
Let Should not be Generalised

Dimitrios Vytiniotis
Microsoft Research Cambridge, UK

dimitris@microsoft.com

Simon Peyton Jones
Microsoft Research Cambridge, UK

simonpj@microsoft.com

Tom Schrijvers ∗

Katholieke Universiteit Leuven, Belgium
tom.schrijvers@cs.kuleuven.be

Abstract
From the dawn of time, all derivatives of the classic Hindley-Milner
type system have supported implicit generalisation of local let-
bindings. Yet, as we will show, for more sophisticated type systems
implicit let-generalisation imposes a disproportionate complex-
ity burden. Moreover, it turns out that the feature is very seldom
used, so we propose to eliminate it. The payoff is a substantial sim-
plification, both of the specification of the type system, and of its
implementation.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Functional Languages; D.3.3
[Programming Languages]: Language Constructs and Features—
Polymorphism; F.3.3 [Logics and Meanings of Programs]: Stud-
ies of Program Constructs—Type Structure

General Terms Algorithms, Languages

Keywords Haskell, type inference, type families, type classes,
generalized algebraic data types

1. Introduction
Academic papers about type systems usually propose to add a
new feature to an existing type system. This paper is different: we
propose to remove a feature.

From its inception, a central feature of the influential Hindley-
Milner type system (Mil78; DM82) was that let-bindings are
generalised. For example, consider

wuggle x = let singleton y = [y]
in (singleton True, singleton ’w’)

Here the locally-bound function singleton is implicitly gener-
alised, to ∀a.a → [a]. As a result, singleton can be called at
two different types in the body of the let.

Although generalisation of let bindings is taken for granted
by any red-blooded functional programmer, this paper argues for
its abolition, at least for local bindings. We make the following
contributions:

∗ Post-doctoral researcher of the Fund for Scientific Research - Flanders.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI’10, January 23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-891-9/10/01. . . $10.00

• While generalisation for local let bindings is straightforward
in Hindley-Milner, we show that it becomes much more com-
plicated in more sophisticated type systems. The extensions
we have in mind include functional dependencies (Jon00),
GADTs (XCC03), units of measure (Ken96), and type func-
tions (CKPM05; CKP05) (Section 2). The only technically-
straightforward way to combine these developments with let-
generalisation has unpalatable practical consequences (Sec-
tion 2.2), that appear to be unavoidable (Section 3).
• We show that generalisation for local let bindings is seldom

used; that is, if they are never generalised, few programs fail to
typecheck (Section 4). We base this claim on compiling hun-
dreds of public-domain Haskell packages, containing hundreds
of thousands lines of code. Furthermore, those programs that do
fail are readily fixed by adding a type signature.
• Rather than fix on a particular set of “sophisticated extensions”,

we present LHM(X), a type system with qualified types, param-
eterised over a constraint domain X (Section 5). Thus LHM(X)
stands in the tradition of HM(X) (OSW99), and Jones’s OML
(Jon92), but unlike HM(X) we deal with local assumptions in-
troduced by pattern matching and type signatures, and unlike
OML we deal with both type equalities and local assumptions .
• We present type inference infrastructure that deals with local as-

sumptions and is parameterized over a constraint solver for the
constraint domain X. We show that LHM(X) enjoys sound and
efficient type inference, conditional on intuitive requirements
from the X theory solver (Section 5). Unsurprisingly, complete-
ness does not hold due to the ambiguity problem, a recurring
issue in type systems for Haskell. Though we do not formally
show completeness, we propose a novel way to address ambi-
guity (Section 5.6) and recover completeness.

In short, we argue that we should simply abandon generalisa-
tion for local lets entirely, thereby providing a substantial sim-
plification at almost no cost to the programmer. The aforemen-
tioned modification only applies to local, or nested bindings (such
as singleton), and not for top-level bindings (such as wuggle). In
the case of top-level bindings, we can freely generalize as before, as
Section 5 shows. Moreover, we still support for polymorphic local
bindings by supplying explicit type signature. Only local bindings
with inferred types are affected.

This simplification enables this paper to take a significant
step forward compared to our two earlier works in this area.
In (SPJCS08) we gave a solver for equalities (involving type func-
tions), that we “lift” in this paper to a solver than handles implica-
tion constraints — essential for type inference with local assump-
tions. In (SJSV09) we proposed the OutsideIn approach, which
deals with implication constraints, but only in the special case of
GADTs. Here we generalize to an arbitrary constraint domain X,
which turns out to be decidedly non-trivial.

39

2. Motivation
The Hindley-Milner type system is a masterpiece of design. It of-
fered a big step forward in expressiveness (parametric polymor-
phism) at very low cost. The cost is low in several dimensions: the
type system is technically easy to describe, and an inference algo-
rithm is both sound and complete with respect to the specification.
And it does all this for programs with no type annotations at all!

A central feature of the Hindley-Milner system is that let-
bound definitions are generalised. For example, consider the
slightly artificial definition

f x = let g y = (x,y) in ...

The definition for g is typed in an environment in which x ::
a , and the inferred type for g is ∀b.b → (a, b). This type is
polymorphic in b, but not in a , because the latter is free in the
type environment at the definition of g. This side condition, that g
should be generalised only over variables that are not free in the
type environment, is the only tricky point in the entire Hindley-
Milner type system.

Type systems advanced rapidly in the following 25 years, both
in expressiveness and (less happily) in complexity. One particular
way in which they have advanced is in the form of constraints that
they admit:

• The base Hindley-Milner system admits just one constraint,
namely the equality of two types, which we write τ1∼τ2. For
example, the application of a function of type τ1 → τ2 to an
argument of type τ3 gives rise to an equality constraint τ1∼τ3.
• Haskell’s type classes add class constraints (WB89; HHPW96).

For example, the constraint Eq τ requires that the type τ be an
instance of the class Eq. Haskell goes further, and allows ab-
straction over constraints. For example the member function has
type member :: Eq a => a -> [a] -> Bool, which says
that member may be called at any type τ , but that the constraint
Eq τ must be satisfied at the call site.
• Mark Jones extended multi-parameter type classes with func-

tional dependencies in 2001 (Jon00). This feature turned out to
be tremendously useful in practice, and gave rise to a whole cot-
tage industry of programming techniques that amounts to pro-
gramming arbitrary computation at the type level. We omit the
technical details here but the underlying idea was that conjunc-
tion of two class constraints C τ υ1 and C τ υ2 gives rise to
an additional equality constraint υ1∼υ2.
• Generalised Algebraic Data Types (GADTs) added a new twist

to equality constraints by supporting local equalities (XCC03;
PVWW06). We will discuss GADTs further in Section 2.1.
• Kennedy’s thesis (Ken96) describes how to accommodate units

of measure in the type system so that one may write

calcDistance :: num (m/s) -> num s -> num m
calcDistance speed time = speed * time

thereby ensuring that the first argument is a speed in me-
tres/second, and similarly for the other argument and result.
The system supports polymorphism, for example

(*) :: num u1 -> num u2 -> num (u1*u2)

There is, necessarily, a non-structural notion of type equality.
For example, to typecheck the definition of calcDistance the
type engine must reason that (m/s)*s ∼ m This is an ordinary
equality constraint, but there is now a non-standard equality
theory so the solver becomes more complicated.
• More recently, inspired by the notion of associated types in

object-oriented languages, we have proposed and implemented
a similar notion in Haskell (CKPM05; CKP05). The core fea-
ture is that of a type-level function. We elaborate in Section 3.3.

It is not our purpose to argue the case for these individual features.
Rather, we simply observe (a) that they are popular with program-
mers, and (b) that they all affect the language of type constraints,
and in particular, the equality theory on types. Our main point is
to show that the “small tricky point” of Hindley-Milner, the im-
plicit generalisation of local let bindings, becomes a major obsta-
cle when combined with features such as those we have mentioned
above.

2.1 Abstracting over constraints
Consider this definition:

data R a where
RBool :: (a ~ Bool) => R a
RInt :: (a ~ Int) => R a

Here R is a GADT. Pattern-matching on a value of type (R a) gives
information about the type a — in the case of RBool we learn that a
is equal to Bool (because of the constraint a∼Bool and in the case
of RInt we learn that a is equal to Int (because of the constraint
a∼Int). For example, this function is well-typed:

h1 :: R a -> a
h1 RBool = True
h1 RInt = 42

In the RBool branch we know that a∼Bool, so it is right to return
a Bool, namely True; in the RInt branch a∼Int so we return an
Int, namely 42. Now consider this function definition:

fr :: a -> R a -> Bool
fr x y = let g z = not x -- not :: Bool -> Bool

in case y of
RBool -> g ()
RInt -> True

The reader is urged to pause for a moment to consider whether
fr’s definition is well-typed. After all, x clearly has type a, and it
is passed as an argument to the boolean function not. Any normal
Hindley-Milner type checker would unify a with Bool and produce
a type error.

Yet there is a type for g that makes the program typecheck,
namely

g :: forall b. (a ~ Bool) => b -> Bool

That is, rather than rejecting the constraint a∼Bool, we abstract
over it, thereby deferring the (potential) type error to g’s call site.
At any such call site, we must provide evidence that a∼Bool, and
indeed we can do so in this case, since we are in the RBool branch
of the match on y.

In short, to find the most general type for g, we must abstract
over the equality constraints that arise in g’s right hand side. We
do not seek this outcome: in our opinion, most programmers would
expect fr’s definition to be rejected, as we discuss shortly (Sec-
tion 2.2). But the fact is that in a system admitting equality con-
straints, the principal type for g is the one written above.

The very same issue arises with type-class constraints. Con-
sider:

data S a where
MkS :: Show a => a -> S a

The data constructor MkS takes a (Show a) constraint as its argu-
ment, and, dually, makes it available inside a pattern match. Hence,
for example, this function is well-typed:

h2 :: S a -> String
h2 (MkS x) = show x

-- show :: Show a => a -> String

40

The (Show a) constraint that arises from the call of show is dis-
charged by the pattern match, so the type of h2 can be fully poly-
morphic. (Haskell 98 does not offer data constructors that behave
like MkS — i.e. where pattern matching can discharge type-class
constraints from the body of the match — but GHC does, and they
are very useful in practice.)

Now consider this definition of fs:

fs :: a -> S a -> Bool
fs x y = let h z = show x

in case y of
MkS v -> show v ++ h ()

Again, the most general type of h is

h :: forall b. (Show a) => b -> String

where we abstract over the (Show a) constraint even though g is
not polymorphic in a. Given this type, the call to h is well typed,
as is the whole definition of fs. It should be obvious that the two
examples differ only in the kind of constraint that is involved.

2.2 So what is the problem?
So what is the problem? In general, type inference can usefully be
viewed as a process of (a) generating and (b) solving constraints
(PR05). For a let binding, we infer the type τ of the right-hand
side, gathering its type constraints Q at the same time. Then we
typically generalise the type, by universally quantifying over the
type variables a that are free in τ but are not mentioned in the type
environment. But what about Q? One robust and consistent choice
(made, for example, by Pottier (PR05; SP07)) is this:

GenAll: Abstract over all the constraints Q , regardless of whether
the constraint mentions the quantified type variables a , to form
the type ∀a.Q ⇒ τ .

However GenAll has serious disadvantages, of two kinds. First, and
most important, there are costs to the programmer:

• It leads to unexpectedly complicated types, such as those for
function g in Section 2.1. The larger the right-hand side, the
more type constraints will be gathered and abstracted over. For
type-class constraints this might be acceptable, but equality
constraints are generated in large numbers by ordinary unifi-
cation.
Although they do not appear in the program text, these types
may be shown to the programmer by an IDE; and must be un-
derstood by the programmer if she is to know which programs
will typecheck and which will not.
• There are strong software-engineering reasons not to generalise

constraints unnecessarily, because doing so postpones type er-
rors from the definition of g to (each of) its occurrences. If, for
example, g had been called in the RInt branch of fr, as well
as the RBool branch, a mystifying error would ensue: “Cannot
unify Int with Bool”. Why? Because the call to g would re-
quire a∼Bool to be satisfied and, and combined with the local
knowledge that a∼Int, the unsatisfiable constraint Int∼Bool
ensues. To understand such errors the programmer will have to
construct in her head the principal type for g, which is no easy
matter. Moreover, one such incomprehensible error will be re-
ported for each call of g.
• In an inference algorithm, it turns out that we need a new form

of constraint, an implication constraint, that embodies deferred
typing problems (Section 5.2). Under GenAll it is necessary
to abstract over implication constraints too, which further com-
plicates the programmer’s life (because she sees these weird
types). This raises the question of whether implication con-
straints should additionally be allowed as valid type signatures,

which in turn leads to open research problems in tractable solver
procedures for implication constraints with implications in their
assumptions (SP07).

Second, there are costs to the type inference engine:

• At each call site of a generalized expression, the previously
abstracted large constraints have to be shown satisfiable. This
makes efficient type inference harder to implement.
• Almost all existing Haskell type inference engines (with the ex-

ception of Helium (HLvI03)) use the standard Hindley-Milner
algorithm, whereby unification (equality) constraints are solved
“on the fly” using in-place update of mutable type variables
(PVWS07). This is simple and efficient, which is important
since equality constraints are numerous. (In contrast the less-
common type-class constraints are gathered separately, and
solved later.)
Under GenAll, we can no longer eagerly solve any unification
constraint whatsoever on the fly. An equality a ∼ τ must be
suspended (i.e. not solved) if a is free in the environment at
some enclosing let declaration. Moreover, in compilers with
a typed intermediate language, such as GHC, each abstracted
constraint leads to an extra type or value parameter to the
function, and an extra type or value argument at its occurrences.

These costs might be worth bearing if there was a payoff. But in
fact the payoff is close to zero:

• Programmers do not expect fr and fs to typecheck, and will
hardly be delirious if they do so in future. (Indeed, GHC cur-
rently rejects both fr and fs, with no complaints.)
• The generality of fr and fs made a difference only because the

occurrence of g was under a pattern-match that bound a new,
local constraint. Such pattern matches are rare, so in almost all
cases the additional generalisation is fruitless. But it cannot be
omitted (at least not without a rather ad-hoc pre-pass) because
when processing the perfectly vanilla definition of g the type-
checker does not know whether or not g’s occurrences are under
pattern-matches that bind constraints.

In short, we claim that generalising over all constraints carries sig-
nificant costs, and negligible benefits. Probably the only true bene-
fit is that GenAll validates let-expansion; that is, let x = e in b
typechecks if and only if b[e/x] typechecks. The reader is invited
to return to fr and fs, to observe that both do indeed typecheck
with no complications if g is simply inlined. Let-expansion is a
property cherished of type theorists and sometimes useful for au-
tomatic code refactoring tools, but we believe that its price has be-
come too high.

2.3 Our proposal
If GenAll is a poor choice, what else can we do? Our proposal is
simple and radical:

NoGen Do not generalise un-annotated local let-bindings at all.
That is, simply omit the entire generalisation step; the definition
is completely monomorphic. For annotated local let-bindings,
let x::σ = e1 in e2, where the programmer supplies a (pos-
sibly polymorphic) type signature σ, use that type signature.
Use GenAll for top-level bindings.

Notice that NoGen applies only to local (i.e. non-top-level) let-
bindings. For top-level bindings, the type environment is empty,
and it turns out that all the difficulties described in Section 2.2
disappear.

As we show in Section 3, the typing rules for NoGen are simple.
Better still, its implementation is simple: generalisation can simply
be omitted, and unification can be eager just as in Hindley-Milner.

41

Under NoGen, both fr and fs are rejected, which is fine; we
did not seek to accept them in the first place. But hang on! NoGen
means that some vanilla ML or Haskell 98 functions that use
polymorphic local definitions, such as wuggle in the Introduction,
will be rejected. That is NoGen is not conservative over Haskell
98. Surely programmers will hate that?

Actually not. In Section 4 we will present evidence that pro-
grammers almost never use locally-defined values in a polymorphic
way. In the rare cases where a local value is used polymorphically,
the programmer can readily evade NoGen by simply supplying a
type signature.

In short, generalisation of local let bindings is a device that is
almost never used, and its abolition yields a dramatic simplifica-
tion in both the specification and implementation of a typechecker.
The situation is strongly reminiscent of the debate over ML’s value
restriction. In conjunction with assignment, unconditional gener-
alisation is unsound. Tofte proposed a sophisticated work-around
(Tof90). But Wright subsequently proposed the value restriction,
whereby only syntactic values are generalised (Wri95). The reduc-
tion in complexity was substantial, and the loss of expressiveness
was minor, and Wright’s proposal was adopted.

The rest of this paper fleshes out our argument in several ways:

• Can we be less Draconian than NoGen? We explore (and ulti-
mately reject) other choices intermediate between GenAll and
NoGen (Section 3).
• NoGen rejects some Haskell 98 programs. How bad is that?

We give quantitative evidence that the damage is negligible
(Section 4).
• Does NoGen solve the problems of Section 2.2? We show that

it does (Section 5).

3. Type system options for let-bindings
In this section we systematically analyse a range of options for
typing let-bound expressions in the type system specification. The
typing relation takes the conventional form Q ;Γ ` e : τ , to be read
as: under the constraint Q , the expression e is typeable in the typing
environment Γ with type τ .

3.1 GenAll: generalise all constraints
Here is the typing rule for let under the GenAll approach:

Qualified types: Yes,Generalization: Yes

Q1 ; Γ ` e1 : τ1 a = ftv(τ1)− ftv(Q ,Γ)
Q ; Γ, (x :∀a.Q1 ⇒ τ1) ` e2 : τ2 LET
Q ; Γ ` let x = e1 in e2 : τ2

GenAll has no technical shortcomings, but we have argued that
it is undesirable in practice, so we seek alternatives.

3.2 NoQual: Generalization without qualified types
The undesirability of GenAll concerned the abstraction of con-
straints, rather than generalisation per se. What if the specification
simply insisted that the type inferred for a let binding was always
of form ∀a. τ , with no “Q ⇒” part? This is easy to specify:

Qualified types: No,Generalization: Yes

Q ; Γ ` e1 : τ1 a = ftv(τ1)− ftv(Q ,Γ)
Q ; Γ, (x :∀a.τ1) ` e2 : τ2 LET

Q ; Γ ` let x = e1 in e2 : τ2

When Q is empty, this is the usual rule for the Hindley-Milner
system. In terms of an inference algorithm, what happens is this.
Equality constraints are gathered from the right-hand side, but

are completely solved before generalisation. A unique solution is
guaranteed to exist, namely the most general unifier. (In Hindley-
Milner the constraints are solved on-the-fly but that is incidental.)

It turns out that this approach continues to work for a system
that has GADTs only; indeed, it is precisely the one we describe
in an earlier paper on that topic (SJSV09). Again, a given set of
constraints can always be uniquely solved (if a solution exists) by
unification.

Alas, adding type classes makes the system fail, in the sense
of lacking principal types, because type-class constraints do not
have unique solutions in the way that equality constraints do. For
example, suppose that in the definition let x = e1 in e2, that

• The type of e1 is b → b.
• b is not free in the type environment.
• The constraints Q arising from e1 are Q = Eq b.

We cannot solve Q without knowing more about b — but in this
case we propose to quantify over b. If we quantify over b the only
reasonable type to attribute to x is

x :: ∀b. (Eq b)⇒ b → b

That is illegal under NoQual. As a result, x has many incomparable
types, such as Int → Int and Bool → Bool, but no principal
type.

3.3 PartQual: Restricted qualified types and generalization
We have learned that, if we are to generalise let-bound variables
we must quantify over their type-class constraints (NoQual did not
work); but we have argued that it is undesirable to quantify over
all constraints (i.e. GenAll). The obvious alternative is to quantify
over type-class constraints, but not over equality constraints. More
generally, can we identify a particular “class” of constraints over
which the specification is allowed to abstract? We call this choice
PartQual, and use a predicate good(Q) to identify abstractable
constraints:

Qualified types: Restricted,Generalization: Yes

QQ1 ; Γ ` e1 : τ1 a = ftv(τ1)− ftv(Q ,Γ)
good(Q1) Q ; Γ, (x :∀a.Q1 ⇒ τ1) ` e2 : τ2 LET

Q ; Γ ` let x = e1 in e2 : τ2

The problem with this approach is that it is not clear what such
class of constraints would be. It is not enough to pick out equality
constraints, because some equality constraints behave like type
class constraints. To see this, we must introduce type functions,
a recent extension to Haskell.

A type function is a type-level function defined by a set of non-
overlapping top-level equations. For example:

type family F a
type instance F Int = Int
type instance F Bool = Int

Type functions are most useful in conjunction with type classes
(see (CKPM05; CKP05)), but here we study them in isolation.

Now, in the definition let x = e1 in e2, suppose that

• The type of e1 is b → b.
• b is not free in the type environment.
• The constraints Q arising from e1 are Q = F b∼Int.

We cannot solve the constraint, so we must quantify over it. Had
we instead chosen a more specific type instead of b — remember,
this is the declarative specification, not an algorithm — then we
could type e with e : Int → Int or e : Bool → Bool, because
the corresponding constraints F Int∼Int and F Bool∼Int are
soluble using the top-level axioms. Alas, neither of these types for

42

x is more general than the other, so we lose principal types. The
only reasonable type1 to attribute to x is

x :: ∀b. (F b ∼ Int)⇒ b → b

Well then, can we modify good(Q) to quantify over type class
constraints, and equalities involving type functions, but not over
equalities that mention no type functions? No, that does not work
either. Suppose the constraint was (G b Int∼ Int), where we have

type family G a b
type instance G b Int = b

Using the type instance to rewrite the constraint gives an ordi-
nary equality b∼Int which we are not supposed to abstract!

Another possibility worth mentioning would be to let good(Q1)
be true iff ftv(Q1) ⊆ a . This option does not work either. For
example, assuming that ftv(Γ,Q) = {b}, a possible constraint
arising for a let-bound expression may be F b∼G a which is not
generalizable, because b cannot be quantified over. However, were
the specification to choose a more specific type than b, let’s say
[b], and in the presence of a top-level axiom F [b] ∼ Int, another
possible constraint would be Int∼G a . This constraint can be
quantified over, resulting again in lack of principal types. Similar
examples can be reconstructed using multi-parameter type classes.

At this stage it is clear that PartQual has entered a death spiral,
and we give up attempts to resuscitate it.

3.4 NoGen: no generalization
The last, and much the simplest choice, is to perform no general-
isation whatsoever for inferred let bindings, as proposed in Sec-
tion 2.3. The typing rule is very simple:

Qualified types: No,Generalization: No

Q ; Γ ` e1 : τ1 Q ; Γ, (x :τ1) ` e2 : τ2
LET

Q ; Γ ` let x = e1 in e2 : τ2

It seems clear that NoQual and PartQual are non-starters, and
we have argued that GenAll, while technically straightforward is
practically undesirable.

4. Experimental results
Our NoGen proposal will reject some programs that would be
accepted by any Haskell or ML compiler. This is bad in two ways:

• Backward compatibility: existing programs will break. But how
many programs break? And how easy is it to fix them?
• Convenience: even for newly-written programs, automatic gen-

eralisation is convenient. But how inconvenient is programming
without it?

To get some quantitative handle on these questions we added a flag
to GHC that implements NoGen, and performed the following two
experiments.

4.1 The boot libraries
We compiled all of the Haskell libraries that are built as part of
the standard GHC build process, and fixed all failures due to No-
Gen. These libraries comprise some 30 packages, containing 533
modules, and 94,954 lines of Haskell code (including comments).

1 Even if F had a unique solution for F b∼Int — for example, suppose the
axiom F Int = Int had not been introduced — we should still quantify
over the constraint, because we assume an “open world” in which new
axioms may be introduced at any time.

In total we found that 20 modules (3.7%) needed modification.
The changes affected a total of 127 lines of code (0.13%), and were
of three main kinds:

• There are a few occurrences of a polymorphic function that
could be defined at top level, but was actually defined locally.
For example Control.Arrow.second has a local definition
for

swap ~(x,y) = (y,x)

• One programmer made repeated use of the following pattern

mappend a b = ConfigFlags {
profLib = combine profLib,
constraints = combine constraints,
...

}
where combine ::Monoid t => (ConfigFlags->t) -> t

combine field = field a ‘mappend‘ field b

(The type signature was added by ourselves.) Notice that a and
b are free in combine, but that combine is used for fields of
many different types; for example, profLib::Flag Bool, but
constraints::[Dependency]. This pattern was repeated in
many functions. We fixed the code by adding a type signature,
but it would arguably be nicer to make combine a top-level
function, and pass a and b to it.
• The third pattern was this:

let { k = ...blah... } in gmapT k z xs

where gmapT is a function with a rank-2 type:

gmapT :: ∀a.Data a ⇒ (∀b.Data b ⇒ b → b)→ a → a

Here, k really must be polymorphic, because it is passed to
gmapT. GHC’s libraries include the Scrap Your Boilerplate li-
brary of generic-programming functions that make heavy use
of higher rank functions, but in vanilla Haskell code one would
expect them to be much less common.

4.2 Packages on Hackage
As a second, and much larger-scale, experiment we compiled all
of the third-party Haskell packages on the Hackage library, both
with and without NoGen, and recorded whether or not the package
compiled successfully with the NoGen flag on.

We found 793 packages that compiled faultlessly with the base-
line compiler that we used. When we disabled generalisation for
local let bindings, 95 of the 793 (12%) failed to compile. We
made no attempt to investigate what individual changes would be
needed to make the failed ones compile. Since the chances of an
entire package compiling without modification decreases exponen-
tially with the size of the package, so one would expect a much
larger proportion of packages to fail than of modules (c.f. the 3.7%
of base-package modules that required modification).

4.3 Summary
Although there is more work to do, to see how many type signatures
are required to fix the 95 failing third-party packages, we regard
these numbers as very promising: even in the higher-rank-rich base
library, only a vanishingly small number of lines needed changing.
We conclude that local let generalisation is rarely used. Moreover,
as a matter of taste, in almost all cases we believe that the extra
type signatures in the modified base-library code have improved
readability. Finally, although our experiments involve Haskell pro-
grams, we conjecture that the situation is similar for ML variants.

43

5. LHM(X)
In this section we give the details of LHM(X), a type system that
implements NoGen. The key features of LHM(X) are these:

• Rather than choose some specific extension(s), such as GADTs
or type classes or units of measure, LHM(X) is parameterised
over the constraint domain X. All we require of the constraint
domain is that it has a solver that satisfies certain reasonable
soundness properties (Section 5.4).
• LHM(X) supports qualified types, of form ∀a.Q ⇒ τ .
• LHM(X) supports local assumptions. For example, in the branch

of a GADT pattern match, we have some equality assumptions
that do not hold elsewhere.
• LHM(X) supports user-supplied type signatures. Far from mak-

ing the job easier, type signatures make type inference quite a
bit harder, precisely because they constitute a second source of
local assumptions.

We will often use GADTs to illustrate and motivate, but they are
only illustrative: everything works for an arbitrary X.

5.1 Syntax
The syntax of LHM(X) is given in Figure 1. Expressions e are the
standard λ-calculus expressions and we provide let-bindings in
two forms: (i) ordinary un-annotated let bindings, and (ii) let-
bindings annotated with the type of the bound expression. Fi-
nally, we include a pattern matching construct. Programs M are
sequences of top-level annotated or un-annotated bindings. Envi-
ronments Γ contain variable bindings (we assume that constructors
and their types appear in some global environment Γ0).

Types are separated into polymorphic types σ and monotypes
τ, υ. In a polymorphic (quantified) type ∀a.Q ⇒ τ , a represents a
set of quantified variables, Q is a constraint consisting of (at least)
type equalities, and τ is a monomorphic type. Monomorphic types
include variables, Int and Bool, lists. Additionally, a single type
T with constructors introducing constraints suffices to demonstrate
all we need for this paper, so our tiny language has a single baked-
in such type T and its constructors K . The types of its constructors
are assumed to be in the initial environment Γ0. For simplicity of
the formal metatheory we assume that they do not bring existential
variables in scope and that the constraints Qi are non-trivial.

The “...” parts of the syntax are the “X” over which LHM(X) is
parameterised. Any given X will have some form of constraint(s)
(which extend Q), some new forms of types (which extend τ), and
some top-level axioms Q0. For example, to add type classes we
have a new form of constraint (e.g. Eq τ), no new form of types,
and top-level axioms derived from instance declarations. To add
type functions we add no new constraints, but we do add a new
form of type F τ , and axiom schemes. For example, the Haskell
definition

type instance F [a] = a

introduces an axiom scheme of the form ∀a.F [a] ∼ a in Q0. From
a technical standpoint, axiom schemes can be viewed as infinite sets
of axioms, which are invariant under type substitutions.

Syntactically, we often omit empty qualifiers, writing Q ⇒ τ
instead of ∀ε.Q ⇒ τ , and τ instead of ε⇒ τ . In our examples, we
will often make use of various literal boolean and integer constants
and other functions, but we omit those from Figure 1.

5.2 Overview of the OutsideIn approach
Previous work has addressed the problem of type inference for
GADTs, based on generating and solving implication constraints
(SP07; SJSV09; SWJ06; SSS08). Our type system and algorithm

Constructors K ::= . . .
ν ::= K | x

Expressions e ::= ν | λx.e | e1 e2

| let x = e1 in e2

| let x::σ = e1 in e2

| case e of{Kx → e}
Programs M ::= ε | let x = e,M

| let x::σ = e,M
Polytypes σ ::= ∀a.Q ⇒ τ
Contexts Q ::= ε | Q1,Q2 | τ1∼τ2 | . . .
Monotypes τ, υ ::= α | a | Int | Bool | [τ] | T τ | . . .

Γ ::= ε | (x :σ),Γ
Free type vars. ftv(·)

Γ0 : Types of data constructors
K : ∀a.Q1 ⇒ υ1 → T a

Q0 : Top-level axiom scheme set
. . .

Simple constraints Q ::= ε | Q1,Q2 | τ1∼τ2 | . . .
Implication constr. C ::= ε | C1,C2 | [α](Q ⊃ C)

Figure 1: Syntax of LHM(X)

for LHM(X) are based on those of the OutsideIn approach (SJSV09),
so we begin with a review of the latter. The OutsideIn approach
only targets GADTs, and hence our examples below are GADT
examples.

The algorithm GADT pattern matching introduces local assump-
tions to the type checker, which in turn give rise to so-called impli-
cation constraints, C . Recall the R datatype from Section 2.1 and
consider the following example:

trans :: forall a. R a -> a -> a
trans rx x = case rx of

RInt -> 3
RBool -> True

In the example, the type of rx is the known type R a , and the type
of x is a . The first branch introduces a local assumption a ∼ Int
which may be used to type the right-hand side of the branch. For
the latter we must be able to show a ∼ Int, so the type checker
must solve this implication constraint:

(a ∼ Int) ⊃ (a ∼ Int)

which is trivially satisfiable. Similarly, for the second branch, the
(trivially satisfiable) constraint (a ∼ Bool) ⊃ (a ∼ Bool) arises.
During type inference, constraints often contain unknown unifica-
tion variables, for which we use greek letters α, β, Consider
this function, where the programmer does not supply a signature:

foo rx = case rx of
RInt -> 3
RBool -> error

Assuming that R α is the type of rx and β is the return type of the
expression, the constraint arising is:

(α ∼ Int) ⊃ (β ∼ Int)

(There is no constraint for the second branch, as error can have
any type we wish). In this case, the constraint solver is additionally
required to actually produce a substitution for α, β that solves
the constraints. There exist various possibilities for β: it may set
[β 7→ Int] or [β 7→ α]. Depending on the choice, we get two

44

different types for foo:

∀a.R a → Int or ∀a.R a → a

Notice, however that these two types are incomparable; and there is
no type more general than both that does not involve quantification
over the full implication constraint!

The OutsideIn approach rejects foo, because it lacks a princi-
pal type. Algorithmically it is easy to reject foo. We record in each
implication constraint a set of “untouchable” unification variables,
which are the variables through which a GADT branch may com-
municate with the “outside” part of the program (Figure 1). In the
example, those variables are both α and β, because α belongs in the
environment and β is the return type of the branch. The implication
constraint becomes:

[α, β](α ∼ Int ⊃ β ∼ Int)

Now, OutsideIn requires the constraint to be soluble without sub-
stituting for the untouchable variables. Hence, no ambiguity in the
type of expressions can occur as a result of solving an implication
constraint in two different ways.

On the other hand, if information from the “outside world” fixes
the solution to the implication constraint, the OutsideIn approach
uses it. For example, assume:

foo rx = (case rx of
RInt -> 3
RBool -> error) :: Int

The generated constraint is:

([α, β](α ∼ Int ⊃ β ∼ Int) ∧ (β ∼ Int)

since the annotation specifies that β ∼ Int. Having fixed β to
Int, the implication constraint is trivially soluble, without produc-
ing any extra substitutions. Hence, algorithmically, OutsideIn first
solves the flat top-level constraints (the simple constraints), and
uses that information to solve nested implication constraints (the
proper implication constraints).

The specification It is less straightforward to provide a type sys-
tem for this informally described algorithm. The basic idea of the
OutsideIn type system is that GADT pattern matching gives rise
to deferred typing problems. Formally, we make use of a typing
judgement of the form Q ; Γ ` e : τ . P , where Q is a constraint
context, Γ is the typing environment, and P is a set of deferred
typing problems, each a quadruple of the form 〈Q ′ ; Γ′ ; e ′ ; τ ′〉.
The intuition behind the deferred typing problem sets P is that, no
matter which individual quadruples such a P may contain, these
quadraples have to form valid typing judgements; we return to the
details in Section 5.5. Whenever the Q ; Γ ` e : τ . P judgement
encounters a GADT match, the return type of the branch is allowed
to be anything (because the “outside” part of the program should
be opaque to the branch), and the typing problem that corresponds
to the branch is deferred in the returned P set. For instance, pattern
matching for the R datatype can be typed by:

Q ; Γ ` e : R τ . P
P1 = {〈τ∼Bool;Γ;e1;τr 〉} ∪ {〈τ∼Int;Γ;e2;τr 〉} ∪ P

Q ; Γ ` case e of{RBool→ e1, RInt→ e2} : τr . P1

Notice that after typechecking e and yielding deferred problems
P , we extend P with the two deferred branch typing problems.
For each branch we record the constraint that arises from the cor-
responding constructor (τ ∼ Bool and τ ∼ Int, respectively).

The rest of the rules are quite standard, gathering up additionally
all GADT branch deferred problems2.

At the top-level, a recursive judgement Q0 ; Q ; Γ `R e : τ
ensures that for any possible way to type a program with type τ
and given constraint Q in an top-level axiom set Q0, while defer-
ring the GADT branch typings, those deferred typing problems are
themselves valid recursively in the `R judgement. Hence, this spec-
ification realizes the OutsideIn idea.

5.3 The LHM(X) type system and constraint generation
We now formally present the proposed type system. The main
typing relation takes the form Q ; Γ ` e : τ . P and is given
in Figure 2.

Rules EQ and NU check the entailment of the wanted constraint
from the available constraint. We hence rely on a judgement of the
form Q1 Q2, which depends on the domain X that parameterizes
LHM(X). We will assume however a few properties of Q1 Q2.

1 Definition [Proof theory requirements]: We assume that the
empty constraint ε is treated as the always valid constraint by
and Q1,Q2 is treated as the conjunction of Q1 and Q2. In addition
we require that:

• If Q1 Q2 and Q2 Q3 then Q1 Q3.
• If Q1 Q2 then θQ1 θQ2.

For example one could imagine a concrete system that includes
type equalities and type class constraints. These conditions are
expected; for example Jones identifies the same conditions in his
thesis (Jon92).

Most of the typing rules in Figure 2 are straightforward. In ac-
cordance with our earlier discussion, rule LET does not perform any
generalization and hence gives the bound variable x a monomor-
phic type τ1.

The rule for annotated let definitions comes in two flavours. If
the annotation does not bring any context in scope, i.e. it is simply
a τ1 type, then rule LETA triggers. It type checks the definition,
binds the variable to the annotation type and checks the body of
the definition. If the annotation does bring context in scope, i.e. is
of the form ∀a.Q ⇒ τ where either a or Q is non-empty, then
we treat the typing of the definition as a deferred typing problem.
Consider:

flop x = let foo :: forall a.(a ~ Int)=>a -> Bool
foo = e

in ...

Then, if Q is the constraint arising from e, Q has to be satisfiable
in a context that provides (a ∼ Int). The situation is analogous to
GADT pattern matching, and rule GLETA makes sure that we treat
it the same way by creating a deferred typing problem.

Finally, notice that the judgement Q ; Γ ` e : τ . P does not
use the top-level axiom set Q0 — the Q0 axiom set comes into play
only at the typing rules for top-level bindings.

Constraint generation The typing rules in Figure 2 go hand-in-
hand with the constraint generation rules in Figure 3.

Recall from Figure 1 that the language of monomorphic types
is allowed to contain unification variables α, β, We introduce
algorithmic constraints, that include the familiar simple constraints
Q , conjunctions C1,C2, and additionally implication constraints of
the form [α](Q ⊃ C). Notice that the assumption of an implication
constraint is always a simple constraint Q , since it is always intro-
duced by pattern matching, or by polymorphic user annotations.

2 In the original OutsideIn type system local let definitions get generalized
but non-qualified types. It only works because the type system supports
GADTs (and no type functions or type classes), which can always be
discharged by means of substitutions.

45

Q ; Γ ` e : τ . P

(ν:∀a.Q1 ⇒ τ1) ∈ Γ ∪ Γ0

Q [a 7→ υ]Q1 NU
Q ; Γ ` ν : [a 7→ υ]τ1 . ∅

Q ; Γ ` e1 : τ1 → τ2 . P1

Q ; Γ ` e2 : τ1 . P2 APP
Q ; Γ ` e1 e2 : τ2 . P1 ∪ P2

Q ; Γ, (x :τ1) ` e : τ2 . P
ABS

Q ; Γ ` λx.e : τ1 → τ2 . P

Q ; Γ ` e : τ1 . P Q τ1 ∼ τ2
EQ

Q ; Γ ` e : τ2 . P

Q ; Γ ` e1 : τ1 . P1 Q ; Γ, (x :τ1) ` e2 : τ2 . P2

LET
Q ; Γ ` let x = e1 in e2 : τ2 . P1 ∪ P2

Q ; Γ ` e1 : τ1 . P1

Q ; Γ, (x :τ1) ` e2 : τ2 . P2 LETA
Q ; Γ ` let x :: τ1 = e1 in e2 : τ2 . P1 ∪ P2

σ1 = ∀a.Q1 ⇒ τ1 Q1 6= ε ∨ a 6= ε a#ftv(Q ,Γ)
P1 = {〈Q1 ; Γ ; e1 ; τ1〉} Q ; Γ, (x :σ1) ` e2 : τ2 . P2 GLETA

Q ; Γ ` let x :: σ1 = e1 in e2 : τ2 . P1 ∪ P2

Q ; Γ ` e : T τ . P Ki :∀a.Qi ⇒ υi → T a ∈ Γ0

Pi = {〈[a 7→ τ]Qi ; Γ, (x :[a 7→ τ]υi) ; ei ; τr 〉} GCASE
Q ; Γ ` case e of {Ki x i → ei} : τr . P ∪ (

⋃
Pi)

Q1 Q2

. . . parameter X proof theory . . .

Figure 2: Main typing rules of LHM(X)

Finally, we write simp[C1] for the non-implication constraints of
C1 and prop[C1] for the implications of C1.

Constraint generation is given with the judgement Γ Ì e : τ
C in Figure 3, where τ and C should be viewed as outputs. The
rules in Figure 3 are straightforward — we introduce fresh unifica-
tion variables whenever the types are unknown and create implica-
tion constraints at rules CASE and GLETA, carefully recording the
untouchable variables.

5.4 Top-level algorithmic rules
Type checking expressions is only half the story. We need to show
how to type check top-level bindings and, algorithmically, what
to do with the generated constraints. We start with the latter, as
it provides intuitions for the top-level typing rules.

Consider the top-level algorithmic rules in Figure 4. The judge-
ment Q0 ; Γ Ì M shows how to deal with top-level bindings M ,
and relies on a constraint solver procedure, with the signature:

Q0 ; Qgiven ; τuntch ` solve(Cwanted) Qresidual ; θ

In this signature, the inputs are:

• The top-level axiom set Q0,
• the given (simple) constraints Qgiven that arise from type anno-

tations (or pattern matching),
• the types τuntch whose free unification variables the solver must

not substitute for, and
• the constraint Cwanted that the solver is requested to solve.

The outputs are:

• A set of (simple) constraints Qresidual that the solver was not
able to solve,
• A substitution θ for the unification variables of Cwanted that do

not appear in τuntch .

Notice that the solver is not required to always fully discharge
Cwanted via a substitution for the unification variables; it may
instead return a residual Qresidual . This behaviour may appear when
inferring a type for a top-level unannotated binding (rule BIND).
In that case, we first produce a constraint for the expression and
then appeal to the solver, providing Qgiven = ε and untouchables
τuntch = ε. But the solver may fail to fully solve the constraint,

Q0 ; Γ Ì M

EMPTY
Q0 ; Γ Ì ε

Γ Ì e : τ C Q0 ; ε ; ε ` solve(C) Q ; θ
a fresh α = fuv(θτ,Q)

Q0 ; Γ, (x :∀a.[α 7→ a](Q ⇒ θτ)) Ì M
BIND

Q0 ; Γ Ì let x = e,M

Γ Ì e : υ C
Q0 ; Q ; ε ` solve(C ∧ υ ∼ τ) ε ; θ

Q0 ; Γ, (x :∀a.Q ⇒ τ) Ì M
ABIND

Q0 ; Γ Ì let x :: (∀a.Q ⇒ τ) = e,M

Q0 ; Qgiven ; τuntch ` solve(Cwanted) Qresidual ; θ

Q0 ; Qg ; τ ` simpleS(simp[C]) Qr ; θ
∀([τ i](Qi ⊃ Ci) ∈ prop[θC]),

Q0 ; QgQrQi ; ττ i ` solve(Ci) ε ; θi
SOLVE

Q0 ; Qg ; τ ` solve(C) Qr ; θ

Q0 ; Qgiven ; τuntch ` simpleS(Qwanted) Qresidual ; θ

. . . parameter X solver . . .

Figure 4: Top-level algorithmic rules

returning Qresidual = Q along with a substitution θ. In that case
we must give the binding a type that quantifies over Q . In contrast
to the examples presented in the introduction, there are no technical
obstacles to this quantification — since the typing environment is
closed we may simplify Cwanted as much as we wish.

On the other hand, in the case of annotated bindings (rule
ABIND) we solve the constraint, providing as given constraint the
Q from the type annotation and equating the type of the annotation
(τ) to the type that we have inferred for the expression (υ). Contrary

46

Γ Ì e : τ C

α fresh
(ν:∀a.Q1 ⇒ τ1) ∈ Γ ∪ Γ0 NU

Γ Ì ν : [a 7→ α]τ1 [a 7→ α]Q1

Γ Ì e1 : τ1 C1 Γ Ì e2 : τ2 C2 APP
Γ Ì e1 e2 : α C1,C2, τ1 ∼ τ2 → α

α fresh
Γ, (x :α) Ì e : τ C

ABS
Γ Ì λx.e : α→ τ C

Γ Ì e1 : τ1 C1 Γ, (x :τ1) Ì e2 : τ2 C2

LET
Γ Ì let x = e1 in e2 : τ2 C1,C2

Γ Ì e1 : τ C1 Γ, (x :τ1) Ì e2 : τ2 C2

LETA
Γ Ì let x :: τ1 = e1 in e2 : τ2 C1,C2, τ ∼ τ1

σ1 = ∀a.Q1 ⇒ τ1 Q1 6= ε ∨ a 6= ε
Γ Ì e1 : τ C

C1 = [fuv(Γ)](Q1 ⊃ C , τ ∼ τ1)
Γ, (x :σ1) Ì e2 : τ2 C2

GLETA
Γ Ì let x ::σ1 = e1 in e2 : τ2 C1,C2

Γ Ì e : τ C β, γ fresh C ′ = (T γ ∼ τ),C

Ki :∀a.Qi ⇒ υi → T a Γ, (x :[a 7→ γ]υ) Ì ei : τi Ci

C ′i = [β, γ, fuv(Γ)]([a 7→ γ]Qi ⊃ Ci ∧ τi ∼ β)
GCASE

Γ Ì case e of {Ki x i → ei} : β C ′,C ′i

Figure 3: Constraint generation

to the case of rule BIND, the wanted constraint C ∧ (τ ∼ υ) now
has to be fully solved — it is unsound to allow the solver to return
a non-trivial residual constraint.

Parameterizing over the X-solver We now turn to the internals of
the main solver judgement

Q0 ; Qgiven ; τuntch ` solve(Cwanted) Qresidual ; θ

We observe that Cwanted may well contain implication constraints
— but our proof theory for X does not deduce implications. Hence
the solve procedure provides the infrastructure of dealing with
implication constraints and internally appeals to a domain-specific
solver for the X theory, simpleS .

The definition of the solve procedure is given by rule SOLVE
in Figure 4. The judgement first appeals to the domain-specific
simpleS solver for the simple part of the constraint simp[C],
producing a residual constraint Qr and a substitution θ. Subse-
quently, it applies θ to each of the proper implication constraints in
C and recursively solves each of the implications having updated
the given constraints and the set of untouchable types.

Notice that each constraint Ci in a recursive call to solve must
be completely solved (wich is ensured with condition Q0;QgQrQi ;
ττ i ` solve(Ci) ε ; θi in rule SOLVE). The reason is that
the residual constraint returned from solve may only be a simple
(non-implication) constraint since we are not allowed to quantify
over implication constraints. Moreover, the domain of each θi is
necessarily disjoint from the current environment variables (since
the latter belong in the untouchable variables of the corresponding
implication constraint), and hence there is no point in returning
those θi substitutions along with θ in the conclusion of rule SOLVE.

The main solver appeals to a domain-specific solver for the X
theory, simpleS , with the following signature:

Q0 ; Qgiven ; τuntch ` simpleS(Qwanted) Qresidual ; θ

Any solver with this signature can be “plugged” in our main solver,
but in addition we require certain conditions on simpleS that en-
sure soundness of type inference.

2 Definition [Soundness conditions]: If Q0 ; Qgiven ; τuntch `
simpleS(Qwanted) Qresidual ; θ then:

• Qresidual and τuntch are fixpoints of θ,
• Q0QgivenQresidual θQwanted and Q0QgivenQwanted Eθ ∧

Qresidual , where Eθ is the equational constraint induced by θ.

The first condition ensures that the substitution is already applied to
the residual constraint returned and respects the untouchable vari-
ables. The second condition ensures that the Qwanted is equivalent

to Qresidual ∧ Eθ . For example, when Qresidual = ε then Qwanted

is dischargeable by θ (and additionally Qwanted implies Eθ and
Qresidual , a point that we return to in Section 6.5).

5.5 Top-level typing rules
Section 5.4 describes an inference algorithm for the top-level bind-
ings, but what should the specification be? Curiously, it seems to
be harder to pin down than the algorithm. A plausible specification
appears in Figure 5.

First of all, following the OutsideIn ideas, we introduce a
recursive judgement Q0 ; Q ; Γ `R e : τ , which ensures that for
all possible typings of the program from outside, i.e. intuitively
fixing Q , Γ, and τ , the deferred problems are typeable. Rule RMAIN
gives the details. In particular, we first type the program with the
required type τ , using a constraint Q1, which must follow from the
top-level axiom set and whatever our given context is (condition
Q0Q Q1). Next, we require that, no matter which set of deferred
problems P2 we may produce for the same τ and Γ, all the deferred
problems in P2 be valid recursively.

The judgement Q0 ; Γ ` M gives the type checking of top-level
bindings. The case for annotated definitions, rule ABIND appeals
directly to the `R judgement passing in the constraint Q and type τ
provided by the annotation. Rule BIND on the other hand “guesses”
Q and τ to be passed to the `R judgement, and gives the unanno-
tated binding the quantified type ∀a.Q ⇒ τ .

Under sound simplifier assumptions, it is not hard to show
soundness of type inference.

3 Proposition [Soundness]: If Q0 ; ε Ì M then Q0 ; ε ` M .

The technical development that leads up to this result is mostly
straightforward – with an extra step of showing that (since we defer
the “hard” problems) there exist most general constraints and types
for programs typeable in the ` judgement.

However, completeness of our simple algorithm is unfortunately
not true without modifications in the specification. One difficulty
has to do with the OutsideIn approach and is best demonstrated
with an example. Assume the following top-level definitions:

f1 x = x
f2 rx = f1 (case rx of

RInt -> 3
RBool -> error)

Suppose that we were not to choose the most general type for f1
and instead of ∀a.a → a we bind f1 with type Int→ Int in the
environment. In this case, the type of the case expression inside
the body of f2 is “fixed” because the case expression is applied to

47

Q0 ; Γ ` M

ftv(Γ) = ∅
EMPTY

Q0 ; Γ ` ε

Q0 ; Q ; Γ `R e : τ
Q0 ; Γ, (x :∀a.Q ⇒ τ) ` M

BIND
Q0 ; Γ ` let x = e,M

Q0 ; Q ,Γ `R e : τ
Q0 ; Γ, (x :∀a.Q ⇒ τ) ` M

ABIND
Q0 ; Γ ` let x :: (∀a.Q ⇒ τ) = e,M

Q0 ; Q ; Γ `R e : τ

Q1 ; Γ ` e : τ . P1 Q0Q Q1

∀Q2,P2, (Q2 ; Γ ` e : τ . P2) =⇒
∀〈Qi ;Γi ;ei ;τi 〉 ∈ P2,Q0 ; QQi ; Γi `R ei : τi

RMAIN
Q0 ; Q ; Γ `R e : τ

Figure 5: Top-level typing rules

f1. As a consequence, the program would be typeable. However,
the algorithm only produces ∀a.a → a for f1 by looking at its
definition. But the application f1 (case . . .) does not fix the type
of the case expression, and the algorithm rejects this program.

Fortunately, there exists an easy solution to this problem — we
can require that each un-annotated binding in rule BIND gets its
most general type, so that no guessed type information can be used
to fix the type of GADT branches in the scope of that binding.

5.6 Lack of completeness due to ambiguity
Even if we insist on inferring most-general types, as argued in the
previous section, our inference algorithm remains incomplete —
or rather our specification is too liberal — a property it shares
with every other type system for Haskell known to us. The reason
is the celebrated ambiguity problem, illustrated by the following
example:

4 Example [Type class ambiguity]: Consider the classical type
class example below:

-- show :: forall a. Show a => a -> String
-- read :: forall a. Show a => String -> a

flop :: String -> String
flop s = show (read s)

The constraint solver is left with a type class constraint Show α,
where α is otherwise unconstrained. The constraint can be solved
by arbitrarily choosing [α 7→ Int], or [α 7→ Bool], since both
types are instances of Show, but this arbitrary choice changes the
dynamic semantics of the program. The Haskell 98 Report therefore
requires the program to be rejected, and the algorithm to do so
is easy: simply refrain from “guessing” the instantiation of an
unconstrained unification variable.

Alas, it is hard for the specification, the declarative typing rules,
to reject the program. There are many perfectly sensible typing
derivations for flop, one choosing the result of (read s) to be
Int, one choosing it to be Bool, and so on. We know of no
elegant specification that excludes such typings, and indeed the
rules of Figure 2 do not. In the Haskell jargon, this is the ambiguity
problem (e.g. see discussion in (Jon92)).

Similar ambiguity problems arise with type functions. If the
resulting constraint is F β ∼ Int with the top-level axioms
F Int ∼ Int and F Bool ∼ Int no reasonable algorithm can
simply “choose” either Int or Bool. Even if there is only one

declared axiom for F , for example F Int ∼ Int, we should not
expect the algorithm to deduce that [β 7→ Int]. Under an “open
world” assumption new axioms could later be introduced that no
longer justify our choice to make β equal to Int. More worryingly,
such ambiguous constraints may appear nested inside implication
constraints, for example [ε](Q ⊃ . . . ,F β ∼ Int, . . .).

The ambiguity problem reveals a mis-match between the algo-
rithm (which does the Right Thing) and the specification (which
wrongly admits some ambiguous programs). This problem is quite
orthogonal to the contributions of this paper: every type system for
Haskell shares the same difficulty. It is unclear whether there ex-
ists an elegant, perspicuous specification that excludes ambiguous
programs, even for Haskell 98; certainly we have not seen one.

6. Discussion
6.1 Top-level bindings
Many Haskell programmers believe that every top-level declaration
should also have a type signature, and GHC implements a warning
flag to test for precisely this. Our NoGen proposal enforces this
practice for local bindings, but arguably things would be more
uniform if we refrained from generalizing top-level bindings as
well, quite similarly to C# or Java. On the other hand, such a choice
would reject many Haskell 98 programs, and hence we did not
adopt it in this paper.

6.2 Polymorphic but unqualified type signatures
The careful reader will observe that if the annotation type is ∀a.τ1
then GLETA triggers, rather than rule LETA. This in turn makes the
environment unification variables (denoted with fuv(Γ)) untouch-
able — contrary to what one would expect for a vanilla Haskell
98 polymorphic type signature. This is not a serious limitation;
we have chosen on purpose to treat ∀a.τ1 in the same way as
∀a.Q1 ⇒ τ1 because otherwise the constraint language would
have to be slightly more complex, and so would be the equational
theory of constraints and the metatheory. For example, the original
OutsideIn paper which does allow this extra freedom, requires ad-
ditionally constraints of the form [β](∀a.C) that look like implica-
tions but have to be treated as simple constraints, with an additional
escape check. Here, we have avoided this complication since it is
completely irrelevant for our purposes.

6.3 The monomorphism restriction
Haskell 98 already restricts generalisation of let bindings in
one case: the notorious and complicated Monomorphism Restric-
tion (Section 4.5 in (Pey03)). The MR has always been a wart
on the language design, and many have argued for its abolition,
although we will not rehearse these arguments here.

Our NoGen proposal completely subsumes the MR for local
let bindings, so the MR would then only apply to top-level bind-
ings. In that case the arguments for its abolition, or for generating
a warning rather than rejecting the program, would become very
strong. A nasty wart would thereby be removed from the face of
Haskell.

6.4 Units of measure
Kennedy’s system of units of measure (Ken96) was briefly sketched
in Section 2. Lacking qualified types, Kennedy adopted NoQual
but then, quite unexpectedly, discovered a type inference complete-
ness problem:

div :: forall u1 u2.
num (u1*u2) -> num u1 -> num u2

main x = let f = div x
in (f this, f that)

48

In the program above, div is a typed division function. Let us
assume that x gets type num u in the environment, for some un-
known u. From type checking the body of f we get the constraint
u ∼ u1 ∗ u2 for some unknown instantiations of div. If the uni-
fier naı̈vely substitutes u away for u1 ∗ u2, those variables become
bound in the environment, and hence we are not allowed to apply f
polymorphically in the body of the definition.

Kennedy found a technical fix, by exploiting the fact that units
of measure happen to form an Abelian group, and adapting an al-
gebraic normalization procedure to types. For example, the normal
form type for f above is: forall u. num u -> num (u/u1) His
technique is ingenious, but leads to a significant complexity burden
in the inference algorithm. More seriously, it does not generalise
because it relies on special algebraic properties of units of measure.
In particular, his solution fails for arbitrary type functions.

6.5 Ambiguity
From our discussion in Section 5.6, it is not to be anticipated that
any reasonable algorithm will achieve completeness with respect
to the specification of Figure 5. In the rest of this section we
sketch a modification of the typing rules that excludes programs
that algorithmically would demonstrate these problems.

Our starting point is Example 4.

flop :: String -> String
flop s = show (read s)

The specification may instantiate the quantified variable of show
to Int or Bool, which both could make the program typeable.
However, the Q ; Γ ` show (read s) : τ . ∅ judgement does not
use any of the axioms of Q0 (such as Show Int or Show Bool)
and there exists a most general constraint Q for the expression
show (read s). That constraint is simply Show a for some type
variable a .

In the specification, it is possible to detect whether a constraint
and a type are the most general possible for an expression:

Q ; Γ ` e : τ . P dom(θ)#Γ
∀Q1, τ1,P1, (Q1 ; Γ ` e : τ1 . P1) =⇒ Q1 θQ ∧ θτ∼τ1 MAX

Q ; Γ `max e : τ . P

The MAX rule ensures that that Q and τ are the most general
constraint and type for the expression e in the environment Γ.

Having gotten “hold” of the most general constraint and type
in the typing rules, the `R judgement can be modified to require
that the most general constraint inferred for an expression should
be solvable by some substitution for the free variables of the
constraint. Formally, there must exist a substitution θ such that
Q0Qg θQmax , where Qmax is the most general constraint
and Qg is the given constraint. For example, for the expression
show (read s) we would have either Q0 [a 7→ Int](Show a)
or Q0 [a 7→ Bool](Show a).

So far we have not achieved much – how could we reject the
program if we knew the most general constraint that it can be
typed with? The next step is to observe that neither a ∼ Int nor
a ∼ Bool follow from the constraint Show a . In other words, the
constraint Show a is solvable but not unambiguously solvable. This
idea is in the heart of the definition below.

1 Definition [Unambiguously solvable constraints]: A constraint
Q is solvable in Q0 with given constraints Qg iff there exists a θ
with dom(θ)#ftv(Qg) and such that Q0Qg θQ . The constraint
Q is unambiguously solvable if additionally Q0QgQ Eθ .

Hence, a constraint Q is unambiguously solvable in a set of
given constraints and an axiom set whenever it is equivalent to a
substitution for a set of variables that do not belong in the given
constraints. A reasonable solver (such as the one described with the

conditions in Definition 2) fully solves a constraint only if it is un-
ambiguously solvable. As a reasonable completeness requirement
we could ask for the inverse property, so that: a sound and complete
solver solves a constraint iff it is unambiguously solvable. We may
then modify the `R judgement to require that:

the principal constraint of the expression be unambiguously
solvable in the current given constraints and axiom set.

As the issue of ambiguity is orthogonal to the subject of this
paper, we leave the task of formally specifying these modifications
as future work.

7. Related and future work
There is a very long line of work in Hindley-Milner derivatives,
parameterized over various constraint domains (Jon92; Sul00;
OSW99; SMZ99). Rémy and Pottier (PR05) give a comprehen-
sive account of type inference for HM(X) (Hindley-Milner, pa-
rameterized over the constraint domain X). To our knowledge, our
presentation is the first one that deals with local assumptions in-
troduced by type signatures and data constructors, and where those
local assumptions may include type equalities.

Simonet and Pottier study type inference for GADTs, where lo-
cal GADT type equalities may be introduced as a result of pattern
matching (SP07). They propose a solution that does generalization
over local let-bound definitions, by abstracting over the full gen-
erated constraint. We have seen that this approach has practical dis-
advantages, though theoretically appealing and technically straight-
forward. Interestingly, since ML is call by value the constraints
arising from a let-bound definition have to be satisfiable by some
substitution, since the expression will be evaluated independently
of whether it will be called or not. By contrast, in Haskell we may
postpone the satisfiability check of the generated constraints all the
way to the call sites of a definition. In the case of our previous
work on type inference for GADTs (SJSV09) such a satisfiabil-
ity check happens implicitly since at local let-bound definitions,
the constraint generation procedure calls the solver to discharge the
generated constraints by means of substitutions.

The pioneering work of Mark Jones on qualified types (Jon92)
is closely related to our approach, except for the fact that we addi-
tionally have to deal with type equalities and local assumptions.
The problem of ambiguity has been identified by many (Jon92;
NP95) but, to our knowledge, there has never been a proposal for
a type system that rejects programs with ambiguity. In the work of
Mark Jones, a characterization of unambiguous types of the form
∀a.Q ⇒ τ requires that the free type variables of Q must ap-
pear in τ . With the coming of type functions, it appears that these
characterizations are no longer adequate.

Stuckey and Sulzmann (SS05) employ a more elaborate ambi-
guity condition on type signatures than Jones — and in fact one of
the same flavour as Definition 1 in Section 6.5.

1 Definition [Unambiguous types]: A type ∀a.Q ⇒ τ is unam-
biguous in Q0, iff for some fresh set of variables b we have that

Q0 ∧ Q ∧ ([a 7→ b]Q) ∧ (τ ∼ [a 7→ b]τ) a ∼ b

In other words, the equality between two instantiated types implies
equality of instantiations.

For example, consider the type: ∀ab.F a ∼ b ⇒ Int → a and a
renaming [a 7→ a1, b 7→ b1]. Then we must show that

F a ∼ b ∧ F a1 ∼ b1 ∧ a ∼ a1 (a ∼ a1) ∧ (b ∼ b1)

There exist even constraint-free types that are ambiguous. Take for
example ∀a.F a → Int . Assuming a renaming [a 7→ a1], it does
not follow that:

F a1 ∼ F a a1 ∼ a

49

as type functions need not be injective. In practical terms, this
means that we can never apply a function with that type to a value
of type, say, F Int.

The precise connection between the Stuckey-Sulzmann condi-
tion and our notion of unambiguously solvable constraints (Sec-
tion 6.5) is an interesting direction for future work.

Finally, ambiguity seems also related to the discussion about
type functions and type classes defined under an “open” or “closed”
world assumption (Sul00). Recently, there have been papers (SSS08;
DPSS04; SSJC07; SPJCS08) that give the properties of constraint
solvers for GADTs or type functions under open world assump-
tions, though we are not aware of previous high-level type system
specifications that additionally deal with implications, such as the
one that we present.

Future work Apart from addressing the ambiguity problems out-
lined in Section 5.6, we plan to provide an actual solver for all the
major type system features of GHC (type classes, type functions,
and GADTs) and show its soundness and completeness properties.
Our goal is to have a type inference algorithm that additionally pro-
duces evidence (such as dictionary abstractions and applications,
and coercions) and enjoys a high-level specification. The natural
next step is to parameterize the type checker by external domain-
specific solvers, towards “pluggable” type systems for Haskell.

Acknowledgements
Many thanks to Martin Sulzmann, Manuel Chakravarty, Andrew
Kennedy, and the anonymous reviewers for their suggestions.

References
[CKP05] M. Chakravarty, Gabriele Keller, and S. Peyton Jones. Asso-

ciated type synonyms. In Proc. of ICFP ’05, pages 241–253,
New York, NY, USA, 2005. ACM Press.

[CKPM05] M. Chakravarty, Gabriele Keller, S. Peyton Jones, and S. Mar-
low. Associated types with class. In Proc. of POPL ’05, pages
1–13. ACM Press, 2005.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for
functional programs. In Proc. of POPL ’82, pages 207–12,
New York, 1982. ACM Press.

[DPSS04] G. J. Duck, S. Peyton Jones, P. J. Stuckey, and M. Sulzmann.
Sound and decidable type inference for functional dependen-
cies. In Proc. of (ESOP’04), number 2986 in LNCS, pages
49–63. Springer-Verlag, 2004.

[HHPW96] C. V. Hall, K. Hammond, S. L. Peyton Jones, and P. L. Wadler.
Type classes in Haskell. ACM Trans. Program. Lang. Syst.,
18(2):109–138, 1996.

[HLvI03] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn.
Helium, for learning Haskell. In ACM Sigplan 2003 Haskell
Workshop, pages 62 – 71, New York, August 2003. ACM
Press.

[Jon92] M. P. Jones. Qualified Types: Theory and Practice. D.phil.
thesis, Oxford University, September 1992.

[Jon00] Mark P. Jones. Type classes with functional dependencies.
In Proc. of ESOP 2000, number 1782 in Lecture Notes in
Computer Science. Springer-Verlag, 2000.

[Ken96] AJ Kennedy. Type inference and equational theories. LIX
RR/96/09, Ecole Polytechnique, September 1996.

[Mil78] R Milner. A theory of type polymorphism in programming.
JCSS, 13(3), December 1978.

[NP95] Tobias Nipkow and Christian Prehofer. Type reconstruc-
tion for type classes. Journal of Functional Programming,
5(2):201–224, 1995.

[OSW99] M. Odersky, M. Sulzmann, and M Wehr. Type inference with
constrained types. Theory and Practice of Object Systems,
5(1):35–55, 1999.

[Pey03] S. Peyton Jones, editor. Haskell 98 Language and Libraries:
The Revised Report. Cambridge University Press, 2003.

[PR05] F. Pottier and D. Rémy. The essence of ML type inference.
In Benjamin C. Pierce, editor, Advanced Topics in Types and
Programming Languages, chapter 10, pages 389–489. MIT
Press, 2005.

[PVWS07] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields.
Practical type inference for arbitrary-rank types. Journal of
Functional Programming, 17:1–82, January 2007.

[PVWW06] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn.
Simple unification-based type inference for GADTs. In Proc.
of ICFP’06, pages 50–61. ACM Press, 2006.

[SJSV09] Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and
Dimitrios Vytiniotis. Complete and decidable type inference
for GADTs. In Proc. of ICFP’09. ACM Press, 2009.

[SMZ99] M. Sulzmann, M. Mller, and C. Zenger. Hindley/milner style
type systems in constraint form. Research Report ACRC-99-
009, University of South Australia, School of Computer and
Information Science, 1999.

[SP07] V. Simonet and F. Pottier. A constraint-based approach to
guarded algebraic data types. ACM Trans. Prog. Languages
Systems, 29(1), January 2007.

[SPJCS08] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty,
and Martin Sulzmann. Type checking with open type func-
tions. In ICFP ’08: Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, pages
51–62, New York, NY, USA, 2008. ACM.

[SS05] P. J. Stuckey and M. Sulzmann. A theory of overloading.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(6):1–54, 2005.

[SSJC07] T. Schrijvers, M. Sulzmann, S. Peyton Jones, and
M. Chakravarty. Towards open type functions for Haskell.
In O. Chitil, editor, Proceedings of the 19th International
Symposium on Implemantation and Application of Functional
Languages, pages 233–251, 2007.

[SSS08] M. Sulzmann, T. Schrijvers, and P. Stuckey. Type inference
for GADTs via Herbrand constraint abduction. Report CW
507, Department of Computer Science, K.U.Leuven, Leuven,
Belgium, January 2008.

[Sul00] M. Sulzmann. A General Framework for Hindley/Milner Type
Systems with Constraints. PhD thesis, Yale University, De-
partment of Computer Science, May 2000.

[SWJ06] M. Sulzmann, Jeremy Wazny, and P. J.Stuckey. A framework
for extended algebraic data types. In Proc. of FLOPS’06,
volume 3945 of LNCS, pages 47–64. Springer-Verlag, 2006.

[Tof90] M Tofte. Type inference for polymorphic references. Infor-
mation and Computation, 89(1), November 1990.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc poly-
morphism less ad hoc. In Proc 16th ACM Symposium on Prin-
ciples of Programming Languages, Austin, Texas. ACM, Jan-
uary 1989.

[Wri95] Andrew Wright. Simple imperative polymorphism. Lisp and
Symbolic Computation, 8:343–355, 1995.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recur-
sive datatype constructors. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 224–235. ACM Press, 2003.

50

