Here is another variant:

f x y = case x of
Liti >1i+y
other -> 0

There are at least two types one could attribute to £, namely

Term a — Int — Int and Term a — a — Int. The latter works

because type refinement induced by the pattern match on x refines

the type of y. Alas, neither is more general than the other. Again, a

programmer-supplied type signature would solve the problem.
Thus motivated, our main idea is the following:

Type refinement applies only to user-specified types.

In the case of f, since there are no type annotations, no type
refinement will take place: x must have type Term Int and y will
get type Int. However, if the programmer adds a type annotation,
the situation is quite different:

f :: Term a -> a -> Int
f x y = case x of
Lit i > i +y
other -> 0
Now it is “obvious” that x has type Term a and y has type a. Be-
cause the scrutinee of the case has the user-specified type Term a,
the case expression does type refinement, and in the branch the
type system knows that a = Int. Because the type of y is also
user-specified, this type refinement is applied when y occurs in the
right hand side.
To summarise, our general approach is this:

e Instead of “user-specified type”, we use the briefer term rigid
type to describe a type that is completely specified, in some
direct fashion, by a programmer-supplied type annotation.

e A wobbly type is one that is not rigid. There is no such thing as
a partly-rigid type; if a type is not rigid, it is wobbly?.

e A variable is assigned a rigid type if it is clear, at its binding
site, precisely what its type should be.

2In an earlier version of this paper, types were allowed to have both rigid
and wobbly components (Section 7).

—Source language syntax—

Atoms ¢ = x| C
Terms t,u == c|\x.t|tu
| let x = u in t
| let x::sig = u in t
| case t of p >t
Patterns p == x|CP|p::tau
Type annotations sig := forall a.tau
tau = tau— tau|a|T tau

va.t
T—=71la|T7T

Polytypes o
Monotypes T,V

—NMeta language syntax—

Environments A = -|c:Mo|Tla—s T
Modifiers m,n == w|r
Refinements 0,¢ == [a—T]
Triples K,L == (@, A, 0)
—Annotation translation—
[alr = I'(a)
[tau; — tauz]r = [taui]r — [tauz]r
[T tau]r = T [tau]r

[forall a.taulr = Va.[taulrz=g @ fresh
—Refinement application—
0"(o0) = 0(0) | 6() =
8%¥(o) = o o(c:mao) = O(IN),c:™0™(0)
o(la—t) = 6(N),a<— 6(7)

Figure 1: Syntax of source language and types

e A case expression performs type refinement in each of its
alternatives only if its scrutinee has a rigid type.

e The type of a variable occurrence is refined by the current type
refinement only if the variable has a rigid type.

But exactly when is a type “completely specified by a type an-
notation”? After all, no type annotation decorates the binding
for x in the definition of £ above, nor is the case expression
adorned with a result type, and yet we argued above that both
should be rigid. Would it make any difference if we had written
case (id x) of ..., where id is the identity function?

To answer these questions, we need a precise and predictable
description of what it means for a type to be rigid, which is what
our type system provides.

4. The type system

The syntax of a language with GADTs is shown in Figure 1, and is
entirely conventional. We use - to represent a sequence of elements.
For example, p abbreviates the sequence of patterns p1 ...pn. We
assume that data types are declared by simply enumerating the
constructors and their types (as in Section 2), and those typings
are used to pre-populate the type environment I'. The 1let binding
form is recursive. Pattern matching is performed only by case
expressions, but we will occasionally take the liberty of writing
\p.t instead of \x.case x of p—t.

The language of types is also entirely conventional, stratified
into polytypes o and quantifier-free monotypes T. We abbrevi-
ate polytypes that bind no type variables (V.T) as T. We use a
different syntactic domain for programmer-supplied type annota-
tions, sig and tau. Such annotations appear in the syntax of the
source language in two places: a let definition may be anno-
tated with a polytype, or a pattern may be annotated with a mono-
type. Haskell also allows an expression to be annotated with a

52

c"Varer
— ATM
l-c:™ [a—vlt

r-t" Tt -1

r'cu™m Tx:"tmkFt:™mn

APP ABS
FrFtu:™ 1 FE\x.t:™" 11 =12
Fx™ 1t Fu™mn
= _ _ w m
a=ftv(ty) — ftv(I) x“Vvat Ft:™ 1 LET-W

I (let x=u in t):™ 12

[forall a.taulr = Va.t; a#ftv(l)
x:"Vati,a—marFu:"1 Ix'Vat Ft:" 1

I (let x::foralla.tau=u in t):" T2

LET-R

| I VI S 4

FEp—tdmemd o oy
CASE

' (case u of p->t):™* 7,

r=t:"n=

vitterl
SCR-VAR SCR-OTHER

FrEv:t ™ r=t:t1v

TEpotdmemad o g

CVa.Ti—=TT el a#ftv(l,Tp, T¢)
a. =anftv(t) 0=[a.—v] 0(T2)=7p
Lxvo(t) Ft:™ 1

NECx—t:™™ T7, 51

PCON-W

Cva.ti—=Tm el a#ftv(lTp, Tt)
0 € fmgu(T, =72)
O(Nx"t1) Ht:™ 0™ (1¢)

PCON-R
TECx—t:"™ T7, 51

Figure 2: Typing rules and case alternatives

type, thus (e: :sig). We interpret this form as syntactic sugar for
(let x::sig = e in x). We often use the term type signature
for a programmer-supplied type annotation.

The type environment I" is more unusual. Each variable (or
constructor) binding ¢:™ o is annotated with a modifier, m, which
indicates whether the type is rigid (r) or wobbly (w). Types of
constructors are always closed and rigid. Furthermore the type
environment maps lexically scoped type variables, a, to rigid types,
as we discuss in Section 4.5. This last binding form allows us to
translate a (possibly open) type annotation sig to an internal type
o, which we write as [siglr = o. We write I'(a) = T whenever
a—Tel.

A type refinement, 0, is simply a substitution mapping type
variables to monotypes. (One can also represent the type refinement
as a set of constraints, an alternative that we discuss in Section 4.3.)
The operation 0(I") applies the type refinement 0 to the context I',
and is also defined in Figure 1. The key thing to note is that only
the rigid bindings in T" are affected. We write dom(0) for the finite

set of type variables for which 0 is not the identity. Concretely,
we represent a substitution by listing the non-identity mappings
[@— 7], and use € for the identity-everywhere substitution.

We use ftv(T) to denote the free type variables of the type T.
Abusing the notation we write ftv(T) to denote the union of the
sets of free variables of every T in T. Additionally, we write ftv(T")
for the free type variables appearing in the environment I', either
in the types that lexical variables bind, or in the types that term
variables bind. We write dom(T") to refer to the collection of all
lexical and term variables bound in I".

4.1 Typing rules: overview

The typing rules for the language are syntax-directed and are given
in Figure 2. The main judgement has the form I' - t :™ t. The
unusual feature is the modifier m, which indicates whether the type
T is rigid. In algorithmic terms, I' - t :" T checks that t has type T
when we know T completely in advance, whereas T = t ™ T checks
that t has type T without that assumption—T may be partially or
entirely unknown.

The modifier m propagates information about type rigidity. For
example, in rule LET-R we see that a type-annotated let binding
causes the right hand side u to be type-checked in a rigid context
(... F u :" 7). (The notation a#ftv(I") means that the type
variables @ do not appear in I'.) Furthermore, when typechecking
u, the environment I is extended with a rigid binding for x, giving
its specified, polymorphic type, thereby permitting polymorphic
recursion, which is very often necessary in GADT programs (e.g.
eval in Section 2).

Then, in rule ABS we see that to type check an abstraction \x.t
we extend the environment I" with a binding for x that is rigid if the
context is rigid, and vice versa. For example, consider the term

let f::(foralla.Terma—a—a) = \x.\y.u in t

The body u of the abstraction will be type checked in an environ-
ment that has rigid bindings for both x and y (as well as £f).

The APP rule always typechecks both function and argument
in a wobbly context: even if the result type is entirely known, the
function and argument types are not. One might wonder whether
the function might provide a rigid context for its argument, or
vice versa, but APP does not attempt such sophistication (but see
Section 5.1).

Rule ATM does not use the modifier n of the variable (or con-
structor) type in the environment. It merely checks that the type of
the variable (or constructor) in the environment can be instantiated
to the type given by the judgement.

The really interesting rule is, of course, that for case, which we
discuss next. For the moment we restrict ourselves to flat patterns,
of form C X, leaving nested patterns for Section 5.4.

4.2 Pattern matching

A case expression only performs type refinement if the scrutinee
has a rigid type. The auxiliary judgement I' F t : T 1™, defined
in Figure 2, determines whether the scrutinee is rigid. Rather than
pushing the modifier inwards as the main judgement does, it infers
the modifier. The judgement has just one interesting case, the one
for variables. Rule SCR-VAR returns the modifier found for the
variable in I'; otherwise the judgement conservatively returns a
wobbly modifier w (SCR-OTHER)®. We will extend this judgement
later, in Section 5.1.

Rule CASE first uses this new judgement to typecheck the scru-
tinee u and then typechecks each alternative, passing in both the

3To be truly syntax-directed, SCR-OTHER would need a side condition to
exclude the variable case.

53

rigidity of the scrutinee, m,,, and the rigidity of the result type,
Mt.

The case-alternative rules are also given in Figure 2. There are
two cases to consider. Rule PCON-W is used when the scrutinee has
a wobbly type. In that case, we use ordinary Hindley-Milner type
checking. We look up the constructor C in the type environment,
«-rename its quantified type variables to avoid ones that are in
use, and then find a substitution 0 that makes the result type of
the constructor T T, match the type of the pattern T T,. Finally,
we extend I" with wobbly bindings for the variables X (obtained by
instantiating the constructor’s type), and type check the right hand
side of the alternative, t.

One subtle point is that the constructor may bind existential type
variables. For example, suppose MkT :: Vab.a — (a —b) = T b.
Then the type variable a is existentially bound by a pattern for
MkT, because a does not appear in the result type T b. Clearly,
we must not substitute for a; for example, this term is ill-typed,
if x : MkT Bool:

case x of MKkT r s -> r+l

We must form the substitution [b — Bool] to make the result type
of the constructor match that of x, but a is simply a fresh skolem
constant. That is why PCON-W first computes a., the subset of C’s
quantified variables that appear in its result type, and permits only
these variables in the domain of 6.

Rule PCON-W gives a wobbly type to all the bound variables X,
which is safe but pessimistic; for example above, r could have a
rigid type. We return to this question in Section 5.3.

4.3 Type refinement

Now we consider rule PCON-R, which is used when the scrutinee of
the case has arigid type. In that case we compute a type refinement
with the judgement ® € fmgu(T, = T2). We return to the details
of this judgement in Section 4.4—for now let us only assume that
the returned O is a substitution that unifies the type of the pattern,
T Tp, and the result type of the constructor, T T>.

Unlike rule PCON-W, 0 can contain in its domain type variables
mentioned in the type of the pattern, T T, as well as type variables
mentioned in the return type of the constructor, T T,. Now we
apply the type refinement to the environment, and to the result
type, before type-checking the right hand side of the branch. When
applying the refinement to the environment, we only refine rigid
bindings (see Figure 1), and similarly we only refine the result
type T if it is rigid (hence 6™ (7¢)). We do not need to apply the
refinement to the term: if the term contains open type annotations,
the scoped type variables of these annotations must be bound in the
environment, in which we do apply the refinement.

If unification fails to compute a type refinement, then the case
alternative cannot possibly match, and the type system rejects the
program. Another possible design choice is to accept statically-
inaccessible alternatives without even type-checking the right hand
side (since it can never be reached). However, we think that we are
more likely to help programmers by rejecting such programs than
by silently accepting them.

The appearance of unification is slightly unusual for a declara-
tive type system, although not without precedent [9]. The best way
to think about it is that a successful pattern match implies the truth
of an equality constraint of form T T, = T 7T, and the case al-
ternative should be checked under that constraint. We express this
idea by solving the constraint to get its most general unifier, and ap-
plying the unifier to the entire judgement (modulo the rigid/wobbly
distinctions).

Most other authors choose to deal with the constraint sets ex-
plicitly, using a judgement of form C,T" - t : T, where C is a set
of constraints, and type equality is taken modulo these constraints

[25, 5, 19, 15]. That approach is more general, but it is less con-
venient in our context, because by the time that type equality is
invoked, the provenance of the types (and in particular whether or
not they are rigid) has been lost. For example, we do not want this
judgement to hold:

a = Int,xs:" [a] F (3:xs) : [Int]

It should not hold because xs has a wobbly type. But the type
equality arises from instantiating the call to cons (:), and by
that time the fact that its second argument had a wobbly type has
been lost. A solution would be to embody wobbliness in the types
themselves, as an earlier version of this paper did, but the approach
we give here is significantly simpler.

4.4 Fresh “most general” unifiers

What unifiers should be used in rule PCON-R for refinement? First,
will any unifier © do? No: we must not make up any substitution
beyond those justified by the constraints. For example, consider the
program

f :: forall a. (a,b) -> Int
f = \x. case x of (p,q) -> p+1

It would obviously be wrong to substitute Int for a in the case
alternative! Nor, just as in rule PCON-W, can we refine the types of
existential variables.*

Hence, choosing 0 to be a most general unifier (mgu), guaran-
teed not to introduce any spurious equalities, seems reasonable to
ensure sound type inference. Alas, sometimes two types can have
more than one mgu and the choice among these mgus can de-
termine whether the program typechecks. Consider the following
example:

data Eq a b where Refl :: Eq c ¢
f :: forall a b. Eq a b -> (a->Int) -> b -> Int
fxyz= (\w. case x of Refl -> y w) z

First, note that w enters the environment with the wobbly type b
(rules APP and ABS). Now, when checking the pattern, we are
faced with the problem of computing a © such that 8(Eqcc) =
0(Eq ab). There are three most general unifiers, [b — a,c — al,
[a— b,c— bl,or[a— c,b+— c]. Because w’s type is wobbly,
it will not be refined by the pattern match, but y’s (rigid) type will
be. Hence, the body of the case will typecheck only if we choose
the second of the three substitutions. (If the case alternative was
y z instead of y w, it would typecheck with any mgu, because
z’s binding is rigid.) So if the rules specify 0 is some mgu, there
certainly is an mgu that makes the program typecheck—but it is
hard to see how an algorithm could know which of the three mgus
to choose.

Since type inference is hard for this case, the thing to do is to
reject this program. But how can we do so? Our solution is to use a
modified form of mgu, called fmgu: whenever we have to unify
two variables from the context type, we do not unify them directly;
instead, we make up a fresh variable and map both variables to the
new one. In our example, the substitution [a — d,b — d,c — d]
(where d is a fresh type variable) is a fmgu of Eq ¢ c and Eq a b.
The device of choosing a fresh type variable ensures that a wobbly
binding (such as w’s) will never be compatible with the refined type,
rather than being compatible under some unifiers but not others. A
fmgu is technically not a most general unifier, because the latter
never involves variables that do not appear in the argument types,
but its definition is very similar to that of mgu:

4 There is also a dual question: must © be a unifier at all? The answer
here is more nuanced: “no” for soundness, but “yes” for completeness: see
Section 6.4.

DEFINITION 4.1 (fmgu). An idempotent substitution © is a fresh

most general unifier of T1 and T2, written 0 € fmgu(ti = T2),

iff

(i) © is a unifier of T1 and T2, that is, 0(T1) = 0(72).

(ii) For any idempotent unifier ¢ of T1 and T2 there exists a sub-
stitution \p such that b(a) =P (0(a)) forall a € ftv(t1,T2).

(iii) For every a,b € ftv(ty), with a # b, 8(a) # b. For every
a,b € ftv(tz2), witha # b, 0(a) #b.

(iv) dom(0) C ftv(t1,7T2) and all type variables in range(0)
are either in Ttv(t1,7T2) or are fresh (disjoint from variables
introduced by the typing judgment that uses 0).

Conditions (i) and (ii) resemble the corresponding properties of
most general unifiers.’> Condition (iii) is the distinctive feature of
fmgu: it guarantees that no two variables from the context type or
the constructor type are directly equated to each other; instead, this
can only happen through a third fresh variable. Finally condition
(iv) ensures that 0 does not include any extra spurious equalities
for variables that appear free elsewhere in the typing derivation.
To simplify the exposition, we state this freshness condition infor-
mally here and only make it precise in the companion technical
report [23].

It is not hard to come up with a procedure to calculate such
fresh most general unifiers. Figure 3 gives one implementation,
fmgu, with the property that if fmgu(t; = T2) = 0 then 8 €
fmgu(ti = T2). The £fmgu procedure in turn calls the auxiliary
procedure fmgu®, and then restricts the domain of the unifier it
returns to ensure that it is contained in ftv(ty, T2) — the restriction
is written |¢¢y (1, ¢,) in Figure 3. In a call of the form fmgu™ (&, B)
the set £ represents type equalities that must be satisfied, of the
form T1 = T2. The set B is used to determine which variables
must not be unified to each other: If fmgu*(E,B) = 06 then no
two variables from 3 are directly equated through 6 and no two
variables from ftv(£) — B (which were not introduced as fresh
by the algorithm) are directly equated through 6. A subtle point
in this algorithm is that the set B also adds “directionality” to the
unifier, namely that variables from B are preferred in the domain
of the returned substitution. The £mgu procedure is initialized with
B = ftv(t12), hence preferring variables of T, in the domain of the
returned substitution, for reasons that we describe in Section 4.6.

4.5 Lexically scoped type variables

Any polymorphic language that exploits user type annotations, as
we do here, must support lexically scoped type variables, so that a
type signature can mention type variables that are bound “further
out”. This feature is curiously absent from Haskell 98, and its
absence is often awkward. For example:

prefix :: forall a. a -> [[al]l -> [[al]
prefix x yss = let xcomns :: [a] -> [a]
Xcons ys = X : ys
in map xcons yss

This program is rejected by Haskell, because the type signature for
xcons is implicitly quantified to mean Va.[a] — [a]. What we
want here is an open type signature for xcons that mentions a type
variable bound by the definition of prefix.

SIf @ is an mgu of T; and T2, then for any other unifier of T; and T,
¢, there exists a substitution 1\ such that ¢(a) = P(0(a)) for all a.
The difference here is that condition (ii) requires equality only for a in
the free type variables of T7 and T,. This allows “fresh” type variables to
appear in the domains of ¢, 8 and 1. Moreover we work with the lattice of
idempotent substitutions, as it is technically more tractable, but condition
(i) could be recast in terms of arbitrary unifiers.

fmgu(T) = T2) = fmgu” ({11 = T2}, ftv(72)) lfev(ry,ra)

fmgu*(E,B) =0 =-](m1 =12)UE
1. fmgu* (0, B) = €
2. fmgu*(a =aU¢&,B) = fmgu* (&, B)
3. fmgu*(a =bUE,B) = fmgu*([a— blE,B) - [a—b] aeB,b¢B
4. fmgu*(b=aU¢&,B) = fmgu*([a— blE,B)-[a—Db] aeB,b¢B
5. fmgu*(a =bUZE, B) = fmgu*([a— c,b—clE,B)-[a—c,b—c]
where (a,b ¢ BV a,b € B) and ¢ fresh
6. fmgu*(a =TtUE, B) = fmgu*([a— T]E,B) - [a— 1] wherea ¢ ftv(t)andT #b
7. fmgu*(t=aUE&,B = fmgu*([a— T]€,B) - [a+— 1] wherea ¢ ftv(t)andT # b
8. fmgu*((TT1 =TT2)UE,B) = fmgu*(T1 =T2 UE,B)
9. fmgu*((t1 = 12 =713 =2 1) UE, B) = fmgu ({11 =13,12 =14} UE, B)

Figure 3: An implementation of fmgu

In our small language, we therefore allow the programmer to
annotate a let definition with a polymorphic type, forall a.tau.
The type variables that are lexically in scope are those bound by the
environment I" (see the syntax in Figure 1); in a full-blown system,
the environment would also record their kinds. Rule LET-R first
uses the bindings of scoped type variables in the environment I to
translate the typing annotation to an internal type, with the judge-
ment [forall a.tau]r = Va.t. It also requires that a#ftv(T),
and extends the environment with the new bindings a — a, to
bring a in scope. The right-hand side is checked under this extended
environment.

The idea that the quantified type variables of a type signature
should scope over the right hand side of its definition is not new:
it is used in Mondrian [12] and Chameleon [20]. It seems a little
peculiar, and we resisted it for a long time, but it is extremely direct
and convenient, and we now regard it as the Right Thing.

The job is not done, though. We still need a way to name
existentially-bound type variables. For example, consider this
(slightly contrived) example:

data T where MKT ::
f::T -> Int
= \x. case x of
MkT ys g -> let y::7?? = head ys
ingy

[a] -> (a->Int) -> T

What type can we attribute to y in the inner let binding? We
need a name for the existential type variable that is bound by the
pattern (MkT ys g). Pattern annotations provide such functional-
ity. For example:

type variables, so now a type variable may be bound to an arbitrary
type. For that reason, bindings in I take the form (a —).

In a real programming language, such as Haskell, quantification
is often implicit. For example, the “forall a” quantification in a
let binding might be determined by calculating the type variables
that are mentioned in the type, but are not already in scope. (In-
deed, we adopt this convention for many of the types we write in
this paper.) However, for our formal material we assume that quan-
tification is explicit.

4.6 Type inference

It is very straightforward to perform type inference for our system.
One algorithm that we have worked out in detail is based on the
standard approach for Hindley-Milner systems [4, 13]. The infer-
ence engine maintains an ever-growing substitution mapping meta
type variables to monotypes. Whenever the inference engine needs
to guess a type (for example in rule ABS) it allocates a fresh meta
type variable; whenever it must equate two types (such as rule APP)
it unifies the types and extends the substitution.

Modifying the type inference algorithm for Hindley-Milner sys-
tems to support GADTSs is simple. Bindings in the type environment
I" carry a boolean rigid/wobbly flag, as does the result type. The
implementation of pattern-matching can be read directly from rules
PCON-R and PCON-W.

There is one subtlety, which lies in the implementation of
fmgu. Consider the possible type derivations for

T

x:" (a,b) F (case x of (p,q) ->p):" a

f: :T_> Int . The pair constructor has type Ved.c — d — (c, d), the unification
= \X. case X O . : .

1 PCON-R fi = .

MKT (ys::[al) g -> let y::a = head ys problem in PCO is to compute a fmgu for (a,b) (c,d)

ingy

The pattern (ys::[al) brings the type variable a into scope
so that it can be used in the 1let binding for y. In general, a type-
annotated pattern (p::tau) brings into scope the type variables
of tau that are not yet bound in the environment. These variables
then scope over tau, p, all patterns to the right of the binding site,
and the right hand side of the case alternative. The typing rules of
Figure 2 only deal with simple flat patterns; we formalize type-
annotated patterns when we discuss nested patterns in Section 5.4.

Lexically-scoped type variables are always bound to type vari-
ables, and hence enter I' with a binding of form (a < a) (see LET-
R). However, in a type-refining case alternative, we apply the re-
finement to the type environment, including the bindings for scoped

55

There are several fmgus of this constraint, and not all of them are
useful. For example, the substitution [a — ¢, b — d] will not type
this program because the type of p will be ¢ which does not match
the result type a. Alternatively, the fmgu [c — a, b+— d] succeeds.
The key idea is that, given a choice, the unifier should eliminate the
freshly-bound type variables, in this case ¢ and d.

Our inference engine therefore uses a “biased” fmgu algo-
rithm, based on Figure 3, that preferentially eliminates freshly-
bound type variables. To achieve this we simply require that the
procedure fmgu® of Figure 3 is called with an initial 53 that con-
tains the required freshly-introduced type variables. In rule PCON-
R, these variables are the free type variables of T,, therefore the
implementation makes a call to fmgu(T, = T2), which results in
passing the ftv(T2) as 5.

We have proven that if a program type checks with any fmgu
then it typechecks with the biased implementation. Therefore we
have complete type inference without searching for an appropriate
fmgu (see Section 6.3). Additionally, the biased implementation
has the property that fmgu(TT=TDb) = [b+— 1|, when the
lengths of T and b are the same. This property ensures that our
system conservatively extends Haskell (Section 6.6).

5. Variations on the theme

The type system we have described embodies a number of some-
what ad hoc design choices, which aim to balance expressiveness
with predictability and ease of type inference. In this section we
explore the design space a bit further, explaining several variations
on the basic design that we have found useful in practice.

5.1 Smart application

The rules we have presented will type many programs, but there are
still some unexpected failures. Here is an example6 (c.f. [3]):

data Equal a b where

Eq :: Equal a a
data Rep a where

RI :: Rep Int

RP :: Rep a -> Rep b -> Rep (a,b)
test :: Rep a -> Rep b —-> Maybe (Equal a b)
test RI RI = Just Eq

test (RP s1 t1) (RP s2 t2)
= case (test sl s2) of
Nothing -> Nothing
Just Eq -> case (test tl1 t2) of
Nothing -> Nothing
Just Eq -> Eq

A non-bottom value Eq of type Equal a b is a witness that the
types a and b are the same; that is why the constructor has type
Va.Equal a a. Consider the outer case expression in test. The
programmer reasons that since the types of s1 and s2 are rigid,
then so is the type of (test sl s2), and hence the case should
perform type refinement; and indeed, test will only pass the type
checker if both its case expressions perform type refinement.

The difficulty is that the scrutinee-typing rules of Figure 2
conservatively assume that an application has a wobbly type, so
neither case expression will perform type refinement. We could
solve the problem by adding type annotations, but that is clumsy:

test :: Rep a -> Rep b -> Maybe (Equal a b)
test RI RI = Just Eq
test (RP (sl::Rep al) (tl::Rep bl))
(RP (s2::Rep a2) (t2::Rep b2))
= let rl :: Maybe (Equal al a2) =
r2 :: Maybe (Equal bl b2) =
in case ril of
Nothing -> Nothing
Just Eq -> case r2 of
Nothing -> Nothing
Just Eq -> Eq

test al a2
test bl b2

(However, note the importance of pattern-binding the type vari-
ables al, a2 etc, so that they can be used to attribute a type to
s1, t1 etc.) To avoid this clumsiness, we need a way to encode
the programmer’s intuition that if test’s argument types are rigid,
then so is its result type. More precisely, if all of the type variables
in test’s result appear in an argument type that is rigid, then the
result type should be rigid. Here is the rule, which extends the scru-

6 We take the liberty of using pattern matching on the left-hand side and
separate type signatures, but they are just syntactic sugar.

56

tinee typing rules of Figure 2:
c'va.T—=1 €T INEui: [a—=vlT
ar ={ae€al|Jaeftv(ti) Amy =1}
r if fv(t,) Car
m= .
w otherwise

11’11

[

SCR-APP
Nkcu:[amvlt,
The rule gives special treatment to applications ¢ u of an atom c
to zero or more arguments it, where ¢ has a rigid type in I'. In that
case, SCR-APP recursively uses the scrutinee typing judgement to
infer the rigidity m; of each argument u;. Then it computes the
subset a, of v’s quantified type variables that appear in at least one
rigid argument. We can deduce (rigidly) how these variables should
be instantiated. Hence, if all the type variables free in the result type
of c are in a, then the result type of the call is also known rigidly.
One could easily imagine adding further scrutinee-typing rules.
Notably, if the language supported type annotations on terms,
(t::sig), then one would definitely also want to add a scrutinee-
typing rule to exploit such annotations:

[taulr =7 THt: 1

'k (t::tau)

Now, in any place where a case expression has a wobbly scrutinee,
the programmer can make it rigid by adding an annotation, thus:
(case (t::tau) of ...). Beyond that, we believe that there is
little to be gained by adding further rules to the scrutinee-typing
rules.

5.2 Smart let

Consider these two terms, where (£ x) is determined to be rigid
by SCR-APP:

— SCR-SIG
cT]

let s = f x
in case s of
MKT a b —>

case f x of
MkT a b ->

With the rules so far, the left-hand case would do refinement, but
the right hand case would not, because s would get a wobbly type.
This is easily fixed by re-using the scrutinee judgement for the right
hand side of a let:
NTxYThku:t|™
a = ftv(t) — ftv(T") x"Vatk-t:™T

- (let x=u in t):" 1

LET-W

This change means that introducing a let does not gratuitously
lose rigidity information. An interesting property is that if LET-W
infers a rigid type for x, then x is monomorphic and @ is empty:

THEOREM 5.1. If T'Hw: 11" then ftv(t) C ftv(I').

Why is this true? Because the only way u could get a rigid type is
by extracting it from I'.

5.3 Smart patterns

Consider rule PCON-W in Figure 2, used when the scrutinee has a
wobbly type. It gives a wobbly type to all the variables X bound by
the pattern. However, if some of the fields of the constructor have
purely existential types, then these types are definitely rigid, and it
is over-conservative to say they are wobbly.

This observation motivates the following variant of PCON-W

C'Vva.m1 =TT el a#ftv(l,Tp, Tt)
a. =anftv(tz) 6 =[a.—v]

9(?2) =Tp
v Af ftv(m)#ac

™ =19 w otherwise
Lx:mi0(t) Ft:™ T

r-cx:™m™T7, 51

PCON-W

bindings(A) =@
bindings(-) =90
bindings(A,a < a) = {a}Ubindings(A)
bindings(A,x:™ o) = bindings(A)

FEp—tdmemd o g

L@, - OkFp:™ 1, »(a A, 0)
ftv([; Tp, T¢)#a bindings(A) Ca
OTUA) - t:™ 0™ (1y)

PAT
MEp—ot:meme Tp — Tt
LKikEp:™Te K,
x ¢ dom(A)
PVAR

N(a A, 0)Fx:" 1w (a Ax:"1, 0)

C"Vb.T11 =TT, €T b#a
be =bNftv(t2) P =[bc—v] T3 =1(T2)
. — { T ftv(T1)#b.
"7] w otherwise

(@b, A, 8) F°' prme d(rre) » K

M@ A 0)FCp:" T »K

PCON-W

C:"Vb.T1 =TT €l b#a
0(t)=T7T3 Ve fmgu(t; =72)
N(ab, A, % -0)F° pr T » K

N(@ A, 0)FCp:"teK

PCON-R

b = ftv(tau) — dom(T, A)
b distinct b#bindings(A) b#dom(0)
[[tau]]r’A‘m =75 O(ts)=0"(1)
(@ (AAb—Db), 0)Fp:"1ts» K

I (a, A, 0)F (p::tau):™ T» K

PANN

fold

F,K1 [Ppi M T » Ky

=T F-BASE

KE -p» K

LKy Fp:™1e Ky
fold ———

Ky F pi ™1 > K3

fold m

LKikE" (p:

F-REC

T),‘pi i1 K3

Figure 4: Source language pattern typing

Here we attribute a rigid type to x; if xi’s type does not mention
any of the type variables a. that are contaminated by appearing in
the result type of the constructor; that is, x; is rigid if its type is
purely existential.

To be honest, this elaboration of PCON-W is motivated more by
the fact that it is easy to describe and implement, and its symmetry
with SCR-APP, rather than because we know of useful programs
that would require more annotation without it.

5.4 Nested patterns

In Section 4 we treated only flat patterns, and we did not handle
pattern type signatures (introduced in Section 4.5). Handling nested

57

patterns introduces no new technical or conceptual difficulties, but
the rules look substantially more intimidating, which is why we
have left them until now. The rules for nested patterns are given in
Figure 4. The main new judgement typechecks a nested pattern, p:

F, Ky F P S K>
Here K is a triple (@, A, 6), with three components (Figure 1):

e a is the set of type variables bound by the pattern. We need
to collect these variables so that we are sure to choose unused
variables when instantiating a constructor, and so that we can
ensure that none of the existential variables escape.

e A gives the typings of term variables bound by the pattern,
and the lexically-scoped type variables brought into scope by
pattern type signatures; we use A to extend I" before typing the
body of the case alternative.

e 0 is the type refinement induced by the pattern.

This triple K is threaded through the judgement: K; gives the
bindings from patterns to the left of p, and K, is the result of
augmenting K; with the bindings from p.

With that in mind, rule PAT is easy to read (compare it with
PCON-R from Figure 2): it invokes the pattern-checking judgement,
starting with an empty K, checks that none of the existential type
variables escape, and typechecks the body t of the case alternative
after extending the type environment with A and applying the type
refinement 0. The premise bindings(A) C @ specifies that the
scoped type variables introduced in A may only bind internal vari-
ables introduced by this particular pattern (bindings is defined in
Figure 47). The premise maintains the invariant that scoped type
variables can only be introduced close to their quantification sites,
an issue to which we return in Section 5.5.

Rule PVAR is also straightforward; the test x ¢ dom(A) pre-
vents a single variable from being used more than once in a single
pattern match.

The constructor rules PCON-W and PCON-R are similar to those
in Figure 2, with the following differences. First, the sub-patterns

are checked using an auxiliary judgement l—fOld, which simply
threads the K triple through a vector of patterns. Second, in PCON-
R the incoming substitution 0 is composed with the unifier, 1, to
obtain (P - 0). In PCON-W, however, the instantiation 1 has only
the fresh variables b, in its domain, so there is no need to extend
the global type refinement 6.

There is one tricky point. Consider the following example:

data T where C :: Repa ->a > T

data Rep a where RI :: Rep Int
RB :: Rep Bool

f :: T -> Bool

f (C RB True) = False

f (C RI 0) = False

f other = True

Should this program typecheck? The constructor C binds an exis-
tential variable a. The pattern RB induces a type refinement that
refines a to Bool; and hence, in our system, the pattern True type-
checks, and the program is accepted. There is a left-to-right order
implied here, and our system would reject the definition if the order
of arguments to C were reversed. Furthermore, accepting the pro-
gram requires that the operational order of pattern matching must
also be left-to-right. In a lazy language like Haskell, termination
considerations force this order anyhow, so no new compilation con-

7 Notice that in Figure 4 there is no case for bindings of the form a —
T, the reason is that we never apply the refinement to the environment
during checking the same pattern, therefore lexical variables only bind type
variables at the point of the call to bindings(A) in rule PAT.

straints are added by our decision. In a strict language, however,
one might argue for greater freedom for the compiler, and hence
less type refinement.

This left-to-right ordering shows up in the way that the type
refinement is threaded through the sub-patterns of a constructor

fold . . .

by . It also requires one subtlety in PCON-R. Notice that the
conclusion of PCON-R does not say C p : T T3, as in PCON-W;
instead, the conclusion says simply C p : T, with 8(t) = T T3 as
a premise. The reason is apparent from the above example. When
typechecking the pattern True, we must establish the judgement

I (a,-, l[a—Bool]) - True: a » (a,-,[a— Bool])

That is, we must check that the pattern True has type a (not Bool).
Hence the need to apply the current substitution (coming from
patterns to the left) before requiring the pattern type to be of the
form T 7T3.

5.5 Pattern type signatures

Figure 4 also enhances the type checking of patterns to accom-
modate pattern type signatures, which we introduced informally in
Section 4.5. First, it is worth articulating our main design choices:

e At its binding site, a scoped type variable stands for a
type variable, not a type. For example, given the constructor
Lit :: Int -> Term Int,thepatternLit (x::a) isillegal
because a must bind to Int. Of course, after type refinement a
scoped type variable may be bound to a type, but it seems odd
to allow this at its binding site.

e Furthermore, at its binding site, a scoped type variable must
stand for a type variable that is not already in scope. For exam-
ple, given MKT :: forall a. a -> a -> T a, the pattern
MkT (x::b) (y::c) would be illegal because x and y must
have the same type. Again, after type refinement two scoped
type variables may indeed stand for the same type (variable).

Lastly, at all times a scoped type variable stands for a rigid type,
so that we may regard type annotations as rigid. For example,
we reject the pattern Just (x::a) when the scrutinee has
wobbly type Maybe Int because the type variable a would
be bound to the guessed type Int, and any type annotation
containing a would not be rigid.

With that in mind, let us look at rule PANN, which deals with type
signatures in patterns, in the following stages:

e First we identify the lexical variables that the pattern brings into
scope, b, by removing from the free variables of the annotation
those that are already bound in ' U A.

Next, we “guess” distinct type variables b to create the bindings
b — b. We require that these variables be disjoint from the
bindings of A to avoid binding the same type variable twice.
We need not require b to be disjoint from the bindings of T
because rule PAT requires that the bindings of A (which include
b) are subset of the variables introduced by the pattern—and
the latter must not appear in . Additionally we require that b
have not yet been refined by 8, with the condition b#dom(0),
an issue which is related to type inference completeness and
that we explain below.

Using the new bindings, b — b, we translate the annotation
type tau to the internal type Ts. Then, we check that the type T
of the pattern and the signature T are identical when the current
type refinement is applied. Since type signatures are always
translated to rigid types, we always apply the refinement to the
signature. However, we conditionally apply the refinement to T
depending on its rigidity flag.

e Finally, we check the pattern against the annotation type Ts.

58

We do not allow scoped type variables to be bound after they
have been refined (the condition b#dom(6) above) to ensure that
our algorithm is complete. The following example illustrates why.

data T ¢ where MKT ::
data Y where MKY ::
f (y::Y) = case y of

MkY MKT (z::b) -> True

T Int
Ta->a->Y

In this example, the fmgu refines a to Int. Algorithmically we
determine what variable b should bind to by examining 6(a). The
implementation would then fail, since b would have to get bound
to a type, Int. However without the condition b#dom(8), the
specification allows b to map to a and succeeds.

By changing our first two design decisions, we could remove
this restriction. If lexical variables were allowed to map to rigid
types, including other in-scope type variables, we would not have
to rule out the above example. However, we think that this choice
leads to confusing behavior if lexical type variables can name rigid
but not wobbly types. For example, we would reject the pattern
Just (x::a) when the scrutinee has a wobbly type Maybe Int
but accept it when the scrutinee has a rigid type.

We could then also change our third design decision, by allow-
ing lexical type variables to name wobbly types, and refining them
selectively just as we do term variable bindings. The type system
remains tractable, but becomes noticeably more complicated, be-
cause we must now infer the rigidity of both scoped type variables
(or, rather, of the types they stand for), and of type annotations.

The choice among these designs is a matter of taste. We have
found the current design to be simplest to specify and reason about.

6. Properties of our system

We have proven that our system enjoys the usual desirable prop-
erties: it is sound (Section 6.1); it can express anything that an
explicitly-typed language can (Section 6.2); we have a sound and
complete type inference algorithm (Section 6.3); and it is a conser-
vative extension of the standard Hindley-Milner type system (Sec-
tion 6.6). Although these properties are standard, they are easily
lost, as we elaborate in this section. All of the results in this section
hold for the most elaborate version of the rules we have presented,
including all of the extensions in Section 5.

6.1 Soundness

We prove soundness by augmenting our typing rules with a type-
directed translation to the predicative fragment of System F ex-
tended with GADTs. As usual, type abstractions and applications
are explicit, and every binder is annotated with its type. In addition,
in support of GADTs, we annotate each case expression with its
result type. This intermediate language is equipped with a call-by-
name semantics and is type safe.

We augment each source-language typing judgement with a
translation into the target language; for example the main term
judgement becomes I' = t :™ T ~» t’, where t’ is the translation
of t. For example, here is the ATM rule, whose translation makes
explicit the type application that is implicit in the source language:

c"Vaterl
ATM

N-c:™[@—=vjT~cv

The semantics of the source language is defined by this translation.
The soundness theorem then states that if a program is well-typed in
our system then its translation is well-typed in our extended System
F, and hence its execution cannot “go wrong”.

THEOREM 6.1 (Type safety). If Ft:™ T~ t' thentF t' : 1.

6.2 Expressiveness

Programmer-supplied annotations are expressive. Any program that
can be expressed by the explicitly-typed System-F-style interme-
diate language can also be expressed in the source language. We
show this result with a systematic translation from the interme-
diate language into the source language, such that any typeable
intermediate-language program translates to a typeable source-
language program. The translation is straightforward: type applica-
tions are merely erased, type abstractions are replaced with anno-
tations that bring into scope the abstraction’s quantified type vari-
ables, every binder is annotated with a signature, and annotations
are added to every case expression.

6.3 Soundness and completeness of inference

We have a sound and complete type inference algorithm for our
system, as outlined in Section 4.6. We only give a short sketch here.

The algorithm uses notation «, 3 for unification variables. Uni-
fiers, that is, idempotent substitutions from unification variables to
monotypes, are denoted with . An identity-everywhere unifier is
denoted with e. The algorithm also makes use of infinite sets of
fresh names, which we denote with A, and call symbol supplies.
The main inference algorithm can be presented as a deterministic
relation: (80, A0) =T F t:™ 7> (81,.41). The judgement should
be read as: “given an initial unifier 6o and an initial symbol sup-
ply Ao, check that t has the type T with the modifier m under T,
returning an extended unifier 81 and the rest of the symbol supply
Aj;”. Everything is an input except 81 and .A; which are results. A
precondition of the algorithm is that whenever m = r then T con-
tains no unification variables, that is, T is fully known. This way we
enforce a clean separation between refinement and unification. For
example, consider the algorithmic rule for application:

(Ao, 80)=THt:" B—12>(A1,871)
(A1, 01)=THFu™ B>(A2,62)

(AoP,80) =T+ tu:™ T2+ (A2, 62)

The function and the argument types contain the unification vari-
able 3 and therefore should be checked with the wobbly modifier.

The algorithm is sound; that is, if a term is shown to be well-
typed by the algorithm, there should exist a typing derivation in the
specification that witnesses this fact.

AAPP

THEOREM 6.2 (Type inference soundness). Let Ao be a supply of
fresh symbols. If (Ao, €) =F t:"" o> (A1,0) thent t ¥ §(x).
If (Ao, €)=Ft:" = (A1, 8) and T does not contain unification
variables, then - t :" T.

Since unification variables live only in wobbly parts of a judge-
ment, Theorem 6.2 relies on the following substitution property.

LEMMA 6.3 (Substitution). If dom(¢) is disjoint from the vari-
ables appearing in the rigid parts of the judgement T' -t ™ T then
O[T E t:™ &(7), where &[T’ means the application of ¢ in both
rigid and wobbly parts of T.

The other important property of the algorithm is completeness;
that is for all the possible types that the type system can attribute to
a term, the algorithm can infer (i.e. check against a fresh unification
variable) one such that all others are instances of that type.

THEOREM 6.4 (Type inference completeness). Let Ao be a sup-
ply of fresh symbols. If = t .7 T then (Ao, €) =Ft:" 7> (A1,9).
If- 1t 71, and « is a fresh unification variable then (Ao, €) >
Ft: a>(As,5) and 35, such that 8,:6(x) = T.

Soundness and completeness, along with determinacy of the
algorithm, give us a principal types property.

59

THEOREM 6.5 (Principal types). If - t ™ T then there exists a
principal type Ty such that = t ¥ Ty, and for every T1 such that
Ft:" Ty it is the case that T1 = 5(7Tp) for some substitution 5.

A principal types property for the rigid judgement is uninteresting
as rigid types are always known from user type annotations.

6.4 Pre-unifiers and completeness

We remarked in Section 4.4 that in PCON-R it would be unsound
to use just any unifier for 0, as © could introduce type equalities
that have no justification. But must the 6 be a unifier at all? What
about refinements that introduce fewer equalities than fmgu? For
example, even though the case expression could do refinement, no
refinement is necessary to typecheck this function:

f :: Term a -> Int
f (Lit i) = i
f other =0

That motivates the following definition:

DEFINITION 6.6 (Pre-unifier). A substitution 0 is a pre-unifier of
types T1 and T2 iff for every unifier \p of T1 and T2, there exists a
substitution 0’ s.t.p =0’ - 0.

That is, a pre-unifier is a substitution that can be extended to be
any unifier. For example, the empty substitution is a pre-unifier of
any two types. A most-general unifier is precisely characterized by
being both (a) a unifier and (b) a pre-unifier. In our explicitly-typed
internal language (Section 6.1), it is sound for rule PCON-R to use
any pre-unifier, rather than a most-general unifier.

Likewise, we can modify fmgu (Definition 4.1) so that it does
not require the refinement to be a unifier. To our surprise, however,
this flexibility in the source language precludes a complete type
inference algorithm. To see why consider this program:

data T a where C :: T Int
g:: Ta->a->a
gxy=1let v={(case xof C->y) inv

With our current specification, this program would be ill-typed: v
would get Int, due to the refinement of y’s type inside the case
expression, and the type Int does not match the return type a of g.

But suppose that the specification was allowed to choose the
empty pre-unifier for the case expression (thereby performing no
refinement). Then v would get the type a, and the definition of g
would typecheck. There would be nothing unsound about doing
this, but it is difficult to design a type inference algorithm that
will succeed on the above program. In short, completeness of type
inference becomes much harder to achieve.

This was a surprise to us. Our initial system used a pre-unifier
instead of a most-general unifier in PCON-R, on the grounds that
unifiers over-specify the system, and we discovered the above ex-
ample only through attempting a (failed) completeness proof for
our inference algorithm. The same phenomenon has been encoun-
tered by others, albeit in a very different guise [15, section 5.3,6].
Our solution is to use fresh most general unifiers in the specification
as well as the implementation.

6.5 Wobbliness and completeness

Our initial intuition was that if a term typechecks in a wobbly

context then, a fortiori, it would typecheck in a rigid context. But

not so. Suppose C :: T Int. Then the following holds:
x:'Ta,y:"akFcase x of C >y M a

However, if we made the binding for y rigid, then the type of y

would be refined to Int, and the judgement would not hold any

more. (It can be made to hold again by making the return type rigid

as well.) This implies that there may be some programs that become
untypable when (correct!) type annotations are added, which is
clearly undesirable. Again this unexpected behavior is not unique
to our system [15, section 5.3], and we believe that the examples
that demonstrate this situation are rather contrived.

What this means is that our specification must be careful to
specify exactly when a type is wobbly and when it is rigid. We
cannot leave any freedom in the specification about which types are
rigid and which are wobbly. If we did, then again inference would
become much harder and, by the same token, it would be harder for
the programmer to predict whether the program would typecheck.

Since our system is (with one small exception) deterministic,
it already has the required precision. The exception is rule SCR-
OTHER in Figure 2, which overlaps with SCR-VAR. This is easily
fixed by adding to SCR-OTHER a side condition that t is not an
atom c.

6.6 Relationship to Hindley-Milner

Our type system is a conservative extension of the conventional
Hindley-Milner type system (augmented with existential types).

THEOREM 6.7 (Conservative extension of HM). Say I' contains
only conventional data constructors (i.e. constructors with types
of the formVabx® — T @. IfT F t:™ tthen T F'™ t: 1.
Conversely, if T FHM t - T then T+ t :™ T for any m.

To prove this theorem, we first use the version of PCON-R that
uses a biased implementation of fmgu (Section 4.6). As mentioned
in Section 4.6, any program that is typeable with the original system
is typeable in the system with the biased implementation. In the
latter system, it follows that, under the Hindley-Milner restrictions,
the pattern judgement will return a substitution that only refines
freshly-introduced type variables, because each equality generated
will be of form T, = a, where a is a fresh type variable:

LEMMA 6.8 (Shapes of refinements under HM restrictions). If al-
gebraic datatypes are conventional, the biased implementation is
used, andT'+p ™ T (@, A, 0), then dom(0) C a.

For the proof of Theorem 6.7 we additionally rely on the fact that if
we apply the refinement returned by the pattern typing judgement
to the extra part of the environment that the pattern introduces,
we get back the part of the environment that the Hindley-Milner
system would introduce. The “conservativity” part is proved using
the intermediate system that uses biased fmgus and the fact that
this system is equivalent to the original that uses arbitrary fmgus.

7. Related work

In the dependent types community, GADTs have played a central
role for over a decade, under the name inductive families of data
types [7]. Coquand in his work on dependently typed pattern match-
ing [6] also uses a unification based mechanism for implement-
ing the refinement of knowledge gained through pattern match-
ing. These ideas were incorporated in the ALF proof editor [10],
and have evolved into dependently-typed programming languages
such as Cayenne [1] and Epigram [11]. In the form presented here,
GADTs can be regarded as a special case of dependent typing, in
which the separation of types from values is maintained, with all
the advantages and disadvantages that this phase separation brings.

The idea of GADTs in practical programming languages dates
back to Zenger’s system of indexed types [27], but Xi et al were
perhaps the first to suggest including GADTs in an ML-like pro-
gramming language [25]. (In fact, an earlier unpublished work by
Augustsson and Petersson proposed the same idea [2].) Xi’s sub-
sequent work adopts more ideas from the dependent-type world
[26, 24]. Cheney and Hinze examine numerous uses of what they

60

call first class phantom types [5, 8]. Sheard and Pasalic use a
similar design they call equality-qualified types in the language
QOmega [18]. All of these works employ sets of (equality) con-
straints to describe the type system. We use unification instead, for
reasons we discussed in Section 4.3.

Jay’s pattern calculus [9] also provides the same kind of type
refinement via pattern matching as ours does, and it inspired our
use of unification as part of the declarative type-system specifica-
tion. The pattern calculus aims at a different design space than ours,
choosing to lump all all data type constructors into a single pool.
This allows Jay to relax his rule for typing constructors. As our in-
tended target is Haskell, where for historical and efficiency reasons
constructors for different datatypes can have overlapping represen-
tations in memory, we cannot make this same design choice.

Most of this work concerns type checking for GADTs. Much less
has been done on type inference. An unpublished earlier version
of this paper originally proposed the idea of wobbly types, but
in a more complicated form than that described here [14]. In that
work, the wobbly/rigid annotations were part of the syntax of types
whereas, in this paper, a type is either entirely rigid or entirely
wobbly. For example, in the present system, case (x,y) of ...
will do no type refinement if either x or y has a wobbly type,
whereas before the rigidity of either x or y would lead to type
refinement of the corresponding sub-pattern. However, this fine-
grain attribution of wobbliness gave rise to significant additional
complexity (such as “wobbly unification”), which is not necessary
here, and we believe that the gain is simply not worth the pain.
Furthermore, every program in the language of the earlier draft is
typeable in the current system—perhaps with the addition of a few
more type annotations.

Inspired by the wobbly-type idea, Pottier and Régis-Gianas
found a way to factor the complexity into three parts: a shape-
inference phase that propagates rigid type information through-
out the program (introducing type annotations), a straightforward
constraint generation phase that turns annotated program text into
a set of constraints, followed by a constraint-solving phase [15].
They call this process stratified type inference. The novelty is in
shape inference; constraint generation and solving for an annotated
language is well established. The shape inference algorithm they
use is more aggressive about propagating rigid types than our type
system—as a result their system can infer types for some programs
that our system would reject. Here is an example, taken from their
paper, of a program that they accept but we reject. (This program
uses the Rep type defined in Section 5.4):

double :: Rep a -> [a] -> [a]
= \r xs. map (\x. case r of RI -> x+x) xs

In our system, x would be given a wobbly type, and hence
the case on r does not refine its type, so the program would be
rejected. To fix the problem is easy: annotate the binding of x.
The price to be paid is that their system is more complicated than
the one we present here; for example, it is non-trivial to figure out
whether the annotation on x is required. In contrast, we think that
wobbly types make it easier to determine whether type information
is available for GADTS, and that the extra annotations required are
barely noticeable. However, we need more experience to be sure.

Another subtle difference between our system and stratified type
inference is the treatment of refinements that create equalities be-
tween type variables. In our system, fmgu ensures that arbitrary
choices between variables do not determine whether a program
type checks. Alternatively, Pottier and Régis-Gianis introduce a to-
tal ordering between variables. When a choice between variables
must be made, they choose the smaller one. We do not find this so-
lution satisfying as resolving ambiguity based on variable ordering
means that inference is sensitive to the order in which fresh vari-

ables are chosen during skolemization. Specifying this order seems
a bit much for the specification of a type system. To be fair, this
issue affects a small minority of programs that use GADTS, so the
difference is not that significant. In fact, since rigid type propaga-
tion is more aggressive in their system, such ambiguities arise even
less frequently than in ours.

Stuckey and Sulzmann also tackle the problem of type inference
for GADTs [19]. They generate constraints and then solve them, but
unlike Pottier ef al., they do not require a shape inference phase
to precisely describe necessary type annotations. Instead, their in-
ference algorithm, which also attacks polymorphic recursion, is in-
complete. To assist users whose code does not type check, they
develop a set of heuristics to identify where more type annotations
are required. As a result, their compiler will accept programs with
fewer type annotations than our system (or stratified type inference)
requires, but these programs must be developed with the assistance
of their compiler.

8. Conclusions and further work

We believe that expressive languages will shift increasingly to-
wards type systems that exploit and propagate programmer anno-
tations. Polymorphic recursion and higher-rank types are two es-
tablished examples, and GADTSs is another. We need tools to de-
scribe such systems, and the wobbly types we introduce here seem
to offer a nice balance of expressiveness with predictabilty and sim-
plicity of type inference. Furthermore, the idea of distinguishing
programmer-specified types from inferred ones may well be useful
in applications beyond GADTs. The main shortcoming of our imple-
mentation in GHC is that the interaction between GADTSs and type
classes is not dealt with properly. We plan to address this, along the
lines proposed by Sulzmann [21].

Acknowledgements We thank Frangois Pottier for his particularly
detailed and insightful feedback on our draft. Yann Régis-Gianas
provided us with clarifications on stratified type inference. We also
thank Martin Sulzmann for many fruitful conversations on related
topics as well as comments on this paper. Matthew Fluet gave
us helpful comments on an early draft. This work was partially
supported by National Science Foundation grant CCF-0347289.

References

[1] Lennart Augustsson. Cayenne — a language with dependent types. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP’98), volume 34(1) of ACM SIGPLAN Notices, pages 239-250,
Baltimore, 1998. ACM.

[2] Lennart Augustsson and Kent Petersson. Silly type families.
Available as http://www.cs.pdx.edu/"sheard/papers/silly.
pdf, 1994.

[3] Arthur L Baars and S. Doaitse Swierstra. Typing dynamic typing. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP’02), pages 157-166, Pittsburgh, September 2002. ACM.

[4] Luca Cardelli. Basic polymorphic typechecking. Polymorphism, 2(1),
January 1985.

[5] James Cheney and Ralf Hinze. First-class phantom types. CUCIS
TR2003-1901, Cornell University, 2003.

[6] Thierry Coquand. Pattern matching with dependent types. In
Proceedings of the Workshop on Types for Proofs and Program, pages
66-79, Baastad, Sweden, June 1992.

61

[7] Peter Dybjer. Inductive Sets and Families in Martin-Lf’s Type Theory.
In Grard Huet and Gordon Plotkin, editors, Logical Frameworks.
Cambridge University Press, 1991.

[8] Ralf Hinze. Fun with phantom types. In Jeremey Gibbons and Oege
de Moor, editors, The fun of programming, pages 245-262. Palgrave,
2003.

[9] Barry Jay. The pattern calculus. ACM Transactions on Programming
Languages and Systems, 26:911-937, November 2004.

[10] Lena Magnusson. The implementation of ALF - a proof editor based
on Martin-Lof’s monomorhic type theory with explicit substitution.
PhD thesis, Chalmers University, 1994.

[11] Conor McBride and James McKinna. The view from the left. Journal
of Functional Programming, 14(1):69-111, 2004.

[12] Erik Meijer and Koen Claessen. The design and implementation of
Mondrian. In John Launchbury, editor, Haskell workshop, Amsterdam,
Netherlands, 1997.

[13] Simon Peyton Jones. The Implementation of Functional Programming
Languages. Prentice Hall, 1987.

[14] Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich.
Wobbly types: type inference for generalised algebraic data types.
Microsoft Research, 2004.

[15] Francois Pottier and Yann Régis-Gianas. Stratified type inference for
generalized algebraic data types. In ACM Symposium on Principles
of Programming Languages (POPL’06), Charleston, January 2006.
ACM.

[16] Tim Sheard. Languages of the future. In ACM Conference on Object
Orientated Programming Systems, Languages and Applicatioons
(OOPSLA’04), 2004.

[17] Tim Sheard. Putting Curry-Howard to work. In Proceedings of
ACM Workshop on Haskell, Tallinn, pages 74-85, Tallinn, Estonia,
September 2005. ACM.

[18] Tim Sheard and Emir Pasalic. Meta-programming with built-in type
equality. In Proceedings of the Fourth International Workshop on
Logical Frameworks and Meta-languaegs (LFM’04), Cork, July 2004.

[19] Peter Stuckey and Martin Sulzmann. Type inference for guarded
recursive data types. Technical report, National University of
Singapore, 2005.

[20] Martin Sulzmann. A Haskell programmer’s guide to Chameleon.
Available at http://www.comp.nus.edu.sg/ sulzmann/
chameleon/download/haskell.html, 2003.

[21] Martin Sulzmann, Jeremy Wazny, and Peter Stuckey. A framework for
extended algebraic data types. Technical report, National University
of Singapore, 2005.

[22] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.
Boxy type: Inference for higher-rank types and impredicativity. In
ACM SIGPLAN International Conference on Functional Programming
(ICFP’06), Portland, Oregon, 2006. ACM Press.

[23] Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones.
Simple unification-based type inference for GADTs, Technical Ap-
pendix. Technical Report MS-CIS-05-22, University of Pennsylvania,
April 2006.

[24] Hongwei Xi. Applied type system. In Proceedings of TYPES 2003,
volume 3085 of Lecture Notes in Computer Science, pages 394—408.
Springer Verlag, 2004.

[25] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
224-235. ACM Press, 2003.

[26] Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. In 26th ACM Symposium on Principles of Programming
Languages (POPL’99), pages 214-227, San Antonio, January 1999.
ACM.

[27] Christoph Zenger. Indexed types. Theoretical Computer Science,
pages 147-165, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

