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Abstract 

H/Direct is a foreign-language interface for the purely func- 
tional language Haskell. Rather than rely on host-language 
type signatures, H/Direct compiles Interface Definition Lan- 
guage (IDL) to Haskell stub code that marshals data across 
the interface. This approach allows Haskell to call both C 
and COM, and allows a Haskell component to be wrapped 
in a C or COM interface. IDL is a complex language and 
language mappings for IDL are usually described informally. 
In contrast, we provide a relatively formal and precise defy- 
nition of the mapping between Haskell and IDL. 

1 Introduction 

A foreign-language interface provides a way for programs 
written in one language to call, or be called by, programs 
written in another. Programming languages that do not sup- 
ply a foreign-language interface die a slow, lingering death 
- good languages die more slowly than bad ones, but they 
all die in the end. 

In this paper we describe a new foreign-language for the 
functional programming language Haskell. In contrast to 
earlier foreign-language interfaces for Haskell, such as Green 
Card [5], we describe a design based on a standard Interface 
Definition Language (IDL). We discuss the reasons for this 
decision in Section 2. 

Our interface provides direct access to libraries written in 
C (or any other language using C’s calling convention), 
and makes it possible to write Haskell procedures that can 
be called from C. The same tool also makes it allows us 
to call COM components directly from Haskell [4], or to 
seal up Haskell programs as a COM component. (COM is 
Microsoft’s component object model; it offers a language- 
independent interface standard between software compo- 
nents. The interfaces of these components are written in 
IDL.) 

H/Direct generates Haskell stub code from IDL interface 
descriptions. It is carefully designed to be independent of 

the particular Haskell implementation. To maintain this in- 
dependence, H/Direct requires the implementation to sup- 
port a primitive foreign-language interface mechanism, ex- 
pressed using a (non-standard) Haskell foreign declaration; 
H/Direct provides the means to leverage that primitive fa- 
cility into the full glory of IDL. 

Because they cater for a variety of languages, foreign- 
language interfaces tend to become rich, complex, incom- 
plete, and described only by example. The main contribu- 
tion of this paper is to provide (part of) a formal descrip- 
tion of the interface. This precision encompasses not only 
the programmer%-eye view of the interface, but also its im- 
plementation. The bulk of the paper is taken up with this 
description. 

2 Background 

The basic way in which almost any foreign-language inter- 
face works is this. The signature of each foreign-language 
procedure is expressed in some formal notation. Prom this 
signature, stub code is generated that marshals the param- 
eters “across the border” between the two languages, calls 
the procedure using the foreign language’s calling conven- 
tion, and then unmarshals the results back across the bor- 
der. Dealing with the different calling conventions of the two 
languages is usually the easy bit. The complications come 
in the parameter marshaling, which transforms data values 
built by one language into a form that is comprehensible to 
the other. 

A major design decision is the choice of notation in which 
to describe the signatures of the procedures that are to be 
called across the interface. There are three main possibili- 
ties: 

l Use the host language (Haskell, in our case). That 
is, write a Haskell type signature for the foreign func- 
tion, and generate the stub code from it. Green Card 
uses this approach [5], as does J/Direct [8] (Microsoft’s 
foreign-language interface for Java). 

l Use the foreign language (say C). In this case the stub 
code must be generated from the C prototype for the 
procedure. SWIG [l] uses this approach. 

l Use a separate Interface Definition Language (IDL), 
designed specifically for the purpose. 
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We discuss the first two possibilities in Section 2.1 and the 
third in Sect,ion 2.2. 

2.1 Using the host or foreign language 

At first sight the first two options look much more conve- 
nient than the third, because the caller is written in one 
language and the callee in the other, so the interface is con- 
veniently expressed for at least one of them. Here, for exam- 
ple, is how J/Direct allows Java to make foreign-language 
calls: 

class ShowMsgBox { 
public static void main(String args[]) 
c 

MessageBox(0, “Hello! I’, “Java Messagebox” ,O> ; 
1 

/** @dll. import (“USER32”) */ 
private static native 

int MessageBox( int hundOwner, String text 

i; 
String title, int fuStyle 

1 

The dll. import directive tells the compiler that the 
Java MessageBox method will link to the native Windows 
USER32. DLL. The parameter marshaling (for example of the 
strings) is generated based on the Java type signature for 
MessageBox. 

The fatal flaw is that it is invariably impossible, in general, 
to generate adequate stub code based solely on the type sig- 
nature of a procedure in one language or the other. There 
are three kinds of difficulties. 

1. First, some practically-important languages, notably 
C, have a type system that is too weak to express the 
necessary distinctions. For example: 

l The stub code generator must know the mode of 
each parameter - in, in out, or out - because 
each mode demands different marshaling code. 

l Some pointers have a significant NULL value while 
others do not. Some pointers point to values that 
can (and sometimes should) be copied across the 
border, while others refer to mutable locations 
whose contents must not be copied. 

l There may be important inter-relationships be- 
tween the parameters. For example, one param- 
eter might point to an array of values, while an- 
other gives the number of elements in the array. 
The marshaling code needs to know about such 
dependencies. 

2. On the other hand, it may not even be enough to give 
the signature in a language with an expressive type 
system, such as Haskell. The trouble is that the type 
signature still says too little about the foreign proce- 
dures type signature. For example, is the result of a 
Haskell procedure returned as the result of the foreign 
procedure, or via an out- parameter of that procedure? 
In the case of J/Direct, when a record is passed as an 
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argument, Java’s type signature is not enough to spec- 
ify the layout of the record because Java does not spec- 
ify the layout of the fields of an object and the garbage 
collector can move the object around in memory. 

The signature of a foreign procedure may say too little 
about allocation responsibilities. For example, if the 
caller passes a data structure to the callee (such as a 
string), can the latter assume that the structure will 
still be available after the call? Does the caller or callee 
allocate space to hold the results? 

In an earlier paper we described Green Card, whose basic 
approach was to use Haskell as the language in which to give 
the type signatures for foreign procedures [5]. To deal with 
the issues described above we provided ways of augmenting 
the Haskell type signature to allow the programmer to “cus- 
tomise” the stub code that would be generated. However, 
Green Card grew larger and larger - and we realised that 
what began as a modest design was turning into a full-scale 
language. 

2.2 Using an IDL 

Of course, we are not the first to encounter these difficulties. 
The standard solution is to use a separate Interface Defini- 
tion Language (IDL) to describe the signatures of proce- 
dures that are to be called across the border. IDLs are rich 
and complicated, for precisely the reasons described above, 
but they are at least somewhat standardised and come with 
useful tools. We focus on the IDL used to describe COM 
interfaces [lo], which is closely baaed on DCE IDL[7]. An- 
other popular IDL dialect is the one defined by OMG as part 
of the CORBA specification[ll], and we intend to provide 
support for this using the translation from OMG to DCE 
IDL defined by [12, 131. 

Like COM, but unlike CORBA’, we take the view that the 
IDL for a foreign procedure defines a language-independent, 
binary interface to the foreign procedure - a sort of lin- 
gua franca. The interface thus defined is supposed to be 
complete: it covers calling convention, data format, and al- 
location rules. It may be necessary to generate stub code 
on both sides of the border, to marshal parameters into 
the IDL-mandated format, and then on into the format de- 
manded by the foreign procedure. But these two chunks 
of marshaling code can be generated separately, each by a 
tool specialised to its host language. By design, however, 
IDL’s binary conventions are more or less identical to C’s, 
so marshaling on the C side is hardly ever necessary. 

Here, for example, is the IDL describing the interface to a 
function f 00: 

int foo ( [out] long* 1 
[string, in] char* s 

: [in, out] double* d 
1; 

“CORBA does not define a binary interface. Rather, each ORB 
vendor provides a language banding for a number of supported lan- 
guages. This language binding essentially provides the marshaling 
required to an ORB-specific common calling convention. If you want 
to use a language that the ORB vendor does not support, you are out 
of luck. 
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Figure 1: The big picture 

The parts in square brackets are called attributes. In this 
case they describe the mode of each parameter, but there are 
a rich set of further attributes that give further (and often 
essential) information about the type of the parameters. For 
example, the string attribute tells that the parameter s 
points to a null-terminated array of characters, rather than 
pointing to a single character. 

2.3 Overview 

The “big picture” is given by Qure 1. The interface be- 
tween Haskell and the foreign language is specified in IDL. 
This IDL specification is read by H/Direct, which then pro- 
duces Haskell and C2 source files files containing Haskell and 
C stub code. 

H/Direct can generate stub code that allows Haskell to call 
C, or C to call Haskell. It can also generate stub code 
that allows Haskell to create and invoke COM components, 
and that allows COM components to be written in Haskell. 
Much of the work in all four cases concerns the marshal- 
ing of data between C and Haskell, and that is what we 
concentrate in this paper. 

Since H/Dzrect generates Haskell source code, how does 
it express the actual foreign-language call (or entry for 
the inverse case)? We have extended Haskell with a 
foreign declaration that asks the Haskell implementation 
to generate code for a foreign-language call (or entry) 
[2]. The foreign declaration deals with the most primi- 
tive layer of marshaling, which is necessarily implementa- 
tion dependent; H/Direct generates all the implementation- 
independent marshaling. 

To make all this concrete, suppose we have the following 
IDL interface specification: 

typedef struct C int x,y; 3 Point; 

void Move( [in,out,ref] Point* p ); 

If asked to generate stub code to enable Haskell to call func- 
tion Move, H/Direct will generate the following trr-askelI) 
code: 

‘For the sake of definiteness we concentrate on C as the foreign 
language in this paper. 

data Point = Point i x,y::lnt j 
marshalpoint : : Point -> IO (Ptr Point) 
marshalpoint = . . . 

unmarshalPoint :: Ptr Point -> IO Point 
unmarshalPoint = . . . 

move :: Point -> IO Point 
move p = 

do{ a <- marshalpoint p 
; primMove a 
; r <- unmarshalPoint a 
; hdFree 
; return r 
3 

foreign import stdcall “Move” 
primMove : : Ptr Point -> IO 0 

This code illustrates the following features: 

l For each IDL declaration, H/Direct generates one or 
more Haskell declarations. 

l From the IDL procedure declaration Move, H/Direct 
generates a Haskell function move whose signature is 
intended to be LLwhat the user would expect”. In par- 
ticular, the Haskell type signature is expressed using 
‘high-level” types; that is, Haskell equivalents of the 
IDL types. For example, the signature for move uses 
the Haskell record type Point. The translation for a 
procedure declaration is discussed in Section 3. 

l The body of the procedure marshals the parameters 
into their “You-level” types, before calling the “low- 
level” Haskell function primMove. The latter is defined 
using a foreign declaration; the Haskell implementa- 
tion generates code for the call to the C procedure 
Move. Section 4 specifies the high-level and low-level 
type corresponding to each IDL type. 

l A “low-level” type is still a perfectly first-class Haskell 
type, but it has the property that it can trivially be 
marshaled across the border. There is fixed set of 
primitive “low-level” types, including Int, Float, Char 
and so on. Addr is a low-level type that holds a raw 
machine address. The type constructor Ptr is just a 
synonym for Addr: 

type Ptr a = Addr 
addPtr :: Ptr a -> Int -> Ptr b 

The type argument to Ptr is used simply to allow 
H/Direct to document its output somewhat, by giv- 
ing the “high-level” type that was marshaled into that 
Addr. Section 5 describes how high-level types are mar- 
shaled to and from their low-level equivalents. 

l From an IDL typedef declaration, H/Direct generates 
a corresponding Haskell type declaration together with 
some marshaling functions. In general, a marshaling 
function transforms a “high-level” Haskell value (in 
this case Point) into a “low-level” Haskell value (in 
this case Ptr Point). These marshaling functions are 
in the IO monad because, as we shall see, they of- 
ten work imperatively by allocating some memory and 
explicitly filling it in, so as to construct a memory 
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layout that matches the interface specification. The 
translations for typedef declarations are discussed in 
Section 6. 

l The function hdFree : : IO 0 simply releases all the 
memory allocated by the marshaling functions. 

So much for our example. The difficulty is that IDL is a com- 
plex language, so it is not always straightforward to guess 
the Haskell type that will correspond to a particular IDL 
type, nor to generate correct marshaling code. (The former 
is important to the programmer, the latter only to H/Direct 
itself.) Our goal in this paper is to give a systematic trans- 
lation of IDL to Haskell stub code. 

To simplify translation we assume that the IDL source is 
brought into a standard form, that is, we factor the trans- 
lation into a translation of full IDL to a core subset and 
a translation from core IDL to Haskell. In particular, we 
assume that: out parameters always have an explicit I‘*“, 
the pointer default is manifested in all pointer types, and all 
enumerations have value fields. (The details are unimpor- 
tant .) 

IDL is a large language, and space precludes giving a com- 
plete translation here. We do not even give a syntax for 
IDL, relying on the left-hand sides of the translation rules 
to specify the syntax we treat. However, the framework we 
give here is sufficient to treat the whole language, and our 
implementation does so. 

3 Procedure declarations 

The translation function ‘D] ] maps an IDL declaration into 
one or more Haskell declarations. We begin with IDL proce- 
dure declarations. To start with, we concentrate on allowing 
Haskell to call C; we discuss other variants in Section 7. Here 
is the translation rule for procedure declarations: 

DD[t-res f( [in] t-in, [out] t-out, [in,outl t-inout)] 
e 

-ufl : : 7[t-in] -> 7-[t-inout] 
-> IO (T[t-out] ,T[t-inout] ,7[t-res]) 

n/if] = \m -> \n -> 
do { a <- M[t-in] m 

; b <- O[Lout]l 
; c <- M[thout]l n 
; r <- prin&V] a b c 
; x <- Ul[t-out] b 
; y <- qt-inout] c 
; 2 <- i!d[t-res] r 

; hdFree 
; return (x,y,z) 
1 

foreign import stdcall prid[f] 
: : qt-in]l -> qt-out] -> But-inod] 
-> IO But-res] 

Despite our claim of formality, the fully formal version of 
this rule has an inconvenient number of subscripts. Instead, 
we illustrate by giving one parameter of each mode ([in], 
Coutl, and [in, out] ); more complex cases are handled ex- 
actly analogously. The translation produces a Haskell func- 
tion that takes one argument for each IDL [in] or [in, 

t: b basic type 

I n type names 
1 C{attr} + 1 t* pointer type 

attr : unique 1 ref 1 ptr 
1 string 1 size-is(e) 

Figure 2: IDL type syntax 

out1 parameter, and returns one result of each IDL [out1 or 
[in, out1 parameter, plus one result for the IDL result (if 
any). In general, foreign functions can perform side effects, 
so the result type is in the IO monad. We are considering 
adding a (non- standard) attribute [pure], that declares the 
procedure to have no side effects; in this case, the Haskell 
procedure can simply return a tuple rather than an IO type. 

The generic translation for procedure declaration uses sev- 
eral auxiliary translation schemes: 

l The translation scheme ‘Tit] gives the “high-level” 
Haskell type corresponding to the IDL type t. 

l The translation scheme n/[n] does the name mangling 
required to translate IDL identifiers to valid Haskell 
identifiers. For example, it accounts for the fact that 
Haskell function names must begin with a lower-case 
letter. 

l The translation scheme f3[t] gives the “low-level” 
Haskell type corresponding to the IDL type t. 

l The translation scheme M[t] : : T[t] -> IO Bat] 
generates Haskell code that marshals a value of IDL 
type t from its high-level type T[t] to its low-level form 
B[t]. This is used to marshal all the in-parameters of 
the procedure ([in] and [in,outl). 

l The translation scheme Ld[t] : : B[t] -> IO T[t] 
generates Haskell code that unmarshals a value of 
IDL type t. This is used to unmarshal all the out- 
parameters of the procedure, and its result (if any). 
M] ] and U] ] are mutual inverses (up to memory 
allocation). 

l In addition, for [out] parameters the caller is re- 
quired to allocate a location to hold the result. 
O[ Cattrl t*] :: IO (Ptr &?[tg) is Haskell code that 
allocates enough space to contain a value of IDL type 
t. 

4 Mapping for types 

Next, we turn our attention to the translations 7-1 ] and 
B[ ] that translate IDL types to Haskell types. The syntax 
of IDL types that we treat is given in Figure 2, while Figure 3 
gives their translation into Haskell types. We deal with user- 
defined structured types later, in Section 6. 

Translating base types, which have direct Haskell analogues, 
is easy. The high-level and low-level type translations coin- 
cide, except that the high-level representation of IDL’s &bit 
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B[short] ++ Int32 
D[unsigned short] e Word32 

a[float]l ++ Float 
B[doubleB I-+ Double 

B[char] e Word8 
f?[wchar] c+ Char 

B[boolean] +) Boo1 
B[void] +-+ 0 

D[C&rl t*]l +-+ Ptr 7[t] 

7l[char] ++ Char 
TUbI I--) WPI 
nnn I-+ M4 

T[Creflt*] I-f 7[t] 
7-l [unique] t *] I+ Maybe Tit] 

T[Cptrlt*] ++ Ptr T[t] 
T[[string] char*] e String 

7[Csize-is(v)lt*l] * CT[t]l 

Figure 3: Type translations 

characters is Haskell’s 16 bit Char type. To give more pre- 
cise mapping we have extended Haskell with new base types: 
Word8, Wordl6, and so on. Similarly, IDL type names are 
translated to the (Haskell-mangled) name of the correspond- 
ing Haskell type. 

Matters start to get murkier when we meet pointers. Since a 
pointer is always passed to and from C as a machine address, 
the low-level translation of all pointer types is simply a raw 
machine address: 

a[[attrlt*] I-+ Ptr 7[t] 

(Recall that Ptr t is just an abbreviation for Addr, but the 
Ptr form is somewhat more informative.) 

In contrast, the high-level translation of pointers depends on 
what type of pointer is concerned. IDL has no fewer than 
five kinds of pointer, distinguished by their attributes! We 
treat them one at a time (refer in each case to Figure 3): 

l A value of IDL type Crefl t* is the unique pointer, 
or indirection, to a value of type t. A value of type 
[ref 1 t * should be marshalled by copying the structure 
over the border. Since pointers are implicit in Haskell, 
the corresponding high-level Haskell type is just 71[t]. 

l The IDL type [unique] t* is exactly the same as 
[ref] t*, except that the pointer can be NULL. The 
natural way to represent this possibility in Haskell is 
using the Maybe type. The latter is a standard Haskell 
type defined like this: 

data Maybe a = Nothing 1 Just a 

l An IDL value of type [ptr] t* is the address of a value 
that might be shared, and might contain cycles. It is 
far from clear how such a thing should be marshaled, 
so we adopt a simple convention: 

T[[ptrl t*]l ++ Ptr 71[t] 

That is, [ptrl values are not moved across the border 
at all. Instead they are represented by a value of type 
Ptr 7[t], a raw machine address. 

This is often useful. For a start, some libraries im- 
plement an abstract data type, in which the client is 
expected to manipulate only pointers to the values. 
Similarly, COM interface pointers should be treated 
simply as addresses. Finally, some operating system 
procedures (notably those concerned with windows) 
return such huge structures that a client might want 
to marshal them back selectively. 

l A value of type [stringlchar* is the address of 
a null-terminated sequence of characters. (Contrast 
[refl char*, which is the address of a single character.) 
The corresponding Haskell type is, of course, String. 
The [string] attribute applies to the following array 
types char, byte, unsigned short, unsigned long, 
structs with byte (only!) fields and, in Microsoft- 
only IDL, wchar. 

l Sometimes a procedure takes a parameter that is a 
pointer to an array of values, where another parameter 
of the procedure gives the size of the array. (CORBA 
IDL calls such arguments “sequences” .) For example: 

void DrawPolygon 
( [in,size-is(nPoints)] Point* points 
, [in] int nPoints 
1; 

The [size-is(nPoints)l attribute tells that the sec- 
ond parameter, nPoints, gives the size of the array. 
(This is quite like the [string] case, except that the 
size of the array is given separately, whereas strings 
have a sentinel at the end.) There is a second variant 
in which nPoints is a static constant, rather than the 
name of another parameter. 

At the moment we translate an IDL array to a Haskell 
list, but another possibility would be to translate it to 
a Haskell array. Different choices are probably “right” 
in different situations; perhaps we need a non-standard 
attribute to express the choice. 

While each of these variants has a reasonable rationale, we 
have found the plethora of IDL pointer types to be a rich 
source of confusion. The translations in Figure 3 look in- 
nocuous enough, but we have found them extremely helpful 
in clarifying and formalising just exactly what the transla- 
tion of an IDL type should be. 

Even if the translations are not quite “right” (whatever that 
means), we now have a language in which to discuss vari- 
ants. For example, it may eventually turn out that the IDL 
[ptr] attribute is conventionally used for subtly different 
purposes than the ones we suggest above. If so, the transla- 
tions can readily be changed, and the changes explained to 
programmers in a precise way. 

5 Marshaling 

In the translation of the IDL type signature for a procedure 
(Section 3)) we invoked marshaling functions M [ ] and U[ ] 
for each of the types involved. Now that we have defined the 
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high and low-level translations of each type, the marshaling 
code is relatively easy to define. In this section we define 
these marshaling functions. 

Marshaling a structured value consists, as we shall see, 
of two steps: allocate some memory in the parameter- 
marshalany area to hold the value, and then actually marshal 
the Haskell value into that memory. The translations are 
much more elegant if we define auxiliary schemes, W[ ] and 
‘RI 1, that perform this “by-reference” marshaling. We also 
need a number of functions to manipulate the parameter- 
marshaling area. More precisely: 

wutn : : Ptr ‘Qt] -> ‘T[t] -> IO 0 marshals its second 
argument into the memory location(s) pointed to by 
its first argument; the latter is a raw machine address. 

wtn : : Ptr T[t] -> IO T[t] unmarshals a value of IDL 
type t out of memory location(s) pointed to by its 
argument. W[ ]I and R[ ]I are mutually inverse (up to 
memory allocation). 

sut Jl : : Int is the number of bytes occupied by an IDL 
value of type t. The function U[ 1, mentioned in Sec- 
tion 3, is defined thus: 

O[[attr] t*] c) hdAlloc sit] 

hdAlloc : : Int -> IO (Ptr a) allocates the 
specified number of bytes in the parameter-marshaling 
area, returning a pointer to the allocated area. 

hdWriteb : : Ptr 7[b] -> 7[b] -> IO 0, where b is a 
basic type, marshals a value of IDL type b into the 
specified memory location(s). 

hdReadb : : Ptr 7-[b] -> IO 7[b], where b is a basic 
type, unmarshals a value of IDL type t. 

hdFree : : IO 0 frees the whole parameter-marshaling 
area. 

With these definitions in mind, Figure 4 gives the marshal- 
ing schemes. We omit the schemes for [size-is] because it 
is tiresomely complicated. Apart from that, the translations 
are easy to read: 

l For basic types there is no marshaling to do, except 
that we must convert between the 16-bit Haskell Char 
and S-bit IDL char types. 

l Marshaling a typedef’d type can be done by invoking 
its marshaling function. 

l Marshaling a Crefl pointer is done by allocating some 
memory with hdAlloc, and then marshaling the value 
into it with W[ 1. Unmarshaling is similar, except 
that there is no allocation step; we just invoke ‘721 ]I. 

l Dealing with [unique] pointers is similar, except that 
we have to take account of the possibility of a NULL 
value. 

M[t] : : 7[t] -> IO agtg 

Muchar] e marshalchar 
NibI I-) return 
MU4 ti marshaln 
M[Crefl t*] c-t \x -> 

do{ px <- hdAlloc Sat] 
; wgtg px xl 

M[[uniquel t*] ++ \x -> 
case x of 

Nothing -> return nullPtr 
Just y -> M[Crefl t*n y 

M I[ Cptrl t*] e return 
M[ [string] t*] c+ marshalstring 

w[t] : : Ptr 7utn -> 7[t] -> I0 0 

wbn +-+ hdWriteb 
W[Cattrl t*] I-) \p x -> 

do{ a <- M[[attrl t*] x 
; hdWriteAddr p a} 

untn : : apg -> IO 7-p] 

U[char] ti unmarshalChar 
~~bl I-+ return 
UUnil I-+ unmarshaln 
Ul[[refl tq ++ wn 
U [ [unique] t *I I-) \p -> 

if p == nullPtr then 
return Nothing 

else 
do{ x <- ??!l[t] p 

; return (Just x)} 
U[Cptrl tq 

’ U[Cstringl t*] 
I-+ return 
++ unmarshalString 

?qtj :: Ptr Tut] -> IO Tit] 

WIbl e hdReadb 
R[ Cattrl ten e \p -> 

do{ a <- hdReadAddr p 
; u[w-it*] a} 

Figure 4: The marshaling schemes 

Again, it is very helpful to have a precise language in which 
to discuss these translations. Though they look simple, we 
can attest that it is very easy to get confused by pointers 
to pointers to things, and we have far greater confidence in 
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t: t[el 
I enm{ 

array type 

tagl=wl,...,tag,=w,} 
1 struct tag { 

fl : tl;...;f, : tn;} 
union tag1 

switch ( b tag2 1 { 

enumeration 

record type 

case wr : tl fi ; . . case wn : t, fn ; } union type 

Figure 5: IDL constructed type syntax 

our implementation as a result of writing the translations 
formally. 

One might wonder about the run-time cost of all this data 
marshalling. Indeed, historically foreign-language interfaces 
have taken it for granted that data is not copied across the 
border. However, such non-marshalling interfaces are ex- 
tremely restrictive: they require the two languages to share 
common data representations to the bit level, and to share a 
common address space. In moving decisively towards IDL- 
based component-based programming, the industry has ac- 
cepted the performance costs of marshalling in exchange for 
its flexibility. This in turn discourages very fine-grain, in- 
timate interaction between components with many border- 
crossings, instead encouraging a coarser-grain approach. We 
are happy to adopt this trend, because there is no way to 
make (lazy) Haskell and C share data representations. 

6 Type declarations 

On top of the primitive base types, IDL supports the defi- 
nition of a number of constructed types. For example 

typedef int trip[3] ; 
typedef struct TagPoint ( int x,y; ) Point; 
typedef enum { Red=O, Blue=l, Green=2 ) RGB; 
typedef union -floats switch (int ftype) { 

case 0: float f; 
case 1: double d; 

3 Floats; 

which declares array, record, enumeration and union (or 
sum) types, respectively. Figure 5 shows the syntax of IDL’s 
constructed types. 

The translation provides rules for converting between IDL 
constructed types into corresponding Haskell representa- 
tions. To ease the task of defining this type mapping, we 
assume that each constructed type appears as part of an 
IDL type declaration. In general, a type declaration has the 
following form: 

typedef t name; 

declaring name to be a synonym for the type t, which is 
either a base type or one of the above constructed types. A 
type declaration for an IDL type t gives rise to the definition 
of the following Haskell declarations: 

l A Haskell type declaration for the Haskell type 
hignome], such that T[name] = N[name]. 

l marshalN[name] :: 7[name] -> IO B[t] which 
implements the M[ ] scheme for converting from the 
Haskell representation 7[t] to the IDL type t. 

l unmarshaln/[name] :: B[t] -> IO 
T[name] which implements the dual U[ ] scheme for 
unmarshaling. 

l marshalN[name]At :: Ptr B[t]l -> 7Jname]l -> 
IO 0 for performing by-reference marshaling of the 
constructed type. 

l unmarshal~[name]At : : Ptr B[t] -> 
IO 7[name] which implements the R[ ] scheme for 
unmarshaling a constructed type by-reference. 

0 sizeofN[name] :: Int, a constant holding the size 
of the external representation of the type (in &bit 
bytes.) 

The general rules for converting type declarations into 
Haskell types is presented in Figure 6. Here is what they 
generate when applied: 

l In the case of a type declaration for a base type, this 
merely defines a type synonym. For example 

typedef int year; 

is translated into the type synonym 

type Year = Int 

plus marshaling functions for Year. 

l For a record type such as Point: 

typedef struct TagPoint {int x,y;) Point; 

generates a single constructor Haskell data type: 

data Point = TagPoint c x:: Int, y::Int 1 

In addition to this, the D[ 1 scheme generates a collec- 
tion of marshaling functions, including marshalpoint: 

marshalpoint :: Point -> IO (Ptr Point) 
marshalpoint (Point x y) = 

do{ ptr <- hdAlloc sizeofpoint 
; let ptrl = addPtr ptr 0 
; marshalintAt ptrl x 
; let ptr2 = addPtr ptrl sizeofint 
; marshalintAt ptr2 y 
; return ptr 
3 

It marshals a Point by allocating enough memory to 
hold the external representation of the point. The size 
of the record type is computed as follows: 

sizeofpoint :: Int32 
sizeofPoint = structSize Csizeofint,sizaofintl 
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V[typedef t name;] 
-type N[name] * Tit] 

marshaln/[name] = marshalT[t] 
marshalhl[name]At = marshal'T[t]At 
uumarshaln/[name] = unmarshal'T[t] 
uumarshalhl[namegAt = uumarshal7[t]At 
sizeofN[name] = S[t] 

'Ditypedef t name Cdiml;] 
M-type N[name] = C 7[t] 1 

marshaltij[name]l = marshalArray dim marshalT[t]At 
marshalN/l[name]At = marshalArrayAt dim marshalT[tjAt 
uumarshalN[name] = uumarshalArray dim uumarshal'T[t]At 
unmarshalh/[name]At = uumarshalArrayAt dim unmarshalT[t]At 
sizeofN[name] = dim * S[t] 

'D[typedef struct tag{...; t field; . ..} name;] 
t--b 

data NIname] = n/[tag]{ . . ..N[field.j :: T[t;], . ..} 
marshaln/[name]l ret = do 

ptr <- hdAlloc S[name] 
marshalN[name]At ptr ret 
return ptr 

marshalN/[name]At ptr (Jz/l[tag]{ . . . ,n/[field,l(, . ..} = do 
let ptr, = addPtr ptr 0 

. . 3 

let ptri = addPtr ptr,-, S[t,-I] 

W[t;] ptr, field, 
. . . 

return 0 

uumarshalni[name] = uumarshaln/[name]At 

uumarshaln/[name]At ptr = do 
let ptr, = addPtr ptr 0 
. . 

let ptr, = addPtr ptr;-, s[t,-I] 
i\/[field,] <- R[t,] ptr, 

return (N[tag] . . . n/[field,] . . . ) 
sizeofN[name] = structsize C...,S[field,],... 1 

'D[typedef enum {...,alt = value,...} name;] 
I+ 

data NIname] = . . . I N[alt] I . . . 
marshalN[name] x = 

case x of {...; N[alt] -> N[value]; . ..} 
unmarshalhl[name] x * 

case x of {...; N[walue] -> return N[alt];...} 
unmarshal~[name]At ptr = do 

v <- hdReadInt ptr 
unmarshalJ\/[name] v 

sizeofNlname]l = sizeofint 

I I 

Figure 6: Translating declarations 
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where structsize is a (platform specific) function that 
computes the size of a struct given the field sizes.3 

Point’s two fields are marshaled into the external rep- 
resentation of Point by calling the by-reference mar- 
shaler for the basic type Int, supplying a pointer that 
has been appropriately offset. 

l For the union type example given at the start of Sec- 
tion 6, the following Haskell type is generated: 

data Floats = F Float 1 D Double 

together with actions for marshaling between the alge- 
braic type and a union (omitting the type signatures 
for the by-reference marshalers): 

marshalFloats :: Floats -> IO (Ptr Floats) 
unmarshalFloats : : Ptr Floats -> IO Floats 

The external representation of a union is normally a 
struct containing the discriminant and enough room 
to accommodate the largest member of the union. In 
the case of Floats, the external representation must 
be large enough to contain an int and a double. 

l Enumerations have a direct Haskell equivalent as alge- 
braic data types with nullary constructors. For exam- 
ple, the RGB declaration: 

typedef enum {red=O,green=l,blue=2) RGB; 

is translated into the Haskell type 

data RGB = Red I Green 1 Blue 

with concrete representation B[RGB] = Int32 

The marshaling actions simply map between the 
nullary constructors and Int32: 

marshalRGB :: RGB -> IO Int32 
marshalRGB run = 

return (case nm of C 
Red -> 0 
Green -> 1 
Blue -> 2 1) 

unmarshalRGB : : Int32 -> IO RGB 
unmarshalRGB v = 

case v of 
0 -> return Red 
1 -> return Green 
2 -> return Blue 
_ -> fail (userError . . .) 

Haskell data structures can contain shared sub-components, 
or even cycles. However, such sharing is not observable by 
a Haskell program, so the marshalling code cannot take ac- 
count of it. DAGs are therefore marshalled just as if they 
were trees, and a cyclic data structure (which is indistin- 
guishable from an infinite data structure) would make the 
marshaler fail to terminate. 

3Similarly, a function that returns the offsets at which to marshal 
each field into is also provided. Due to lack of space, marshalPoint 
makes the simplifying assumption that structures contain no internal 
padding. 

It might be possible to “fix” these shortcomings, but we 
are not unduly bothered about them. Rather than mar- 
shal complex data structures (whether or not they contain 
sharing) across the border, a better approach is usually to 
leave them where they are and instead marshal a pointer to 
the data structure. When a component technology such as 
COM is being used (Section 8), the right thing to do is to 
marshal an interface pointer, through which the client can 
access the data structure. 

In short, if loss of sharing is a worry then you are probably 
marshalling too much data; we look forward to learning from 
experience whether this viewpoint is “right”. 

7 The inverse mapping 

Once marshaling and unmarshaling functions are defined for 
each data type, it is not hard to reverse the mapping and 
build code that allows C to call Haskell. The translation for 
a typedef remains unchanged, but the translation for an 
IDL procedure declaration is reversed. Since the procedure 
is being implemented in Haskell, its [in]-parameters are 
unmarshaled, the Haskell procedure is called, its results are 
marshaled, and returned to the caller. (We omit the details, 
but the translation rule can be expressed just as we did in 
Section 3.) For example, the Move IDL declaration of that 
Section would be compiled to the following Haskell code: 

foreign export stdcall “Move” 
primMove : : Ptr Point -> IO 0 

primMove a = 
do { p <- unmarshalPoint a 

; q <- move p 
; marshalPointAt a q 
; return 0 
1 

move :: Point -> IO Point 
move = error “Not yet implemented” 

The foreign export declaration asks the Haskell compiler 
to make Move externally callable with a stdcall interface. 
primMove does the marshaling, before calling move, which 
should be provided by the programmer. 

8 Talking to COM 

We are also interested in allowing Haskell programs to create 
and invoke COM objects, and in allowing a Haskell program 
to be sealed up inside a COM object. This too is a straight- 
forward extension. There are a couple of wrinkles, however: 

COM methods conventionally return a value of type 
HRESULT, which is used to signal exceptional condi- 
tions. H/Direct “knows” about HRESULT and reflects 
its exceptional values into exceptions in Haskell’s IO 
monad. 

COM methods are invoked indirectly, through a vector 
table. To support this the Haskell foreign declaration 
has to be extended to allow indirect calls. For example, 
the Haskell-to-COM side looks like this: 
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foreign import stdcall 
dynamic primFoo :: Addr -> . . 

The keyword dynamic replaces the static name of the 
foreign function, and the address of the function is 
instead passed as the first argument to primFoo. The 
foreign export case is similar. 

. Lastly, there are several design choices concerning 
what the programmer has to write to implement a 
COM object. Does she write a collection of functions 
that take the object state as their first argument? Or 
does she write a single function that returns a record 
of all the methods of the object? 

9 Status and conclusions 

H/Direct is now our fourth attempt at a foreign-language in- 
terface for Haskell. The first was ccall, a limited and low- 
level extension roughly equivalent to foreign import [3]. 
The second was Green Card, which gradually turned into 
a domain-specific language [5]. The third was a pre-cursor 
to H/Direct, Red Card, which was specifically aimed at in- 
terfacing Haskell to COM objects, [4, 61. H/Direct embod- 
ies the lessons we have learned: strive for implementation- 
independence; avoid inventing new languages; the customer 
is always right. 

We do not claim great originality for these observations. 
What is new in this paper is a much more precise de- 
scription of the mapping between Haskell and IDL than 
is usually given. This precision has exposed details of the 
mapping that would otherwise quite likely have been mis- 
implemented. Indeed, the specification of how pointers are 
translated exposed a bug in our current implementation of 
H/Direct. It also allows us automatically to support nested 
structures and other relatively complicated types, without 
great difficulty. These aspects often go un-implemented in 
other foreign-language interfaces. 

We are well advanced on an implementation of H/Direct. 
We can parse and type-check the whole of Microsoft IDL, 
and can generate stubs that allow Haskell to call C and 
COM. We have not yet implemented the reverse mapping, 
but we expect to do so in the next few months. 
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