
Haskell Beats C Using Generalized Stream Fusion

Geoffrey Mainland
Microsoft Research Ltd

Cambridge, England
gmainlan@microsoft.com

Roman Leshchinskiy

rl@cse.unsw.edu.au

Simon Peyton Jones
Microsoft Research Ltd

Cambridge, England
simonpj@microsoft.com

Abstract
Stream fusion [6] is a powerful technique for automatically trans-
forming high-level sequence-processing functions into efficient im-
plementations. It has been used to great effect in Haskell libraries
for manipulating byte arrays, Unicode text, and unboxed vectors.
However, some operations, like vector append, still do not per-
form well within the standard stream fusion framework. Others,
like SIMD computation using the SSE and AVX instructions avail-
able on modern x86 chips, do not seem to fit in the framework at
all.

In this paper we introduce generalized stream fusion, which
solves these issues. The key insight is to bundle together multiple
stream representations, each tuned for a particular class of stream
consumer. We also describe a stream representation suited for ef-
ficient computation with SSE instructions. Our ideas are imple-
mented in modified versions of the GHC compiler and vector li-
brary. Benchmarks show that high-level Haskell code written using
our compiler and libraries can produce code that is faster than both
compiler- and hand-vectorized C.

1. Introduction
It seems unreasonable to ask a compiler to be able to turn nu-
meric algorithms expressed as high-level Haskell code into tight
machine code. The compiler must cope with boxed numeric types,
handle lazy evaluation, and eliminate intermediate data structures.
However, the Glasgow Haskell Compiler has become “sufficiently
smart” that Haskell libraries for expressing numerical computa-
tions, such as Repa [16, 20], no longer have to sacrifice speed at
the altar of abstraction.

The key development that made this sacrifice unnecessary is
stream fusion [6]. Algorithms over sequences—whether they are
lists or vectors (arrays)—are expressed naturally in a functional
language using operations such as folds, maps, and zips. Although
highly modular, these operations produce unnecessary intermedi-
ate structures that lead to inefficient code. Eliminating these inter-
mediate structures is termed deforestation, or fusion. Equational
laws, such as map f ◦map g ≡ map (f ◦ g), allow some of these
intermediate structures to be eliminated; finding more general rules
has been the subject of a great deal of research [7, 11, 14, 22, 28,
29, 33]. Stream fusion [6], based on the observation that recursive
structures can be transformed into non-recursive co-structures for

[Copyright notice will appear here once ’preprint’ option is removed.]

which fusion is relatively straightforward, was the first truly general
solution.

Instead of working directly with lists or vectors, stream fusion
works by re-expressing these functions as operations over streams,
each represented as a state and a step function that transforms the
state while potentially yielding a single value. Alas, different op-
erations need different stream representations, and no single rep-
resentation works well for all operations (§2.3). Furthermore, for
many operations it is not obvious what the choice of representation
should be.

In this paper we solve this problem with a new generalized
stream fusion framework where the primary abstraction over which
operations on vectors are expressed is a bundle of streams. The
streams are chosen so that for any given high-level vector oper-
ation there is a stream in the bundle whose representation leads to
an efficient implementation. The bundle abstraction has no run-time
cost because standard compiler optimizations eliminate intermedi-
ate bundle structures. In addition, we describe several optimized
stream representations. Our contributions are as follows:

• We describe a generalization of stream fusion that bundles
together multiple, alternate representations of a stream. This
allows the stream consumer to choose the representation that
is most efficient for its use case (Section 3.1).

• We show in Section 3.2 how generalized stream fusion en-
ables the use of bulk memory operations, such as memcpy and
memset, for manipulating vectors.

• Generalized stream fusion opens up entirely new opportuni-
ties for optimization. We exploit this opportunity in Section 3.3
by crafting a stream representation well-suited for SIMD-style
vector operations (SSE, AVX etc). The result is a massive per-
formance gain (up to a factor of more than three) at a much
lower programming cost than using conventional approaches
(Section 5).

• Using generalized stream fusion, we describe in Section 3.5
how to modify Data Parallel Haskell [4] so that DPH programs
can automatically take advantage of SIMD operations without
requiring any code modification.

Everything we describe is fully implemented in GHC and its li-
braries (Section 4). Our benchmarks compare to the very best C
and C++ compilers and libraries that we could find. Remarkably,
our benchmarks show that choosing the proper stream representa-
tions can result in machine code that beats compiler-vectorized C,
and that is competitive with hand-tuned assembly. Moreover, using
DPH, programs can easily exploit SIMD instructions and automat-
ically parallelize to take advantage of multiple cores.

1 2013/3/29

2. Stream Fusion Background
We begin by providing the background necessary for understand-
ing stream fusion. There is no new material here—it is all derived
from Coutts et al. [6]. However, we describe fusion for functions
of vectors of unboxed values, as implemented in the vector [18]
library, rather than fusion for functions over lists. Some of the im-
plementation details are elided, but the essential aspects of stream
fusion as we describe them are faithful to the implementation.

2.1 The key insight
The big idea behind stream fusion is to rewrite recursive functions,
which are difficult for a compiler to automatically optimize, as non-
recursive functions. The abstraction that accomplishes this is the
Stream data type:

data Stream a where
Stream :: (s→ Step s a)→ s→ Int→ Stream a

data Step s a = Yield a s
| Skip s
| Done

A stream is a triple of values: an existentially-quantified state,
represented by the type variable s in the above definition, a size,
and a step function that, when given a state, produces a Step. A
Step may be Done, indicating that there are no more values in the
Stream, it may Yield a value and a new state, or it may produce a
new state but Skip producing a value. The presence of Skip allows
us to easily express functions like filter within the stream fusion
framework.

To see concretely how this helps us avoid recursive functions,
let us write map for vectors using streams

map :: (a→ b)→ Vector a→ Vector b
map f = unstream◦maps f ◦ stream

The functions stream and unstream convert a Vector to and from a
stream. A Vector is converted to a stream whose state is an integer
index and whose step function yields the value at the current index,
which is incremented at each step. To convert a stream back into
a Vector, unstream allocates memory for a new vector and writes
each element to the vector as it is yielded by the stream—unstream
embodies a recursive loop. Though imperative, the allocation and
writing of the vector are safely embedded in pure Haskell using the
ST monad [17].

The real work is done by maps, which is happily non-recursive.

maps :: (a→ b)→ Stream a→ Stream b
maps f (Stream step s) = Stream step′ s

where
step′ s = case step s of

Yield x s′→ Yield (f x) s′

Skip s′ → Skip s′

Done →Done

With this definition, the equational rule mentioned in the Introduc-
tion, map f ◦map g ≡ map (f ◦ g), falls out automatically. To see
this, let us first inline our new definition of map in the expression
map f ◦map g.

map f ◦map g ≡
unstream◦maps f ◦ stream◦unstream◦maps g ◦ stream

Given this form, we can immediately spot where an intermedi-
ate structure is formed—by the composition stream ◦ unstream.
We can also see that this composition is the identity function, so
we should be able to eliminate it entirely! Rewrite rules [27] en-
able programmers to express algebraic identities such as stream ◦
unstream = id in a form that GHC can understand and automati-

cally apply. Stream fusion relies critically on this ability, and the
vector library includes exactly this rule. With the rule in place,
GHC transforms our original composition of maps into

map f ◦map g ≡
unstream◦maps f ◦maps g ◦ stream

Conceptually, stream fusion pushes all recursive loops into the
final consumer. The two composed invocations of map become
a composition of two non-recursive calls to maps. The inliner
is now perfectly capable of combining maps f ◦maps g into a
single Stream function. Stream fusion gives us the equational rule
map f ◦map g ≡map (f ◦g) for free.

2.2 Fusing the vector dot product
The motivating example we will use for the rest of the paper is the
vector dot product. A high-level implementation of this function in
Haskell might be written as follows:

dotp :: Vector Double→ Vector Double→Double
dotp v w = sum (zipWith (∗) v w)

It seems that this implementation will suffer from severe
inefficiency—the call to zipWith produces an unnecessary inter-
mediate vector that is immediately consumed by the function sum.
In expressing dotp as a composition of collective operations, we
have perhaps gained a bit of algorithmic clarity but in turn we have
incurred a performance hit.

We have already seen how stream fusion eliminates interme-
diate structures in the case of a composition of two calls to map.
Previous fusion frameworks could handle that example, but were
stymied by the presence of a zipWith. However, stream fusion has
no problem fusing zipWith, which we can see by applying the
transformations we saw in Section 2.1 to dotp.

The first step is to re-express each Vector operation as the
composition of a Stream operation and appropriate conversions
between Vectors and Streams at the boundaries. The functions
zipWith and sum are expressed in this form as follows.

zipWith :: (a→ b→ c)→ Vector a→ Vector b→ Vector c
zipWith f v w = unstream (zipWiths f (stream v) (stream w))

sum :: Num a⇒ Vector a→ a
sum v = foldl′s 0 (+) (stream v)

It is now relatively straightforward to transform dotp to eliminate
the intermediate structure.

dotp :: Vector Double→ Vector Double→Double
dotp≡ sum (zipWith (∗) v w)

≡ foldl′s 0 (+) (stream (unstream
(zipWiths (+) (stream v) (stream w))))

≡ foldl′s 0 (+)
(zipWiths (+) (stream v) (stream w))

This transformation again consists of inlining a few definitions,
something that GHC can easily perform, and rewriting the compo-
sition stream ◦unstream to the identity function. After this trans-
formation, the production (by zipWith) and following consumption
(by sum) of an intermediate Vector becomes the composition of
non-recursive functions on streams.

We can see how iteration is once again pushed into the final con-
sumer by looking at the implementations of foldl′s and zipWiths.
The final consumer in dotp is foldl′s, which is implemented by an
explicit loop that consumes stream values and combines the yielded
values with the accumulator z using the function f (the call to seq
guarantees that the accumulator is strictly evaluated).

2 2013/3/29

foldl′s :: (a→ b→ a)→ a→ Stream b→ a
foldl′s f z (Stream step s) = loop z s

where
loop z s = z ‘seq‘

case step s of
Yield x s′→ loop (f z x) s′

Skip s′ → loop z s′

Done → z

However, in zipWiths there is no loop—the two input streams
are consumed until either both streams yield a value, in which case
a value is yielded on the output stream, or until one of the input
streams is done producing values. The internal state of the stream
associated with zipWiths contains the state of the two input streams
and a one-item buffer for the value produced by the first input
stream.

zipWiths :: (a→ b→ c)→ Stream a→ Stream b→ Stream c
zipWiths f (Stream stepa sa na) (Stream stepb sb nb) =

Stream step (sa,sb,Nothing) (min na nb)
where

step (sa,sb,Nothing) =
case stepa sa of

Yield x sa′ → Skip (sa′,sb,Just x)
Skip sa′ → Skip (sa′,sb,Nothing)
Done →Done

step (sa,sb,Just x) =
case stepb sb of

Yield y sb′→ Yield (f x y) (sa,sb′,Nothing)
Skip sb′ → Skip (sa,sb′,Just x)
Done →Done

Given these definitions, call-pattern specialization [23] in con-
cert with the standard GHC inliner suffice to transform dotp into a
single loop that does not produce an intermediate structure, and the
moral result is shown here, where !! is infix byte array indexing.

dotp (Vector n u) (Vector m v) = loop 0.0 0 0
where

loop z i j
| i<n ∧ j<m = loop (z+u !! i∗v !! j) (i+1) (j+1)
| otherwise = z

If there is any doubt that this results in efficient machine code,
we give the actual assembly language inner loop output by GHC
using the LLVM back end [30]. Stream fusion preserves the ability
to write compositionally without sacrificing performance.

.LBB2_3:
movsd (%rcx), %xmm0
mulsd (%rdx), %xmm0
addsd %xmm0, %xmm1
addq $8, %rcx
addq $8, %rdx
decq %rax
jne .LBB2_3

2.3 Stream fusion inefficiencies
Unfortunately, while stream fusion does well for the examples we
have shown, it still does not produce efficient implementations for
many other operations one might want to perform on vectors. We
next give examples of two classes of operations that are either inef-
ficient or impossible to handle in the stream fusion framework. As
we describe in Section 3, generalized stream fusion can implement
both of these classes of operations efficiently.

2.3.1 Bulk memory operations
Appending two vectors is a simple operation for which an obvi-
ous, efficient implementation exists—a vector large enough to hold
the result is allocated, and the two vectors being appended are
copied, one after the other, to the destination using an optimized
memcpy. Similarly, replicating a scalar across a vector should be
implemented by a call to memset. In other words, we would like to
be able to take advantage of highly optimized bulk memory opera-
tions like memcpy and memset in our vector library. Unfortunately,
this is far from straightforward. To see why, let us look at how we
might implement vector append using stream fusion.

In this framework, vector append is first rewritten in terms of
stream, unstream, and a worker function appends.

append :: Vector a→ Vector a→ Vector a
append u v = unstream (appends (stream u) (stream v))

appends :: Stream a→ Stream a→ Stream a
appends (Stream stepa sa na) (Stream stepb sb nb) =

Stream step (Left sa) (na+nb)
where

step (Left sa) =
case stepa sa of

Yield x sa′ → Yield x (Left sa′)
Skip sa′ → Skip (Left sa′)
Done → Skip (Right sb)

step (Right sb) =
case stepb sb of

Yield x sb′→ Yield x (Right sb′)
Skip sb′ → Skip (Right sb′)
Done →Done

The function appends appends two streams by first yielding all the
values produced by the first stream and then those values produced
by the second stream. When passed to unstream, this results in two
loops, one executed after the other, that write elements one by one
into a newly allocated vector. Similarly, replication compiles to a
loop that writes, one by one, a constant to each element of a newly
allocated vector. While it is theoretically possible for a compiler
to transform this into code equivalent to memcpy and memset,
this requires significant low-level optimization capabilities and is
currently beyond the reach of GHC.

How could we possibly rewrite appends into two calls to
memcpy? We cannot. The difficulty is that a Stream produces a
single value at a time. To take advantage of memcpy, it seems we
need a stream that produces entire vectors, one at a time. However,
this latter representation, though ideal for vector append, would be
a dismal failure if we wished to calculate a dot product!

2.3.2 SIMD computation with vectors
The inadequacy of the single-value-at-a-time nature of streams be-
comes even more apparent when attempting to opportunistically
utilize the SIMD instructions available on many current architec-
tures, e.g., SSE on x86 and NEON on ARM. These instructions op-
erate in parallel on data values that contains two (or four or eight,
depending on the hardware architecture) floating point numbers.
To avoid notational confusion, we call these multi-values, or some-
times just multis.

To enable sum to use SIMD instructions, we would like a stream
representation that yields multi-values (rather than scalars), with
perhaps a bit of scalar “dribble” at the end of the stream when the
number of scalar values is not divisible by the size of a multi.

A stream of scalar values is useless for SIMD computation.
However, a stream of multi-values isn’t quite right either, because
of the “dribble” problem. Perhaps we could get away with a stream

3 2013/3/29

newMVector :: Int→ ST s (MutableVector s a)
sliceMVector :: MutableVector s a→ Int→ Int

→MutableVector s a
readMVector :: MutableVector s a→ Int→ ST s a
writeMVector :: MutableVector s a→ Int→ a→ ST s ()
copyMVector :: Vector a→MutableVector s a→ ST s ()
freezeMVector :: MutableVector s a→ ST s (Vector a)

Figure 1: Operations on mutable vectors.

that yielded either a scalar or a multi at each step, but this would
force all scalar-only operations to handle an extra case, complicat-
ing the implementations of all operations and making them less
efficient. There is a better way!

3. Generalized Stream Fusion
We saw in the previous Section that different stream operations
work best with different stream representations. In this Section,
we describe new stream representations that take advantage of
bulk memory operations (§3.2) and enable SIMD computation with
vectors (§3.3). Finally, we show how to use our framework to
transparently take advantage of SIMD instructions in Data Parallel
Haskell programs (§3.5).

3.1 Bundles of streams
The idea underlying generalized stream fusion is straightforward
but its effects are wide-ranging: instead of transforming a function
over vectors into a function over streams, transform it into a func-
tion over a bundle of streams. A bundle is simply a collection of
streams, each semantically identical but with a different cost model.
Individual stream operations can therefore choose to work with the
most advantageous stream representation in the bundle. We give a
simplified version of the Bundle data type here.

data Bundle a = Bundle
{sSize :: Size
, sElems :: Stream a
, sChunks :: Stream (Chunk a)
, sMultis :: Multis a
}

The sElems field of the Bundle data type contains the familiar
stream of scalar values that we saw in Section 2. In Section 3.3
we describe the representation contained in the sMultis field of the
record, which enables the efficient use of SSE instructions. As we
show next, the stream of Chunks contained in the sChunks field of
the record enables the use of bulk memory operations.

3.2 Taking advantage of bulk memory operations with
Chunks

We observed in Section 2.3.1 that append could take advantage of
memcpy if a stream could produce whole vectors rather than single
scalar values in one step. The mechanism we use is slightly more
general: a Chunk is a computation that destructively initializes a
vector slice of a particular length:

data Chunk a = Chunk Int (∀s.MutableVector s a→ ST s ())

A MutableVector s a is the mutable cousin of a Vector a. The extra
type variable s is the state token that allows us to safely embed
imperative code in pure computations using the ST monad [17].
Some of the operations on mutable vectors are given in Figure 1.
These include operations such as copyMVector which ultimately
uses a variant of memcpy. A producer can use these to generate
Chunks which initialize large parts of a vector in one step:

stream :: Vector a→ Bundle a
stream v = Bundle { ...sChunks = singleton chunk...}

where
chunk = Chunk (length v) (copyMVector v)

Here, stream produces only one Chunk which copies the entire
vector in one efficient bulk operation. To convert a Bundle to a
vector, we now simply allocate a single mutable vector of sufficient
size and initialize it by applying each Chunk to the appropriate
slice:

unstream :: Bundle a→ Vector a
unstream (Bundle {sChunks = Stream step s n}) =

runST $ do mvec← newMVector n
loop mvec 0 s

where
loop mvec i s =

case step s of
Yield (Chunk k fill) s′→ do

fill (sliceMVector mvec i k)
loop mvec (i+k) s′

Skip s′→ loop mvec i s′

Done → freezeMVector mvec

This representation is ideal for both append and replicate. The
former appends the sChunks components of the two bundles us-
ing the version of appends from Section 2.3.1. When unstream
uses the resulting stream of chunks to manifest the vector, it au-
tomatically takes advantage of bulk memory operations. Similarly
to stream, replicate produces only one Chunk that ultimately in-
vokes memset. Thus, if we append a vector produced by stream
and a vector produced by replicate, we will perform one memcpy
followed by one memset which is as efficient as possible.

Though ideal for appending vectors efficiently, streams of
chunks are not a useful representation for operations like zipWith
or fold. This is not a problem, however, since the stream-of-values
representation is still available in the sElems component of the
Bundle. In general, each consumer will choose the best represen-
tation for the particular operation.

What happens when we append two streams that resulted from
separate maps operations? There is a natural conversion from a
stream of scalar values to a stream of chunks—each scalar value
becomes a chunk that writes a single value to a mutable vector.
The result of maps is therefore a Bundle that contains a degenerate
stream of chunks in the sChunks field. There is not much we
can do about this—mapping a function over each element in the
two streams precludes us from using memcpy to append them.
Fortunately, the degenerate stream of chunks produced by maps
does not in the end impose any overhead thanks to the optimizer.
Furthermore, if we really are appending two vectors without first
altering their contents, generalized stream fusion does not force us
to give up an implementation in terms of efficient memory copies
in order to gain fusion for other operations, like map. While a
consumer chooses one representation, a producer outputs a bundle
containing all representations, though some may be degenerate.
The “degenerate” form—a stream of scalar values—results in no
worse an implementation that non-generalized stream fusion. In
other words, generalized stream fusion always produces code that
is at least as good as that produced by stream fusion.

It might seem that maintaining a bundle of streams risks work
duplication since the result is computed multiple times. Crucially,
the stream representations are functions which only do work when
applied by a consumer such as unstream and just like unstream,
all consumers pick exactly one representation and discard all others
so no work is ever duplicated. Standard optimizations are typically
able to resolve this at compile time so that no code is duplicated,

4 2013/3/29

class MultiType a where
data Multi a-- Associated type

-- The number of elements of type a in a Multi a.
multiplicity :: Multi a→ Int

-- A Multi a containing the values 0, 1, ...,
-- multiplicity - 1.
multienum :: Multi a

-- Replicate a scalar across a Multi a.
multireplicate :: a→Multi a

-- Map a function over the elements of a Multi a.
multimap :: (a→ a)→Multi a→Multi a

-- Fold a function over the elements of a Multi a.
multifold :: (b→ a→ b)→ b→Multi a→ b

-- Zip two Multi a’s with a function.
multizipWith :: (a→ a→ a)

→Multi a→Multi a→Multi a

Figure 2: The MultiType type class and its associated type, Multi.

either. The scheme does not rely on lazy evaluation and would work
fine in a call-by-value language.

3.3 A stream representation fit for SIMD computation
Modifying the stream fusion framework to accommodate SIMD
operations requires a more thoughtful choice of representation.
However, proper SIMD support opens up the possibility of dramat-
ically increased performance for a wide range of numerical algo-
rithms. We focus on SIMD computations using 128-bit wide vec-
tors and SSE instructions on x86 since that is what our current im-
plementation supports, although the approach generalizes.

Our implementation represents SIMD values using the type
family Multi. We have chosen the name to avoid confusion with the
Vector type which represents arrays of arbitrary extent. In contrast,
a value of type Multi a is a short vector containing a fixed num-
ber of elements—known as its multiplicity—of type a. On a given
platform, Multi a has a multiplicity that is appropriate for the plat-
form’s SIMD instructions. For example, on x86, a Multi Double
will have multiplicity 2 since SSE instructions operate on 128-bit
wide vectors, whereas a Multi Float will have multiplicity 4. Multi
is implemented as an associated type [3] in the MultiType type
class; their definitions are shown in Figure 2. MultiType includes
various operations over Multi values, such as replicating a scalar
across a Multi and folding a function over the scalar elements of a
Multi. These operations are defined in terms of new primitives we
added to GHC that compile directly to SSE instructions.

Given a value of type Vector Double, how can we operate on
it efficiently using SSE instructions within the generalized stream
fusion framework? An obvious first attempt is to include a stream of
Multi Doubles in the stream bundle. However, this representation
is insufficient for a vector with an odd number of elements since we
will have one Double not belonging to a Multi at the end. Let us
instead try this instead: a stream that can contain either a scalar or a
Multi. We call this stream a MultisP because the producer chooses
what will be yielded at each step.

data Either a b = Left a | Right b

type MultisP a = Stream (Either a (Multi a))

Now we can implement summation using SIMD operations.
Our strategy is to use two accumulating parameters, one for the
sum of the Multi values yielded by the stream and one for the sum

of the scalar values. Note that (+) is overloaded: we use SIMD (+)
to add summ and y, and scalar (+) to add sum1 and x.

msumPs :: (Num a,Num (Multi a))⇒MultisP a→ a
msumPs (Stream step s) = loop 0.0 0.0 s

where
loop summ sum1 s =

case step s of
Yield (Left x) s′→ loop summ (sum1+x) s′

Yield (Right y) s′→ loop (summ+y) sum1 s′

Skip s′→ loop summ sum1 s′

Done →multifold (+) sum1 summ

When the stream is done yielding values, we call the multifold
member of the MultiType type class to fold the addition operator
over the components of the Multi.

This implementation strategy works nicely for folds. However,
if we try to implement the SIMD equivalent of zipWiths, we hit a
roadblock. A SIMD version of zipWiths requires that at each step
either both of its input streams yield a Multi or they both yield a
scalar—if one were to yield a scalar while the other yielded a Multi,
we would have to somehow buffer the components of the Multi.
And if one stream yielded only scalars while the other yielded only
Multis, we would be hard-pressed to cope.

Instead of a stream representation where the producer chooses
what is yielded, let us instead choose a representation where the
stream consumer is in control.

data MultisC a where
MultisC :: (s→ Step s (Multi a))

→ (s→ Step s a)
→ s
→MultisC a

The idea is for a MultisC a to be able to yield either a value of
type Multi a or a value of type a—the stream consumer chooses
which by calling one of the two step functions. Note that the
existential state is quantified over both step functions, meaning
that the same state can be used to yield either a single scalar or
a Multi. If there is not a full Multi available, the first step function
will return Done. The remaining scalars will then be yielded by the
second step function. This representation allows us to implement
a SIMD version of zipWiths (not shown here) and to slightly
improve summation:

msumCs :: (Num a,Num (Multi a))⇒MultisC a→ a
msumCs (Stream mstep sstep s) = mloop 0.0 s

where
mloop summ s =

case mstep s of
Yield x s′→mloop (summ+x) (Left s′)
Skip s′→mloop summ (Left s′)
Done → sloop summ 0.0 s

sloop summ sum1 s =
case sstep s of

Yield x s′→ sloop summ (sum1+x) s′

Skip s′→ sloop summ sum1 s′

Done →multifold (+) sum1 summ

Regrettably, a MultisC still isn’t quite what we need. Consider
appending two vectors of Doubles, each of which contains 41
elements. We cannot assume that the two vectors are laid out
consecutively in memory, so even though the stream that results
from appending them together will contain 82 scalars, this stream
is forced to yield a scalar in the middle of the stream. One might
imagine an implementation that buffers and shifts partial Multi
values, but this leads to very inefficient code. The alternative is for

5 2013/3/29

appends to produce a stream in which either a scalar or a Multi is
yielded at each step—but that was the original representation we
selected and then discarded because it was not suitable for zips!

The final compromise is to allow either—but not both—of these
two representations. We cannot allow both—hence there is only
one new bundle member rather than two—because while we can
easily convert a MultisC a into a MultisP a, the other direction
is not efficiently implementable. The final definition of the Multis
type alias is therefore

type Multis a = Either (MultisC a) (MultisP a)

Each stream function that can operate on Multi values consumes
the Multis a in the sMultis field of the stream bundle. It must be
prepared to accept either a MultisC or a “mixed” stream of scalars
and Multi’s, as this final definition of msums shows:

msums :: (Num a,Num (Multi a))⇒ Bundle a→ a
msums (Bundle {sMultis = Left s}) = msumCs s
msums (Bundle {sMultis = Right t}) = msumPs t

However, we always try to produce a MultisC and only fall back
to a MultisP as a last resort. Even operations that can work with
either representation are often worht specializing for the MultisC
form. In the case of msums above, this allows us to gobble up as
many Multi values as possible and only then switch to consuming
scalars, thereby cutting the number of accumulating parameters in
half and reducing register pressure.

3.4 A SIMD version of dotp

With a stream representation for SIMD computation in hand, we
can write a SIMD-ized version of the dot product from Section 2.

dotp_simd :: Vector Double→ Vector Double→Double
dotp_simd v w = msum (mzipWith (∗) v w)

The only difference with respect to the scalar implementation in
Section 2.2 is that we use variants of foldl′ and zipWith specialized
to take function arguments that operate on values that are members
of the Num type class. While we could have used versions of these
functions that take two function arguments (our library contains
both varietals), one for scalars and one for Multis, the forms that
use overloading to allow the function argument to be used at both
the type a → a → a and Multi a → Multi a → Multi a are a
convenient shorthand.

mfold′ :: (PackedVector Vector a,Num a,Num (Multi a))
⇒ (∀b.Num b⇒ b→ b→ b)
→ a→ Vector a→ a

mzipWith :: (PackedVector Vector a,Num a,Num (Multi a))
⇒ (∀b.Num b⇒ b→ b→ b)
→ Vector a→ Vector a→ Vector a

msum :: (PackedVector Vector a,Num a,Num (Multi a))
⇒ Vector a→ a

msum = mfold′ (+) 0

The particular fold we use here, mfold′, maintains two accu-
mulators (a scalar and a Multi) when given a MultisP a, and one
accumulator when given a MultisC a. The initial value of the scalar
accumulator is the third argument to mfold′, and the initial value of
the Multi accumulator is formed by replicating this scalar argument
across a Multi. The result of the fold is computed by combining the
elements of the Multi accumulator and the scalar accumulator using
the function multifold, just as our implementation of msums. Note
that the first argument to mfold′ must be associative and commuta-
tive. The PackedVector type class constraint on mfold′, mzipWith,
and msum ensures that the type a is an instance of MultiType and

that elements contained in the vector can be extracted a Multi a at
a time.

The stream version of mfold′, mfold′s, can generate efficient
code no matter what representation is contained in a Multis a. On
the other hand, the stream version of mzipWith, mzipWiths, re-
quires that both its vector arguments have a MultisC representa-
tion. Since there is no good way to zip two streams when one
yields a scalar and the other a Multi, if either bundle argument
to mzipWiths does not have a MultisC representation available,
mzipWiths falls back to an implementation that uses only scalar
operations.

3.5 Automatically parallelizing SIMD computations
Using SIMD instructions does not come entirely for free. Consider
mapping over a vector represented using multis:

mmap :: (PackedVector Vector a)
⇒ (a→ a)
→ (Multi a→Multi a)
→ Vector a→ Vector a

To map efficiently over the vector it does not suffice to pass a
function of type (a→ a), because that does not work over multis.
We must also pass a semantically equivalent multi-version of the
function. For simple arithmetic, matters are not too bad (it just
looks stupid):

foo :: Vector Float→ Vector Float
foo v = mmap (λx y→ x+y ∗2) (λx y→ x+y ∗2) v

The two lambdas are at different types, but Haskell’s overloading
takes care of that. We could attempt to abstract this pattern like this:

mmap :: (PackedVector Vector a)
⇒ (∀a.Num a⇒ a→ a)
→ Vector a→ Vector a

But that attempt fails if you want operations in class Floating, say,
rather than Num. What we want is a way to automatically multi-ize
scalar functions (such as (λx y→ x+ y ∗2) above), so that we get
a pair of a scalar function and a multi function, which in turn can
be passed to map.

There is another problem: mmap only takes a function of type
(a→ a) which is less general (and hence less useful) than usual.
The reason for this is the limited range of functions that that the
hardware offers over Multis, which is reflected in the type of
multimap in the MultiType class (Figure 2).

Happily, both problems are already solved by the vectorization
transformation of Data Parallel Haskell [4, 24], itself based on
the pioneering NESL [1]. Given a function f over scalars, DPH
produces a function f ′ which operates on vectors of scalars and is
equivalent to map f, but uses only primitive collective operations
rather than iteration. Of course, a Multi is a special case of a
vector and MultiType includes enough functionality to provide the
primitive collective operations that DPH needs which means we
can use it to produce SIMD code. Better still, DPH allows us to
take advantage of multiple cores, as well as the SIMD instruction
in each core. There are many moving parts here, but in principle we
can get the convenience of scalar vector code, and automatically
exploit both SIMD instructions and multi-core.

We start with an advantage: DPH is already built on the stream
abstraction provided by the vector library. We modified the DPH
libraries to use our bundle abstraction instead. Because DPH pro-
grams are vectorized by the compiler so that all scalar operations
are turned into operations over wide vectors, by implementing these
wide vector operations using our new SIMD functions like msum,
programs written using DPH automatically and transparently take

6 2013/3/29

advantage of SSE instructions—no code changes are required of
the programmer.

3.6 How general is generalized stream fusion?
Generalized stream fusion provides a representation and algebraic
laws for rewriting operations over this representation whose useful-
ness extends beyond Haskell. Although we have implemented gen-
eralized stream fusion as a library, it could also be incorporated into
a compiler as an intermediate language. This was not necessary in
our implementation because GHC’s generic optimizer is powerful
enough to eliminate all intermediate structures created by general-
ized stream fusion. In other words, GHC is such a fantastic partial
evaluator that we were able to build generalized stream fusion as a
library rather than incorporating it into the compiler itself. Writing
high-level code without paying an abstraction tax is desirable in
any language, and compilers less capable than GHC can also avoid
this tax using the ideas we outline in this paper, although perhaps
only by paying a substantial one-time implementation cost.

4. Implementation
There are three substantial components of our implementation. We
first modified GHC itself to add support for SSE instructions. This
required changing GHC’s register allocator to allow overlapping
register classes. Previously, single- and double-precision registers
could only be drawn from disjoint sets of registers even though
on many platforms, including x86 (when using SSE) and x86-
64, there is a single register class for both single- and double-
precision floating point values. This change was also necessary
to allow SSE vectors to be stored in registers. We then added
support for primitive SIMD vector types and primitive operations
over these types to GHC’s dialect of Haskell. These primitives
are fully unboxed [25]. The STG [21] and C-- [26] intermediate
languages, as well as the LLVM code generator [30], were also
extended to support compiling the new Haskell SIMD primitives.
Boxed wrappers for the unboxed primitives and the MultiType
type class and its associated Multi type complete the high-level
support for working directly with basic SIMD data types. Because
the SIMD support we added to GHC utilizes the LLVM back-end,
it should be relatively straightforward to adapt our modifications
for other CPU architectures, although at this time only x86-64 is
supported.

Second, we implemented generalized stream fusion in a modi-
fied version of the vector library [18] for computing with efficient
unboxed vectors in Haskell. We replaced the existing stream fu-
sion implementation with an implementation that uses the Bundle
representation and extended the existing API with functions such
as mfold′ and mzipWith that enable using SIMD operations on
the contents of vectors. The examples in this paper are somewhat
simplified from the actual implementations. For example, the ac-
tual implementations are written in monadic form and involve type
class constraints that we have elided. Vectors whose scalar elements
can be accessed in SIMD-sized groups, i.e., vectors whose scalar
elements are laid out consecutively in memory, are actually repre-
sented using a PackedVector type class. These details do not affect
the essential design choices we have described, and the functions
used in all examples are simply type-specialized instances of the
true implementations.

Third, we modified the DPH libraries to take advantage of our
new vector library. The DPH libraries are built on top of the
stream representation from a previous version of the vector li-
brary, so we first updated DPH to use our bundle representation
instead. We next re-implemented the primitive wide-vector oper-
ations in DPH in terms of our new SIMD operations on bundles.
While we only provided SIMD implementation for operations on
double-precision floating point values, this part of the implementa-

double cddotp(double* u, double* v, int n)
{

double s = 0.0;
int i;

for (i = 0; i < n; ++i)
s += u[i] * v[i];

return s;
}

Figure 3: C implementation of vector dot product using only scalar
operations.

tion was quite small, consisting of approximately 20 lines of code
not counting ifdefs. Further extending SIMD support in DPH will
be easy now that it is based on bundles rather than streams.

Our register allocation patch and our SIMD patches supporting
SSE instructions have already been accepted into mainline GHC.
Our modifications to the vector and DPH libraries are available
in a public git repository. We expect these library modifications to
also be adopted by their respective maintainers. We are working
with all maintainers to ensure that the work we report on in this
paper will be available in the GHC 7.8 release along with support
for AVX instructions.

5. Evaluation
Our original goal in modifying GHC and the vector library was
to make efficient use of SSE instructions from high-level Haskell
code. The inability to use SSE operations from Haskell and its
impact on performance is a deficiency that was brought to our
attention by Lippmeier and Keller [19]. The first step we took
was to write a small number of simple C functions utilizing SSE
intrinsics to serve as benchmarks. This gave us a very concrete
goal—to generate machine code from Haskell that was competitive
with these C implementations.

For comparison, we also implemented a C version of ddotp
using only scalar operations, shown in Figure 3. The C implemen-
tation we use as a benchmark for double-precision dot product, to
which we have added support for SSE by hand, is given in Figure 4.
We repeat the definition of the Haskell implementation here.

ddotp :: Vector Double→ Vector Double→Double
ddotp v w = mfold′ (+) 0 (mzipWith (∗) v w)

Though not exactly onerous, the C version with SSE support
is already unpleasantly more complex than the scalar version. And
surely the Haskell version, consisting of a single line of code (not
including the optional type signature) is a good bit simpler. Also
note that the Haskell programmer can think compositionally—it is
natural to think of dot product as pair-wise multiplication followed
by summation. The C programmer, on the other hand, must man-
ually fuse the two loops into a single multiply-add. Furthermore,
as well as being constructed compositionally, the Haskell imple-
mentation can itself be used compositionally. That is, if the input
vectors to ddotp are themselves the results of vector computations,
generalized stream fusion will potentially fuse all operations in the
chain into a single loop. In contrast, the C programmer must mani-
fest the input to the C implementation of ddotp as concrete vectors
in memory—there is no potential for automatic fusion with other
operations.

Figure 5 compares the single-threaded performance of several
implementations of the dot product, including C and Haskell ver-
sions that only use scalar operations as well as the implementa-
tion provided by GotoBLAS2 1.13 [8, 9]. Times were measured

7 2013/3/29

#include <xmmintrin.h>

#define VECTOR_SIZE 2

typedef double v2sd __attribute__
((vector_size(sizeof(double)*

VECTOR_SIZE)));

union d2v
{

v2sd v;
double d[VECTOR_SIZE];

};

double ddotp(double* u, double* v, int n)
{

union d2v d2s = {0.0, 0.0};
double s;
int i;
int m = n & (~ VECTOR_SIZE);

for (i = 0; i < m; i += VECTOR_SIZE)
d2s.v += (*((v2sd*) (u+i)))*(*((v2sd*)

(v+i)));

s = d2s.d[0] + d2s.d[1];

for (; i < n; ++i)
s += u[i] * v[i];

return s;
}

Figure 4: C implementation of vector dot product using SSE intrinsics.

on a 3.40GHz Intel i7-2600K processor, averaged over 100 runs.
To make the relative performance of the various implementations
clearer, we show the execution time of each implementation rela-
tive to the scalar C version (from Figure 4), which is normalized to
1.0, in Figure 6.

Surprisingly, both the naive scalar C implementation (Figure 3)
and the version written using SSE intrinsics (Figure 4) perform ap-
proximately the same. This is because GCC in fact vectorizes the
scalar implementation. However, the Haskell implementation is al-
most always faster than both C versions; it is 5-20% slower for very
short vectors (those with fewer than about 16 elements) and 1-2%
slower just when the working set size exceeds the capacity of the
L1 cache. Not only does Haskell beat C, but it beats GCC’s vector-
izer! Once the working set no longer fits in L3 cache, the Haskell
implementation is even neck-and-neck with the implementation of
ddotp from GotoBLAS, a collection of highly-tuned BLAS rou-
tines hand-written in assembly language that is generally consid-
ered to be one of the fastest BLAS implementation available.

5.1 Prefetching and loop unrolling
Why is Haskell so fast? Because we have exploited the high-level
stream-fusion framework to embody two additional optimizations:
loop unrolling and prefetching.

The generalized stream fusion framework allowed us to imple-
ment the equivalent of loop unrolling by adding under 200 lines of
code the to vector library. We changed the MultisC data type to
incorporate a leap, which is a Step that contains multiple values
of type Multi a. We chose Leap to contain four values—so loops
are unrolled four times—since on x86-64 processors this tends not
to put too much register pressure on the register allocator. Adding
multiple Leaps of different sizes would also be possible. MultisC

102 103 104 105 106 107 108

Working Set (bytes)

0

2000

4000

6000

8000

10000

M
Fl

op
s

L
1

L
2

L
3

Vector library
Vector library (SSE)
Hand-written C
Hand-written C (SSE)
Goto BLAS 1.13

Figure 5: Single-threaded performance of double-precision dot
product implementations. C implementations were compiled us-
ing GCC 4.7.2 and compiler options -O3 -msse4.2 -ffast-math
-ftree-vectorize -funroll-loops. Sizes of the L1, L2, and L3
caches are marked.

21 22 23 24 25 26 27 28 29 210211212213214215216217218219220221222223224

Vector size (elements)
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3
E

xe
cu

tio
n

Ti
m

e
R

at
io

Hand-written C
Hand-written C (SSE)
Vector library (SSE)
Goto BLAS 1.13

Figure 6: Relative performance of single-threaded ddot implemen-
tations. All times are normalized relative to the hand-written, compiler-
vectorized, C implementation.

consumers may of course chose not to use the Leap stepping func-
tion, in which case loops will not be unrolled.

data Leap a = Leap a a a a

data MultisC a where
MultisC :: (s→ Step s (Leap (Multi a)))

→ (s→ Step s (Multi a))
→ (s→ Step s a)
→ s
→MultisC a

Prefetch instructions on Intel processors allow the program to
give the CPU a hint about memory access patterns, telling it to
prefetch memory that the program plans to use in the future. In
our library, these prefetch hints are implemented using prefetch
primitives that we added to GHC. When converting a Vector to

8 2013/3/29

.LBB4_12:
prefetcht0 1600(%rcx,%rdi)
vmovupd 64(%rcx,%rdi), %xmm1
prefetcht0 1600(%rsi,%rdi)
vmovupd 80(%rcx,%rdi), %xmm2
vmulpd 80(%rsi,%rdi), %xmm2, %xmm2
vmulpd 64(%rsi,%rdi), %xmm1, %xmm1
vaddpd %xmm1, %xmm0, %xmm0
vaddpd %xmm2, %xmm0, %xmm0
vmovupd 96(%rcx,%rdi), %xmm2
vmovupd 96(%rsi,%rdi), %xmm3
vmovupd 112(%rcx,%rdi), %xmm1
vmulpd 112(%rsi,%rdi), %xmm1, %xmm1
vmulpd %xmm2, %xmm3, %xmm2
addq $64, %rdi
leaq 8(%rax), %rdx
addq $16, %rax
vaddpd %xmm2, %xmm0, %xmm0
cmpq %rbx, %rax
vaddpd %xmm1, %xmm0, %xmm0
movq %rdx, %rax
jle .LBB4_12

Figure 7: Inner loop of Haskell ddotp function.

a MultisC, we know exactly what memory access pattern will
be used—each element of the vector will be accessed in linear
order. The function that performs this conversion, stream, takes
advantage of this knowledge by executing prefetch instructions as
it yields each Leap. Only consumers using Leaps will compile
to loops containing prefetch instructions, and stream will only
add prefetch instructions for vectors whose size is above a fixed
threshold (currently 8192 elements), because for shorter vectors the
extra instruction dispatch overhead is not amortized by the increase
in memory throughput. Loop unrolling and prefetching produce an
inner loop for our Haskell implementation of ddotp that is shown
in Figure 7.

Not only can the client of our modified vector library write
programs in terms of boxed values and directly compose vector
operations instead of manually fusing operations without paying
an abstraction penalty, but he or she can transparently benefit from
low-level prefetch magic baked into the library. Of course the same
prefetch magic could be expressed manually in the C version.
However, the author who wrote the code in Figure 4 did not know
about prefetch at the time of implementation. We suspect that many
C programmers are in the same state of ignorance. In Haskell, this
knowledge is embedded in a library, and clients benefit from it
automatically.

5.2 Speeding up Haskell
To see how easy it is to integrate SIMD instruction into existing
programs, we rewrote a number of functions from various packages
using our modified vector library. In all cases, we simply iden-
tified suitable operations (typically maps and folds) and replaced
them by multi-enabled versions. We did not modify or refactor the
algorithms. The percentage speedup of the rewritten versions is
shown in Figure 8. The ‘sum’, ‘kahan’, ‘dotp’, ‘saxpy’, and ‘rbf’
benchmarks are short programs that make heavy use of numerics
(‘kahan’ implements Kahan summation [15]). Two benchmarks,
‘variance’ and ‘kde’, a kernel density estimator, are adapted from
the statistics [2] Haskell package. These first seven bench-
marks were run using vectors containing 216 Doubles. The ‘mix-
ture’ benchmark is adapted from the StatisticalMethods [5]
Haskell package and implements the expectation-maximization

su
m

ka
ha

n

do
tp

sa
xp

y

rb
f

va
ri

an
ce kd
e

m
ix

tu
re

qu
ic

kh
ul

l0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
sp

ee
du

p

Figure 8: Percentage improvement in running time.

(EM) algorithm for a mixture of two Gaussians [12, §8.5.1]. The
final benchmark, ‘quickhull’, is adapated from the examples in-
cluded with DPH.

The first six benchmarks consist almost entirely of numeric op-
erations for which SSE version are available; correspondingly, they
show a significant speedup, from more than 1.5× to more than
3×. The final three functions contain features that frustrated our
efforts, such as use of non-numeric operations or data-dependent
control flow, which is difficult to vectorize. One benchmark, ‘mix-
ture’, has a run time that is exponential in the size of its input, so
we could only run it on very small data sets. Nevertheless, we were
able to gain at least a minimum of a few percentage points even on
these difficult-to-vectorize benchmarks just by picking some low-
hanging fruit. We expect that many Haskell programs that make
some use of numerical operations on sequences will have at least a
few such ripe morsels. Rewriting a small amount of code for a 5%
performance improvement is worthwhile; rewriting a small amount
of code for a 3× performance improvement is an unbelievably good
deal.

5.3 Abstraction without cost
Using Haskell for implementing kernels such as dotp provides
us with another significant advantage: these kernels can fuse with
other vector operations! Fusion is not possible with BLAS routines
but can dramatically increase performance. Consider the Gaussian
radial basis function [12], defined as

K(x,y) = e−ν‖x−y‖2

A C programmer implementing this function could take advan-
tage of high-performance BLAS routines in two possible ways. The
first is to write x− y to a temporary vector and then call BLAS.
Of course this requires an intermediate structure, which is unde-
sirable. The second possibility is to apply the identity ‖x−y‖2 =
x ·x−2x ·y+y ·y and call into the BLAS three times without creat-
ing a temporary vector. This does not require an intermediate struc-
ture, but it requires making multiple passes over each input vector.
It is also numerically unstable. The Haskell programmer, on the
other hand, could straightforwardly write the following implemen-
tation

9 2013/3/29

102 103 104 105 106 107 108

Working Set (bytes)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
Fl

op
s

L
1

L
2

L
3

Haskell
C (BLAS)
C (BLAS w/intermed.)

Figure 9: Performance of Haskell and C Gaussian RBF implementa-
tions..

rbf :: Double→ Vector Double→ Vector Double→Double
rbf ν v w = exp (−ν ∗msum (mzipWith norm v w))

where
norm x y = square (x−y)
square x = x∗x

We show the performance of three implementations of the Gaus-
sian RBF in Figure 9. The first is the Haskell function rbf whose
definition we have just given. The second is the C version that uses
the above identity to avoid temporary allocation, and the third allo-
cates an intermediate value. The Haskell version with SSE support
is the clear winner—due to fusion, it touches each element of the
two vectors only once.

5.4 Haskell beats C++?
C is a straw man when fusion of array operations becomes critical
for performance—we know of no C compiler that can perform this
kind of optimisation. An imperative programmer would not attack
these sorts of problems with C in any case, but likely turn to C++,
for which there are a number of libraries tailored to matrix com-
putation that do perform fusion. These libraries all use expression
templates [31], a technique pioneered by the Blitz++ [32] library.

We have implemented C++ versions of the Gaussian RBF using
three different libraries: Blitz++ 0.10 [32], Boost uBLAS 1.53 [13],
and Eigen 3.1.2 [10]. We give performance numbers for all three,
but our discussion focuses on Eigen, which utilizes SSE instruc-
tions and is generally considered the most performant library in
this class. Figure 10 shows the Gaussian RBF implemented using
Eigen. Note that we have implemented the square of the L2-norm
ourselves, a point we return to later. In this specific case the Eigen
library has the squared L2-norm in its API, but in more complicated
examples there might be no such built-in provision.

After writing the code in Figure 10, we decided to actually
read the Eigen documentation. We reproduce a highly relevant note
here [10]:

To summarize, the implementation of functions taking non-
writable (const referenced) objects is not a big issue and
does not lead to problematic situations in terms of compil-
ing and running your program. However, a naive implemen-
tation is likely to introduce unnecessary temporary objects
in your code. In order to avoid evaluating parameters into

double norm2(VectorXd const& v)
{

return v.dot(v);
}

double eigen_rbf(double nu , VectorXd const& u,
VectorXd const& v)

{
VectorXd temp = u - v;

return exp(-nu*norm2(u-v));
}

Figure 10: C++ implementation of Gaussian radial basis function.

template <typename Derived >
typename Derived :: Scalar norm2(const

MatrixBase <Derived >& v)
{

return v.dot(v);
}

double eigen_rbf(double nu , VectorXd const& u,
VectorXd const& v)

{
VectorXd temp = u - v;

return exp(-nu*norm2(u-v));
}

Figure 11: C++ implementation of Gaussian radial basis function.

temporaries, pass them as (const) references to MatrixBase
or ArrayBase (so templatize your function).

Having read this, we realized our mistake and modified our
code, producing the version in Figure 11. Avoiding temporary al-
location in Eigen and other libraries can require some care because
expression templates are not vectors or matrices, but represent com-
putations that, when run, compute a matrix or vector. Programmer-
written abstractions must be careful to abstract over expression tem-
plates, and not over matrices or vectors. Figure 12 shows the per-
formance of the Haskell and C++ implementations of the Gaussian
radial basis function. Our initial version using Eigen (from Fig-
ure 10, labeled “Eigen (bad norm2)”) performs quite poorly but the
modified one is the fastest by far. Interestingly, once the working
set no longer fits in L3 cache, the Boost version, which does not
use SSE instructions, outperforms all SSE-enabled variants except
the fast Eigen version. We suspect that Boost and Eigen make bet-
ter use of prefetching interact better with the processor’s prefetch
prediction than the other libraries.

Clearly “properly”-written C++ can outperform Haskell. The
challenge is in figuring out what “proper” means. A Haskell pro-
grammer can write straightforward, declarative code and expect the
compiler to handle fusion. The C++ programmer must worry about
the performance implications of abstraction.

Furthermore, unlike Eigen, our implementation is immature,
and there are several straightforward changes that will further im-
prove the absolute performance of Haskell code. There is room
for improvement in our use of prefetching. More importantly, we
currently cannot rely on memory allocated by GHC to be prop-
erly aligned for SSE move-aligned instructions, so all SSE move
instructions are unaligned. Differentiating between unaligned and
aligned memory will allow us to avoid the large performance hit
incurred by our current implementation.

10 2013/3/29

102 103 104 105 106 107 108

Working Set (bytes)

0

2000

4000

6000

8000

10000

12000

M
Fl

op
s

L
1

L
2

L
3

Eigen
Haskell
Eigen (bad norm2)
Boost uBlas
Blitz++

Figure 12: Performance of Haskell and C++ Gaussian RBF implemen-
tations.

1 2 3 4 8 15 16
Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
xe

cu
tio

n
Ti

m
e

R
at

io

Hand-written C (SSE)
Vector library (SSE)
DPH
DPH (SSE)

Figure 13: Performance of double-precision dot product implementa-
tions. The DPH implementations are multi-threaded, and the vector library
and hand-written C implementations are single-threaded.

5.5 Generalized stream fusion in Data Parallel Haskell
As we described in Section 3.5, we have modified Data Parallel
Haskell (DPH) to generate vectorized programs that work over bun-
dles, and hence exploit both SSE and multi-core parallelism. Fig-
ure 13 shows the performance of several dot product implementa-
tions, including DPH implementations with and without our rewrit-
ten run-time. These measurements were taken on a 32-core (4×8)
AMD Opteron 6128 running at 2GHz. Although there is some over-
head due to DPH in the SSE implementation and significant over-
head in the scalar implementation, DPH does scale well—in ad-
dition to transparently taking advantage of SSE instructions, our
modified version of DPH transparently takes advantage of addi-
tional cores. We believe the disparity between the two DPH imple-
mentations is due in large part to non-SSE-specific optimizations
we implemented.

6. Related Work
Wadler [33] introduced the problem of deforestation, that is, of
eliminating intermediate structures in programs written as com-
positions of list transforming functions. A great deal of follow-on
work [7, 11, 14, 22, 28, 29] attempted to improve the ability of
compilers to automate deforestation through program transforma-
tions. Each of these approaches to fusion has severe limitations. For
example, Gill et al. [7] cannot fuse left folds, such as that which
arises in sum, or zipWith, and Svenningsson [28] cannot handle
nested computations such as mapping a function over concatenated
lists. Our work is based on the stream fusion framework described
by Coutts et al. [6], which can fuse all of these use cases and more.
The vector library uses stream fusion to fuse operations on vec-
tors rather than lists, but the principles are the same.

7. Conclusion
Generalized stream fusion is a strict improvement on stream fusion;
by re-casting stream fusion to operate on bundles of streams, each
vector operation or class of operations can utilize a stream represen-
tation tailored to its particular pattern of computation. We describe
two new stream representations, one supporting bulk memory op-
erations, and one adapted for SIMD computation with short-vector
instructions, e.g., SSE on x86. We have added support for low-level
SSE instructions to GHC and incorporated generalized stream fu-
sion into the vector library. Using our modified library, program-
mers can write compositional, high-level programs for manipulat-
ing vectors without loss of efficiency. Benchmarks show that these
programs can perform competitively with hand-written C.

Although we implemented generalized stream fusion in a
Haskell library, the bundled stream representation could be used
as an intermediate language in another compiler. Vector operations
would no longer be first class in such a formulation, but it would
allow a language to take advantage of fusion without requiring im-
plementations of the general purpose optimizations present in GHC
that allow it to eliminate the intermediate structures produced by
generalized stream fusion.

Acknowledgments
The authors would like to thank Simon Marlow for his help de-
bugging GHC’s runtime system and code generator. We are also
grateful for Andrew Fitzgibbon’s many insightful comments.

References
[1] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and S. Chat-

terjee. Implementation of a portable nested data-parallel language.
Journal of Parallel and Distributed Computing, 21(1):4–14, 1994.

[2] Bryan O’Sullivan. statistics: A library of statistical types, data, and
functions, aug 2012.

[3] M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. As-
sociated types with class. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, POPL
’05, page 1–13, New York, NY, USA, 2005.

[4] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and
S. Marlow. Data Parallel Haskell: a status report. In Proceedings of
the 2007 workshop on Declarative Aspects of Multicore Programming,
DAMP ’07, page 10–18, Nice, France, 2007. ACM ID: 1248652.

[5] Christian Höner zu Siederdissen. StatisticalMethods: collection of
useful statistical methods., aug 2011.

[6] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists
to streams to nothing at all. In Proceedings of the 12th ACM SIGPLAN
International Conference on Functional Programming, pages 315–
326, Freiburg, Germany, 2007.

[7] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to de-
forestation. In Proceedings of the conference on Functional Pro-

11 2013/3/29

gramming Languages and Computer Architecture, FPCA ’93, page
223–232, New York, NY, USA, 1993.

[8] K. Goto and R. v. d. Geijn. Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw., 34(3):1–25, 2008.

[9] K. Goto and R. v. d. Geijn. High-performance implementation of the
level-3 BLAS. ACM Trans. Math. Softw., 35(1):1–14, 2008.

[10] G. Guennebaud, B. Jacob, and others. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[11] G. W. Hamilton. Extending higher-order deforestation: transforming
programs to eliminate even more trees. In K. Hammond and S. Curtis,
editors, Proceedings of the Third Scottish Functional Programming
Workshop, page 25–36, Exeter, UK, UK, aug 2001.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. 2 edition, 2009.

[13] Joerg Walter, Mathias Koch, Gunter Winkler, and
David Bellot. Boost basic linear algebra - 1.53.0.
http://www.boost.org/doc/libs/1_53_0/libs/numeric/ublas/doc/index.htm,
2010.

[14] P. Johann. Short cut fusion: proved and improved. In Proceedings
of the 2nd international conference on Semantics, applications, and
implementation of program generation, SAIG’01, page 47–71, Berlin,
Heidelberg, 2001.

[15] W. Kahan. Pracniques: further remarks on reducing truncation errors.
Commun. ACM, 8(1):40–, jan 1965.

[16] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell.
In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’10, page 261–272, New York,
NY, USA, 2010.

[17] J. Launchbury and S. L. Peyton Jones. State in Haskell. Lisp and
Symbolic Computation, 8(4):293–341, 1995.

[18] R. Leshchinskiy. vector: Efficient arrays, oct 2012.
[19] B. Lippmeier and G. Keller. Efficient parallel stencil convolution

in Haskell. In Proceedings of the 4th ACM Symposium on Haskell,
Haskell ’11, page 59–70, New York, NY, USA, 2011.

[20] B. Lippmeier, M. Chakravarty, G. Keller, and S. Peyton Jones. Guiding
parallel array fusion with indexed types. In Proceedings of the 2012
Symposium on Haskell, Haskell ’12, page 25–36, New York, NY,
USA, 2012.

[21] S. Marlow and S. Peyton Jones. Making a fast curry: Push/Enter
vs. Eval/Apply for higher-order languages. Journal of Functional
Programming, 16(4-5):415–449, 2006.

[22] S. Marlow and P. Wadler. Deforestation for higher-order functions. In
Proceedings of the 1992 Glasgow Workshop on Functional Program-
ming, page 154–165, London, UK, UK, 1993.

[23] S. Peyton Jones. Call-pattern specialisation for Haskell programs. In
Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’07, page 327–337, New York, NY,
USA, 2007.

[24] S. Peyton Jones, R. Leshchinskiy, G. Keller, and M. Chakravarty.
Harnessing the multicores: Nested data parallelism in Haskell. In
Programming Languages and Systems, page 138. 2008.

[25] S. L. Peyton Jones and J. Launchbury. Unboxed values as first class
citizens in a non-strict functional language. In Proceedings of the
5th ACM Conference on Functional Programming Languages and
Computer Architecture, pages 636–666, 1991.

[26] S. L. Peyton Jones, N. Ramsey, and F. Reig. C--: a portable assem-
bly language that supports garbage collection. In International Con-
ference on Principles and Practice of Declarative Programming, sep
1999.

[27] S. L. Peyton Jones, T. Hoare, and A. Tolmach. Playing by the rules:
rewriting as a practical optimisation technique. In Proceedings of the
2001 ACM SIGPLAN Workshop on Haskell, 2001.

[28] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-
like functions. In Proceedings of the seventh ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’02, page
124–132, New York, NY, USA, 2002.

[29] A. Takano and E. Meijer. Shortcut deforestation in calculational form.
In Proceedings of the seventh international conference on Functional
Programming and Computer Architecture, FPCA ’95, page 306–313,
New York, NY, USA, 1995.

[30] D. A. Terei and M. M. Chakravarty. An LLVM backend for GHC.
In Proceedings of the third ACM Symposium on Haskell, Haskell ’10,
page 109–120, New York, NY, USA, 2010.

[31] T. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, jun
1995.

[32] T. L. Veldhuizen. Arrays in Blitz++. pages 223–230, dec 1998.
[33] P. Wadler. Deforestation: transforming programs to eliminate trees.

Theoretical Computer Science, 73(2):231–248, jun 1990.

12 2013/3/29

